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Inmedical image analysis, collectingmultiple annotations fromdiferent clinical raters is a typical practice tomitigate possible diagnostic
errors. For suchmultirater labels’ learning problems, in addition tomajority voting, it is a common practice to use soft labels in the form
of full-probability distributions obtained by averaging raters as ground truth to train the model, which benefts from uncertainty
contained in soft labels. However, the potential information contained in soft labels is rarely studied, whichmay be the key to improving
the performance of medical image segmentation with multirater annotations. In this work, we aim to improve soft label methods by
leveraging interpretable information from multiraters. Considering that mis-segmentation occurs in areas with weak supervision of
annotations and high difculty of images, we propose to reduce the reliance on local uncertain soft labels and increase the focus on image
features. Terefore, we introduce local self-ensembling learning with consistency regularization, forcing the model to concentrate more
on features rather than annotations, especially in regions with high uncertainty measured by the pixelwise interclass variance. Fur-
thermore, we utilize a label smoothing technique to fatten each rater’s annotation, alleviating overconfdence of structural edges in
annotations. Without introducing additional parameters, our method improves the accuracy of the soft label baseline by 4.2% and 2.7%
on a synthetic dataset and a fundus dataset, respectively. In addition, quantitative comparisons show that our method consistently
outperforms existing multirater strategies as well as state-of-the-art methods. Tis work provides a simple yet efective solution for the
widespread multirater label segmentation problems in clinical diagnosis.

1. Introduction

Recently, deep learning techniques have made impressive
progress on image segmentation tasks and have become a
popular choice in the computer vision community [1].
Typically, supervised learning in deep learning is based on
the assumption that there is a ground truth (GT). However,
the truth is a lie; that is, there is often a lack of human
consensus on the category of an object [2–4]. Especially, in
medical image segmentation, which is based on knowledge
and experience, disagreements between raters are fairly
common [5, 6]. Inter-rater variability, as frequently reported
by relevant research in the clinical feld, usually leads to
difculties in segmenting areas of high uncertainty [7, 8].

To mitigate this inter-rater variability, the most basic yet
common approach is the majority voting approach, in which

opinions agreed by a majority of raters are taken as true.
However, the majority voting approach essentially discards
the rich information contained in the multirater labels
through one-hot operation (e.g., the probability distribution
[0.6, 0.3, and 0.1] is transformed into a hard label [1, 0, and
0]). To combat this issue, soft-label methods that average
rater annotations have been intensively investigated [9, 10].
Furthermore, Islam and Glocker [11] introduced a label
smoothing method that incorporates fuzzy information
about edges into multirater soft labels, called spatially varied
label smoothing (SVLS).

However, when we applied the soft labels method to the
multirater optic cup (OC) and optic disc (OD) segmentation
of the fundus image task, fnding that the areas where
segmentation errors occur coincides with the highly di-
vergent areas to some extent, see Figure 1. As demonstrated
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in Figure 2, the pixelwise loss and error rates of predictions
are statistically positively correlated with the interclass
variance which indicates the divergence between raters. We
tentatively attempt to explain this phenomenon as follows:

(i) An explanation is that the divergence area is highly
uncertain, and the higher the uncertainty of the label,
the lower the penalty imposed on the predicted
distribution [12]. Highly uncertain annotations
make it difcult to impose strong and precise con-
straints on the model, which is similar to weakly
supervised learning that lacks accurate annotations
[13]. Te dependence on annotations in weakly
supervised learning is weakened and replaced by a
focus on features [14].

(ii) Furthermore, we provide an intuitive interpretation
that is more consistent with the multirater labels
segmentation task: uncertainty refects pixelwise
image difculty, where areas with high difculty are
more challenging for the model to accurately seg-
ment. Image difculty, which is related to the visual
characteristics of the images, such as image quality
and occlusion of the area of the lesions, is one of the
causal factors of inter-rater variability [15]. As
demonstrated in Figure 1(a), the blood vessels oc-
cluding the edge region of the OD not only make
ophthalmologists’ judgment difcult but also hinder
the accurate prediction of the deep neural network.
In contrast to existing methods [16, 17] that treat
difculty as image level, we innovatively consider
difculty to be pixelwise for segmentation tasks.

