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A Soft, Steerable Continuum Robot that Grows via Tip Extension

Joseph D. Greer, Tania K. Morimoto, Allison M. Okamura, and Elliot W. Hawkes

Abstract— Soft continuum robots exhibit access and manip-
ulation capabilities in constrained and cluttered environments
not achievable by traditional robots. However, environmental
contact can drastically alter the motion of continuum robots,
complicating their control in these applications. Here we de-
scribe the design, modeling, and control of a soft continuum
robot with a novel extension degree-of-freedom that enables
movement in a direction that is always tangent to the robot’s
backbone, independent of environmental contacts. Steering
occurs by inflating multiple Series Pneumatic Artificial Muscles
(sPAMs) arranged radially around the backbone and extending
along the robot’s whole length. This design simplifies navigation
of the robot by decoupling steering and extension. To navigate to
a destination, the robot is steered to point at the destination, and
the extension degree-of-freedom is used to reach it. We present
models and experimentally verify the sPAMs and growing robot
kinematics. The kinematic model has a mean position accuracy
of 5.5 cm for predicting the tip position of a 42 cm long robot.
Control of the growing robot is demonstrated using an eye-in-
hand visual servo control law that enables growth of the robot
to designated locations.

I. INTRODUCTION

Because of their slender, continuously deformable, and

compliant structures, continuum robots are useful for appli-

cations that require manipulation in or navigation through

space-constrained and unstructured environments. Applica-

tion areas of continuum robots are diverse and include mini-

mally invasive surgery [1], [2], [3], search and rescue [4],

and inspection [5], [6]. However, their continuum nature

introduces a new set of challenges for modeling and control

compared to their rigid counterparts [7], [8]. In particular,

environmental contacts and disturbances may drastically alter

the kinematics and dynamics of the robot bodies [9]. In this

paper, we introduce a new soft pneumatic continuum robot

with a novel extension degree of freedom that permits move-

ment of the robot’s tip in a direction that is always tangent to

the robot’s backbone, independent of environmental contacts

and disturbances (Fig. 1). Among other benefits, this design

simplifies control of the robot because steering and extension

are decoupled.

The soft robot extends by growing from its tip and controls

its direction of growth by bending. Growth of the thin-

walled low density polyethylene robot body is achieved

by pneumatically driven eversion at its tip. This method
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Fig. 1. Demonstration of soft continuum robot with novel extension
degree of freedom. Extension is implemented with pneumatically driven tip
eversion [10] and simplifies motion control of the robot’s tip by decoupling
steering and movement. The bottom row shows a sequence in which the
robot autonomously navigates to Target 1, pushes the target off its perch,
and then steers and lengthens to reach Target 2. Times in the sequence t1,
t2, and t3 are spaced approximately two seconds apart. A video of this
demonstration is provided in the Supplementary Material.

of growth was described by Mishima et al. [11] in 2003,

without steering. Rösch et al. and Sadeghi et al. [12], [13]

also developed devices that moved using tip eversion, with

tip eversion driven by a motor rather than air pressure. Those

devices were developed to penetrate granular material [14],

[15]. Using a variant of tip eversion, Tsukagoshi et al. [16]

developed an extending robot that was steerable by manual

control. More recently, Hawkes et al. applied the concept of

tip eversion to a novel growing robot [10] made of thin-

walled polyethylene tubing. This method demonstrated a

robot that could grow in length by two orders of magnitude.

It was steered using discrete heading changes along its

backbone that were permanent; once a turn was made, it

could not be undone. The soft robot we present in this paper

uses the same method of growth, but a different method of

turning – reversible bending of the soft growing robot body.

Bending is achieved using series pneumatic artificial mus-

cles (sPAMs) [17] that are attached along the length of the

robot’s body (Fig. 2). The sPAMs cause reversible bending

by exerting a tension force on the robot body and play

a similar role to actuated tendons in traditional continuum
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Fig. 2. Diagram of tip eversion based growth and steering, with a
camera payload. (a) Growing robot in initial configuration. The body internal
pressure, P , causes robot body and sPAMs, which are attached to the body
along its length, to evert at the tip of the robot. Growth direction is indicated
by the dashed arrow and is always approximately aligned with tip camera’s
optical axis. (b) After a period of time, the robot has lengthened as a result
of the growth process. The tension force, T , on the camera wire keeps the
camera positioned at the distal end of the robot. (c) Pressurizing the lower
sPAM to a pressure, P1, causes it to bulge and contract, resulting in constant
curvature bending of the robot body downward.

robots [18]. A sPAM is a type of pneumatic artificial muscle

(PAM) [19], which is a class of contractile actuators that turn

the potential energy of compressed gas into mechanical work.

Other examples of PAMs include McKibben Muscles [20],

pouch motors [21], pleated PAMs [22], inverse PAMs [23],

and antagonistic PAMs [24]. As required by the extension

degree of freedom, sPAMs are entirely soft. This allows them

to withstand the large deformations that are experienced by

the robot body and actuators as they unfurl from the tip

during the eversion process (Fig. 2).

To steer the robot, we present an eye-in-hand visual servo

based heading controller [25]. A camera at the robot’s tip

(Fig. 2) whose optical axis is aligned with the axis of the

robot’s backbone provides a point-of-view image from the

robot’s perspective. Using this image, an operator may des-

ignate a destination (e.g. an object of interest). Growth of the

robot will result in the robot moving toward the destination.

The reversibility of the bending actuators provides three

advantages over the irreversible turning system presented

in [10]. First, the robot can reach multiple targets in one

growth cycle. Second, mistakes in steering can be corrected.

Third, the operator can reorient the robot/camera to look at

different features in its environment without having to grow

in order to reorient.

(a) (b) (c) (d)

Fig. 3. Thin-walled polyethylene tubing (a) deflated and (b) inflated. An
sPAM is a length of polyethylene tubing with o-rings spaced at regular
intervals (c) deflated and (d) inflated.

