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Abstract: Dealing with the packet-routing problem is challenging in the V2X (Vehicle-to-Everything)
network environment, where it suffers from the high mobility of vehicles and varied vehicle density
at different times. Many related studies have been proposed to apply artificial intelligence models,
such as Q-learning, which is a well-known reinforcement learning model, to analyze the historical
trajectory data of vehicles and to further design an efficient packet-routing algorithm for V2X. In
order to reduce the number of Q-tables generated by Q-learning, grid-based routing algorithms such
as the QGrid have been proposed accordingly to divide the entire network environment into equal
grids. This paper focuses on improving the defects of these grid-based routing algorithms, which
only consider the vehicle density of each grid in Q-learning. Hence, we propose a Software-Defined
Directional QGrid (SD-QGrid) routing platform in this paper. By deploying an SDN Control Node
(CN) to perform centralized control for V2X, the SD-QGrid considers the directionality from the
source to the destination, real-time positions and historical trajectory records between the adjacent
grids of all vehicles. The SD-QGrid further proposes the flows of the offline Q-learning training
process and the online routing decision process. The two-hop trajectory-based routing (THTR)
algorithm, which depends on the source–destination directionality and the movement direction of
the vehicle for the next two grids, is proposed as a vehicle node to forward its packets to the best
next-hop neighbor node in real time. Finally, we use the real vehicle trajectory data of Taipei City
to conduct extensive simulation experiments with respect to four transmission parameters. The
simulation results prove that the SD-QGrid achieved an over 10% improvement in the average packet
delivery ratio and an over 25% reduction in the average end-to-end delay at the cost of less than 2%
in average overhead, compared with two well-known Q-learning grid-based routing algorithms.

Keywords: vehicle to everything (V2X); reinforcement learning; Q-learning; Software-Defined
Network (SDN); Software-Defined Directional QGrid (SD-QGrid); source–destination directionality;
two-hop trajectory-based routing (THTR)

1. Introduction

The new generation of the 5G network allows for a higher performance and wider com-
munication range, but how to maintain service quality in the V2X (Vehicle-to-Everything) [1]
environment whilst considering the concept of differentiated service orientation and the
establishment of package routing is still an urgent problem [2]. The Internet of Vehicles is
an ad hoc network established by vehicles as packet transmission nodes. It has a dynamic
topology. In the network environment, vehicle nodes execute routing algorithms individ-
ually. In addition, the nodes in the Internet of Vehicles move fast and are unstable [3,4];
therefore, the packet transmission paths of the ad hoc network are not fixed. Hence, it is
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very difficult to maintain the routing table; in particular, the routing protocol, which needs
to be updated frequently, is more difficult to apply in this type of environment.

In order to solve the connection problem [5], this problem was proposed to be solved
using the Delay-Tolerant Network (DTN) [6] in past related research. The Internet of
Vehicles benefits from the thinking method of SCF (Store-Carry-and -Forward) [7], which is
a network that does not need to establish a connection path in the ad hoc network between
the source and the destination to transmit information. The information is transmitted by
the contact opportunity between nodes. When there is no neighbor node or the neighbor
node is in a poor condition, it will keep the packet and wait for the next opportunity to
contact other neighbor nodes and transmit the packet. The most basic DTN method is
flooding. Later, the improved DTN method is used to compare the value of a certain
cost between the current vehicle and the adjacent vehicle, or to calculate the probability
of the meeting of nodes, and is also used to decide the adjacent vehicle to receive the
transmitted packet. There is no evaluation or improvement strategy for the packet delivery
path. Overall, the trade-offs in the DTN can be divided into: (i) storage resources vs. the
packet transmission success rate; and (ii) transmission delay vs. the delivery probability,
which requires further consideration.

Reinforcement learning [8] is a research direction related to machine learning, which
has a great impact on artificial intelligence (AI) and is applied to improve the routing
algorithm for different ad hoc network architectures, such as wireless sensor networks [9],
VANET [10], flying ad hoc networks [11], and drone ad hoc networks [12]. The survey [13]
compiled several algorithms that use Q-Learning as a routing decision element. The
ADOPEL [14] algorithm assumes that there is a TCC (traffic control center) in the network
environment, and vehicle nodes transmit traffic data to the TCC. The TCC has a macroscopic
view of the whole network, and uses the delay of the links and the number of aggregable
data packets as the Q-learning parameters. After generating the Q-table, the vehicle nodes
will select the next-hop nodes accordingly. The QTAR [15] algorithm applies Q-learning
to vehicle-to-vehicle (V2V) and RSU-to-RSU (R2R). Considering link quality, expiration
time and delay, it also adds the concept of SCF to the packet delivery of vehicle nodes.
The QGrid [16] routing algorithm divides the map into many grids, and uses the number
of vehicles in the grid as a parameter to generate the Q-table through Q-learning [17],
determining the delivery direction between the four neighboring packet areas.

The Software-Defined Network (SDN) is a new network architecture [18–21], which
is generally regarded as the future network type in the industry. The method replaces
the traditional network equipment performing individual link discovery and routing
calculations, with the SDN controller in charge of performing these calculations. The
architecture, the central control mode, uses programs to reschedule the network, including
for packet-routing and routing-table maintenance. It addresses the shortcomings of the
traditional centralized routing algorithm, and can also cope with the large amount of data
exchange in the server. At present, VANET mainly executes the routing algorithm via
each vehicle node, and establishes the decision of the next-hop neighbor node through
the exchange of messages between nodes. Although the load of a single routing host is
dispersed, under the distributed routing architecture, several nodes may possibly select a
specific vehicle node to forward packets to at the same time because they lack knowledge on
the result of each other’s routings. This may easily cause congestion and the unsatisfactory
arrangement of the packet delivery route.

1.1. Problem Background and Motivations

In a network environment dominated by vehicles with relatively fixed trajectories,
such as buses, how to use trajectory information to make routing decisions is a problem
that needs to be considered. According to our observations, the shortcomings of the above
related research are: (i) Intergrid routing does not consider the overall direction of the
vehicles’ movement between grids to select the best neighbor grid, and does not use the
corresponding Q-tables for different time periods. (ii) Intragrid routing does not focus
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on how to analyze the vehicles’ actual trajectories for selecting the best neighbor node in
grids to forward packets to. Therefore, grid-based packet transmission needs to refer to the
following three directionalities:

1. Grid directionality and source-to-destination directionality for intergrid routing: By
analyzing vehicle trajectories in the overall network environment, we define the
number of outgoing vehicles from the current grid to the adjacent grid as the grid
directionality of this adjacent grid in this paper. We believe that the grid directionality
has an important impact on increasing the successful transmission rate and reducing
the delay of the packet delivery. If you select a neighbor grid that is more in line with
the vehicle’s driving direction, i.e., the grid with higher grid directionality, as the
next-hop grid to forward the packet to, the packet has a higher probability of reaching
the destination. In addition, the direction from the source node to the destination
node, i.e., the source-to-destination directionality in this paper, also guides the best
selection of the next-hop neighbor grid. If Q-learning selects a neighbor grid that has
the higher grid and the source-to-destination directionalities, this grid will obtain
a higher reward and Q-value, which are used as the decision basis of the intergrid
routing. As shown in Figure 1, the starting position of the packet is at GridD, and it
will be sent to the destination at GridC. Because the Q-value of GridE is the highest
one among all neighbor grids of GridD, the intergrid routing for GridD selects GridE
as the best next-hop grid. This means that the intergrid routing can use the grid
directionality to train the Q-model and select the most plausible neighbor grid to
forward the packets to.