In conclusion, the regions with high inter-rater vari-
ability have more difcult features but only weaker super-
vision, which could be a cause of mis-segmentation. In this
work, we aim to improve the performance level of the soft
label approach on multirater labels’ segmentation task based
on the previously mentioned explanations. A way to get the
best of both sides is to increase the focus on image features
while reducing the reliance on highly uncertain annotations.
Consequently, we propose a supervised segmentation net-
work that is constrained by consistency regularization.
Specifcally, consistency regularization exploits the aug-
mentation invariance of images to optimize the feature space
while avoiding relying simply on labels and compensating

for the disadvantage of unreliable local annotations. Te
uncertainty as the prior knowledge is formulated as the soft
labels’ interclass variance, which drives the proposed
model’s local diference training. In addition, the SVLS
approach, which incorporates edge fuzziness into soft labels,
is used to soften average expert labels.

Experiments are performed on a synthetic dataset with
great disagreement as well as a real-world dataset. In these
experiments, our method consistently outperforms existing
multirater strategies and state-of-the-art (SOTA) methods.
To verify the generalization of the proposed method, we
additionally conduct generalization experiments on two
other types of datasets.

In summary, the main contributions of this study are as
follows:

(1) To embed consistency/inconsistency of multirater
into the model, the soft labels obtained by averaging
softened annotations of raters are used as GT.

(2) We provide thinking that disagreement among
multiple raters, i.e., uncertainty, can be quantifed
from soft labels and used as prior knowledge to
refect the pixel-level difculty of an image.

(3) We propose to use consistency regularization to
improve the model’s attention to features and reduce
dependence on GT, especially in regions of high
uncertainty. Without introducing additional pa-
rameters, the accuracy of our method is improved
over that of other methods on synthetic and real-
world datasets.

2. Related Works

Te problem of multirater labels’ segmentation caused by
inter-rater variability has started to pique the interest of
researchers.Tere is a study showing that the observed labels
depend on three causal factors: the true label, the expertise of
the rater, and the image difculty [16]. For the method of
obtaining the true label, it is a common practice to use
majority voting [18] and STAPLE [19] or other label fusion
strategies to obtain the ground-truth labels [11, 20] so that
they can be adapted to the general segmentation model.
However, simple label fusion methods neither do take ad-
vantage of any image features nor do they carry the inter-
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Figure 1: (a) Local visualization of an exemplary fundus image; (b) interclass variance map of annotations from six raters for OC and OD
segmentation; (c) corresponding loss map of prediction; (d) corresponding error rates’ map of prediction.
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rater variability through to the model. Recently, several
eforts have started to explore the expertise of the rater using
label sampling strategies [21] or rater modeling strategies
[22]. For instance, Zhang et al. [23] proposed to use con-
fusion matrices to the model preference of annotators,
obtaining segmentation prediction with the least noise by
optimizing two coupled convolutional neural networks
(CNNs). Yu et al. [15] proposed a multibranch model for the
multirater glaucoma classifcation task, encouraging the
specifcity branch and the sensitivity branch to generate
consistent/opposing predictions for consensus/disagree-
ment samples. Ji et al. [24] proposed MRNet, which embeds
the expertise of individual annotators into the model to
generate calibrated predictions under diferent expertise
levels for medical image segmentation.

However, there still lacks efective research on the image
difculty represented by image features in the multirater
label segmentation task. Furthermore, we consider that
multirater labels’ segmentation is weakly supervised learning
with inaccurate labels, which has not been explored before.
Although our approach is uncertainty-driven, unlike works,
such as Monte Carlo dropout [25] and ensembles [26, 27],
that evaluate uncertainty and produce multiple segmenta-
tion hypotheses, our work aims to learn a deterministic
single-output deep model.

3. Methodology

Temain architecture of our model is illustrated in Figure 3,
which is composed of three main parts: (a) segmentation
network with consistency regularization for conveying more
information about the input; (b) asymmetrical regulariza-
tion part for generating uncertaintymask to realize local self-
ensembling in supervised learning; (c) multirater labels
fusion part for obtaining a soft label for each input as the
supervised target containing uncertainty. In the test and
application phase, just the trained network is required to
predict the segmentation of the input image.

