
A SOFTWARE DEFINED COMMUNICATIONS BASEBAND DESIGN

John Glossner, Daniel Iancu, Jin Lu, Erdem Hokenek, and Mayan Moudgill
Sandbridge Technologies, Inc.

White Plains, NY
914-287-8500

glossner@sandbridgetech.com

ABSTRACT

Software Defined Radios (SDRs) offer a programmable and
dynamically reconfigurable method of reusing hardware to
implement the physical layer processing of multiple
communications systems. An SDR can dynamically
change protocols and update communications systems
over the air as a service provider allows. In this paper we
discuss a baseband solution for an SDR system and
describe a 2Mbps WCDMA design with GSM/GPRS and
802.11b capability that executes all physical layer
processing completely in software. We describe the
WCDMA communications protocols with a focus on
latency reduction and unique implementation techniques.
We also describe the underlying technology that enables
software execution. Our solution is programmed in C and
executed on a multithreaded processor in real-time.

INTRODUCTION

Traditional communications systems have typically been
implemented using custom hardware solutions. Chip rate,
symbol rate, and bit rate co-processors are often
coordinated by programmable DSPs but the DSP processor
does not typically participate in computationally intensive
tasks. Even with a single communication system the
hardware development cycle is onerous often requiring
multiple chip redesigns late into the certification process.
When multiple communications systems requirements are
considered, both silicon area and design validation are
major inhibitors to commercial success. A software-based
platform capable of dynamically reconfiguring
communications systems enables elegant reuse of silicon
area and dramatically reduces time to market through
software modifications instead of time consuming
hardware redesigns.
 Digital Signal Processors (DSPs) are now capable of
executing many billions of operations per second at power

efficiency levels appropriate for handset deployment. This
has brought Software Defined Radio (SDR) to prominence
and addresses a difficult portion of SDR implementation.
 The SDR Forum [1] defines five tiers of solutions.
Tier-0 is a traditional radio implementation in hardware.
Tier-1, Software Controlled Radio (SCR), implements the
control features for multiple hardware elements in software.
Tier-2, Software Defined Radio (SDR), implements
modulation and baseband processing in software but
allows for multiple frequency fixed function RF hardware.
Tier-3, Ideal Software Radio (ISR), extends programmability
through the RF with analog conversion at the antenna.
Tier-4, Ultimate Software Radio (USR), provides for fast
(millisecond) transitions between communications
protocols in addition to digital processing capability.
 The advantages of reconfigurable SDR solutions
versus hardware solutions are significant. First,
reconfigurable solutions are more flexible allowing multiple
communication protocols to dynamically execute on the
same transistors thereby reducing hardware costs. Specific
functions such as filters, modulation schemes,
encoders/decoders etc., can be reconfigured adaptively at
run time. Second, several communication protocols can be
efficiently stored in memory and coexist or execute
concurrently. This significantly reduces the cost of the
system for both the end user and the service provider.
Third, remotely reconfigurable protocols provide simple
and inexpensive software version control and feature
upgrades. This allows service providers to differentiate
products after the product is deployed. Fourth, the
development time of new and existing communications
protocols is significantly reduced providing an accelerated
time to market. Development cycles are not limited by long
and laborious hardware design cycles. With SDR, new
protocols are quickly added as soon as the software is
available for deployment. Fifth, SDR provides an attractive
method of dealing with new standards releases while
assuring backward compatibility with existing standards.

 In this paper we discuss a Tier-2 implementation of
SDR that implements baseband processing in software.
We first describe specific communications systems and
elaborate on implementation techniques. Next we describe
a multithreaded processor architecture capable of
executing multiple baseband communications protocols.
We then describe the software development environment
including new compiler technologies that automatically
generate signal processing instructions from ANSI C code.
Finally, we describe an implementation of a multicore,
multithreaded processor capable of executing multiple
simultaneous communications systems completely in
software.

COMMUNICATIONS SYSTEM DESIGN

Figure 1 shows the major blocks for both a transmitter and
receiver for the UMTS WCDMA FDD-mode
communication system. We choose to focus on WCDMA
because it is computationally intensive with tight
constraints on latency.
 For the receiver, the incoming I and Q signals are
filtered using a Finite Input Response (FIR) representation
of a Root Raised Cosine filter. This filter is a matched filter
in that both the transmitter and receiver use the same filter.
The filter is ideally implemented on a DSP. As bit-widths
continue to widen, often consuming 10 to 14 bits in GSM
and advanced communications systems, DSPs with
appropriate datatypes may offer more efficient processing
than custom silicon. After synchronization and multi path
search, the strongest paths are descrambled, de-spread,
equalized, and finally combined in the Maximal Ratio
Combining (MRC) block. The output of the MRC block is a
soft representation of the transmitted symbols. The soft