2. Two-hop directionality for intragrid routing: By analyzing the historical vehicle
trajectories to determine the grid directionality of each grid, we can select the neighbor
vehicle whose future driving trajectory goes to the best next-hop grid selected by the
intergrid routing. However, there may be more than one possible neighbor vehicle
that meets the above conditions; thus, how to make an appropriate choice is the
important issue to address. As shown in Figure 2, vehicle node va located in GridA
has two neighbor nodes, vb and vc, located in the best next-hop grid GridC. Which
of the two is the best relay node? If a neighbor node whose future driving trajectory
moves to the best next-hop grid first, and then, to the best neighbor grid next, which
is called the best two-hop next grid in this article, this node will be a better relay node
than any node whose trajectory does not follow this two-hop path. This is because this
relay node would have a higher probability to meet the destination node than others,
even though it does not meet any neighbor node on this two-hop path to forward the
packet to, but has to carry the packet by itself to the destination using SCF. Hence,
this paper proposes two-hop trajectory-based routing (THTR) as follows. THTR first
performs the intergrid routing on the best next-hop grid, i.e., GridC, of GridA to select
the next best neighbor grid, i.e., GridE. It then analyzes the historical trajectories of vb
and vc located in the best next-hop grid, GridC, to find their future positions. If vc will
enter the best two-hop next grid GridE at position vc′ , it would be a better strategy
for va to forward the packet to node vc instead of vb, because the future position of vb,
that is, vb′ , enters GridB later.

The routing algorithm proposed in the original QGrid paper only uses the number of
all nodes in each grid to represent the probability of the packet reaching the destination if
the grid holds a packet. However, we think that simply considering the number of vehicle
nodes in the grid is too one-sided. Further, it is found from the road distribution of the
map that not all roads are horizontal or vertical, and some adjacent grids are connected
by diagonal roads. The intergrid routing of QGrid only uses four neighbor grids to select
the next-hop grid, ignoring the possibility of transmitting packets to the neighbor grids in
the diagonal direction, which will lead to a decrease in the transmission success rate and
an increase in delay. In addition to taking the number of vehicle nodes in the grid as the
basis for decision making, we also refer to the vehicle mobility, i.e., the grid directionality,
between the current grid and eight neighbor grids to avoid ignoring the vehicle nodes
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located in the diagonal grid, which happens with the QGrid that only considers neighbor
grids in four directions. Therefore, the improved method we proposed through the SD-
QGrid is to further consider the average directionality of each grid, based on the number of
outgoing nodes, and expand the neighbor grid to eight directions, as shown in Figure 3, in
the Q-table calculation. Compared with the original Q-learning in the four directions of
up, down, left, and right, we added a diagonal pair. There are eight directions of angular
movement (such as the red arrow), and the performance of the Q-table in the SD-QGrid
intergrid routing is better.
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1.2. Contributions

To design our network structure, the concept of SDN routing architecture is added.
We hope to consider the historical density and directionality of vehicles between grids,
and modify the way that Q-learning generates the Q-table to determine the macrotransfer
direction of the V2X packet. Then, according to the historical trajectories of the real vehicles,
we can select the most appropriate packet delivery path, that is, the microscopic delivery
path. This paper makes the following contributions:

1. We design the Software-Defined Directional QGrid (SD-QGrid) network architecture,
which combines the centralized control concept of the SDN Control Node (CN),
and proposes the offline Q-learning training process and the online routing decision
process in a V2X network architecture with reference to vehicle trajectories and three
types of directionalities.

2. Using the number of vehicles and the trajectory and directionality of vehicles between
grids as parameters, the offline Q-learning training process of this paper modifies the
Q-learning of reinforcement learning by increasing the moving directions between
neighboring grids from the original four to eight and using the corresponding Q-tables
for different time periods [22] as the macroreference for intergrid routing packet delivery.

3. In the online routing decision process, a two-hop trajectory-based routing (THTR)
algorithm is proposed, referring to the historical trajectory of the vehicle and the
two-hop transmission path for calculating the future trajectory. This algorithm selects
the neighbor node which is most suitable for the direction along the best next-hop
grid and the best two-hop next grid, and then forwards packets to it, increasing the
probability to meet the destination node and resulting in a shorter packet transmission
path and lower packet transmission delay.

4. We conduct simulation experiments to analyze and find the routing paths in V2X, and
then obtain real and meaningful performance data of the routing algorithm using the
real vehicle movement trajectories in Taipei City.

2. Related Work

Regarding the algorithm of the vehicle communication routing decision, we can introduce
the characteristics of the vehicle trajectory and design our algorithm accordingly. Since humans
have a habit of moving, there is a very high probability that they will follow a similar route to
the same place. Since vehicles extend humans’ social behavior, vehicle travel paths are largely
predictable. Vehicles can be divided into three categories according to the stability of their
trajectories (a trajectory is a series of locations where the vehicle passes):

1. Buses: the trajectory is very accurate, with a relatively fixed arrival time and travel path.
2. General private cars: have regular trajectories and obvious regularity in time and space.
3. Taxis: have a flexible and variable travel route, and often have a credible destination [23],

but the travel path is not fixed.

2.1. Position-Based Routing Algorithms without Adopting Reinforcement Learning

(1) DPPR [23] assumes that each vehicle knows its own driving trajectory in advance,
and the driving trajectory is a sequence formed by the number of intersections that will
be passed through. Due to the traffic information, each road can be assigned a weight
value, which is the transmission delay time of this road, and the shortest delay path can
be calculated via the Dijkstra algorithm [24]. DPPR contains two different modes: the
straightway mode and intersection mode. When the vehicle wants to forward the packet, it
first calculates the shortest delay path to determine the next expected intersection arrival
time, and detects whether its neighbor vehicles will pass the destination of the packet. If so,
the vehicle carrying the packet will forward the packet to this vehicle; if not, the neighbor
vehicle that is driving toward the target intersection and is faster than the vehicle carrying
the packet is selected, and the packet is copied to the neighbor vehicle; if both vehicles
cannot be detected, the vehicle carrying the packet will place the packet into its routing
queue and schedule. The disadvantage of this method is that it needs to know the complete
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driving trajectory, and then calculate the shortest delay path, which is not suitable for
vehicles without fixed routes.

(2) The NTR (Novel Trajectory Routing) [22] algorithm uses the vehicle GPS trajectory
to explore all the possible movement patterns of each vehicle, establish its own trajectory
tree, and establish a vehicle encounter tree by comparing the trajectory trees of the vehicles.
Compared with the vehicle trajectory representation used in the previous paper, only the
location where the vehicle passed by is recorded, and the NTR also records the elapsed
time in the trajectory. The vehicle encounter tree records all possible paths in which the
packet is forwarded from the source to the destination, and records the road segment
between the vehicle carrying the packet and the expected vehicle to be forwarded the
packet. After building the vehicle encounter tree, NTR converts the vehicle encounter tree
into a predicted transit vehicle sequence diagram. The packet sender deletes the key of the
vehicle child nodes that will meet along the road; changes them into the parent node of the
vehicle that the packet sender will meet directly; and adds two parameters, which are the
expected packet arrival rate (expected delivery ratio, EDR) and token (token value indicates
the number of packet replicas). If the expected packet arrival rate of the destination node is
1, the expected packet arrival rate of each node toward the root node in the direction of the
parent node is continuously calculated. When the expected packet-forwarding sequence
diagram and related information are calculated, the packet transmitting end can use the
sequence diagram and related information to transfer the packet. The advantage of the NTR
algorithm is that it can calculate the transfer vehicle sequence between any two vehicles
and achieve a transfer process close to the optimal solution. The disadvantage of this is that
the calculations of establishing a trajectory tree, comparing the trajectory tree of vehicles,
and establishing a vehicle encounter tree are complicated. They require a large amount of
computing time and storage space for the pre-operation.