3.1. Problem Defnition. In this article, we consider the
problem of learning a segmentation model from labels
annotated by multiple human raters. Given the images

XW×H×L � xn 
N

n�1 and the corresponding one-hot labels
YW×H×C � y(r)

n 
r�1,···,R

n�1,···,N (W, H, L, C denote the width, height,
channels, and classes), where N is the number of samples
and R is the number of raters, each image is independently
annotated by raters based on their personal experiences. Te
objective of the multirater label segmentation task is to learn
the projection function F(·), mapping the input image xn to
the estimated prediction yn which is one-hot form encoded
by the full probability distribution pn. In our article, pn is
encouraged to be as similar as pn, which is the soft label fused
by Yn.

3.2. Soft Labels. Recently, increasing studies have proposed
training a model using soft labels for accounting for the high
uncertainty in lesion or structure borders’ delineation
[11, 28–31]. Averaging multirater labels is an intuitive way to
obtain soft labels in multirater annotation tasks as follows:

pn �
1
R



R

r�1
y

(r)
n . (1)

Although the average strategy incorporates uncertainty
from inter-rater variability into soft labels, it indulges the
overconfdence of each rater. Terefore, we soften each hard
label by SVLS and then average them to obtain pn which
contains spatial and inter-rater uncertainty as follows:
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where (i, j) is the position of pixel and w is a weight matrix

which is obtained by 1/
����
2πσ2

√
e− | x

→
|2/2σ2 with σ � 1. SVLS

determines the probability of the target pixel based on its
neighboring pixels, achieved by a Gaussian-like weight
matrix that is applied across the one-hot encoded rater labels
y(r) to obtain a soft probability distribution.

Te transmission of uncertainty information into the
model is inseparable from the appropriate loss function.
Tere is the performance of several common loss functions
in Section 4.4, including soft cross-entropy loss, soft dice
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Figure 2: (a) Line graph of pixelwise interclass variances versus pixelwise loss; (b) line graph of pixelwise interclass variances versus
pixelwise probability of misprediction. Te abovementioned statistics are averaged on the validation set.
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loss, and soft focal loss. By comparison, the soft cross-en-
tropy loss is selected as the optimization objective, en-
couraging the probability distribution of prediction pn to be
identical to that of the soft label as follows:

LGT � − 

N

n�1
pnlog p̂n . (3)

3.3. LabelUncertaintyMeasure. It is equally crucial to model
uncertainty at the pixel-level as to improve the model’s
performance, particularly in medical scenarios [25]. Unlike
work that uses stochastic networks [32, 33] to model un-
certainty, we improve multirater models using uncertainty
as a source of prior knowledge. Specifcally, we consider the
pixelwise interclass variance VarW×H

n n�1,···,N that refects
the uncertainty caused by inter-rater variability and spatial
variation. It is inversely proportional to entropy, meaning
that the lower the variance, the greater the entropy and,
hence, the greater the uncertainty. Te appropriate uncer-
tainty can enhance the generalization and calibration of the
model. However, the high uncertainty would be detrimental
to the model as noise. In the position of the (i, j)th pixel, the
variance between classes Var(p

(i,j)
n ) can be formulated by the

following:

Var p
(i,j)
n  �

1
C
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where 
C− 1
c�0 p

(i,j)
n (c) � 1. We propose to use uncertainty as a

threshold to assign diferent optimization objectives to
diferent areas of the image. Specifcally, the labels of areas
with high uncertainty are no longer decisive but are replaced
with constraints on the feature space, which will be clarifed
in the next section. In areas with high rater agreement, soft
labels and feature constraints work together to optimize the
model. For convenience, we refer to this uncertainty-driven

local diferential optimization as asymmetrical regulariza-
tion. Te threshold comes into play in the form of a mask of
0-1, acting directly on the loss function. Mask is diferen-
tiated into mask(GT) and mask(CR) based on the threshold,
which correspond to areas of low and high uncertainty,
respectively, as follows:

mask(GT)
n � 1 Varn ≥ μ( ,

mask(CR)
n � I + 1 Varn < μ( ,

(5)

where 1 is the indicator function and I is the identity matrix
with the same shape as Varn.

