
1

In Proceedings of 8th IEEE International Symposium on Intelligent Control, Aug. 25-26, 1993, Chicago, Ill.

A SOFTWARE ARCHITECTURE-BASED HUMAN-MACHINE INTERFACE FOR
RECONFIGURABLE SENSOR-BASED CONTROL SYSTEMS

Matthew W. Gertz, David B. Stewart, and Pradeep K. Khosla
Dept. of Electrical and Computer Engineering

The Robotics Institute at Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract
The development of software for reconfigurable sensor-based real-
time systems is a complicated and tedious process, requiring highly
specialized skills in real-time systems programming. The total de-
velopment time can be reduced by automatically integrating reus-
able software modules to create applications. The integration of
these modules can be further simplified by the use of a high-level
programming interface. We have developed Onika, an iconically
programmed human-machine interface, to interact with a reconfig-
urable software framework to create reusable code. Onika presents
appropriate work environments for both application engineers and
end-users. For engineers, icons representing real-time software
modules can be combined to form real-time jobs. For the end-user,
icons representing these jobs are assembled by the user into appli-
cations. Onika verifies that all jobs and applications are syntacti-
cally correct, non-ambiguous, and complete. They can then be
executed from within Onika, or can be saved as a stand-alone pro-
gram which can be executed independently on the underlying real-
time operating system. Onika has been fully integrated with the
Chimera real-time operating system in order to control several dif-
ferent robotic systems in the Advanced Manipulators Laboratory at
Carnegie Mellon University.

1. Introduction
The development of real-time software forsensor-based systems is
an expensive process, accounting for a significant portion of total
application costs. This expense can be reduced by automating the
software development procedure. To do this, a user-friendly high-
level programming environment designed for the creation of reus-
able real-time software is required. A programming interface of
this type would not only allow for the rapid development of soft-
ware, but would also considerably ease the process of debugging
real-time code.

Much of the expense and tedium of software development is
caused by the limitations of textual code. To use a textual language
properly, the programmer must undergo expensive training. The
deciphering, debugging, and use of real-time textual code is partic-
ularly time-consuming, especially when the code is cryptic, non-
portable, and uncommented. In the past, researchers have created
visual programming languages (VPLs) to address the problems of
textual coding [1][2][3][4][5][6][7]. However, these interfaces
have been, in general, either very high-level and narrow in scope,
or low-level and cryptic. Furthermore, these interfaces have not
been designed with the specific requirements of real-time program-
ming in mind. These requirements include the need to switch from
one job to the next with minimal time loss, the need to modify the

code of a job while it is executing, and the need to coordinate many
jobs running in parallel.

In this paper, we discuss the development of a multilevel/iconi-
cally-programmed human-machine interface called Onika, and the
software programming framework in which it resides. Onika has
several abilities which increase its effectiveness with respect to
other interfaces and programming environments for real-time sen-
sor-based control systems. Onika directly connects with the under-
lying real-time operating system to coordinate the system’s
activities, giving a user a control capability which has not previ-
ously been available in interfaces for sensor-based systems. Pro-
gramming can be done interactively or off-line. Onika gives the
user access to a library of control modules, which are parallel-exe-
cuting reusable software modules within a reconfigurable sensor-
based control system. Each control module on the real-time oper-
ating system is represented by a block-form icon, which can be ma-
nipulated by a mouse. Using Onika, these icons can be combined
in a logical way to create jobs for the system to execute. The inter-
face is able to switch from one job to the next quickly, in real-time,
with minimal system delays. The user is also able to use Onika to
monitor and modify the real-time performance and parameters of
each routine running on the real-time operating system. Further-
more, a combination of routines created at one level of Onika can
be saved as a reusable higher-level routine for others to use. Thus,
routines at Onika’s higher levels become more specific, making
programming accessible for naïve users, without diminishing the
programming scope for more knowledgeable users working at On-
ika’s lower level. Unlike other interfaces, both levels of users,
naïve and knowledgeable, are presented with an interface appropri-
ate for their programming abilities and application requirements.

In section 2, we discuss various HMI/VPL systems which have
been introduced in recent years. In section 3, we discuss the soft-
ware framework in which Onika operates. In section 4, we intro-
duce Onika, a multilevel iconic programming language (IPL) and
human machine interface (HMI). We conclude this paper in section
5.