2.2. Position-Based Routing Algorithms with Reinforcement Learning

In the following, we introduce the concept of reinforcement learning, Q-learning, and
then compare several position-based routing algorithms that use Q-learning as the basis for
decision making.

First, Q-learning is briefly described. The reinforcement learning model is composed
of several elements. We will first define a few terms below.

Definition: a state is called a Markov state if and only if:

P[St+1|St] = P[St+1|S1, S2, S3, . . . , St]

Definition: For a Markov state s and its successor state s′, define the State Transition
Probability as PSS′ = P[St+1 = S′

∣∣St = S] . The State Transition Matrix P is the transition
probability for all states s to all successor states s′.

Definition: a policy π is the probability distribution of action a after a given state s.

π(s) = P[At = a|St = s]

Definition: the reward Gt is the sum of accumulated depreciation rewards starting
at time t.

Gt = Rt+1 + rRt+2 + · · · , where r ∈ [0, 1]

Definition: the action–value function qπ(s, a) is the expected reward obtained by
starting from state s, selecting action a, and then following policy π.

qπ(s, a) = Eπ [St = s, At = a]

According to the Bellman equation, we can finally rewrite the above formula as:

qπ(s, a) = Ra
s + r ∑

s′∈S
Pa

Ss′ ∑
a′∈A

π
(
s′
)
qπ

(
s′, a′

)
(1)
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Finally, we will discuss Q-learning training, for which the core update formula is:

Q(st, at)← (1− α) ∗Q(st, at) + α ∗
(

Rt+1 + γ ∗maxaQ
(
st+1, a′

)
−Q(st, at)

)
(2)

α is the learning rate (0 < α < 1). γ is the discount factor (0 < γ < 1). When the value of
γ is larger, the long-term rewards obtained in the future will receive more attention; the
smaller the value, the more the current rewards will be considered. R is the reward; it acts
on each state and will receive the corresponding reward.

Position-based routing algorithms use Q-learning as the basis for decision making:

(1) The ITAR-FQ [25] algorithm architecture consists of two main parts: the real-time
traffic aware process and road evaluation (RTAP-RE) and the routing decision process
with fuzzy Q-learning (RDP-FQ). The RTAP-RE designs a road evaluation method
to process traffic information and estimate road quality (RQ), with reference to the
number of vehicles moving in the same/a different direction, the length of the road,
packet generation time, current time, etc. RDP-FQ divides the entire routing process
into multiple routing processes. As the intersection is divided into multiple routing
processes, the packet continues to look for the next intersection and selects a new road
segment until the packet reaches the destination. Facing the intersection, it calculates
the road score (RC) by combining RQ and the Manhattan distance (MDnormal), and
selects the road with the highest RC as the next forward road segment. The reward
function is modified by referring to the benchmark reward and the corresponding
value given by Fuzzy Logic. The advantage of this paper is that the Fuzzy Logic indi-
cator is added to Q-learning for routing decisions in road segments. The disadvantage
is that the directionality of the relative position of the transmitter and the destination
are not considered. If the road segment with the destination end is the next hop at
the intersection, it may cause the packet to be transmitted over a long distance or
repeated on the road segment, and the historical movement trajectory of the vehicle is
not used for training to obtain better routing decisions.

(2) ADOPEL [14] assumes that two kinds of packets are exchanged between vehicle nodes:
beacons and event-driven messages. The former is for the exchange of information
such as the position, speed, and direction of travel between vehicles. The latter is
used for vehicle nodes to collect traffic data and transmit it to the traffic control
center (TCC), so that the TCC can gain a macroscopic understanding of the entire
vehicle network environment, analyze the current number of neighbor vehicle nodes
and the transmission delay of each node, and substitute this decision data into Q-
learning, before using the Q-value to select better next-hop neighbor nodes for each
vehicle node. The advantage of this approach is that it can better adapt to the high
mobility and topology variability of the VANET network environment, whereas the
disadvantage is that it does not refer to the future trajectory of the vehicle.

(3) In the QTAR [15] network architecture, Q-learning is used for vehicle-to-vehicle (V2V)
and RSU-to-RSU (R2R) networks. Decision elements, such as connection reliability
and EED, are added to the Q-learning operation, and then, next-hop neighbor nodes
are selected and packets are forwarded. The advantage of this approach is that the
Q-learning planning method can improve throughput and PDR, but the disadvantage
is that the directionality of the nodes is not considered, resulting in an unsatisfactory
overall transmission performance when used in a real-world environment.

(4) The QGrid [16] divides the entire map environment into equal grids, and uses Q-
learning in advance. It uses the number of vehicles in the area as a parameter, and
calculates the Q-table in advance to determine the transfer direction between grids,
which is a macrotransfer consideration. QGrid_G uses the greedy method of packet
transmission, which preferentially selects the neighbor node closest to the destination.
QGrid_M uses the two-hop Markov prediction [26–28] method to predict the grid that
the packet will pass through in the future, and preferentially selects the neighbor node
with a higher probability of entering the next-hop grid as the next-hop node. The
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above two methods are microscopic transfer considerations. The advantage of these is
that the transmission of packets is determined by considering the different macro- and
microlevel aspects at the same time. Considering the number of vehicle nodes in each
grid, the packets are preferentially transmitted to the grid with more vehicle nodes so
that the packet loss rate is reduced. The disadvantage is that the vehicle density is only
considered, and the influence of the overall movement direction between grids on
the overall environment is not considered. The advanced QGrid is a routing protocol
improvement made by QGrid, which is for vehicles with relatively regular and fixed
trajectories, such as bus nodes, in the network environment. The vehicle node carries
the packet to the destination grid and then continues the next-hop packet forwarding.
The advantage of this is that it considers the reference vehicle trajectory, as well as
the next-hop node selection, based on the trajectory information. The disadvantage is
that even if the vehicle node has neighbor nodes, it still needs to continue to carry the
packet until it reaches the grid destination where the node is located, resulting in a
longer packet transmission delay time.

We have discussed several routing algorithms that analyze vehicle trajectories and
formulate designs based on them. Table 1 is a comparison of related studies. It can be found
that most of the V2X routing methods lack the analysis of real vehicle trajectory data, even
if they use reinforcement learning. They also lack the analysis of the source–destination
direction, as well as a software-defined routing platform and two-hop next-grid routing.

Table 1. Comparison of related studies.