3.4. Consistency Regularization. To improve attention to
features and optimize feature space, we propose using
consistency regularization as an extra constraint on the
model, which has been utilized in semisupervised learning
[34] and unsupervised learning [35]. Consistency regulari-
zation is a type of self-ensemble learning because it only
relies on the images themselves to learn. Inspired by Li et al.
[34], we apply rotation consistency to this work. Specifcally,
there is a problem in the segmentation task using CNN:
when the inputs of CNN are rotated, the corresponding
network predictions would not be rotated in the same way
[36] as follows:

θ πkxn( ≠ πkθ xn( , (6)

where πk is a rotation to the image (i.e., horizontal, vertical,
or mixed fip) and θ is the parameters of the network. Te
feature space is automatically optimized when the model is
encouraged to make the same judgments about elements
before and after rotation. In this article, we use the soft cross-
entropy loss function as the optimization target of rotation
consistency regularization term:
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Figure 3: Te architecture of our model consists of three parts: (a) segmentation network part; (b) asymmetrical regularization part; (c)
multirater labels’ fusion part.
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LCR � − 
N

n�1
θ πkxn( log πkθ xn( ( . (7)

When formulas (3) and (7) are combined, the total loss
function is as follows:

Ltotal � − λ1 

N

n�1
pnlog pn(  − λ2 

N

n�1
θ πkxn( log πk

pn( , (8)

where λ1 + λ2 � 1. By minimizing the loss function, the
network is urged to focus more on the image content than on
the regression of GTalone [37]. So far, image features can be
fully expressed through self-ensembling. In regions of di-
vergence where uncertainty is high, supervision of labels is
entirely replaced by unsupervised self-ensembling. Without
introducing extra parameters and structures, asymmetrical
regularization is achieved by covering the soft label with an
uncertainty-based mask (formulas (5) and (7)). Finally,
updated formula (8) is shown as follows:

Ltotal � − λ1mask(GT)
n 

N

n�1
pnlog pn(  + − λ2mask(CR)

n 

N

n�1
θ πkxn( log πk

pn( . (9)

4. Experiments

In this section, we introduce the experimental dataset,
implementation details, and evaluation metrics. In order to
explore the best performance under diferent combinations of
the loss and uncertainty threshold value, we conduct quanti-
tative experiments with diferent setups on the MNISTand the
RIGA validation set in Section 4.4. For comparison with other
methods, the common label fusion approach and other SOTA
approaches for multirater labels segmentation are used as the
benchmark. Te results are listed in Section 4.5, showing that
our method can exploit the uncertainty of multirater anno-
tations to improve segmentation performance. Additionally,
ablation experiments are conducted to evaluate the efcacy of
each component of our method.

4.1. Datasets

(i) MNIST is a handwritten digits dataset with 60,000
training and 10,000 test examples. All images are
28× 28 grayscale versions of the handwritten
numbers 0–9. Zhang et al. [23] synthesized a
dedicated dataset of multirater annotation tasks
based on MNIST, which simulates raters with dif-
ferent biases to obtain multiple labels by using
Morpho-MNIST software [38]. Specifcally, the frst
rater provides good segmentation with approximate
GT, the second rater tends to oversegment, the third
rater tends to undersegmentation, the fourth rater is
prone to the combination of small fractures and
oversegmentation, and the ffth rater always an-
notates everything as the background. We train a
model using all fve raters’ annotations and fnally
test the model performance on GT.

(ii) RIGA is a publicly available dataset for joint OC and
OD segmentation from the University of Michigan
[39]. It includes a total of 750 color fundus images
from three subsets: 460 images from MESSIDOR,
195 images from BinRushed, and 95 images from
Magrabia. Each fundus image has six OC and OD

annotations carried out by six ophthalmologists.We
select BinRushed and MESSIDOR as the training
set, and Magrabia is selected as the test set, where all
images are resized to 256 × 256. In accordance with
the experimental design of MRNet [24] and other
methods [11, 23], the majority voting of six raters
for each test image is used as the silver standard to
evaluate the prediction.