2. Previous Work
The problems associated with textual programming have been ad-
dressed on several levels in the past. (Comprehensive reviews of
the state of visual programming techniques can be found in [1] and
[7].) Researchers have created interfaces wherein routines for an
existing programming language (such as C) are created by a
higher-level VPL[1][5][6]. Interfaces such as these are designed to
be used by programmers with knowledge of the structured pro-
gramming language in question. They are best used for routines of
lower- to middle-level rank. Higher-level HMIs have also been cre-
ated for naïve users[1][2][3][4][7]; however, the scope of any

2

given interface of this type is generally narrow. The addition or ma-
jor modification of routines controllable by the interface is beyond
the abilities of its typical user.

Traditional flowchart methods are often used in both higher- and
lower-level VPLs. Flow charts reduce the complexity of textual
code somewhat, but can still be quite cryptic and do not efficiently
use screen space. Occasionally, pictures accompany or are used in
place of the text (as in Pict [6] or HI-VISUAL [4]) within a flow-
chart, but this does not help to give syntactic clues for program-
ming. Nassi-Schneiderman flowcharts, used primarily for lower-
level programming, are more compact than traditional flowcharts
and have an implied syntax. They can be textually cryptic and dif-
ficult to read, however.

There are other VPLs which use pictures and other visual cues in
order to construct the program use non-traditional flow methods.
Proc-BLOX [5], a lower-level VPL, allows users to create Pascal-
like code by assembling blocks representing the textual code prim-
itives in a jigsaw puzzle fashion. The shapes of the elements pre-
clude the possibility of assembling syntactically incorrect
programs. Other packages such as Lingraphica™ [2] and ISHeE
[3] remove the text altogether and rely on pictures to determine the
meaning of the program. ISHeE also uses the jigsaw puzzle format
to convey syntax. By making the visual representations more com-
pact, more of the program under development can be seen on the
screen at a time.

3. Details of Software Framework
A multilevel interface requires a multilevel programming frame-
work in which to operate. Associated with our research into multi-
level IPL/HMIs is the development of a multilevel reconfigurable
software framework [8][13]. In this section, we introduce this soft-
ware framework, and discuss its various components.

3.1. Overview

The real-time components of our software framework (illustrated
in Figure 1) are supported by the Chimera 3.0 Real-Time Operat-
ing System [11]. The user interface and programming environment
for these real-time components are implemented within Onika [9].

We define acontrol module as a reusable software module within
a reconfigurable sensor-based control system. A control module
executing in the real-time environment is referred to as atask, and
hence we often use the two terms interchangeably. Control tasks
may be eitherperiodic oraperiodic, and can perform any real-time
or non-real-time function. Periodic tasks block on time signals,
whereas aperiodic tasks block on asynchronous events such as
messages, semaphores, or device interrupts.

A configuration is formed by integrating control modules from a li-
brary to form a specific configuration. Device drivers and utilities
(such as math subroutines) are automatically “linked in” based on
the needs of each module in the configuration. A configuration im-
plements functions such as motion control, world modeling, be-
havior-based feedback, multi-agent control, or integration of
multiple subsystems.

A job is a high-level description of the function to be performed by
a configuration; e.g.move to point x. When the post-conditions of
one job and the pre-conditions of the next are satisfied, then a dy-
namic reconfiguration can be performed within the system. We use
the termaction interchangeably with the termjob.

A control subsystem is defined as a collection of jobs which are ex-
ecuted one at a time, and can be programmed by a user. Multiple
control subsystems can execute in parallel, and operate indepen-
dently or cooperatively.

An application is defined as one or more subsystems operating in
parallel. An application may be composed of subsystems of other
applications, allowing for hierarchical decomposition of an appli-
cation.

In the following sections we discuss the basic building block of our
framework, the control module.

3.2. Control Modules

Each control module has zero or moreinput ports, zero or more
output ports, and may have any number ofresource connections.
Input and output ports are used for communication between tasks
in the same subsystem, while resource connections are used for
communication external to the subsystem, such as with the physi-
cal environment, other subsystems, or a user interface.

Each input and output port is a state variable, and not a message
port. Whenever a task executes a cycle, the most recent data corre-
sponding to the input port variables is obtained. At the end of a cy-
cle, the new data corresponding to the output port variables is used
to update the subsystems’s state information.