Protocol

Analyzes
Real Vehicle

Trajectory
Data

Considers
the Direc-

tionality of
the Vehicle
Trajectory

Considers
the Direc-

tionality of
Source to

Destination

Considers
the Number
of Vehicles

in Each Area

Uses Rein-
forcement

Learning for
Routing

Decisions

Simulation
Experiments
Using Real

Vehicle
Trajectories

Considers
Two-Hop
Next-Grid
Routing

Designs
Software-
Defined
Routing
Platform

ITAR-FQ No No No Yes Yes No No No
ADOPEL No Yes No Yes Yes No No No

QTAR No No No Yes Yes No No No

QGrid_G No No No Yes
Yes (only one
Q-table, four

neighbor grids)
Yes No No

AdvQGrid Yes No No Yes
Yes (only one
Q-table, four

neighbor grids)
Yes No No

SD-QGrid Yes Yes Yes Yes

Yes (different
Q-tables

corresponding
to different

time periods,
eight neighbor

grids)

Yes Yes Yes

3. SD-QGrid Routing Platform and Algorithms
3.1. SD-QGrid Network Architecture

First, we define the grid in the SD-QGrid network architecture. As shown in Figure 4,
we calculate the length and width of the map range of this experiment; we know the
latitude and longitude of the four vertices of the map; we take the vertex P in the upper
left corner as the reference point; we calculate the distance between the point P and the
vertex in the upper right corner to obtain the length L of the outgoing map; and we obtain
the width W of the map by calculating the distance between the point P and the vertex
in the lower left corner. After determining the length L and width W of the experimental
map, we can then give the grid length d to mark m × n grids in this map. The grid number
range is (0 . . . m − 1, 0 . . . n − 1).
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The entire SD-QGrid has an SDN Control Node (CN), which is responsible for initial-
izing the grid structure of the entire map by defining the grid size, cutting the experimental
map, and calculating the grid where all vehicle nodes are located. In addition, each grid
needs to be equipped with an RSU, which can communicate with the CN through wired
lines, at each intersection to collect vehicle trajectory information of all vehicles located
at road segments connected to this intersection. Each vehicle on a road segment assumes
to own the communication module and the GPS receiver such that it can periodically
broadcast its instant information, including the vehicle ID, velocity, GPS position, moving
direction, etc., to the first reached RSU through the HELLO messages. In this way, the loss
of vehicle information caused by building obstacles in the grid can be reduced [29].

The SD-QGrid is proposed to contain two operation processes. The first one is the
offline Q-learning training process and the second one is the online routing decision process.
Details of these two processes are explained below.

1. The offline Q-learning training process: Using the vehicle trajectory and grid-related
information, the offline Q-learning training process is responsible for training the
Q-learning model to generate Q-tables of each grid at the SDN CN when the whole
SD-QGrid system initializes or a new vehicle enters this V2X environment. The
SD-QGrid may periodically perform this process to update Q-tables.

2. The online routing decision process: Whenever a vehicle node carrying a packet in-
tends to transmit this packet to the destination node, the SD-QGrid executes the online
routing decision process to select the best neighbor node as the relay. Consequently,
the packet will efficiently reach its destination at the end of the routing process.

3.2. Experimental Map

This project uses the data of Taipei City’s bus movement trajectory [30]. First, we
planned a latitude and longitude range in Taipei City, and the vehicles appearing in this
range were used as research data and recorded in tables. The first table records the name
of the route, the license plate number, the direction of departure and return, and the time
when it first appeared in the data, which is used to record the departure sequence of the
license plate number corresponding to the bus route, and records the return time in the
direction to and from this vehicle node. The other table records the longitude and latitude
of each vehicle node at each time point, and the coordinates of the grid where the vehicle
node is located, which is used to record the actual trajectory of each vehicle. The map of
this experiment is shown in Figure 5. The longitude is from 121.5083335 to 121.5677824,
and the latitude is from 25.0283751 to 25.0644845. The length of this map is 6000 m, and the
width is 4000 m.
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3.3. SD-QGRID Offline Q-Learning Training Process

The flow of the SD-QGrid offline Q-learning training process is shown in Figure 6.
The information of the vehicle environment is handed over to each module of the SDN
Control Node (CN) and RSUs, and finally, generates Q-tables of each grid. The steps of the
SD-QGRID offline Q-learning training process are described as follows:

1. After the initialization of the SD-QGrid, all vehicles on a road segment issue HELLO
messages to the corresponding RSUs.

2. The RSU collects vehicle trajectory information from connected road segments and
analyzes it to generate the historical trajectory tables.

3. The RSU periodically transmits the analyzed tables and vehicle trajectories of the
connected road segments to the SDN CN.

4. The SDN CN aggregates the historical vehicle information of each grid from the
information sent by its RSUs in the network environment.

5. The SDN CN extracts important Q-learning parameters from the aggregated informa-
tion of each grid. It finally uses Q-learning to train the Q-model for calculating the
Q-table and Q-values of each grid.

The following provides a functional description of the modules in the SD-QGrid offline
Q-learning training process.

3.3.1. RSU Analysis Unit

HELLO messages periodically issued from all vehicles on a road segment to the
corresponding RSUs include their GPS data, speed, moving direction, vehicle IDs, neighbor
vehicle IDs, etc. With the following operations, the average number of vehicles in each
road segment is counted and the historical trajectory of each vehicle in this road segment is
determined by the RSU. This information is cached on the trajectory cache of the RSU.

Each day is divided into eight time periods, as shown in Table 2 [22]. Historical
trajectories of vehicles are listed in Table 3, which records the vehicle ID, time stamp and
the longitude and latitude values of each trajectory point. The RSU counts the average
number of vehicle nodes in its connected road segments in a certain time period within the
experimental date range. The calculation method is shown in Equation (3). Based on the
vehicle ID and its GPS data, i.e., the current position of the vehicle, in the HELLO message,
Table 4 counts the number of vehicles that appear in the connected road segment during
this time period every day in the date range, before dividing it by the total number of
days in the date range and recording it in the table. An example of a table is Table 4, e.g.,
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2021-10-13–10-12; the average number of nodes appearing in road segment i of Grid (0,2)
over a period of 10:00–12:00 is 314.

Nt
i =

∑dεD Nt
i, d

|D| (3)

where D is the date range, |D| is the total number of days in D, Nt
i, d is the number of

nodes of road segment i in period t on day d, and Nt
i is the average number of nodes of

road segment i in period t. Please note that each road segment is identified by the (x, y)
coordinates of both its intersections, which are called the start and end ones here. Further,
multiple HELLO messages issued by the same vehicle only increase this RSU’s counter, i.e.,
Nt

i, d, by one, if this vehicle stays in the same road segment in period t.

Table 2. Time period state interval.

Time Period Congestion Level

23:00–07:00 normal
07:00–09:00 congested
09:00–12:00 normal
12:00–13:00 congested
13:00–17:00 normal
17:00–19:00 congested
19:00–22:00 normal
22:00–23:00 congested

Table 3. Historical trajectories of vehicles.

Vehicle ID Time Stamp Location Lon Location Lat

0 weekday_07:00:00 + 08:00, 121.50853 25.04262
0 weekday_07:00:20 + 08:00, 121.5328 25.034475
0 weekday_07:00:40 + 08:00 121.533667 25.044598

. . . . . . . . . . . .
0 weekday_08:20:20 + 08:00 121.525173 25.052125

Table 4. Average number of nodes of road segment i in period t.

Grid Index
The Start Intersection

Coordinate (x, y) of
Road Segment i

The End Intersection
Coordinate (x, y) of

Road Segment i
Average Number of Nodes Nt

i Time Period t

(0, 2) (xs, ys) (xe, ye) 314 2021-10-13–10-12

If the road segment crosses from a grid into one of the up, down, left, right, upper
right, lower left, upper left, or lower right neighbor grids, its RSU located in this grid
records the number of outgoing nodes, which moves from this grid to the neighbor one.
The average number of outgoing nodes in a certain time period within the experimental
date range is calculated by an equation such as Equation (3) and stored in a table, as shown
in Table 5. The outgoing direction of this road segment is from the current grid toward the
neighbor one.
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Table 5. Average number of outgoing nodes of road segment i in period t, if road segment i crosses
two grids.