The paper is organized as follows. Section II describes

the design and fabrication of the growing robot. Section III

develops a model for the kinematics of steering of the robot,

which relates sPAM pressures and robot length, controlled by

growth, to the location of the robot tip. Section IV introduces

and analyzes a visual-servo based steering controller and

demonstrates its effectiveness in tasks requiring the robot

to steer to a goal location. A preliminary version of portions

of this work appeared in conference form in [17], which

introduced the sPAM actuator and steering of a fixed length

robot. This study significantly extends [17] by adding growth

as a degree of freedom to the robot, resulting in new models,

control approaches, and robot capabilities.

II. HARDWARE

A. Robot

The growing robot is composed of a backbone and three

sPAMs attached via double-sided tape radially around the

backbone (Fig. 1). Both the backbone and the sPAMs start

as flat sheets of thin-walled polyethlyene tubing of length

L (Fig. 3(a). When inflated, the thin-walled polyethylene

tubing takes on the shape of a cylinder (Fig. 3(b)). To

create a sPAM, rubber o-rings are placed onto a tube at

regular intervals along the length of the tube, creating a

series of actuator segments among which air can flow.

When the sPAM is inflated, the profile of each actuator

segment between o-rings becomes bulged when compared

to its deflated state (Fig. 3(c)). Assuming the material does

not stretch significantly, the length of the actuator contracts

when inflated due to its bulged profile (Fig. 3(d)).

As will be explained in Sec. III-B, the backbone can

be thought of as a cantilevered beam whose stiffness is

derived from its internal pressure. Similar to the motor-

actuated tendons in certain continuum manipulators [18], the

sPAMs exert moments on the pneumatic backbone to cause

reversible bending of the robot. The three sPAMs provide

controllability of the robot’s yaw and pitch.

To place the robot in a state ready for growth, the assem-

bled backbone and sPAMs are inverted and pushed into the

center of the backbone until the backbone length is a fraction

of its original length. When the main tube is pressurized, the

robot everts from the tip and grows back to its original length

as shown in Fig. 2. During the growth process, a camera is

kept at the tip of the robot by applying a constant tension
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Fig. 4. Robot steering control architecture. An eye-in-hand visual servo
controller running at the camera acquisition rate, 30 Hz, generates pressure
set points for the three sPAMs. A lower-level pressure controller running at
approximately 500 Hz maintains these desired pressures in the three sPAMs.

force on the camera wire. This force can be supplied by hand

or through other means such as a weight, friction clamp, or

actuator. The backward tension on the camera also serves to

throttle the rate of growth of the robot.

B. Pneumatic System

To control the growth rate and heading of the growing

robot, pressure in the main tube and each of the three

sPAMs is regulated. The main tube is controlled to a pres-

sure appropriate for growth, between 6.9 and 20.7 kPa,

with a pressure regulator valve. Pressure in each sPAM

is dynamically adjusted during the course of growth of

the robot to achieve a desired heading. Fig. 4 provides

a high-level block diagram of the steering control archi-

tecture, in which the pneumatic system operates to regu-

late pressure. Pressure set-points for the pneumatic back-

bone and three sPAMs are regulated at 500 Hz by the

pressure controller and commanded at 30 Hz by a visual

servo controller (Sec. II-C). The pressure controller oper-

ates the pneumatic system, which consists of electronic

proportional valves (EV-P-20-6050, Clippard Incorporated,

Cincinnati, OH), that control air flow rates and analog pres-

sure sensors (MPX5100DP-ND, Freescale Semiconductor,

Austin, TX) that measure pressure in the three sPAMs.

C. Vision System

As explained in Sec. IV, an eye-in-hand visual servo con-

trol law [25] is used to orient the robot toward a user-defined

goal position. Visual features are observed using a 170◦

field-of-view miniature camera (AccFly, Shenzhen, China)

mounted at the tip of the continuum robot (Fig. 2). Image

processing is performed by dedicated hardware (Sightline

Applications Incorporated, Hood River, OR) at 30 Hz. Infor-

mation from the image processing hardware is communicated

to the control system via RS-232.

III. PHYSICAL ROBOT MODELING

In this section, we develop a relationship between the

pressure inside each of the three sPAMs attached to the

sPAM Model Prediction

Extension

Contraction

Fig. 5. Experimental force-displacement curve vs. predicted force-
displacement curve of an sPAM.

robot’s body and the body’s position in space. We start with

a model of the sPAM relating internal pressure to tension

force. We then use the sPAM model in a static force analysis

in order to relate sPAM pressure to robot tip displacement.

We conclude with an analysis of the workspace of the robot.

For a more thorough treatment of the sPAM model, we refer

the reader to [17].

A. sPAM Model

In previous work [17], it was established that when the o-

ring spacing of an sPAM is below a threshold, the behavior of

the actuators is identical to the behavior of pleated pneumatic

artificial muscles (PPAMs). PPAMs were characterized by

Daerden et al. [26] and have a known force-displacement

relationship. The force-displacement curve of sPAMs was

shown in [17] to have two important properties for the

purposes of kinematic modeling:

1) The force-displacement curve is approximately

linear (Fig. 5).

2) For a given displacement, force scales linearly with

pressure, which may be seen from the length to load

relationship of PAMs [22]:

F = −pdV
dL

(1)

where F is the force exerted by the actuator, p is the

pressure inside the actuator, V is the volume inside the

actuator and L is the length of the actuator along the

direction F acts.

Given these two properties, we approximate each of the

three sPAMs as linear springs with constant equilibrium

lengths. Increasing or decreasing the pressure inside an

sPAM changes the spring stiffness of the sPAM accordingly:

Fi = Ki(li − leq
i ) for sPAM i = 1, 2, 3 (2)

where

Ki = piki for sPAM i = 1, 2, 3 (3)



and Fi is the tension force, Ki is the spring stiffness, li is the

length, leq
i is the equilibrium length, pi is the pressure, and

ki is the scaling constant relating pressure to spring stiffness

of the ith sPAM.