A link orconnection (the terms are used interchangeably) is created
by connecting a port of one module to a port on another module. A
configuration can be legal only if every input port in the system is
connected to one, and only one, output port (see section 4.3.2). An
output port may connect to multiple input ports.

job P

sensor
interfaceX

configuration
programmer
and editor

job R

Configuration R

raw data out

typed data out

C, math,

libraries

and utility
subroutine

i/o device

raw data in

typed data in

to/from other
subsystem

job S
job T

to actuatorZfrom sensorY

raw data in

typed data in

from sensorX

iconic
programming

language

iconic programs (jobs)

graphical interfaces

real-time tasks

subroutine calls

graphical
user interface

drivery driverz

Onika

Subsystem W

user

a b

cd

e

fh

g

job Q

special purpose
processorF

sensor
interfaceY

actuator
interfaceZ

i/o device
driverx

i/o device
Chimera 3.0

“control tasks”

Figure 1.The reconfigurable software framework for sensor-based
real-time operating systems. Routines at one level are created by
combining modified reusable routines at the adjacent lower-level.

3

A task does not have to have both input and output ports. Some
tasks receive input from, or send input to, the external environment
or to other subsystems using the resource ports. Other tasks may
generate data internally (e.g. trajectory generator) and hence have
no input ports. Still other tasks may just gather data (e.g. data log-
ger), and hence have no output ports.

3.3. Control Module Integration

In order to integrate modules into a configuration, a reliable
method of intertask communication is required. In our software
framework, astate variable table is used to provide such capabili-
ties [8]. Our mechanism assumes that each control task is self-con-
tained on a single processor, and that a control subsystem is
contained within a single open-architecture backplane.

A global state variable table is stored in the shared memory. The
variables in this table are a union of the input and output port vari-
ables of all of the modules which may be configured into the sys-
tem. Tasks cannot access this table directly. Rather, each task has
its own local copy of the table, called thelocal state variable table.

Within the local table, only the variables actually used by the task
are kept current. At the beginning of each cycle of a task, the vari-
ables which are input ports are transferred into the local table from
the global table. At the end of a task’s cycle, variables which are
output ports are copied from the local table into the global table.
This design ensures that data is always transferred as a complete
set, since the global table is locked whenever data is transferred be-
tween global and local tables. More details on the implementation
of the global state variable table can be found in theChimera 3.0
Program Documentation [11].

3.4. Generic Structure of a Control Module

In order to provide automatic integration of the control modules, it
is necessary that the functionality of the module is implemented as
a few basic components. All of the data flow, communication, syn-
chronization, and scheduling should be handled automatically by
the underlying operating system. Our model of a control module
provides a generic structure that is applicable to both periodic and
aperiodic real-time tasks.

A control module can have two kinds of input: constant input that
needs to be read in only once during its initialization (in-const), and
variable input which must be read in either at the beginning of each
cycle for a periodic task, or at the start of event processing for ape-
riodic task (in-var). Similarly, a task can have output constants
(out-const) or output variables (out-var). Both constants and vari-
ables are transferred through the global state variable table.

Two examples of state variables of theconst type are the degrees
of freedom of a manipulator (NDOF), and its Denavit-Hartenberg
parameters (DH). By changing only the robot interface module
which supplies these values, we can execute a configuration writ-
ten for one manipulator on an entirely different manipulator.

The use ofin-consts andout-constsby the modules creates a nec-
essary order for initializing tasks within the configuration. Tasks
which generateout-consts must be initialized before any other task
that uses that constant as anin-const is initialized. The rules are dis-
cussed in greater deal in section 4.3.2.

The code for a control modulexxx is decomposed into several sub-
routine components:xxxInit(), xxxOn(), xxxCycle(), xxxOff(),
xxxKill(), xxxError(), andxxxClear(). Refer to Figure 2 for a dia-

gram of these components, and how they relate to the state variable
table transfers and events in the system. A more detailed C-lan-
guage specification for this control module interface is given
in [11].