Current Grid Index Neighbor Grid
Index

The Start
Intersection

Coordinate (x, y) of
Road Segment i

The End
Intersection

Coordinate (x, y) of
Road Segment i

Average Number of
Outgoing Nodes Time Period t

(0, 2) (0, 3) (xs, ys) (xe, ye) 110 2021-10-13–10-12

3.3.2. Aggregation Unit of SDN CN

After each RSU uses its analysis unit to generate Tables 4 and 5 (if available) for
recording the average number of nodes and the average number of outgoing nodes for each
connected road segment in period t, respectively, it will periodically forward these tables
and the vehicle trajectory in Table 3 to the SDN CN, which stores the vehicle trajectory in
its trajectory database. As the SDN CN collects these tables sent by all RSUs in period t, it
will adopt its aggregation unit to aggregate the average number of nodes in Table 6 and the
average number of outgoing nodes in Table 7 from tables forwarded by all RSUs belonging
to each grid. Hence, the SDN CN is able to further calculate the directionality of each grid
using the aggregated vehicle information, and count it in a certain period of time within
the experimental date range as follows: It determines the total number of outgoing nodes,
i.e., ni, i = {0, 1, 2, . . . , 7}, that each grid moves to the neighbor grid in eight directions
in the date range, which is then divided by the total number of days in the date range to
calculate the average directionality of individual grids in this period for each day in the
date range. It finally records the statistical data in the average grid directionality table, as
shown in Table 7.

Table 6. Average number of nodes of Grids in period t.

Grid Index Average Number of Nodes Hs
t Time Period t

(0, 2) 314 2021-10-13–10-12

Table 7. Average grid directionalities of Grids in period t.

Grid Index
Average Grid Directionality for

Eight Neighbor Grids

N0
t /N1

t /. . . /N7
t

Time Period t

(0, 2) 134/143/506/197/10/5/53/5 2021-10-13–10-12
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3.3.3. Learning Unit of the SDN CN

The learning unit of the SDN CN uses Q-learning to calculate the Q-table of each grid
based on Tables 6 and 7, which are aggregated from the information in Tables 4 and 5 that
is sent by RSUs in each grid. The SD-QGrid proposes to record the Q-values of the eight
neighbor grids for each grid in the Q-table database. Whenever the learning unit of the
SDN CN completes its work, the SD-QGrid offline Q-learning training process ends.

We define Q-learning parameters of SD-QGrid as follows:
(a) State represents the node holding the packet in Grid i at time period t.
(b) Action represents the neighbor grid that is chosen to transmit the packet.
(c) Reward indicates whether the selected neighbor grid is the grid where the desti-

nation node is located. If this is true, we will give this state a reward of 100; otherwise, it
receives a reward of 0.

The learning unit of the SDN CN performs Q-learning to generate a Q-table of each
grid. The flow chart is shown in Figure 7, and the flow description is described as follows:

Step 1: After the SDN CN aggregates Tables 4 and 5 of the corresponding time periods
from each RSU of every grid, it calculates the ratio of the average number of nodes
in the current grid to the average number of nodes in the map in this time period,
according to Table 6. Then, it proceeds to Step 2.

Step 2: According to Table 7, the SDN CN calculates the ratio of the average number of
outgoing nodes from the current node to each neighbor grid to the sum of the
average number of outgoing nodes from the current node to all eight neighbor grids.
Then, it proceeds to Step 3.

Step 3: From Equation (1), Q-learning can use the discount rate to judge the packet transfer
between grids. When the discount rate is higher, it means that the future reward
from the next state will be higher. Relatively speaking, when the discount rate is
higher, the future reward will be higher. Therefore, the discount rate is set that
will be obtained by sending packets to neighboring grids in different directions
according to the ratio of the average number of nodes per grid, and the ratio of the
average directionality of each grid calculated above. We define the discount rate γk

t
for selecting neighbor Gridk at time period t as follows:

γk
t =

(
w× Hs

t
∑ Ht

+ j× Nk
t

∑k Nk
t

)
×m (4)

where k = 0, 1, 2, . . . , 7, representing eight directions. Hs
t is the average number

of nodes in Grids at time period t. Hs
t

∑ Ht
is the ratio of the average number of nodes

in the current grid to the average number of nodes in the map at time period t at
Step 2. Nk

t is the average number of outgoing nodes in the neighbor grid from Grids
in the direction k at the time period t. ∑7

k=0 Nk
t is the sum of the average number

of outgoing nodes to the neighbor grid in eight directions from Grids at the time

period t. Nk
t

∑k Nk
t

is the ratio of the number of outgoing nodes in each direction to the

total number of outgoing nodes in all eight directions at Step 3. Parameter m means
that the value of γk

t is between 0.3 and 0.9, as to avoid the value of Q-value being
too large, which, in turn, affects the choice of the packet transmission route. Finally,
w and j are the weighting factors of these two terms in Equation (4), respectively.

Step 4: The SDN CN performs the Q-learning calculation with the calculated discount rate
to generate the corresponding Q-table of each grid for different time periods, and
records the Q-value of each grid for the eight neighbor grids in the Q-table database.
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3.4. SD-QGrid Online Routing Decision Process

The SD-QGrid has to execute the online routing decision process when a vehicle node
vi carrying a packet intends to transmit a certain packet in grid Gi to the destination vehicle
node vd located in the destination grid Gd. As the offline process has been completed,
each grid has a precalculated Q-table stored in the Q-table database of the SDN CN.
Assume each vehicle vi knows its GPS location (Xi, Yi), its neighbor nodes within a range(

V0, V1, . . . , Vj
)
, and vehicle future movement trajectories. As shown in Figure 8, the

associated RSU of the packet-carrying node will perform the online routing decision
process, which contains the following steps:

1. The packet-carrying node issues a Neighbor Query packet to its RSU. This Neighbor
Query packet contains vehicle IDs of the packet-carrying node, its neighbor nodes,
and the destination node.

2. As the RSU receives the Neighbor Query packet, it stores those vehicle IDs first. Then,
it uses them to check whether historical trajectories of neighbor nodes of the packet-
carrying node can be found on its trajectory cache and whether Q-tables of the grid
where this RSU belongs to and the eight neighbor grids have been cached in it. If yes,
it proceeds to Step 3. If not, it will notify the SDN CN to sends back only the missing
historical trajectories of neighbor nodes and Q-tables of its associated grid and eight
neighbor grids from the trajectory database and Q-table database, respectively. Then,
these missing data are cached on the trajectory cache and Q-table cache of the RSU.

3. From the Q-table of this grid, the routing decision unit of the RSU first selects the grid
with the largest Q-value among the eight neighbor grids as the best next-hop grid.

4. According to the best next-hop grid, Q-tables of the eight neighbor grids, and historical
trajectories of the neighbor nodes of the packet-carrying node, the RSU then executes
the two-hop trajectory-based routing (THTR) algorithm to select as the relay the
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neighbor node whose future driving trajectory continues along the best next-hop grid
and the best two-hop next grid.

5. Finally, the RSU issues the Neighbor Response packet containing the vehicle ID of the
selected neighbor node to inform the packet-carrying node to forward the packet to
this neighbor node.
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Hence, THTR finds a better packet transmission route, improves the packet delivery
ratio, and reduces the end-to-end delay in the V2X environment.