B. Kinematics of Steering

Here we derive a kinematic model for steering of the

growing robot. As explained in Sec. II, three sPAMs are

attached radially around the robot’s backbone and provide

the ability to control the orientation of the tip of the robot

in yaw and pitch. We make a simplifying assumption that

tension force exerted by the sPAMs cause the robot to bend

in a constant curvature arc [7] and that the sPAMs behave as

linear springs. The model relates the three sPAM pressures,

p1, p2, p3, to position and orientation of the robot, ~xef ∈ R
3,

Ref ∈ SO(3), respectively:

[~xef, Ref]
⊤ = f(p1, p2, p3) (4)

Our kinematic model is developed in two steps: 1) First we

use constant curvature continuum robot length kinematics

to relate tendon lengths, l1, l2, l3, to arc space parameters:

backbone length, l, bending plane angle, φ, and pneumatic

backbone radius of curvature, r (Fig. 6). 2) Second, we use

static equilibrium force conditions of the soft continuum

robot to develop relationships between the sPAM pressures

and robot end effector position using the constant curvature

constraints from part 1).

1) Constant curvature geometric kinematics: Here we

review the work of Jones et al. [27] on the geometry

of constant curvature continuum robots with direct control

of tendon lengths, which computes arc-space parameters

from side lengths. These will be used in step 2). We

assume that the positions of the actuators on the robot’s end

piece, ψ1, ψ2, ψ3, which are specified in angles, are known

(Fig 6(d)). First we introduce three intermediate variables,

which relate the positions of the actuators to the (unknown)

position of the bending plane:

φi = ψi − φ for sPAM i = 1, 2, 3 (5)

Using this definition, the robot tip geometry can be used to

relate the (unknown) radii of curvatures of the three actuators

to the (unknown) radius of curvature of the pneumatic

backbone (Fig. 6(c))

ri = r − (Dtube/2) cosφi for sPAM i = 1, 2, 3 (6)

Multiplying Equation 6 by (unknown) θ and using the rela-

tion li = θri we get

li = l − θ(Dtube/2) cosφi for sPAM i = 1, 2, 3 (7)

This yields three equations in our three unknown arc-space

parameters, which can be solved assuming we know side

lengths, l1, l2, l3.

Fig. 6. (a) Kinematic model of constant curvature continuum robot. Cross-
section in the bending plane of the continuum robot is shown. sPAMs are
modeled as springs with stiffness controlled by actuator pressure. (b) End
piece of spring system with forces acting on it. (c) Interior piece of spring
system with forces acting on it. Sum of forces is always zero, independent
of l and θ. (d) Head-on view of robot’s tip. Actuators are arranged radially
around tip center at angles ψ1, ψ2, ψ3. (e) Head on view showing bending
plane angle, φ and radii of curvatures of backbone and sPAM arc.

2) Static force analysis: Here we use static force balance

to relate our input pressures, p1, p2, p3, to arc space param-

eters, l, φ, r:
∑

F(p1, p2, p3, l, φ, r) = 0 (8)
∑

M(p1, p2, p3, lφ, r) = 0 (9)

In turn, the arc space parameters can be used to calculate ~xef

and Ref.

The pneumatic backbone has stiffness that resists both

bending and compression. To model these characteristics,

we discretize the robot along its length into N rigid arc

elements, each of which subtends an angle θ/N as shown in

Fig. 6(a). The pneumatic backbone’s resistance to bending is

captured as a series of torsion springs between each backbone

segment with torsion spring constant, κ(N) and its resistance

to axial compression is captured as a series of linear springs,

each with stiffness K(N) and equilibrium length leq
N . We

assume there is an underlying stiffness of the pneumatic

backbone that is related to pressure and has an associated

torsion and linear spring constant associated with it, κ and

K, respectively. We relate the underlying stiffnesses to the

discretized stiffnesses by the following scaling laws

K(N) = NK κ(N) = Nκ (10)

as is standard with discrete spring models [28].

Next, we consider the sPAMs. Because the force-

displacement curves of our sPAMs are approximately linear

(Fig. 5), we incorporate them into our model as linear

springs. Each sPAM has a spring constant that scales linearly

with pressure (Equation 3), Ki = piki, and an associated

equilibrium length, leq
i . To incorporate our actuators into

the distributed spring model, we break our actuators into

N springs in series. Following the same convention as the

main tube, we relate the N spring constants and equilibrium

lengths to the actuator’s spring constant by the following

scaling law

K
(N)
i = NKi for i = 1, 2, 3 (11)

l
(N)eq

i = leq
i /N for i = 1, 2, 3 (12)



With all elements of the system defined, we consider

equilibrium conditions of the system. Internal pieces of the

spring system (Fig. 6(c)) are in equilibrium regardless of

the kinematic parameters, therefore they are not considered.

For an end-piece of the spring system (Fig. 6(b)) to satisfy

equilibrium, the sum of all forces must equal zero:
(

3∑

i=1

Fi + F

)
ẑ =

(
3∑

i=1

−Ki(li − leq
i )−K(l − leq)

)
ẑ = 0

(13)

as well as the sum of moments about the pivot point of the

discretized blocks:

3∑

i=1

Mi +M =

=

3∑

i=1

(
Dtube

2
Ki(li − leq

i )Rz′(ψi)

)
ŷ − κθRz′(φ)ŷ = 0

(14)

where Rz′( · ) is a rotation about the axis parallel to the tip

of the robot by a specified angle.

The force and moment balance relations

(Equations 13 and 14) reduce to three scalar equations

in six unknowns (φ, θ, l, l1, l2, l3). Including the geometric

equations relating side lengths to l, φ, r (Equation 7)

provides three more constraints, yielding a solvable system

of six equations in six unknowns.