ThexxxInit() andxxxOn() components are for a two-step initializa-
tion, while thexxxOff() andxxxKill() routines are for a two-step ter-
mination. The two-step initialization allows the task to first be
created, but then remain in anoff (not executing) state. High-over-
head operations, such as creating the task’s context, allocating
memory, initializing the local state variable table, and initializing
resources are generally performed in the initialization routine.
Once the task is created, it can be turned on (executing) and off
quickly. Every time it is turned on, only a small amount of initial-
ization is required to place the task into a known internal state
which is consistent with the rest of the system. ThexxxOn() routine
can also be used for enabling interrupts and setting up post-condi-
tions for the task set. ThexxxOff() routine is useful for disabling in-
terrupts, placing final values on the output ports, ensuring that
other tasks will not be adversely affected when the task’s execution
is halted, and to save any internal state or logged data onto more
permanent storage. ThexxxKill() component is used to terminate a
task and free up any resources it had previously allocated.

ThexxxCycle() component is executed every time the task receives
a wakeup signal. For periodic tasks, the wakeup signal comes from
the operating system timer, while for aperiodic tasks, the wakeup
signal can result from an incoming message or other asynchronous
signalling mechanism supported by the underlying operating sys-
tem. Before thexxxCycle() component is called,in-vars are trans-
ferred from the global state variable table into the local table. After
the xxxCycle() component finishes, theout-vars are transferred
from the local to the global table.

Figure 2.Internal structure of a control module.

xxxInit()

xxxOn()

xxxOff()

xxxCycle()

NOT

OFF

ON

ERROR
spawn

in-vars

in-consts

out-vars

out-consts

on

in-vars

out-vars

out-vars

offxxxOff()

out-vars

kill

xxxClear()

clear

on any error
after task receives

‘on’ signal

on any error
before task

reaches
‘off’ state

block until specified

call specified

copy state variables

event occurs

wakeup or constants into or
out of global state
variable table

subroutine component
of module

Legend:

state of task

kill

xxxKill()

CREATED

xxxError()

if SBS_CONTINUE
returned

if SBS_ERROR
returned

if SBS_OFF
returned

4

Until now, we have made no mention of errors which may during
the initialization, execution, or termination of a task. By default, an
error generated during initialization prevents the creation of the
task, and immediately callsxxxKill() which can free any resources
that had been allocated before the error occurred. If an error occurs
after a task is initialized, then thexxxError() routine is called. The
purpose ofxxxError() is to either attempt to clear the error, or to
perform appropriate alternate handling, such as a graceful degrada-
tion or shutdown of the system. If for any reason the task is unable
to recover from an error, the task becomes suspended in the error
state, and a message sent to the job control task that operator inter-
vention is required. After the problem is fixed, the operator sends
a clear signal (from the user interface), at which timexxxClear() is
called. The xxxClear() routine can do any checks to ensure the
problem has indeed been fixed. If everything is fine to proceed,
then the task returns to theoff state, and is ready to receive anon
signal. If the error has not been corrected, then the task remains in
theerror state.

3.5. Reusing and Reconfiguring Modules

Our software framework is designed especially to support reusable
and reconfigurable real-time software. The change in configura-
tions can occur either statically or dynamically. In the static case,
only the task modules required for a particular configuration are
created. In the dynamic case, the union of all task modules required
are created during initialization of the system. Tasks necessary for
the first configuration are turned on immediately after initializa-
tion, causing it to run periodically, while the remaining tasks re-
main in theoff state. At the instant that we want the dynamic
change in controllers, we send anoff signal to the tasks not required
in the next configuration and anon signal to those that are required.
On the next cycle, the new tasks automatically update their own lo-
cal state variable table, and execute a cycle of their loop, instead of
the now-unused tasks doing so. Assuming theon andoff operations
are fairly low overhead, the dynamic reconfiguration can be per-
formed without any loss of cycles.

For a dynamic reconfiguration which takes longer than a single cy-
cle, the stability of the system becomes a concern. In such cases,
when the dynamic reconfiguration begins, a global flag signals to
all tasks that a potentially illegal configuration exists. Critical tasks
which send signals directly to hardware or external subsystems
(e.g. the robot interface module) can go into locally stable execu-
tion, in which the module ignores all input variables from other
tasks, and instead implements a simple control feedback loop
which maintains the integrity of the system. When the dynamic re-
configuration is complete, the global flag is reset, and the critical
tasks resume taking input from the state variable table.

The software framework described in this section allows the user
to create reusable and reconfigurable real-time software. However,
direct use of the operating system which supports this framework
requires users to be knowledgeable about textual real-time code.
For the naïve user, a novel human-machine interface is required to
fully use the system. In the next section, we discuss Onika, our hu-
man-machine interface for this software framework.