Figure 9 shows that the best next-hop grid of GridA is GridA,1 and the two-hop next-
grids of GridA,1 are GridA,1.1 and GridA,1.2. If a node’s driving trajectory passes through
the best next-hop grid and the best two-hop next grid in the left picture, i.e., from GridA,1 to
GridA,1.1, which is more in line with the overall directionality of packet transmission from
the start point vs to the end point vd, then this node is a better next-hop packet-forwarding
node. Conversely, if the driving trajectory of a node passes through the best next-hop grid
GridA,1 and the two-hop next grid GridA,1.2, which is not the best two-hop next grid of
GridA,1 in the right figure, it can be seen that the vehicle node deviates from the overall
directionality of the packet transmission, as compared to the vehicle on the left. Hence, this
vehicle is not a good relay node.
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3.4.1. The Link Expiration Time (LET) between Two Nodes

Additionally, we use the location prediction mechanism to calculate the link expiration
time (LET) [31] of the adjacent vehicle, that is, the possible connection time between the
current node and the adjacent node. If the calculated LET is not smaller than the minimum
time to completely forward a packet from the current node to the adjacent node, this
adjacent node is considered as an eligible candidate relay node in the online routing
decision process. It is assumed that the clocks of all vehicle nodes in the network are
synchronized. At a certain point in time, let (xi, yi) and (xj, yj) be the two-dimensional
coordinate positions of vehicles i and j. θi, θj (0 ≤ θi, θj < 2π) and vi, vj are the moving
directions and moving speeds of i and j, respectively, and r is the transmission range of
wireless signals between vehicle nodes. We can use Equation (5) to calculate the LETij
that vehicles i and j can maintain their connections because both of them stay within the
wireless communication range:

LETij =
−(ab + cd) +

√
(a2 + c2)r2 − (ad− bc)2

a2 + c2 (5)

where:
a = vi cos θi − vj cos θj
b = xi − xj
c = vi sin θi − vj sin θj
d = yi − yj
if vi = vj and θi = θj, LETij = ∞.

3.4.2. Routing Decision Unit of RSU

As mentioned above, the routing decision unit of the RSU first selects the grid with
the largest Q-value among the eight neighbor grids as the best next-hop grid from the
Q-table of this grid. According to the best next-hop grid, Q-tables of the eight neighbor
grids, and historical trajectories of the neighbor nodes of the packet-carrying node, the RSU
then executes the two-hop trajectory-based routing (THTR) algorithm to select the neighbor
node as the relay whose future driving trajectory continues along the best next-hop grid
and the best two-hop next grid.

The flow of the SD-QGrid routing decision process, shown in Figure 10, is listed as follows:

Step 1: Determine whether the packet-carrying node vi is the destination node. If so, go to
Step 9; if not, go to Step 2.

Step 2: Determine whether vi has any neighbor node. If so, go to Step 3; if not, go to Step 8.
Step 3: For some neighbor node vj of vi located in the neighbor grid Gj, test whether the

Q-value Qj of the neighbor grid Gj is higher than the Q-value Qi of grid Gi, where
the vehicle vi is located. If so, go to Step 4; if not, go to Step 6.

Step 4: If the moving direction of the neighbor node is known and it has a fixed route and
schedule (such as a bus), go to Step 5; if not, go to Step 6.

Step 5: Execute Algorithm 1. If the best next-hop node vk exists, go to Step 7; if not, go to Step
6.

Step 6: Among all neighbor nodes in the neighbor grid with the higher Q-value than that
of the current grid, select the neighbor node vk that is closest to the destination. If
vk exists, go to Step 7; if not, go to Step 8.

Step 7: Notify the packet-carrying node to use this node as the next-hop node and forward
the packet to it. Go to Step 1.

Step 8: Vehicle vi continues to hold the packet and waits for the next transmission opportu-
nity. Go to Step 1.

Step 9: If the current node is the destination node, the entire routing decision process ends.
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Algorithm 1. Next-hop node selecting algorithm.

Input:

1. The node A currently carrying the packet, the destination node D of the packet, and the coordinate
position of each node at each time point.

2. Q-table, which is used for the overall network environment.
3. The set NA formed by all neighbor nodes B of A, ∀B ∈ NA.

Output:

1. Select node B, which is the best next-hop neighbor of node A, and send the packet to B; or, node A
continues to carry the packet.

Definition:

1. The Q-value from GridA to GridB is QvalueA
B (GridA is adjacent to GridB).

2. The grid where node x locates is GridX .

1 TwoHopValA = TwoHopValB = OneHopValA = OneHopValB = 0
2 Let GridA be the grid of packet-carrying node A and GridD be the grid of the destination node D.
3 Query the SDN CN to retrieve the Q-table of GridA and those of neighbor grids. Store them in the

Q-table cache of the RSU.
4 Calculate the next-hop grids with the top three Q-values in the Q-table of GridA: Grid1,1, Grid1,2, Grid1,3.
5 for t = (1, 2, 3):

if Grid1,t exists, then calculate its next-hop grid with the top three Q-values of
Grid1,t: Grid1,t,1, Grid1,t,2, Grid1,t,3. // the two-hop next grids.

6 For all neighbor nodes B of A:
7 If node B is the destination node D, send the packet to B, which ends the online packet routing process.
8 Otherwise, calculate LETA

B . If LETA
B is less than the time Tp required to deliver a packet, node B is

not considered as an eligible candidate relay node.
9 Call Algorithm 2, i.e., One-Two-Hop Value (A, B), to obtain TwoHopValB and OneHopValB.
10 The end of the loop.
11 TwoHopVal = Max{ TwoHopValB, ∀B ∈ NA}
12 OneHopVal = Max{OneHopValB, ∀B ∈ NA}
13 If (TwoHopVal > 0)

Select the node with the largest TwoHopVal as the best next-hop node.

14 else
15 Select the node with the maximum OneHopVal as the best next-hop node

Algorithm 1 uses the Q-value to calculate up to nine (next-hop grid, two-hop next grid)
combinations based on the grid GridA where the current packet is located. It then selects
the two-hop next grid combination, depending on the next-hop grids with the top three
Q-values in line 5. For all neighbor nodes B of A, Algorithm 1 uses the link expiration time
of adjacent vehicles to filter the candidate relay nodes in line 8. It calls Algorithm 2, i.e., the
One-Two-Hop Value (A, B), in line 9 to obtain TwoHopValB and OneHopValB. Lines 11 and
12 find out which neighbor node owns the maximum TwoHopVal and OneHopVal values
among all neighbor nodes, respectively. The vehicle with the highest value is selected as
the relay node for packet forwarding. In addition, we preferentially select vehicle nodes
whose trajectories pass through both the next-hop grid and the two-hop next grid in line 13,
and then, select vehicle nodes that only pass through the next-hop grid in line 15 for
packet forwarding.

For example, as shown in Figure 11, the source vehicle vs located in GridA carries the
packet in the beginning. First, the associated RSU of vs queries the SDN CN to retrieve
the Q-table of GridA and those of neighbor grids, which are stored in the Q-table cache of
the RSU. Then, the routing decision unit of the RSU finds the next-hop grids, i.e., Grid1,1,
Grid1,2, and Grid1,3, with the top three large Q-values in the Q-table of GridA. As shown in
Figure 12, take the next-hop grid Grid1,1 as an example. The routing decision unit of the
RSU further queries the Q-table of Grid1,1 to find the next-hop grid of Grid1,1 with the top
three large Q-values of Grid1,1,1, Grid1,1,2, and Grid1,1,3, which constitute the two-hop next
grid of GridA.
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Algorithm 2. One-Two-Hop Value (Node A, Node X)

Input:

1. The three next-hop grids, i.e., Grid1,1, Grid1,2, and Grid1,3 of GridA.
2. The three two-hop next grids, i.e., Grid1,1,1, Grid1,1,2, and Grid1,1,3 of Grid1,1; Grid1,2,1, Grid1,2,2, and

Grid1,2,3 of Grid1,2; Grid1,3,1, Grid1,3,2, and Grid1,3,3 of Grid1,3.
3. The next-hop candidate node x of node A.