(iii) QUBIQ-Kidney and Prostate are subdatasets of
Quantifcation of Uncertainties in Biomedical
Image Quantifcation Challenge (QUBIQ) [40],
which are specifcally designed to evaluate inter-
rater variability. Te QUBIQ-Kidney images are
2D CT slices (20 cases for training and 4 cases for
testing) in which the kidneys are manually an-
notated by three raters. Te QUBIQ-Prostate im-
ages are 2D MRI slices (48 cases for training and 7
cases for testing) in which the prostate is manually
annotated by six raters. To match the task objective
of the QUBIQ challenge, GT and prediction are
binarized at fve probability levels (0.1, 0.3, 0.5, 0.7,
and 0.9), and evaluation scores for all thresholds
will be averaged.

4.2. Implementation Details. For a fair comparison, we
employ the same network architecture as the baseline ap-
proach. Specifcally, for the MNIST experiment, we use the
U-Net architecture without pretraining as [23].Moreover,
for the RIGA experiment, the main framework utilizes the
U-Net architecture with ResNet34 as the backbone. Pa-
rameters of the U-Net encoder are initialized with the
pretrained model on ImageNet [41]. Te abovementioned
network is implemented with the PyTorch platform and
trained/tested on a Tesla V100 GPU with 32GB of memory.
Te proposed network is trained end-to-end using the Adam
optimizer [42], and it takes about 4 hours to train our model
with a mini-batch size of 4 for 60 epochs.Te learning rate is
set to 1 × 10− 4.
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4.3. Evaluation Metrics. Various evaluation metrics, in-
cluding the Dice similarity coefcient (DSC) and mean
intersection over union (mIoU), were utilized to evaluate the
performance of the proposed method for segmenting OC
and OD relative to GT. Tese performance metrics are
defned as follows:

DSC(D) �
2 × TP

2 × TP + FP + FN
,

mIoU(I) �
TP

FP + FN + TP
,

(10)

where TP, FP, FN, and TN represent true positives, false
positives, false negatives, and true negatives, respectively, in
the evaluation confusion matrix. Note that a model with
higher metric values can predict more precise segmentation
masks. All experimental results are reported as the average of
the ten experiments conducted on the test set.

4.4. Performance of Our Methods. Here, we provide a
quantitative comparison among diferent loss functions
including soft cross-entropy loss (CE), soft dice loss (DL),
and soft focal loss [43] (FL). Table 1 displays the top fve
combinations of loss functions with the highestD under the
corresponding optimal hyperparameter settings, including
the uncertainty threshold μ and the unsupervised loss weight
λ2, where experiments are performed on the MNIST vali-
dation set. Te proposed method exhibits the best perfor-
mance when both the supervision loss and the consistency
regularization loss are CE. In Figure 4, we further present the
comparison of model accuracy at diferent μ and λ2 settings
under this loss function combination on the MNIST and
RIGA validation set. Moreover, the average unsupervised
proportion corresponding to diferent μ in the two datasets is
performed in Figure 4. By comparison, the optimal (μ, λ2)
combinations on the MNIST and RIGA datasets are (0.5,
0.005) and (0.5, 0.002), respectively, with corresponding
unsupervised proportions of 8% and 4%.

4.5. Comparisons with Other Methods. To demonstrate the
advantage of the proposed method, we compare our method
to the SOTAmethods on theMNISTand RIGA datasets. We
use the publicly released code with default parameters to
retrain the SOTA methods with the same training/test set as
ours for a fair comparison.

Table 2 quantitatively compares our framework to three
hard label methods, fve soft label methods, and other SOTA
multirater labels’ segmentation methods, including (a)
Mode-UNet: UNet trained using a single label randomly
selected; (b) MV-UNet: UNet trained using one-hot labels
obtained by majority voting; (c) STAPLE-UNet: UNet
trained using one-hot labels obtained by STAPLE [19]; (d)
Average-UNet: UNet trained using soft labels obtained by
average raters [31]; (e) GLS-UNet: UNet trained using soft
labels smoothed by general label smoothing [44]; (f )
Sharpen-UNet: UNet trained using soft labels smoothed by
label sharpen [45] under temperature (T) � 0.5 or 1.5; (g)

Mixup-UNet: UNet trained using soft labels smoothed by
Mixup; (h) SVLS-UNet: UNet trained using soft labels
smoothed by SVLS [11]; (i) LNL [23]; (j) MRNet [24] on the
MNIST and RIGA test sets.