bits are then de-multiplexed, de-interleaved, and channel
decoded. On the receiver side there is also the
measurement block responsible for measuring and
reporting to the base station the communication channel
characteristics as well as the received power at the terminal
antenna. The power and communication channel
characteristic measurements are necessary to keep the cell
continuously functioning at maximum capacity.
 Also shown in Figure 1 is the transmitter. In terms of
computational requirements, it is significantly less
complicated than the receive chain processing.
Additionally, each step of the processing chain is
described by the WCDMA standard. After the Cyclic
Redundant Check (CRC) and transport block
segmentation, the data is turbo or convolutional encoded,
interleaved, assembled into radio frames, and then rate
matched. The transport channels are parsed into physical
channels, interleaved again, and mapped into transmit
channels, spread, scrambled, and shaped before being sent
to the DAC.
 An important part of the WCDMA radio is generation
of the RF front-end controls. This includes Automatic
Frequency Control (AFC), Automatic Gain Control (AGC),
and controls for the frequency synthesizers. These
controls have tight timing requirements. Software
implementations must have multiple concurrent accesses
to frame data structures to reduce timing latencies. A
multithreaded processor is an important component in
parallelizing tasks and therefore reducing latency.
 In WCDMA, turbo decoding is required to reduce the
error rate. Because of the heavy computational
requirements, nearly every system implements this
function in hardware. A high throughput WCDMA turbo
decoder may require more than 5 billion operations per
second. Implementing this function without special

FILTER

RAKE Searcher

PN BT#1 PN BT#2 PN BT#3

De-Scrambler

Path Table Building

Timing Management

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

Path 1
DSCH

Path 1S-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCH

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

MRC
Measurements:

SIR

RSCP

ISCP

Ec/Io

Multi Channel Code De-Mux2nd Deinterleaver

1nd Deinterleaver Channel Decoding
Further Processing

FILTER

RAKE Searcher

PN BT#1 PN BT#2 PN BT#3

De-Scrambler

Path Table Building

Timing Management

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

Path 1
DSCH

Path 1S-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCHS-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCH

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

MRC
Measurements:

SIR

RSCP

ISCP

Ec/Io

Multi Channel Code De-Mux2nd Deinterleaver

1nd Deinterleaver Channel Decoding
Further Processing

Physical channel Segmentation

Radio frame segmentation

2nd interleaving

Physical channel mapping

Channel coding

Rate matching

TrBk concatenation /
Code block segmentation

CRC attachment

Radio frameequalization

1 st interleaving

TrCHMultiplexing

Spreading/Scrambling

Filter

Rate matching

Physical channel Segmentation

Radio frame segmentation

2nd interleaving

Physical channel mapping

Channel coding

Rate matching

TrBk concatenation /
Code block segmentation

CRC attachment

Radio frameequalization

1 st interleaving

TrCHMultiplexing

Spreading/Scrambling

Filter

Rate matching

FILTER

RAKE Searcher

PN BT#1 PN BT#2 PN BT#3

De-Scrambler

Path Table Building

Timing Management

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

Path 1
DSCH

Path 1S-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCH

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

MRC
Measurements:

SIR

RSCP

ISCP

Ec/Io

Multi Channel Code De-Mux2nd Deinterleaver

1nd Deinterleaver Channel Decoding
Further Processing

FILTER

RAKE Searcher

PN BT#1 PN BT#2 PN BT#3

De-Scrambler

Path Table Building

Timing Management

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

De-Spread
De-SpreadDe-SpreadChannel

Est/Derot

Path 2
Path 3

Path 4

Path 1
DSCH

Path 1S-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCHS-CCPCH

De-
Scramble
De-
Scramble
De-
Scramble

DPCH

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

De-Spread
De-SpreadDe-SpreadDe-Spread

Path 2
Path 3

Path 4

MRC
Measurements:

SIR

RSCP

ISCP

Ec/Io

Multi Channel Code De-Mux2nd Deinterleaver

1nd Deinterleaver Channel Decoding
Further Processing

Physical channel Segmentation

Radio frame segmentation

2nd interleaving

Physical channel mapping

Channel coding

Rate matching

TrBk concatenation /
Code block segmentation

CRC attachment

Radio frameequalization

1 st interleaving

TrCHMultiplexing

Spreading/Scrambling

Filter

Rate matching

Physical channel Segmentation

Radio frame segmentation

2nd interleaving

Physical channel mapping

Channel coding

Rate matching

TrBk concatenation /
Code block segmentation

CRC attachment

Radio frameequalization

1 st interleaving

TrCHMultiplexing

Spreading/Scrambling

Filter

Rate matching

Figure 1. WCDMA Transmission System

purpose accelerators requires high parallelism and
innovative algorithms.