Finally, with l, φ, r computed, the end-effector position

can be found. We define a coordinate system whose origin

is at the base of the robot’s backbone curve and coordinate

axes that are parallel to those shown in Figure 6(d). With

this coordinate system definition, we write ~xef and Ref as

~xef = r(cos(θ)− 1)ŵ + r sin(θ)ẑ (15)

ŵ = [cos(φ) sin(φ) 0]⊤ (16)

Ref = Rv(θ) (17)

v̂ = [sin(φ) cos(φ) 0]⊤ (18)

C. Kinematics of Growth and Steering

Because backbone equilibrium length continuously in-

creases during the growth process, we further analyze the

effect backbone equilibrium length has on the kinematics

of steering. As explained in Sec. III-B, Eqs. 7,13,14 provide

six scalar equations in six unknowns that can be solved for:

bending plane angle, radius of curvature, backbone length,

and three side lengths (φ, r, l, l1, l2, l3). These equations are

a function of known sPAM pressures, p1, p2, p3, and robot

geometry including backbone equilibrium length, leq. To

analyze the effect of growth on steering kinematics, we

assume that p1, p2, p3 remain constant, and consider what

happens if the backbone equilibrium length is changed from

leq to αleq, for some constant α > 0. The main result is that

if the robot is grown with constant sPAM pressures, bending

plane angle and curvature will remain constant.

To show this, we first return to the geometric relations of

Eq. 7 and assume that li, θ, φ satisfy this equation for the

Fig. 7. Kinematics of the robot during growth. Eqs. 25 and 26 show that
bending plane angle, φ, and backbone curvature, κ, will be constant during
growth if sPAM pressures are constant.

original length, l:

li = l − θ(Dtube/2) cosφi for sPAM i = 1, 2, 3 (19)

Assuming this is true, then arc-space parameters αli, αθ, φ
will satisfy the equation for new backbone length, αl:

αli = αl − αθ(Dtube/2) cosφi for sPAM i = 1, 2, 3
(20)

Now, we consider the static equilibrium conditions. Re-

turning to the spring length scaling laws (Eqs. 10, 11), we

note that the sPAM and main tube springs will have a

stiffness factors of 1/α compared to the original length, l

K(α) = K/α (21)

κ(α) = κ/α (22)

K
(α)
i = Ki/α (23)

(24)

where K(α), κ(α),K
(α)
i denote the underlying stiffnesses of

the robot with length αl. Evaluating the static equilibrium

equations (Eqs. 13, 14) with the new arc-space parameters

and stiffnesses, we get:
(

3∑

i=1

−Ki

α
(αli − αleq

i )− K

α
(αl − αleq)

)
ẑ = 0 (25)

and(
−

3∑

i=1

Dtube

2

Ki

α
(αli − αleq

i )Rz(ψi)−
κ

α
αθRz(φ)

)
x̂ = 0

(26)

The parameter α can be canceled from the above two

equations. From this it follows that if arc-space parameters

li, θ, φ satisfy the equilibrium conditions for a robot with

equilibrium length leq, then αli, αθ, φ will satisfy the equi-

librium conditions for a robot with backbone equilibrium

length αleq.

This establishes the expected relationship between arc-

space parameters of two robots with the same actuator



pressures, p1, p2, p3, but different equilibrium lengths, leq,

and αleq (Fig. 7): the bending plane angle is conserved and

the curvature of the robot will be the same (θ/l = αθ/αl).

D. Physical Jacobian

In this section, we explain how to compute the kinematic

model’s Jacobian, J ∈ R
6×4, which maps from joint space

velocities (i.e. growth rate, α̇, and pressure derivatives,

ṗ1, ṗ2, ṗ3) to the end-effector twist (linear and angular ve-

locities):

[~̇xef, ~̇ω]
⊤ = J [α̇, ṗ1, ṗ2, ṗ3]

⊤ (27)

We decompose J as the product of two-matrices,

J1 ∈ R
6×4, J2 ∈ R

6×6:

J = J2J1 (28)

J1 maps joint-space velocities to arc-space parameter time-

derivatives:

[φ̇, θ̇, l̇, l̇1, l̇2, l̇3]
⊤ = J1[α̇, ṗ1, ṗ2, ṗ3]

⊤ (29)

and J2 maps arc-space parameter time-derivatives to end-

effector twist:

[~̇xef, ~̇ω]
⊤ = J2[φ̇, θ̇, l̇, l̇1, l̇2, l̇3]

⊤ (30)

Because we do not have a closed-form solution relating joint

space parameters to arc-space parameters (Sec. III-C), we

use the implicit function theorem to compute J1:

J1 = −

6×6︷ ︸︸ ︷


∂f1
∂φ

· · · ∂f1
∂l3

...
. . .

...
∂f6
∂φ

· · · ∂f6
∂l3




−1

6×4︷ ︸︸ ︷


∂f1
∂α

· · · ∂f1
∂p3

...
. . .

...
∂f6
∂α

· · · ∂f6
∂p3


 (31)

where f1, . . . , f6 are the kinematic constraint equations

relating joint-space parameters to arc-space parameters

(Eq. 20, 25, 26).

The equations relating arc-space parameters to position

and orientation of the robot tip are explicit and therefore we

compute J2 by simply differentiating the expressions for ~xef

and Ref in equations 15 and 17 with respect to the arc-space

parameters.

E. Workspace Analysis

Using the kinematic model developed in

Sec. III-B and III-C, we can determine the set of points

reachable by the tip of the growing robot, i.e. the growing

robot’s workspace. The inputs that are controllable include

the equilibrium length of the backbone of the growing

robot, αleq, and the sPAM pressures, p1, p2, p3. To compute

its workspace, we calculate the forward kinematics for each

feasible input tuple:

(α, p1, p2, p3) ∈ [αmin, αmax]× [0, pmax]
3 (32)

using Eqs. 6, 13, and 14. αmin and αmax represent the min-

imum and maximum backbone length ratios of the growing

robot and pmax is the bursting pressure of the sPAMs.
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Fig. 8. Workspace analysis showing the positions achievable by the tip
of a growing robot that is 200 cm long and whose base is at (0, 0, 0).
Without growth, (i.e. steering only) the robot tip is effectively confined
to a two-dimensional steering surface (shown in (a) and a cross-section at
y = 0 in (c)). With growth, the robot’s workspace encompasses a solid three
dimensional volume that is the union of steering surfaces of robots whose
lengths range from 0 to 200 cm long (shown in (b) and a cross-section at
y = 0 in (d)).