4. Onika

4.1. Onika as an Interface

The purpose of Onika is to provide an appropriate interface for
each level of our programming framework. Each interface shares

with the other interfaces the common concept of building higher-
level routines from combinations of lower-level routines. In the-
ory, there is no limit to the number of levels of programming which
can be created by such a framework. Although it would be impos-
sible to create an interface for each potential level, it is possible to
use the same interface for closely allied levels. This is particularly
true at higher levels, where the routines that define an application
are all goal-oriented. In Onika, we have defined the following lev-
els of programming: thelower level (also called thetextual level),
themiddle level (also called thecontrol level), and theupper level
(also called theapplication level). Upper level routines are com-
bined into routines which are also usable in the same upper level
programming environment. This means that no additional high-
level interfaces are needed. Onika provides both a robot interface
and programming environment for the middle and upper levels of
programming. It also uses lower level programs to define middle
level routines.

This next sections discuss the interfaces at each level of Onika in
greater detail, including the rules for combining routines and mod-
ifiers into higher-level routines.

4.2. Lower Level Details

Device drivers and sensor interfaces are the routines of the lower
level of the system’s programming framework. Sensor interfaces
are created by combining various device drivers, and manipulating
the data which is received from and sent to those drivers. These
framework elements use C code, which can be generated by using
a VPL or other C-generating program (such as MATLAB), as sug-
gested in section 4.1. Onika currently does not interact with these
levels in a direct manner. Unlike higher levels, the creation of rou-
tines from these building blocks needs to be done by a technically
oriented user having extensive programming knowledge and an
understanding of real-time operating systems.

Device drivers and sensor interfaces are combined with other code
to create control modules. It is beyond the scope of this paper to de-
fine the legality of and modifications to combinations of sensor in-
terfaces and device drivers, and the interested reader should to refer
to [8]. The use of the routines created by the sensor interfaces is
discussed in the following section.

4.3. Middle Level Details

In the middle level interface, upper level routines may be created
by combining certain modified routines called “tasks” into control
block diagram form. Knowledge of textual coding is not required,
but merely a good working knowledge of control theory.

4.3.1. Combining task routines

The basic unit of combination at the middle level is thetask. As
mentioned in section 4.1, a task is amodified control module. The
module code by which the tasks process with their input values is
written entirely in text. The tasks themselves, however, are repre-
sented by a single block-form icon having a certain number of in-
put and output pins. The mechanism by which the task performs its
function is hidden from the middle level user.

A parameter file is associated with each task’s module. This pa-
rameter file completely describes the task. When Onika is exe-
cuted, it loads in all available task parameter files on the system. It
then creates icons on the fly for each task from information in the
file. These icons are presented to the user in an area known as the
task lexicon. To create a job by combining tasks, desired tasks are

5

selected on the lexicon, and a copy is then be placed in the combi-
nation area. This combination area is called thejob canvas. The
specific rules for placing tasks on the canvas are discussed in sec-
tion 4.3.2.

When a task is placed on the canvas, it is rendered at the point
where the user lets up on the mouse button (as shown in Figure 3).

Onika then checks the pins of the new tasks and determines
whether each has a similar variable name to other pins on the can-
vas. If so, then these pins are graphically connected to each other,
to illustrate to the user that these tasks are now connected in the
supporting real-time operating system (see section 3.4).

Onika can be actively connected with the real-time operating sys-
tem. In such a case, as each task is dragged to the job canvas, it is
spawned on the supporting RTOS. The user can toggle the state of
activity of the task, can move the task’s icon around on the canvas
without affecting the system otherwise, and can delete (and re-
place) the task. The user may bring up a panel within which he or
she may change the modifier values specified in the parameter file,
both in the lexicon and on the canvas. Furthermore, a combination
of tasks on the canvas can be saved at any point for later recall.