High throughput Turbo Decoding

Turbo encoders and decoders are used in WCDMA
communication systems due to their superior error
correction capability. A turbo decoder has been
demonstrated to approach the error correcting limit on
both AWGN and Rayleigh fading channels.
 A standard WCDMA turbo decoder consists of two
concatenated SISO (Soft Input Soft Output) blocks
separated by an interleaver and its inverse block, the
deinterleaver. Upon reception of observations Kyy ,...,1

from the channel and prior information (a measure of the
prior knowledge of a bit being 1 or 0), each SISO block
computes log posterior ratios of each bit, a probabilistic
measure of a bit being 1 or 0, with well-known forward and
backward algorithms. The forward algorithm starts from a
known initial state and calculates an intermediate variable

(.)kα (the joint probability of the observations

Kyy ,...,1 and the state at time k) from 1 to K. The

backward algorithm starts from a known end state and
calculates an intermediate variable (.)kβ (the conditional

probability of future observations given the state at time k)
from K to 1. A SISO block computes the log posterior
ratios of all bits and passes it to the other SISO blocks as a
probabilistic estimate. This probabilistic estimate is called
the extrinsic information. Additional SISO blocks use this
as a prior information estimate. The two SISO blocks run in
an iterative scheme, mutually exchanging extrinsic
information and improving on the log posterior ratios.
After the required number of iterations is completed, a hard
decision about a bit being a 1 or 0 is made based on the log
posterior ratios or soft information.
 Simulations show that more than 90% of the
computation of a turbo decoder is spent on the forward
and backward algorithms. If the size of an observation
sequence K is large, the time required for the computation
of the forward and backward variables grows, creating a
long latency as we go through the forward and backward
algorithms. To reduce the latency of forward and backward
algorithms for a software radio implementation, we divide
the input data into M segments and simultaneously
calculate the (.)kα and (.)kβ for the M segments. In

theory, this parallel scheme reduces the computation to 1
out of M in comparison to the original forward and
backward algorithms (e.g. ½ for M=2).
 An important issue in calculating (.)kα and (.)kβ in

parallel is the estimation of starting states. For the
standard “one-shot” forward and backward algorithms,

initial states (the state at the beginning and end) are
known. But for multiple segments, the initial states for
some segments must be estimated. We developed various
fast initial state estimation methods that have little impact
on the latency. Our simulation and experiment shows
comparable results (within 1%) between the regular and
parallel turbo decoders in terms of BER (bit error rate) with
a significant improvement in latency.

SDR PROCESSOR DESIGN

Execution predictability in DSP systems often precludes
the use of many general-purpose design techniques (e.g.
speculation, branch prediction, data caches, etc.). Instead,
classical DSP architectures have developed a unique set of
performance enhancing techniques that are optimized for
their intended market. These techniques are characterized
by hardware that supports efficient filtering, such as the
ability to sustain three memory accesses per cycle (one
instruction, one coefficient, and one data access).
Sophisticated addressing modes such as bit -reversed and
modulo addressing may also be provided. Multiple
address units operate in parallel with the datapath to
sustain the execution of the inner kernel.
 In classical DSP architectures, the execution pipelines
were visible to the programmer and necessarily shallow to
allow assembly language optimization. This programming
restriction encumbered implementations with tight timing
constraints for both arithmetic execution and memory
access. The key characteristic that separates modern DSP
architectures from classical DSP architectures is the focus
on compilability. Once the decision was made to focus the
DSP design on programmer productivity, other
constraining decisions could be relaxed. As a result,
significantly longer pipelines with multiple cycles to
access memory and multiple cycles to compute arithmetic
operations could be utilized. This has yielded higher clock
frequencies and higher performance DSPs.
 In an attempt to exploit instruction level parallelism
inherent in DSP applications, modern DSPs tend to use
VLIW-like execution packets. This is partly driven by real-
time requirements which require the worst-case execution
time to be minimized. This is in contrast with general
purpose CPUs which tend to minimize average execution
times. With long pipelines and multiple instruction issue,
the difficulties of attempting assembly language
programming become apparent. Controlling instruction
dependencies between upwards of 100 in-flight
instructions is a non-trivial task for a programmer. This is
exactly the area where a compiler excels.

Figure 2. SDR Multithreaded Processor

 A challenge of using VLIW DSP processors include
large program executables (code bloat) that results from
independently specifying every operation with a single
instruction. As an example, a 32-bit VLIW requires 4
instructions, 128 bits, to specify 4 operations. A vector
encoding may compute many more operations in as little as
21 bits (for example – multiply a 4 vector, saturate,
accumulate, saturate).
 Another challenge of VLIW implementations is that
they may require excessive write ports on register files.
Because each instruction may specify a unique destination
address and all the instructions are independent, a
separate port must be provided for targets of each
instruction. This results in high power dissipation that may
not be acceptable for handset applications.
 A challenge of visible pipeline machines (e.g. most
DSPs and VLIW processors) is interrupt response latency.
Visible memory pipeline effects in highly parallel inner
loops (e.g. a load instruction followed by another load
instruction) are not interruptible because the processor
state can not be restored. This requires programmers to
break apart loops so that worst case timings and maximum
system latencies may be acceptable.
 Signal processing applications often require a mix of
computational calculations and control processing.
Control processing is often amenable to RISC-style
architectures and is typically compiled directly from C
code. Signal processing computations are characterized by
multiply-accumulate intensive functions executed on fixed
point vectors of moderate length. An additional trend for
3G applications is Java execution. Some carriers are
requiring Java functionality in their handsets.
 As shown in Figure 2, Sandbridge Technologies has
designed a multi-threaded processor capable of executing
DSP, Control, and Java code in a single compound