As shown in Table 2, our proposed method consistently
achieves superior performance compared with other
methods. For value D, our method outperforms the SOTA
method by 1.13% on the synthetic MNIST dataset. Figure 5
shows the visualization results, wherein ourmethod recovers
the most realistic result from several annotations containing
obvious human errors. Additionally, compared to the
suboptimal MRNet method, the segmentation results pre-
dicted by the proposed method are smoother and more
structured at the edge. For the real-world dataset RIGA, the
performance improvement is especially prominent for the
retinal OC segmentation, where the inter-rater variability is
more signifcant, with a 2.29% increase in D value over the
current best method (listed in Table 2).

Figure 6(a) visualizes fve examples of the silver standard
and the corresponding segmentation results predicted by six
diferent methods. As shown in Figure 6(b), the edge of OC
occluded by blood vessels in the area with high inter-rater
divergence (indicated by arrows) and, similarly, the high-
incidence area of misprediction (red areas) by other
methods. Compared to other methods, the proposed
method shows lower prediction errors in the aforemen-
tioned area, demonstrating the robustness of our method to
difcult features.

4.6. Ablation Studies. In this section, ablation studies are
performed on the RIGA dataset over each component of the
proposed method, including label smoothing (LS), consis-
tency regularization (CR), and asymmetrical regularization
(AR), as listed in Table 3. Meanwhile, the efect of diferent
label smoothing techniques including GLS and Sharpen and
SVLS on the performance of our method is also explored.
Te baseline model is the UNet trained using soft labels of
average raters. All experiments are performed with the same
network structure and training hyperparameters, Sections
4.2 and 4.4. Dave represents the average value of DOC and
DOD.

As shown in Table 3, the segmentation performance of
the model reaches SOTA when all components are activated.
As we sequentially remove the proposed components from
the U-Net Baseline, the model performance degrades
gradually. In particular, the inclusion of CR improved the

Table 1: Te segmentation performance (mean ± standard de-
viation) of diferent combinations of loss functions: supervised
loss + consistency regularization loss.

Loss μ λ2
Performance
D ± std(%)

CE and CE 0.005 0.5 94.09 ± 0.51
CE and DL 0.005 0.5 93.55 ± 0.78
DL and DL 0.005 0.1 92.39 ± 1.09
DL and CE 0.005 0.1 91.15 ± 1.16
FL and FL 0.005 0.5 89.91 ± 0.59
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Figure 4: Segmentation accuracy under diferent μ and λ2 on the (a) MNIST and (b) RIGA.

Table 2: Quantitative results with diferent strategies on the MNIST and RIGA test set.

Methods MNIST RIGA
D(%) I(%) DOD(%) DOC(%) IOD(%) IOC(%)

Hard
Mode-UNet 62.89 57.30 96.90 82.41 94.62 75.09
MV-UNet 89.14 80.59 97.03 84.92 94.35 73.47

STAPLE-UNet 82.26 74.51 96.28 85.37 92.84 75.68

Soft

Average-UNet 90.54 82.85 97.04 85.40 94.52 76.58
GLS-UNet 87.32 78.29 96.14 86.83 93.71 75.95

Sharpen(T�0.5)-UNet 90.50 81.03 96.85 84.71 94.33 77.18
Sharpen(T�1.5)-UNet 87.67 80.13 96.77 86.13 93.82 77.90

Mixup-UNet 86.61 78.58 96.83 84.72 94.02 75.18
SVLS-UNet 90.32 82.05 97.40 86.09 94.95 76.87

SOTA LNL 84.52 76.33 97.67 87.56 95.46 78.76
MRNet 93.63 88.09 97.60 86.54 95.78 78.19
Ours 94. 6 90.82 9 .98 89.85 96.04 81.9 

Te best results are highlighted, and the second best results are italic.