Figure 8 shows the workspace analysis for a robot that is 2

meters long when fully extended. At a fixed length of 2 me-

ters, the robot tip can be steered along a set of points that is

roughly a two-dimensional surface (Figs. 8(a) and (c)). We

note that the steering surface is not exactly two-dimensional

as the sPAMs may be used to reduce the length of the

robot’s backbone in addition to changing the orientation of

the tip. Growth adds an independent degree of freedom that

extends the workspace into a solid volume which is the union

of steering surfaces of robots whose backbone equilibrium

lengths vary from 0 to 2 meters (Figs. 8 (b) and (d)).

IV. STEERING CONTROL

In this section, we present and analyze the controller used

to steer the robot. As explained in Sec. I, the robot’s direction

of growth is aligned with its tip tangent, and therefore the

robot will grow to an object of interest if its heading is

aligned with the object. To achieve heading alignment, we

use a camera at the robot’s tip, whose optical axis is parallel

to the tip’s tangent (Sec. II-C), and an an eye-in-hand visual

servo controller (Fig. 9). The controller drives the object of

interest’s location within the camera’s field of view to the

center so that the robot’s heading is aligned with the object.

A. Image space modeling

In this section, we derive the transformation from control

inputs to image coordinates (Fig. 10), which is used in the

visual servo control law. More concretely, using the notation

of Chaumette [29], we let ~s ∈ R
2 be the image features

we are interested in controlling (in this case, the image



Robot Tip Camera

Image

After

Alignment

Before

Alignment

Tip Camera

Designated 

Object

Fig. 9. Eye-in-hand visual servo control is a class of controllers that attempt
to drive a designated image feature to a specified location in the camera’s
field of view (in our case the center). For the growing robot with a camera at
its tip, this corresponds to aligning its heading with the designated feature,
depicted in this figure as a circle.

Fig. 10. Visual servo modeling components. Kinematic modeling from
robot control inputs to image space consists of physical robot kinematics
(Sec. III-C) and camera projection (Sec. IV-A).

coordinates of the designated object we are tracking), and

we let ~s∗ ∈ R
2, be the desired coordinates of ~s (in this

case, the center of the image, [0, 0]⊤). We are interested in

computing an image feature Jacobian, Js ∈ R
2×4, that maps

joint space velocities, ~̇q = [α̇, ṗ1, ṗ2, ṗ3]
⊤, to image feature

velocities, ~̇s:

~̇s = Js~̇q (33)

Js is logically formed as the product of four matrices

(Fig. 10):

Js = LcVf
fVnJ (34)

each described below, from right to left.

1) Physical robot Jacobian, J: J ∈ R
6×4 is the physical

robot Jacobian, and maps from joint space velocities to

the end-effector twist (linear and angular velocities). Its

computation was described in Sec. III-D.

2) End-effector twist transformation, fVn: fVn ∈ R
6×6 is

a transformation to map the end-effector twist ∈ R
6 which

is expressed in the global reference frame in which the

kinematics are defined (Fig. 7) to the reference frame of the

Fig. 11. Camera spin diagram. Camera is free to spin about the robot’s
backbone axis, ẑ, resulting in a rotation by an unknown amount β that must
be estimated to compute the image Jacobian.

tip of the growing robot. In our case it is given by:

fVn =

[
R⊤

ef 0
3×3

0
3×3 R⊤

ef

]
(35)

where Ref is the orientation of the end-effector Eq. 17.

3) Camera twist transformation, cVf : cVf ∈ R
6×6 is a

twist transformation mapping from the robot tip to the

camera frame. Because the camera is free to rotate about

the robot’s backbone axis (Fig. 11), the two frames are

related by a rotation of an unknown angle, β, that must be

estimated (Sec. IV-D.2):

CVf =

[
Rz(β)

⊤
0
3×3

0
3×3 Rz(β)

⊤

]
(36)

4) Interaction matrix, L: L is the interaction matrix,

which captures considerations of the camera formation pro-

cess. In particular, it maps camera twist (expressed in the

reference frame of the camera) to image feature velocities

~̇s [29]:

~̇s = L

[
~̇xef

~ω

]
(37)

In our case, the image feature we wish to control is the image

coordinate of the designated object that the robot is being

steered toward, ~s = [sx, sy]
⊤. Espiau et al. have derived the

interaction matrix for this case in [30] and it is given by

L = f

[
−1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

]

(38)

where Z is the depth of the object relative to the camera

and x, y are the normalized image coordinates of the goal

object. They are related to pixel coordinates, [u, v]⊤, by the

following relationship:

x = u/f and y = v/f

assuming the principal point of the camera is at the origin of

the image, and f is the focal length of the camera in pixels.

In this work, we are interested only in the last three

columns of the image space Jacobian because we would

like to control the heading of the robot by modulating the

pressure in each of the three sPAM actuators (p1, p2, p3)



and not through growth (α). We will refer to the reduced

column Jacobian when referencing Js throughout the rest of

the paper.

B. Growing Considerations

Consider the case that the growing robot is steering to a

goal object far away (1/Z ≈ 0). In this section, we show

that the image Jacobian, Js, scales with length. This is an

important consideration for controller stability as changes

in joint-space parameters have magnified effects at longer

lengths. The scaling of Js with length is explained as follows.

In the case that 1/Z ≈ 0, L reduces to

L ≈ f

[
0 0 0 xy −(1 + x2) y
0 0 0 1 + y2 −xy −x

]
(39)

This says that tip orientation and not tip position affect image

feature coordinates (i.e. there is no parallax).

Let θ, φ, l be the arc-space parameters of a robot with

equilibrium length leq and let θα, φα, lα be the arc-space

parameters of a robot with equilibrium length αleq. Then by

Sec. III-C we have

θα = αθ, φα = φ, lα = αl (40)

and therefore their velocities scale accordingly:

θ̇α = αθ̇, φ̇α = φ̇, l̇α = αl̇ (41)

It can be seen by inspection of equation 17, that the magni-

tude of the angular velocity vector will scale linearly with α
since θ̇ scales linearly with α. Because L is non-zero only in

the columns corresponding to angular velocity, Js will scale

linearly with α as well.