instruction set optimized for handset radio applications
[10]. The Sandbridge design overcomes the deficiencies of
previous approaches by providing substantial parallelism
and throughput for high-performance DSP applications
while maintaining fast interrupt response, high-level
language programmability, and very low power dissipation.
 The design includes a unique combination of modern
techniques such as a SIMD Vector/DSP unit, a parallel
reduction unit, a RISC-based integer unit, and instruction
set support for Java execution. Instruction space is
conserved through the use of compounded instructions
that are grouped into packets for execution. The resulting
combination provides for efficient Control, DSP, and Java
processing execution.

SDR DSP SOFTWARE

Programmer productivity is also a major concern in
complex DSP and SDR applications. Processors capable of
performing baseband processing must perform DSP
operations. Because most classical DSPs are programmed
in assembly language, it takes a very large software effort
to program an application. For modern speech coders it
may take up to nine months or more before the application
performance is known. Then, an intensive period of design
verification ensues. If efficient compilers for DSPs were
available, significant advantages in software productivity
could be achieved.
 A DSP compiler should be designed jointly with the
architecture based on the intended application domain.
Trade-offs are made between the architecture and compiler
subject to the application performance, power, and price
constraints.
 However, there are a number of issues that must be
addressed in designing a DSP compiler. First, there is a
fundamental mismatch between DSP datatypes and C
language constructs. A basic data-type in DSPs is a
saturating fractional fixed-point representation. C language
constructs, however, define integer modulo arithmetic.
This forces the programmer to explicitly program saturation
operations. Saturation arithmetic is analogous to a stereo
dial. As you increase the volume it always gets louder until
it reaches the limit of the system precision. When this limit
is reached the value still remains at the maximum value. If
the volume control worked like C language modulo
arithmetic the volume would immediately return to “0” after
overflowing the precision limit and no sound would be
heard. A DSP compiler must deconstruct and analyze the C
code for the semantics of the operations represented and
generate the underlying fixed point operations.
 A second problem for compilers is that previous DSP
architectures were not designed with compilability as a
goal. To maintain minimal code size, multiple operations

 I –
Cache
64KB
64B

Lines
4W (2-
active)

I- Decode

Ju P
 CR

 JT

 LC

Data Buffer

M

VR

VPR
0

M

VR

VPR
1

PA

M

VPR
2

M

VPR
3

S

VR VR

PAPAPA

A A A A

AD
D

AD AD AD

AGEN

(16) 32-bit
GPR

LS IQ

L L

Address

 Dir
LRU Replace

Data Memory
64KB Data Memory
64KB Data Memory
64KB Data Memory
64KB Data Memory
64KB Data Memory
64KB Data Memory
64KB Data Memory
64KB

8-Banks

INT IQ

IR IR

ALU

WB

Bus/Memory
Interface

Interru
pt SIMDI

were issued from the same compound instruction.
Unfortunately, to reduce instruction storage, a common
encoding was 16-bits for all instructions. Often, three
operations could be issued from the same 16-bit
instruction. While this is good for code density,
orthogonality1 suffered. Classical DSPs imposed many
restrictions on the combinations of operations and the
dense encoding implied many special purpose registers.
This resulted in severe restrictions for the compiler and
poor code generation.
 Early attempts to remove these restrictions used
VLIW instruction set architectures with nearly full
orthogonality. To issue four multiply accumulates
minimally requires four instructions (with additional load
instructions to sustain throughput). This generality was
required to give the compiler technology an opportunity to
catch up with assembly language programmers.
 Because DSP C compilers have difficulty generating
efficient code, language extensions have been introduced
to high level languages [2]. Typical additions may include
special type support for 16-bit datatypes (Q15 formats),
saturation types, multiple memory spaces, and SIMD
parallel execution support. These additions often imply a
special compiler and the code generated may not be
emulated easily on mu ltiple platforms. As a result, special
language constructs have not been successful.
 In addition to language extensions, other high-level
languages have been used. BOPS produced a Matlab
compiler which offers exciting possibilities since Matlab is
widely used in DSP algorithm design. Difficulties with this
approach include Matlab’s inherent 64-bit floating point
type not being supported on most DSPs. On DSPs which
do support 32-bit floating point, precision analysis is still
required.
 For algorithm design, tensor algebra has been used
[3]. Attempts have been made to automate this into a
compilation system [5]. The problem of this approach is
that highly skilled algorithm designers are still required to
describe the initial algorithm in tensor algebra. However,
this approach holds promise because the communications
and parallelism of the algorithm are captured by the tensor
algebra description.
 Due to the programming burden of traditional DSPs,
large libraries are typically built up over time. Often more
than 1000 functions are provided, including FIR filters,
FFTs, convolutions, DCTs, and other computationally
intensive kernels. The software burden to generate
libraries is high but they can be reused for many
applications. With this approach, control code can be

1 Orthogonality is a property of instruction set architectures that
allows any operation to be specified with any combination of other
operations.

programmed in C and the computationally intensive signal
processing functions are called through these libraries.