Image Good (GT) Over Under Wrong Blank MV-Net STAPLE SVLS LNL MRNet Ours

Figure 5: Visualization of fve raters’ annotations and predictions of six methods on the synthetic MNIST test set.
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baseline by 1.10%. Ten, the combination of CR and AR
yielded an additional 0.55% improvement. Tis means that,
in areas with higher rater inconsistency in annotations, the
potential representation of image features is more reliable
than in uncertain annotations. It is proved experimentally
that features are also one of the important causes of observer
variability rather than just the rater knowledge. In addition,
adding SVLS alone improvesDave of baseline by 0.52% while
utilizing it with CR and AR jointly improves Dave of the

proposed method without SVLS by 1.05%. It demonstrates
that the positive efects of CR and AR are further
strengthened under the threshold of uncertainty with SVLS.

4.7. Generalization Capability. To further verify the gener-
alization capability of the proposed method, we additionally
perform experiments on the kidney segmentation task of the
QUBIQmultirater segmentation challenge. We use the same

Image sGT MV-Net SVLS LNL MRNet Ours
Silver

standard Staple

(a)

MV-Net

SVLS LNL MRNet Ours

Silver Standard STAPLEInput Image Sof GT

(b)

Figure 6: (a) Visualization of segmentation predictions on RIGA test set. (b) An example of a visualized partial map of predicted errors.

Table 3: Ablation experiment results on the RIGA dataset.

Module Performance
LS CR AR Dave ± std(%)

SVLS √ √ 93.92 ± 0.56
Sharpen(1.5) √ √ 93.55 ± 0.73
GLS √ √ 93.49 ± 0.63
SVLS √ 93.36 ± 0.71
Average √ √ 92.87 ± 0.65
Average √ 92.32 ± 0.82
SVLS 91.74 ± 0.78
Average 91.22 ± 1.06

8 Computational Intelligence and Neuroscience



multithreshold scores D(soft) and I(soft) as QUBIQ chal-
lenge, which can better evaluate the ability of the model to
refect potential inter-rater agreement/disagreement. Spe-
cifcally, after the GTand prediction are binarized at multiple
threshold levels (0.1, 0.3, 0.5, 0.7, and 0.9), the D and I

metrics averaged across fve thresholds are D(soft) and
I(soft). As listed in Table 4, compared to the comparative
methods, the proposed method achieves optimal perfor-
mance on the QUBIQ-Prostate dataset and achieves sub-
optimal performance on the QUBIQ-Kidney dataset.
Furthermore, the advantage of a low number of parameters
facilitates the application of our method to other multirater
datasets. Several representative examples of the comparison
methods for such two datasets are visualized in Figure 7.

5. Conclusion

In this article, we focus on the utilization of rich annotation
information from multiple clinical raters, which are rela-
tively less explored but widely presented in medical image
segmentation. Based on the deep learning method using soft
labels, we proposed a local self-ensembling learning model
related to pixelwise variance with the intention of reducing
the reliance upon uncertain local labels and optimizing the
feature space. Our method achieves performance im-
provement over the soft labels’ learning method without

requiring the introduction of extra parameters and struc-
tures. In addition, we incorporate structural uncertainty into
soft labels via the label smoothing technique to further
improve segmentation performance level. Empirical ex-
periments demonstrated the overall superior performance of
our method on a synthetic dataset and a real-world dataset.
Our method provides a solution for automatically learning a
reliable clinical-aided diagnosis system using multirater
annotations.
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Table 4: Quantitative results with diferent strategies on the QUBIQ-kidney and prostate test sets.

Methods
Kidney Prostrate

#Parameters
D(soft)(%) I(soft)(%) D(soft)(%) I(soft)(%)

MV-UNet 66.59 57.83 83.50 73.71 22.0M
STAPLE-UNet 65.01 56.31 83.36 73.69 22.0M
Average-UNet 69.33 58.21 85.82 77.02 22.0M
SVLS-UNet 70.04 58.65 86.11 77.38 22.0M
LNL 68.40 58.59 85.44 76.91 22.2M
MRNet  1.36 60.43 87.39 78.14 81.1M
Ours 70.25 59.08 8 .6  8.55 22.0M
Te best results are highlighted, and the second best results are italic.

Image Sof GT MV-Net SVLS LNL MRNet Ours
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Figure 7: Visualization of segmentation predictions on the QUBIQ-kidney and prostate test sets.
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