4.3.2. Task combination rules

Within a task, any state variable can be declared as any of the fol-
lowing: in-const, out-const, in-var, out-var, in-both, or out-both.
Those of theconst form are constants which are read or written at
the initialization of a task, and never again accessed by that task.
Those of thevar form are read every task execution cycle, and so
the values are assumed to change. Those of theboth form read or
write some initial value from the state variable table, but the values
are assumed to change thereafter. It is possible that one task may
declare a state variable to be constant, while another might declare
it to be a variable. This might lead to certain problems. It would not
make sense to have a task that expects, for example, a constant in-
put to be connected to a variable output.To avoid such a possibility,
a series of connection rules have been devised. These include: all
types of inputs may connect with each other (that is, share the same
state variable); no type of output may connect with another, to
avoid race conditions; and inputs requiring initial values (in-const)
may not connect to outputs which do not supply them (out-var).

Although a task might be considered connectable in the state vari-
able sense, it still may be “unplaceable” due to conflict of modules
or names. This is because the task names are used for task identifi-
cation. Furthermore, running a module twice concurrently would

Figure 3.Tasks placed on the canvas are automatically connected to the
tasks already there.

be redundant and a waste of system resources. Tasks within the lex-
icon which cannot be legally placed on the canvas due to name or
module conflicts are dimmed and made unselectable.

4.3.3. Creation of higher level routines

Before the combination of tasks can have be saved as a job, there
must be exactly one output instance of each state variable used in
the configuration. As mentioned in section 4.3.2, this is ensure that
each module can receive meaningful input.

When the user saves a configuration as a job for high-level users,
Onika must determine whether or not the job routine to be created
will require modifiers or not. In order to do this, Onika checks the
configurations for tasks which require user input (such as the end
location of a trajectory). If a task requiring user input is found, then
any values it will need in the future as an upper-level job will be
determined from the modifier icon which follows its icon. A job
which requires a modifier is referred to as anaction requiring an
object, whereas a job which requires no modifiers is simply anac-
tion. The modifier of a job is referred to as anobject.

Once a job routine has been created, it is available for use in the up-
per level interface. The use of job routines in the upper level is the
subject of the next section.

4.4. Upper Level Details

Similar to the middle level interface, the routines which may be
used to create upper level applications are displayed to a user in one
window, and assembled for later execution in another. Modifying
icons (objects) are displayed in the same window as the available
routines. This provides an easy mechanism for modifying any
given routine. Jobs (actions) andobjects are combined into a serial
goal-oriented application at this level. The application can be saved
at any time for later recall or modification. During execution, the
task configurations associated with the jobs in the application are
loaded into Onika and Chimera. The tasks are spawned and acti-
vated. As each job is completed, the system reconfigures into the
next job.

Programmers at this level need not know anything about textual
programming, controls, or how the controlled machinery operates.

4.4.1. Combining job routines

The basic unit of combination at the upper level interface is ajob.
A job is created at the middle level by combining tasks together
(see section 4.3.3. on page 5). This functionality is hidden from the
upper-level user, however. A job may or may not require a modi-
fier, depending on how it was defined at the middle level. Jobs
which require modifiers are referred to asactions requiring an ob-
ject, whereas jobs which do not require modifiers are referred to
simply asactions. An action requiring an object icon must be fol-
lowed by exactly oneobject icon.

An object icon could be created for any state variable from the glo-
bal state variable table. A preference file defines the types ofob-
jects which Onika will recognize.Objects can be created at both the
middle and upper levels. The user supplies both the object type and
its value(s).

All icons are presented to the user in ajob dictionary. Each icon’s
picture is framed in a structure which has a left and right edge of a
certain shape and color. These are indicators as to which type of
icon can sit next to another. Onika will not allow non-interlocking
icons to be placed next to each other.

6

All objects have certain values associated with them, which can be
changed by the programmer. These can be viewed and changed,
both in the dictionary and in the application workspace.

4.4.2. Icon combination rules

Applications are assembled from the icons displayed in the job dic-
tionary. This assembly is done within anapplication workspace.
Icons are inserted from the dictionary into the application. If its
edges match those of its potential neighbors, a new icon can be in-
serted between two icons. If the icon matches its left neighbor but
not its right, a space is inserted between it and its right neighbor.
The proper bridging icon can be inserted later into this gap

(Figure 4). This process continues until the application is com-
pleted to the user’s satisfaction. Icons may be inserted anywhere
into an application, provided that they interlock properly with their
potential left neighbor.

Conditional branches, parallel branches, and other potential icons
will introduce their own syntax needs. These constructs have not
yet been introduced into Onika in any form.