Intrinsic Functions

Often, when programming in a high-level language such as
C, a programmer would like to take advantage of a specific
instruction available in an architecture but there is no
mechanism for describing that instruction in C. For this
case intrinsics were developed. In their rudimentary form,
an intrinsic is an asm statement such as found in GCC.
 An intrinsic function has the appearance of a function
call in C source code, but is replaced during pre-
processing by a programmer-specified sequence of lower-
level instructions. The replacement specification is called
the intrinsic substitution or simply the intrinsic. An
intrinsic function is defined if an intrinsic substitution
specifies its replacement. The lower-level instructions
resulting from the substitution are called intrinsic
instructions [6].
 Intrinsics are used to collapse what may be more than
ten lines of C code into a single DSP instruction. A typical
math operation from the ETSI GSM EFR speech coder,
L_ADD, is given as:

/* GSM ETSI Saturating Add */
Word32 L_add(Word32 a, Word32 b) {
 Word32 c;
 c = a + b;
 if (((a^b) & MIN_32) == 0 {
 if ((c^a) & MIN_32) {
 c = (a < 0) ? MIN_32 : MAX_32
 }
 }
 return(c);
}

Early intrinsic efforts, like inlined asm statements, inhibited
DSP compilers from optimizing code sequences [7]. A DSP
C compiler could not distinguish the semantics and side
effects of the assembly language constructs and this
resulted in compiler scheduling hazards. Other solutions
which attempted to convey side-effect free instructions
have been proposed. These solutions all introduced
architectural dependent modifications to the original C
source.
 Intrinsics which eliminated these barriers have been
explored. The main technique is to represent the operation
in the intermediate representation of the compiler. With the
semantics of each intrinsic well know to the intermediate
format, optimizations with the intrinsic functions were
easily enabled yielding speedups of more than 6x.
 The main detractor of intrinsics is that it moves the
assembly language programming burden to the compiler

writers. More importantly, each new application may still
need a new intrinsic library. This further constrains limited
software resources.

Supercomputer Compiler Optimizations

The above discussion focused on source-level semantic
mismatches between C code and DSP operations. The
solutions in the industry are not ideal. However, even after
providing compiler solutions for the semantic gap, there is
still the difficult challenge of implementing supercomputer-
class optimizations in the compiler.
 In addition to classic compiler optimizations, there are
some advanced optimizations which have proven
significant for DSP applications. Software pipelining in
combination with aggressive inlining and VLIW
scheduling has proven effective in extracting the
parallelism inherent in DSP and general purpose
applications.
 Interestingly, some DSP applications (speech coding
for example) do not exhibit significant data dependence. A
program that is data dependent will give significantly
different execution times and execution paths through the
program depending upon what data input the program
receives. When programs are not heavily influenced by the
dataset choice, profile directed optimizations may be
effective at improving performance [8]. In profile driven
optimization the program is executed based on a set of data
inputs. The results of the program and the execution path
through the program are then fed back into the compiler.
The compiler uses this information to group highly
traversed paths into larger blocks of code which can then
be optimized and parallelized. These techniques, when
used with VLIW scheduling have proven effective in DSP
compilation. However, the results may still be less than
half as efficient as assembly language programs.
 Another challenge DSP compiler writers face is
parallelism extraction. Early VLIW machines alleviated the
burden from the compiler by allowing full orthogonality of
instruction selection. Unfortunately this led to code-bloat.
General purpose machines have recognized the importance
of DSP operations and have provided specialized SIMD
instruction set extensions (e.g. MMX/SSE, Altivec, VIS).
Unfortunately, compiler technology has not been effective
in exploiting these instruction set extensions, and library
functions are often the only efficient way to invoke them.
 Exploiting data parallelism is an important factor in
optimizing for DSP applications. While both a VLIW and
Vector datapath can exploit such parallelism, extracting it
from C code can be a difficult challenge. Most VLIW
scheduling technique focus on exploiting instruction level
parallelism from code sequences. What is often needed to
reveal data parallelism is a vectorizing compiler. For a
compiler to be able to vectorize loops coded in C it may

have to significantly reorder the loops either splitting or
jamming them together. Often loops are nested multiple
levels deep. It may not be possible to vectorize the inner
loop without first vectorizing the outer loops. These types
of optimizations are typically only found in supercomputer
compilers but they significantly assist in uncovering data
parallelism from arbitrary C code.