Output:

1. TwoHopValX
2. OneHopValX

Definition:

1. TimeDi f f X
X→X′

is the difference between the time when node X first enters GridX and the time when x
first enters GridX′ , according to its trajectory. Please note this notation indicates that node x does not
pass through any other grid between GridX and GridX′ . If GridX = GridX′ , then the value of
TimeDi f f X

X→X′
is the minimum value 1. If node X does not pass through GridX′ in its trajectory, then

the value of TimeDi f f X
X→X′

is 0.

1 for t = (1, 2, 3) //Time difference between the current time in the current grid and the first position in
the next-hop grid.

If GridX = GridA, calculate TimeDi f f X
X→1,t of node X from GridX to Grid1,t

If GridX = Grid1,t, TimeDi f f X
X→1,t = 1. //node x in the next− hop grid Grid1,t.

for s = (1, 2, 3) //Calculate the time difference between the current time in the current grid and
the first position in the two-hop next grid.

If GridX = Grid1,t,s, TimeDi f f x
X→1,t,s = 1. //node x in the two− hop next grid Grid1,t,s.

else //node x in the next-hop grid.

Calculate TimeDi f f x
X→1,t→1,t,s of node x from GridX to Grid1,t,s via

Grid1,t. // node x first moves to Grid1,t, and then to Grid1,t,s.
TimeDi f f x

1,t→1,t,s= TimeDi f f x
X→1,t→1,t,s − TimeDi f f x

X→1,t
//TimeDi f f x

1,t→1,t,s of node x is the TimeDiff from Grid1,t to Grid1,t,s.

2 dst_grid = false
3 for t = (1, 2, 3) //calculate the one-hop weight VX

X→1,t when node x is in the next-hop grid Grid1,t.

if TimeDi f f X
X→1,t > 0: VX

X→1,t = [ 1
Distance(X, D)

× QvalueA
1,t

TimeDi f f X
X→1,t

]

if Grid1,t is the grid where the destination node is located:

VX
X→1,t = VX

X→1,t ∗ 100 //let the weight VX
X→1,t become much higher.

dst_grid = true

for s = (1, 2, 3) //calculate the one-hop weight
VX

X→1,t,s when node x is in the two− hop next grid Grid1,t,s.

if TimeDi f f X
X→1,t,s > 0: VX

X→1,t,s = [ 1
Distance(X, D)

× QvalueA
1,t,s

TimeDi f f X
X→1,t,s

]

if Grid1,t,s is the grid where the destination node is located:

VX
X→1,t,s = VX

X→1,t,s ∗ 100
dst_grid = true

4 OneHopValX = Max
{

VX
X→1,t, VX

X→1,t,s

}
// the maximum weight among the one-hop weight VX

X→1,t

and the one-hop weight VX
X→1,t,s.

5 If dst_grid = false // calculate the two-hop weight.

for t = (1, 2, 3)

for s = (1, 2, 3)

if TimeDi f f X
X→1,t and TimeDi f f X

1,t→1,t,s > 0:

VX
X→1,t→1,t,s =

[
1

Distance(X, D)
× QvalueA

1,t
TimeDi f f X

X→1,t
× Qvalue1,t

1,t,s
TimeDi f f X

1,t→1,t,s
]

If Grid1,t,s is the grid where the destination node is located:
VX

X→1,t→1,t,s = VX
X→1,t→1,t,s ∗ 100

6 TwoHopValX = Max{VX
X→1,t→1,t,s} // the maximum weight among all two-hop next grid weight

VX
X→1,t→1,t,s.

7 Return OneHopValX , TwoHopValX ;
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Algorithm 2 refers to the next-hop grid and the two-hop next grid combinations
calculated by Algorithm 1, and calculates TimeDi f f values of these nine combinations for
each neighbor node X of A at time t. There are three kinds of grids where X may stay: either
at the same grid GridA, the next-hop grid Grid1,t or the two-hop next grid Grid1,t,s of A. The
calculation method is shown in Figure 13. Algorithm 2 calculates TimeDi f f X

X→1,1, which is
the time difference between the current time t when node X stays in GridX and the time
when X first enters the next-hop grid Grid1,1, depending on X’s trajectory. Here, Grid1,1,1
is one of the two-hop next grids of Grid1,1. Hence, TimeDi f f X

1,1→1,1,1 is the time difference
between the time when X first enters the next-hop grid Grid1,1 and the time when X first
enters the two-hop next grid Grid1,1,1. After TimeDi f f values from GridX to all next-hop
grids and two-hop next grids have been calculated in line 1, line 3 of Algorithm 2 calculates
the one-hop weight VX

X→1,t when node X is in the next-hop grid Grid1,t, or the one-hop
weight VX

X→1,t,s when node X is in the two-hop next grid Grid1,t,s. The weight value VX
X→G

is proportional to the Q-value, i.e., QvalueA
G queried from the Q-table of GridA and of

GridG where X stays, but inversely proportional to the Euclidean distance Distance(X, D)
between node X and destination node D, and the TimeDi f f value from GridX to GridG.
Line 4 finds OneHopValX, which is the maximum weight among all one-hop weights.
Similarly, line 5 calculates the two-hop weight VX

X→1,t→1,t,s when node X is in the next-hop
grid Grid1,t and will directly move to the two-hop next grid Grid1,t,s. The weight value
VX

X→1,t→1,t,s is proportional to the Q-value, i.e., QvalueA
1,t queried from Q-table of GridA, and

Qvalue1,t
1,t,s queried from the Q-table of Grid1,t, but is inversely proportional to the Euclidean

distance Distance(X, D) between node X and destination node D, TimeDi f f X
X→1,t from

GridX to Grid1,t, and TimeDi f f X
1,t→1,t,s from Grid1,t to Grid1,t,s. Line 6 finds TwoHopValX,

which is the maximum weight among all two-hop weights. Finally, line 7 ends Algorithm 2
by returning OneHopValX and TwoHopValX to Algorithm 1.
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4. Performance Evaluation
4.1. Simulation Environment and Parameters

In this section, we use real vehicle trajectories to evaluate the performance of our
proposed SD-QGrid method, and compare it with three other methods. We use Python for
reinforcement learning calculations and NS-3 [32] for a network simulation experiment.
The MAC protocol in NS-3 is IEEE 802.11p and the radio propagation model is the Log
Distance Propagation Loss Model in this simulation.

We capture the 4000-by-6000-m Taipei City area as the simulated environment, as
shown in Figure 5, and use the bus and vehicle nodes within the range as the packet-
forwarding nodes. Then, we add fixed node pairs as source and destination nodes on
random roads in the map. The distance between the fixed node pairs is not less than 4000
m, and fixed nodes cannot be used as transit nodes for packet routing. The experimental
parameters are shown in Table 8, where the number of fixed nodes is numPair, the vehicle
node broadcasts a HELLO packet after a beacon time, and the fixed node generates a
message packet after a message time. The parameters of the simulation experiment are the
transmission range, TTL, numPair, and message time.

Table 8. Simulation parameters.

Parameters Parameter Value or Range

α 0.8
γ [0.3, 0.9]
m 0.1
w 3
j 1
Reward 0, 100
Experimental map range 4000 m × 6000 m
Experiment time 3000 s
MAC protocol IEEE 802.11 p
Radio propagation model Log Distance Propagation Loss Model
Buffer size 10 MB
Bandwidth 11 Mbps
Transmission range (m) 400, 450, 500, 550, 600
Grid size 1000 m
TTL (s) 10, 20, 30, 40, 50
numPair 50, 100, 150, 200, 250
Beacon time (s) 1
Message time (s) 1, 5, 10, 15, 20
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We compare the following three routing algorithms with the SD-QGrid method:

• QGrid_G [16]: A grid-based routing protocol proposed by QGrid [16]; its intergrid routing
uses the greedy method to find the nearest next-hop neighbor node to the destination.