C. Visual Servo Control Law

A standard visual servo control law as presented

in [30], [31] can be used to drive the image feature error

magnitude ~s∗ − ~s to 0 (point the robot at the goal object):

~̇q = λJ+
s (~s ∗ − ~s) (42)

where J+
s is the pseudo-inverse of Js. This control law

commands joint velocities that will lower the magnitude of

the image feature error.

In this work, we modify the standard visual servo control

law in two ways. First, we add damping to the image feature

error which was empirically found to reduce controller based

oscillations and limit cycles:

~e = Kp(~s
∗ − ~s) +Kd~̇s (43)

where Kp is the proportional term and Kd is the damping

term.

Second, we use box-constrained least squares

optimization [32] to find joint velocities that will decrease

the magnitude of the image error, ~e, rather than the

pseudoinverse of the image-space Jacobian. We do this

because the pseudoinverse of the image Jacobian does not
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Fig. 12. Visualization of the consistency of the image Jacobian throughout
the growing robot’s workspace. (a) and (b) show the directional consistency
from the side and above, respectively. (c) and (d) show the magnitude
consistency from the side and above, respectively. Because the image
Jacobian is slow to change throughout the robot’s workspace, using a static
Jacobian estimate in the visual servo control law (Sec. IV-C) results in a
stable controller.

respect joint space limits (e.g. negative sPAM pressures are

not physically realizable):

~̇q = argmin
0≤~q≤pmax

‖Js~̇q − ~e‖2 (44)

This was empirically found to reduce the rise time/settling

time of the controller and improve stability compared to the

standard psuedoinverse controller with clipping to actuator

limit ranges.

D. Jacobian Calibration

Our visual servo control law (Sec. IV-C) relies on an accu-

rate image space Jacobian, Js. Due to the number of physical

parameters used to calculate Js that may vary between uses

of the robot, we have elected to use an empirical image

space Jacobian, Ĵs, that is determined through a simple

calibration process. This process is inspired by the work of

Yip and Camarillo [9].

We perform the calibration process at the beginning of

each use, when the robot is in a straight forward configura-

tion. Column i of the image space Jacobian is determined

by incrementing the corresponding joint space variable, qi,
by some amount δqi and monitoring its effect on the image

feature vector, ~s:

Ĵs =
[
~J
(1)
s

~J
(2)
s

~J
(3)
s

]
(45)

~J (i)
s =

δ~s

δqi
(46)

δ~s = ~s− ~s0 (47)

where ~s0 are the image coordinates of the designated object

in its beginning location.



1) Configuration Considerations: Ĵs is used in place of

Js in the visual servo control law (Sec. IV-C). We note that

Js is a function of its state, and therefore varies throughout

its workspace, yet Ĵs is calibrated to Js only in the straight-

forward configuration before growth. However, we have

found that this Jacobian results in stable control. This is

due to the consistency of the image Jacobian throughout

the robot’s workspace. Fig. 12 shows an analysis of how

well the image Jacobian in the straight-forward configuration

approximates the image Jacobian throughout its workspace.

Both magnitude errors and direction errors were considered.

Normalized magnitude errors at each configuration were

calculated as:

mean
(
| ~J (i)

s |2 − | ~J (i)
s0 |2

)
/mean

(
| ~J (i)

s |2
)

for i=1,2,3

(48)

and direction errors were calculated as:

mean
(
∠( ~J

(i)
s , ~J

(i)
s0 )
)

for i=1,2,3 (49)

where Js is the image Jacobian at a particular configuration,

Js0 is the image Jacobian in the straight forward config-

uration, and ~J
(i)
s , ~J

(i)
s0 are the ith column of Js and Js0,

respectively.

Using this analysis, we find that if Js0 is used to approxi-

mate the Jacobian throughout the workspace, the magnitude

of the Jacobian will differ by as much as a factor of 0.7 and

the direction by as much as 40◦. Unsurprisingly, Js0 becomes

a less accurate approximation at the edges of the workspace

(further away from the straight-forward configuration).

Performing the same analysis for the physical robot Jaco-

bian, we find that it varies much more throughout the robot’s

workspace than the image space Jacobian. In particular, the

physical robot Jacobian in the straight-forward configuration

differs by as much as a factor of 2 in magnitude and 110◦

in direction when used to approximate the physical robot

Jacobian throughout its workspace. This discrepancy is large

enough that an equivalent calibration routine would not work

for task-space control of this robot. Instead a configuration

dependent, model-based Jacobian relying on known physical

parameters that may change between uses of the robot would

have to be used.

Another configuration consideration is robot length. Ĵs
is calibrated before growth and the length of the robot

will continually increase during the growth process, which

affects the image space Jacobian. As explained in Sec. IV-B,

the magnitude of Js approximately scales with length. To

account for this and inaccuracies in the calibrated Jacobian,

Ĵs, we choose controller gains Kp, Kd (Sec. IV-C) that are

more conservative than the optimal gains for steering of the

robot just after Jacobian calibration. Concretely, if K∗
p and

Kd∗ are the optimal gains for steering just after calibration,

we set Kp,Kd = K∗
p/2,K

∗
d/2.

2) Camera Rotation: As explained in Sec. IV-A.3, the

camera is free to rotate about its optical axis as the robot

grows (Fig. 11). Rotations about the optical axis are captured

by the parameter β, which is the angle between the robot

tip frame and camera reference frame. β is initially 0◦. To

Fig. 13. Results of the verification experiment for the model of steering
kinematics. Measured end-effector positions for 50 random pressure triples
are displayed as solid circles. Parameter identification was performed to
determine parameters that best fit the measured positions. The resulting
workspace is shown in grey and was calculated using the kinematic model.
The color of each solid circle represents the distance between the position
predicted by the kinematic model and the measured position.

account for camera rotation, Ĵs must be continually updated

to compensate for changes in β.

To estimate β, we use an inertial measurement unit

(IMU, Bosch BNO055) rigidly attached to the tip camera.