Compiler Technologies

It is well recognized that the best way to design a DSP
compiler is to develop it in parallel with the DSP
architecture. Future compiler-architecture pairs will not be
afforded the luxury of large numbers of intrinsic libraries.
Just as modern RISC processors do not require assembly
language programming, neither will future DSP
applications.
 A unique aspect of the modern compiler is that DSP
operations are automatically generated using a technique
called semantic analysis. In semantic analysis, a
sophisticated compiler must search for the meaning of a
sequence of C language constructs. A programmer writes
C code in an architecture independent manner - such as for
a micro controller - focusing primarily on the function to be
implemented. If DSP operations are required, the
programmer implements them using standard modulo C
arithmetic. The compiler analyzes the C code, automatically
extracts the DSP operations and generates optimized DSP
code without the excess operations required to specify
DSP arithmetic in C code. This technique has a significant
software productivity gain over intrinsic functions and
does not force the compiler writers to become DSP
assembly language programmers.
 Our architecture uses SIMD instructions to implement
Vector operations. The compiler vectorizes C code to
exploit the data level parallelism inherent in signal
processing applications and then generates the
appropriate vector instructions. The compiler also handles
the difficult problem of outer loop vectorization
 A final difficult consideration is vectorizing saturating
arithmetic. Because saturating arithmetic is non-
associative, the order in which the computations are
computed is significant. Because the compiler was
designed in conjunction with the processor, special
hardware support allows the compiler to safely vectorize
non-associative loops.

AMR Encoder

0

100

200

300

400

500

600

700

SB TI C64x TI C62x SC140 ADI BlackFin

DSP's

M
hz

Figure 3. Out-of-the-box AMR ETSI
Encoder C code results

Figure 3 shows the results of various compilers on out-of-
the-box ETSI C code. The y-axis shows the number of MHz
required to compute frames of speech in real-time. The
AMR code is completely unmodified and no special
include files are used. Without using any compiler
techniques such as intrinsics or special typedefs, the
compiler is able to achieve real-time operation on the
baseband core at hand-coded assembly language
performance levels. Note that it is completely compiled
from high-level language. Since other solutions are not
able to automatically generate DSP operations, intrinsic
libraries must be used. With intrinsic libraries the results
for most DSPs are near ours but they only apply to the
ETSI algorithms whereas the described compiler can be
applied to arbitrary C code.

Ultra-fast Software Simulation

 Efficient compilation is just one aspect of software
productivity. Prior to having hardware, algorithm designers
should have access to fast simulation technology. Figure 4
shows the post-compilation simulation performance of the
same AMR encoder for a number of DSP processors. All
programs were executed on the same 1GHz laptop Pentium
computer. The Sandbridge tools are capable of simulating
25.6 Million instructions per second. This is more than two
orders of magnitude faster than the nearest competitor and
allows real-time execution of GSM speech coding on a
Pentium simulation model. To further elaborate, while some
DSPs can not even execute the out-of-the-box code in real-
time on their native processor, Sandbridge achieves
multiple real-time channels on a simulation model of
processor. We achieved this by using our own compilation
technology to accelerate the simulation.

Simulation Speed
(log scale)

0.114 0.106

0.002

0.013

24.639

0.001

0.010

0.100

1.000

10.000

100.000

M
ill

io
ns

 o
f I

ns
tr

uc
ti

on
s

 P
er

 S
ec

o
n

d

SB 24.639

TI C64x (Code Composer) 0.114

TI C62x(Code Composer) 0.106

SC140(Metrowerks) 0.002

ADI Blackfin (Visual DSP) 0.013

Figure 4. Simulation speed of ETSI AMR
Encoder

RTOS and IDE

The programming interface for the multithreaded processor
is generic ANSI C code. In keeping with an easy-to-use
programming philosophy, access to multithreading is
provided through the open standards of either Java
threads or POSIX pthreads. Since nearly all general
purpose platforms support these standards it is simple to
port programs to the Sandbridge platform. An API is also
supported to allow access to the underlying thread
scheduler and for fast porting of 3rd party RTOS’s.
 An IDE is also provided based on the opensource
Netbeans IDE. Our netbeans implementation has been
extended to work with C programs and allows for both Java
and C to be debugged using a common environment.

SDR IMPLEMENTATION

 Previous communications systems have been
developed in hardware due to high computational
processing requirements. DSPs in these systems have
been limited to speech coding and orchestrating the
custom hardware blocks. In high-performance 3G systems
there may be over 2 million logic gates required to
implement physical layer processing. A complex 3G system
may also take many months to implement. After logic
design is complete, any errors in the design may cause up
to a 9 month delay in correcting and refabricating the
device. This labor intensive process is counter productive
to fast handset development cycles. An SDR design takes
a completely new approach to communications system
design.

 Rather than designing custom blocks for every
function in the transmission system, an SDR implements a
processor capable of executing operations appropriate to
broadband communications. A small and power efficient
core is then highly optimized and replicated to provide a
platform for broadband communications. This approach
scales well with semiconductor generations and allows
flexibility in configuring the system for future
specifications and any field modifications that may be
necessary.