Applications created by combining jobs and modifiers can have
icons assigned to them and be used in other higher-level applica-
tions. Whereas “incomplete” applications (i.e. those with some ob-
ject gaps unfilled) cannot be executed on a system, they can be
iconified and used in other applications. “Incomplete” applications
can be implemented asactions requiring an object, provided that
any gaps within the incomplete application refer to the same type
of object consistently.

5. Summary
There has previously been little-to-no research done in the area of
multilevel interfaces for reconfigurable sensor-based control sys-
tems, despite the fact the type of programming varies dramatically
between the different levels of the system. Until the use of multi-
level sensor-based systems becomes widespread, and the various
levels of the system are equipped with programming and control
interfaces appropriate to the abilities of their potential program-
mers, the use of sensor-based robots will continue to be narrow in
focus and difficult to implement. The framework and interface pre-
sented in this paper constitute one step in the direction of achieving
an completely integrated sensor-based system which will expand
the usefulness of robots in laboratories, industry, and business.

Figure 4.The icon just inserted into the application did not match
with the icon following it in the application flow. A space was
inserted for anobject icon.

Acknowledgments
The research in this paper is supported, in part, by Sandia National
Laboratories, NASA, and the Dept. of Electrical and Computer En-
gineering and The Robotics Institute at Carnegie Mellon Univer-
sity. Partial funding for Matthew W. Gertz is provided by NASA
Langley Research Center through a GSRP fellowship. Partial fund-
ing for David B. Stewart is provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through a
graduate fellowship.

References
[1] Myers, B. A. “Taxonomies of Visual Programming and Program Visu-

alization,”Journal of Visual Languages and Computing, 1990 (1), pp.
97-123.

[2] Leifer, L., Van der Loos, M., and Lees, D. “Visual Language Program-
ming: for robot command-control in unstructured environments,”
Proceedings of the Fifth International Conference on Advanced Ro-
botics: Robots in Unstructured Environments, June 19-22, 1991, pp.
31-36, Pisa, Italy.

[3] Mussio, P., Pietrogrande, M., Protti, M., Colombo, F., Finadri, M., and
Gentini, P. “Visual Programming in a Visual Environment for Liver
Simulation Studies,” 1990 IEEE Workshop on Visual Languages, Oct.
4-6, 1990, pp. 29-35, Skokie, Illinois.

[4] Ichikawa, T. and Hirakawa, H. “Visual Programming – Toward Realiza-
tion of User-Friendly Programming Environments,” Proceedings 2nd
Fall Joint Computer Conference, 1987, pp. 129-137.

[5] Glinert, E. P. “Out of Flatland: Towards 3-D Visual Programming,” Pro-
ceedings 2nd Fall Joint Computer Conference, 1987, pp. 292-299.

[6] Glinert, E. P. and Tanimoto, S. L. “Pict: An Interactive Graphical Pro-
gramming Environment,”Computer, November 1984, pp. 7-25.

[7] Chang, S. K. “Visual Languages: A Tutorial and Survey,”IEEE Soft-
ware, January 1987, pp. 29-39.

[8] Stewart, D. B., Volpe, R. A., and Khosla, P. K. “Integration of software
modules for reconfigurable sensor-based control systems,” in Pro-
ceedings of 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ‘92), Raleigh, North Carolina, July 1992.

[9] Gertz, M.W., Stewart, D. B., and Khosla, P. K. “An Iconic Language for
Sensor-Based Robots,” in Proceedings of SOAR Conference, August
4-6, 1992, Houston, Texas.

[10]Gertz, M.W. “The Onika User’s Manual,” (in progress) Department of
Electrical and Computer Engineering, Carnegie Mellon University.

[11]Stewart, D. B. and Khosla, P. K.Chimera 3.0 Real-Time Programming
Environment, Program Documentation, Dept. of Elec. and Comp. En-
gineering and The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 (e-mailchimera@cmu.edu for a copy).

[12]Stewart,D. B., Schmitz, D. E., and Khosla, P. K. “The Chimera II real-
time operating system for advanced sensor-based robotic applica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22,
no. 6, pp. 1282-1295, November/December 1992.

[13]Stewart, D. B., Volpe, R. A., and Khosla, P. K. “A Software Framework
for Reconfigurable Robotic and Automation Systems,” Technical Re-
port CMU-RI-TR-93-11, Dept. of Elec. and Comp. Engineering and
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213.