The IMU provides an estimate of the direction of gravity,

ĝ = [gx, gy, gz]
⊤, in the reference frame of the camera. β

is computed from ĝ by computing the angle of its two-

dimensional projection onto the plane of the camera:

β = atan2(gy, gx)− atan2(g0y, g
0
x) (50)

where ĝ0 = [g0x, g
0
y, g

0
z ]

⊤ is the gravity vector when the tip

frame and camera reference frame are aligned, i.e. β = 0.

With an estimate of β, Ĵs is compensated to account for

camera spin by a two-dimensional rotation:

Ĵc
s =

[
cos(β) sin(β)
− sin(β) cos(β)

]
Ĵs (51)

where Ĵc
s is the compensated image Jacobian. This update

equation is equivalent to updating CVf with the new value

of β in Eq. 34.

V. EXPERIMENTAL RESULTS

In this section we present experiments that both charac-

terize the growing robot and validate the kinematic models

and control presented in this work.

A. Kinematic Model Validation

To verify the model of steering kinematics presented

in Sec. III-B, an electromagnetic tracker (Ascension Model

800, Northern Digital Incorporated, Waterloo, ON, Canada)

was attached near the tip of a growing robot that was held at
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Fig. 14. Shows the effect of a single sPAM actuator on robot bending.
The curvature predicted by the kinematic model is shown in black and
the measured curvature is shown in blue. Curvature increases with sPAM
pressure, but saturates as the sPAM reaches its maximum contraction ratio.

a constant length of approximately 42 cm. We commanded

50 random sPAM pressure triples (p1, p2, p3) and recorded

the pose of the robot end effector once it reached steady

state.

Actuator positions, ψi, were measured by command-

ing a displacement in each of the primary directions

([p1 = P, p2 = 0, p3 = 0]⊤, [p1 = 0, p2 = P, p3 = 0]⊤ and

[p1 = 0, p2 = 0, p3 = P ]⊤). A parameter identification was

then performed to find actuator and main tube equilibrium

lengths, pressure spring constant factor (Equation 3), and

main tube linear and torsion spring constants. The parameter

identification was solved by finding the aforementioned

parameter values that minimized the discrepancy between

the predicted end-effector positions and measured end-

effector positions. This was implemented using MATLAB’s

fmincon routine.

With the parameter identification complete, we compared

the predicted and measured robot end-effector position for

each pressure triple. The 50 circles in Fig. 13 show the

measured positions of the robot’s end-effector, and the color

represents the distance between the position predicted by

the kinematic model and the measured position. We found

a mean discrepancy of 5.5 cm between prediction and

measurement, which is slightly larger than the pneumatic

backbone’s diameter (4.8 cm). Fig. 13 shows the robot’s

approximate workspace in dark-grey. It was calculated by

determining the end-effector position for randomly sampled

pressure triples using the kinematic model and identified

parameters.

B. Growing Kinematics Validation

We performed an experiment to verify the analysis of

growth for the kinematic model presented in Sec. III-C. In

this experiment, the robot was grown four separate times

with constant sPAM pressures of 0.18, 0.555, 093, and 1.305

pounds per square inch (PSI) respectively in a single sPAM.

These pressures were chosen to provide significant coverage

of the curvature range. An overhead camera recorded the

movement of the robot during the growth. Manual segmen-

tation of the tip of the robot was performed roughly every 4
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Fig. 15. Tip deflection from a straight line trajectory versus length. Robot
was grown four times with four different sPAM pressure values. Expected
tip deflection for a robot grown with four sPAM pressures are plotted in
solid lines and corresponding measurements are shown as circles of the
same color. Model and measurements indicate robot grows with constant
curvature with curvature predicted by plot in Fig. 14.

cm to yield a time-series of tip positions of the robot as it was

grown. At the end of each trial, a curvature value was fit to

the backbone of the grown robot using manual segmentation

and the results are shown as blue circles in Fig. 14.

Rearrangement of the kinematic model equations

(Eqs. 7,13,14) results in an equation that predicts the

growing robot backbone curvature as a function of sPAM

pressure:

κ =
k1p

k2p+ 1
(52)

where k1, k2 are constants that depend on the physical

parameters of the robot, p is the pressure in the sPAM and

κ is the backbone curvature of the growing robot. k1, k2
were chosen to minimize the difference between the pre-

dicted curvature values and four measured curvature values.

The resulting curve is shown in Fig. 14. The robot starts

straight (zero curvature) when there is no pressure in the

sPAMs. Curvature increases rapidly at low pressure values,

but saturates due to the finite strain that is achievable by an

sPAM.

Based on the fit curvature values, we predicted the ex-

pected tip deflection from a straight-line trajectory over the

course of the four growth trials. According to Sec. III-C,

we expect the robot to grow with constant curvature since

the pressure in the sPAMs was held constant. Fig. 15 shows

the predicted tip deflection values along with measured tip

deflection values as a function of backbone length. As can

be seen, there is strong agreement between predicted and

measured tip deflection, indicating that the robot does grow

with constant curvature, as predicted.

C. sPAM Dynamic Response

We performed an experiment to measure the dynamic

response of open-loop bending of the growing robot held

at a constant length. To understand how length affected the

bending behavior of the robot, we generated experimental
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Fig. 16. Bode plot of open loop robot bending (frequency versus backbone
curvature amplitude) for several robot lengths. The robot exhibits first order
system behavior with a phase loss of approximately 90 degrees and cutoff
frequency at approximately 45 degree phase loss for all four tested robot
lengths. Unsurprisingly, cutoff frequency drops with length indicating that
the robot is capable of less responsive steering at larger lengths.

Bode plots of bending curvature versus frequency of growing

robots of four different lengths: 30, 46, 66, and 91 inches.

A red and blue colored fiducial were attached to the tip

of the robot several centimeters apart along its backbone

to facilitate automated measurement of tip orientation using

an overhead camera. A sinusodial sweep of pressures in a

frequency range of 0 to 2 Hz was commanded to create a

sinusoidally varying backbone curvature. Two sPAMs placed

radially opposite one another were used in the experiment

so that bending in opposite directions could occur (φ =
0◦, 180◦).