RESULTS

 Sandbridge Technologies has developed complete
SDR product, including baseband processor as well as C
code for the UMTS WCDMA FDD mode physical layer
standard. Using an internally developed compiler, real-time
performance on a 768kbps transmit chain and a 2Mbps
receive chain has been achieved, which includes all the
blocks shown in Figure 1. The entire transmit chain
including bit, symbol, and chip rate processing requires
less than 400MHz of processor capacity to sustain a 768
kbps transmit capability.
 Figure 6 shows the performance requirements for
802.11, GPRS, and WCDMA as a function of SB9600
utilization for a number of different transmission rates.
Providing processing capability for 2Mbps WCDMA
FDD-mode also provides sufficient processing capability
for 802.11b and even concurrent capacity for multiple
communications systems.

Handset SDR Product

Figure 5 shows the SB9600TM baseband chip. It contains
multiple Sandblaster™ cores and an ARM microcontroller
that functions as an applications processor. The
performance of the chip is more than sufficient to sustain a

2Mbps WCDMA 3G transmission in real time. It also
supports executing the digital basebands for GPRS,
802.11b, Bluetooth, and GPS.
 The chip contains a number of digital peripheral
interfaces for moving data in and out of the chip such as
AD/DA for Tx and Rx data, TDM ports, and an AMBA
bus. High speed Universal Serial Bus (USB) provided easy
connectivity to external systems. Control and test busses
such as JTAG, SPI, and I2C allow the chip to control RF
and front end chips.
 Initial silicon of the core is available. The final chip
core will support 9.6 billion multiply accumulates per
second at less than 500mW power consumption.

SUMMARY

 A new and scalable design methodology has been
introduced for implementing multiple transmission systems
on a single chip. Using a unique multithreaded architecture
specifically designed to reduce power consumption,
efficient broadband communications operations are
executed on a programmable platform. The processor uses
completely interlocked instruction execution providing
software compatibility for all future processor designs.
Because of the interlocked execution, interrupt latency is
very short. An interrupt may occur on any instruction
boundary including loads and stores. This is critical for
real-time systems.
 The processor is combined with a highly optimizing
compiler with the ability to analyze programs and generate
DSP instructions. This obviates the need for assembly
language programming and significantly accelerates time-
to-market for new transmission systems.
 To validate our approach, we designed our own
2Mbps WCDMA physical layer. First, we designed a
MATLAB implementation to ensure conformance to the

EXT INT

AHB INT ARM
(922T)

RCVR

SPI &
Stat Cntl

I2C &
Stat Cntl

TDM
Infc (2)

XMTR

TDM
Infc (2)

AHB-I/O

Internal AHB

TDM
Infc (2)

TDM
Infc (2)

External AHB

RF Device
Control

RF Device
Control

TDM

TDM

TDM

TDM

RX Data

TX Data

JTAG

DSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DMA
Cntlr

BlueTooth
I/O

802.11

GPS

XMR
I/O

Bridge

SPI

I2C

GPIO

USB UART

SIM/USIM

Keypad

LCD Int.

…

APB

System
Clk/Cntl

Ext.
Interrupts

EXT INT

AHB INT ARM
(922T)

RCVR

SPI &
Stat Cntl

I2C &
Stat Cntl

TDM
Infc (2)

XMTR

TDM
Infc (2)

AHB-I/O

Internal AHB

TDM
Infc (2)

TDM
Infc (2)

External AHB

RF Device
Control

RF Device
Control

TDM

TDM

TDM

TDM

RX Data

TX Data

JTAG

DSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
TDSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
TDSP

Ins & Data Mem
(64KB / 64KB)

L
2 M

em
(256K

B
)

E
X

T IN
T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DSP

Ins & Data Mem
(64KB / 64KB)

L2
 M

em
(2

56
K

B
)

E
X

T
IN

T

DMA
Cntlr

BlueTooth
I/O

802.11

GPS

XMR
I/O

Bridge

SPI

I2C

GPIO

USB UART

SIM/USIM

Keypad

LCD Int.

…

APB

System
Clk/Cntl

Ext.
Interrupts

Figure 5. SDR SB9600 Baseband Processor

3GPP specifications. We then implemented the algorithms
in fixed point C code and compiled them to our platform
using our internally developed tools. The executables were
then simulated on our cycle accurate simu lator that runs at
up to 100 million Sandblaster™ instructions per second on
a high end Pentium thereby ensuring complete logical
operation. Having designed our own 3GPP compliant RF
front end using commercially available components, we
execute complete RF to IF to baseband and reverse uplink
processing in our lab. Our measurements confirm that our
WCDMA design will execute within field conformance
requirements in real time completely in software on the
SB9600TM platform.
 In addition to WCDMA, we have also implemented
802.11b and GSM/GPRS. These protocols also execute in
real-time on the developed platform.

REFERENCES

[1] http://www.sdrforum.org
[2] K.W. Leary and W. Waddington, “DSP/C: A

Standard High Level Language for DSP and Numeric
Processing”, Proceedings of the International
Conference on Acoustics, Speech and Signal
Processing, IEEE, 1990, pp. 1065-1068.