• Advanced QGrid [16]: QGrid improves the routing protocol for vehicle nodes with
relatively fixed trajectories, such as buses. If the vehicle node passes through the grid
where the packet destination is located in the future, it will continue to carry the packet
until it enters the grid, and then proceed with next-hop routing selection to transfer
the packet.

• GPSR [33]: A position-based routing protocol that continuously forwards packets from
the nearest neighbor to the destination until it reaches the destination.

We use the different transmission ranges, TTLs, numPairs, and message times, as
shown in Table 8, as the horizontal axis, and use the following indicators to compare the
performance of various routing algorithms. These figures are drawn with a 95% confidence
interval. The number of seeds used in NS-3 is five.

(a) Delivery ratio: the ratio of the successful arrival of message packets to the total
number of message packets generated.

(b) Average end-to-end delay: how long it takes, on average, for a message packet to
travel from the source to the destination.

(c) Overhead: the ratio of the total number of forwarded message packets to the total
number of originally sent message packets.

4.2. Simulation Results

First, we compare the impact of the transmission range (distance) on the performance
of the routing algorithm. Figure 14 shows that the distance gradually increases, and the
transmission success rate also increases. On the contrary, because the packet arrives at
the end point faster, the end-to-end delay and the overall network environment overhead
will be reduced accordingly. Among the four methods, the GPSR method simply selects
the neighbor node closest to the end point for packet forwarding; thus, the end-to-end
delay is the lowest, but the transmission success rate is also the lowest, and the overhead
is also the highest. The advQGrid transmission success rate and overhead are better than
that of QGrid because the vehicle node will continue to carry packets until arrival at the
destination grid, but in exchange for the highest end-to-end delay. On the contrary, although
our proposed SD-QGrid method considers the real vehicle movement trajectory and the
source-to-destination directionality in different time periods, compared with QGrid and
its improved method advQGrid, it pays slightly more overhead, but achieves the highest
delivery ratio and considerably reduces its end-to-end delay. In conclusion, compared with
QGrid, our method increases the average delivery ratio by 17%, reduces the end-to-end
delay by 27.09%, and pays a 1.04% overhead, which is shown in Table 9. Compared with
advQGrid, the average delivery ratio increases by 10.22%, the end-to-end delay decreases
by 31.93%, and the overhead is 1.24%.

Table 9. Performance improvement of SD-QGrid compared to routing protocols with distances.

Average Delivery
Ratio

Average End-to-End
Delay

Average Transmission
Overhead

QGrid +17.00% −27.09% +1.04%
advQGrid +10.22% −31.93% +1.24%

We compare the impact of the packet time-to-live (TTL) on the performance of the
routing algorithm. Figure 15 shows that the packet time-to-live (TTL) gradually increases,
the transmission success rate increases accordingly, and the end-to-end delay and the
overall network environment overhead also increase. Compared with QGrid and its
improved method, advQGrid, although our proposed SD-QGrid method pays slightly
more overhead, it can achieve the highest transmission success rate and minimize the
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end-to-end delay. As the TTL gradually increases, compared with QGrid and advQGrid,
the end-to-end delay of SD-QGrid increases more smoothly. In conclusion, compared with
QGrid, our method increases the average delivery ratio by 21.01%, reduces the end-to-end
delay by 24.7%, and pays a 1.09% overhead, which is shown in Table 10. Compared with
advQGrid, the average delivery ratio increases by 13.66%, the end-to-end delay decreases
by 34%, and the overhead is 1.53%.
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Table 10. Performance improvement of SD-QGrid compared to routing protocols with TTLs.

Average Delivery
Ratio

Average End-to-End
Delay

Average Transmission
Overhead

QGrid +21.01% −24.70% +1.09%
advQGrid +13.66% −34.00% +1.53%

Then, we compare the effect of the fixed number of nodes (numPair) on the perfor-
mance of the routing algorithm. As shown in Figure 16, as the numPair gradually increases,
it means that the total number of packets in the overall network increases, and the trans-
mission success rate and overhead of the four methods decrease accordingly. However,
the end-to-end delay is relatively stable. Although our proposed SD-QGrid method pays
slightly more overhead than QGrid and its improved advQGrid method, it achieves the
highest transmission success rate and the lowest end-to-end delay. In conclusion, com-
pared with QGrid, our method increases the average delivery ratio by 13.66%, reduces
the end-to-end delay by 27.67%, and pays a 0.51% overhead, which is shown in Table 11.
Compared with advQGrid, the average delivery ratio increases by 9.27%, the end-to-end
delay decreases by 35.26%, and the overhead is 1.01%.
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Table 11. Performance improvement of SD-QGrid compared to routing protocols with numPairs.

Average Delivery
Ratio

Average End-to-End
Delay

Average Transmission
Overhead

QGrid +13.66% −27.67% +0.51%
advQGrid +9.27% −35.26% +1.01%

Finally, we compare the effect of the packet generation interval (message time) on the
performance of the routing algorithm. As shown in Figure 17, as the message time gradually
increases, the number of packets in the overall network decreases, and the transmission
success rates of the four methods increase. The overhead decreases, and the end-to-end
delay remains relatively stable. As shown in the data graphs of the three horizontal-axis
parameters mentioned above, compared with QGrid and its improved advQGrid method,
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our proposed SD-QGrid method pays some extra overhead, but still achieves the highest
transmission success rate, and also has the greatest degree of end-to-end delay reduction.
In conclusion, compared with QGrid, our method increases the average delivery ratio
by 16.47%, reduces the end-to-end delay by 28.65%, and pays a 1.42% overhead, which
is shown in Table 12. Compared with advQGrid, the average delivery ratio increases by
10.77%, the end-to-end delay decreases by 35.08%, and the overhead is 2.31%.
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Table 12. Performance improvement of SD-QGrid compared to routing protocols with message time.

Average Delivery
Ratio

Average End-to-End
Delay

Average Transmission
Overhead

QGrid +16.47% −28.65% +1.42%
advQGrid +10.77% −35.08% +2.31%

5. Conclusions and Future Directions

In this study, we address the shortcomings of the traditional V2X grid-based routing
algorithm using reinforcement learning, propose the SD-QGrid routing platform, deploy
the SDN CN for centralized control, and consider the real vehicle movement trajectory in
different time periods. Additionally, regarding the directionality from source to destination,
we propose the SD-QGrid offline Q-learning training process to use Q-learning to calculate
the Q-table of the eight neighbor grids. This paper further proposes the online routing deci-
sion process with the two-hop trajectory-based routing (THTR) packet-routing algorithm,
which selects the best next-hop node to forward packets in an intragrid mode. Finally, we
use the real vehicle trajectory data in Taipei to conduct simulation experiments in order
to draw the data graph of four horizontal-axis parameters, which proves that compared
with QGrid and advQGrid, our proposed SD-QGrid method can improve the performance
with less than 2% overhead. The transmission delivery ratio is more than 10%, and the
end-to-end delay is reduced by more than 25%.

This research is only limited to consider types of vehicles with accurate trajectories,
relatively fixed arrival times, and travel paths, such as buses. Hence, we plan to design a
new routing architecture to handle packet routing for vehicles without historical trajectory
information in the future. We will use a CNN (Convolutional Neural Network) and LSTM
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(Long Short-Term Memory) to establish a trajectory prediction model. This system will
include a packet-forwarding decision model based on Deep Q-Learning. Through the
predicted vehicle trajectory and the packet-forwarding decision model, this system can
select a better next-hop node to forward packets.
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