Curvature amplitude was measured from tip orientation at

a particular frequency, ω, by setting κω = (θmax − θmin)/2
where θmax, θmin were the maximum and minimum tip

orientations measured in the ω frequency portion of the

sinusoidal sweep. Phase information was extracted using a

light emitting diode that was activated at the beginning of

a new frequency so that precise synchronization between

the video and commanded pressures could be determined.

Fig. 16 shows the experimental Bode plot of normalized

curvature vs frequency for each of the four lengths.

All four robot lengths had a cutoff frequency (frequency at

which curvature magnitude ratio drops below 1/
√
2) of less

than 0.5 Hz (indicated by the black circles in Fig. 16), with

cutoff frequency monotonically decreasing with increasing

robot length. Dynamic response is most likely limited by flow

rate of the regulators used to inflate the sPAMs. Though the

robot has low bandwidth in the large curvature changes that

are needed for volitional direction changes of the robot, its

bandwidth is higher for smaller amplitude curvature changes,
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Fig. 17. Visual servo control step response. At time t = 0 a new visual
feature is designated. By time t = 2, the step response pixel error (a)
is less than 5% indicating that the robot is pointing at the visual feature.
Commanded sPAM pressures are shown in (b).

which are needed to maintain heading alignment during robot

growth.

D. Visual Servo Control Validation

Fig. 17 shows data taken from a point-to-point tracking

without growth (α̇ = 0). At time t = 0, a new feature is

designated, providing a step input to the controller. As shown

in Fig. 17(a), the controller drives the image feature error to

below 5% within 2 seconds, resulting in a rise and settling

time of under 2 seconds. Rise time and settling time are

limited by the maximum flow rate of the proportional valves

used in this work (Sec. II-B).

E. Growing to a Goal Location

Several experiments were performed to demonstrate the

robot’s ability to grow and steer to a designated object using

the visual servo control law described in Sec. IV-C.

Fig. 19 shows a sequence of still-frame images of the

robot growing to a light as well as the pressures that were

commanded by the visual servo steering controller. The

corresponding pressure plot shows the robot starting with

high pressure in two of its three sPAMs. These sPAM

pressures cause the robot to bend so that its heading is

aligned with the light. As the robot lengthens, the steering

controller decreases pressure in its sPAMs to maintain a

straight-line trajectory that is aligned with the light. If it

did not lower pressure, the robot would oversteer, as seen

in Fig. 15. The visual servo controller is able to accomplish

this behavior by maintaining the light at the center of its

tip camera image without explicit consideration of growth

or curvature.
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Fig. 18. Two image sequences showing the robot growing to a light via a tunnel. Top row is an image sequence of the robot and bottom row is an image
sequence from the robot’s tip camera. Each image pair in a column is time-aligned. Time progresses to the right, and the first image is from the moment
after the steering controller was turned on. The right-most image is an overhead view of the robot.

Fig. 19. Growing and steering to a light. To maintain heading alignment
with the light as the robot’s length increases, the steering controller must
continually decrease the curvature of the robot by decreasing the pressure in
the sPAMs. This behavior is not explicitly programmed in the visual servo
control law, but happens as an indirect consequence of keeping the light
at the center of its tip camera image (indicated by zero pixel error). Still-
frame images are shown at three times during its growth with corresponding
decreasing curvatures κ1, κ2, κ3.
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Fig. 20. Growth around an obstacle. First the robot is steered to a waypoint
to the left of the obstacle and then to the destination.

More complicated growth trajectories are shown in

Figs. 18 and 20. Both figures feature the robot’s ability to

navigate paths which are not constant curvature. In Fig. 18,

the robot is first steered into a tunnel by designating the

tunnel’s entrance as the tracked feature for the visual servo

controller. Once inside the tunnel, the controller’s destina-

tion was changed to the light. Though the robot’s body

is constrained by the tunnel, it is able to grow to a new

destination after laving the tunnel without modification to the

control law. In Fig. 20, the robot must first make it around

an obstacle before reaching its destination. To accomplish

this, the robot was first steered to a waypoint to the left of

the obstacle before being steered to its destination. In both

cases, the visual servo controller is successful even though

the robot takes on non-constant curvature shapes.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the design, modeling, and control of a

new soft continuum robot that has a novel extension degree

of freedom. The extension degree of freedom provides a



direction of movement that is always tangent to the robot’s

backbone. Among other benefits, it simplifies the control of

the robot by decoupling steering and movement. Extension of

the robot is realized using pneumatically driven tip eversion.

Though extension was limited to 100% of original body

length in this paper, Hawkes et al. demonstrated that pneu-

matically driven tip eversion can be used to grow a robot’s

length by several orders of magnitude [10]. In addition,

it was found that tip eversion is advantageous for moving

through cluttered and inhomogeneous environments since it

can penetrate tight spaces and the robot’s body does not use

external reaction forces to move.

Instead of turning the robot at discrete intervals along

its length, which irreversibly changes its shape, the robot

introduced in this paper steers using reversible bending of

the robot’s backbone to deflect the robot from a straight

path. There are several tradeoffs between the two methods of

steering that may make one mechanism more advantageous

for a given use-case. Reversible turning gives the operator the

ability to look around the robot’s environment by reorienting

the robot’s tip. In addition, corrections to the robot’s heading

can be made as the robot is growing, which is particularly

advantageous for scenarios where accurate alignment is

needed, such as growing into a tunnel (Fig. 18).

On the other hand, because the entire length of the

robot may move when the backbone is bent, environmental

contacts affect the robot’s steering behavior more than the

robot in [10]. Additionally the robot in [10] is nonholonomic,

which has the advantage that the robot body does not move

once it is grown, but has the disadvantage that the robot

must grow to turn. Because steering decisions are made

at discrete intervals and are permanent, stability of the

steering controller is not a concern for the irreversible turning

mechanism. This is not the case for the robot in this work,

where steering gains must be selected with care (Sec. IV-C).

Ultimately the optimal turning solution for growing robots

may be a combination of the turning mechanisms presented

in this paper and [10]. Future work will investigate new

actuator design and control that combines features of both

steering methods.
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