[3] J. Granata, M. Conner, R. Tolimieri, “The Tensor
Product: A mathematical Programming Language
for FFTs and other Fast DSP Operations,” IEEE SP
Magazine, pp. 40-48, January 1992.

[4] C.J. Glossner, G.G. Pechanek, S. Vassiliadis, and J.
Landon, “High-Performance Parallel FFT
Algorithms on M.f.a.s.t. Using Tensor Algebra.”
Proceedings of the Signal Processing Applications
Conference at DSPx’96, March 11-14, 1996, pp. 529-
536, San Jose Convention Center, San Jose, California.

[5] N. P. Pitsianis, “A Kronecker Compiler for Fast
Transform Algorithms”, 8th SIAM Conference on
Parallel Processing for Scientific Computing, March,
1997.

[6] D. Batten, S. Jinturkar, J. Glossner, M. Schulte, and P.
D’Arcy, “A New Approach to DSP Intrinsic
Functions”, Proceedings of the Hawaii International
Conference on System Sciences, Hawaii, January,
2000.

[7] D. Chen, W. Zhao, and H. Ru, “Design and
implementation issues of intrinsic functions for
embedded DSP processors”, in Proceedings of the
ACM SGIPLAN International Conference on Signal
Processing Applications and Technology (ICSPAT
‘97), September, 1997, pp. 505-509.

[8] S. Jinturkar, J. Thilo, J. Glossner, P. D’Arcy, and S.
Vassiliadis, “Profile Directed Compilation in DSP
Applications”, Proceedings of the International
Conference on Signal Processing Applications and
Technology (ICSPAT’98), September, 1998.

[9] J. Glossner, E. Hokenek, and M. Moudgill, “Wireless
SDR Solutions: The Challenge and Promise of Next
Generation Handsets”, Accepted for publication at
the 2002 Communications Design Conference,
September 2002, San Jose, CA.

[10] J. Glossner, E. Hokenek, and M. Moudgill,
“Multithreaded Processor for Software Defined
Radio”, Accepted for publication at the 2002 SDR
Forum Conference, November, 2002, San Diego, CA.

John Glossner is CTO & EVP of
Engineering at Sandbridge
Technologies. Prior to co-

0

10

20

30

40

50

60

70

80

90

100

802.11 GPRS W C D M A
1/2/5.5/11Mbps Class 10/12 64/384/2k Kbps

%
 S

B
96

00
 U

ti
liz

at
io

n

Figure 6. Baseband Communications System Performance

founding Sandbridge, John managed the Advanced DSP
Technology group, Broadband Transmission Systems
group, and was Access Aggregation Business
Development manager at IBM’s T.J. Watson Research
Center. Prior to IBM, John managed the software effort in
Lucent/Motorola’s Starcore DSP design center. John
received a Ph.D. in Computer Architecture from TU Delft in
the Netherlands for his work on a Multithreaded Java
processor with DSP capability. He also received an M.S.
degree in Engineering Management and an M.S.E.E. from
NTU. John also holds a B.S.E.E. degree from Penn State.
John has more than 40 publications and 12 issued patents .

Daniel Iancu received the
M.Sc. and the Ph.D.
degrees in Physics and
Electronics both from the
University of Cluj-
Napoca, Romania, in 1976
and 1986, respectively. In

1980 he took a teaching position with the Faculty of
Physics, the Electronics Department of the same
University, where besides teaching he spent ten years of
research in various areas of high frequency Physics and
Electronics with applications in DSP and Communication
Systems. After arriving in US in 1990, he took several jobs
in DSP and Communication field of applications. Since
2000 he is with Sandbridge Technologies as Director of
Emerging Technology.

Jin Lu, graduated from
Cornell University with a
Ph.D. in EE, has worked in
the industries of
consumer electronics,
telecommunication, and
control system for over 10

years. He specializes in communication, interactive
multimedia, digital consumer electronics, and real-time
systems. He has published many papers in the area of
networking, control systems, and signal processing. His
current interests include real-time algorithms and
implementation of wireless technologies.

Erdem Hokenek received BS and
MS degrees from Technical
University, Istanbul (Turkey) and
PhD from Swiss Federal Institute
of Technology (ETH Zurich,
Switzerland). After his PhD in

1985, he joined IBM T. J. Watson Research Center where
he worked on the advanced development of POWER and
PowerPC processors for the RS/6000 Workstations. He
also worked in various technical and management
positions on the high performance compilable DSP and
Cross Architecture Translations. He is co-founder of
Sandbridge Technologies Inc.

Mayan Moudgill obtained a
Ph.D. in Computer Science
from Cornell University in
1994, after which he joined
IBM at the Thomas J. Watson
Research Center. He worked
on a variety of computer

architecture and compiler related projects, including the
VLIW research compiler, Linux ports for the 40x series
embedded processors and simulators for the Power 4. In
2001, he co-founded Sandbridge Technologies, a start-up
that is developing digital signal processors targeted at 3G
wireless phones.

