
17

A Software Engineering Paradigm as a
basis for Enterprise Integration in
(Multi-) Client/Server Environments

Dr. D. Solte

Research Institute for Applied Knowledge Processing (FA W) Ulm
Helmholtzstrafle 16, 89081 Ulm, Germany, Tel: 07311501-510,
Fax: 07311501-111, solte@jaw.uni-ulm.de

Abstract

The ability to build and execute enterprise models including data, service and process models
is a topic of growing importance for industry. It addresses the problem to develop reasonable
models of the enterprise but has to cope also broadly with implementation and execution
issues in heterogeneous environments. With respect to implementation and execution,
client/server architectures, request broker mechanisms and distributed data and applications
are emerging as the future state-of-the-art. In this context, the existing heterogeneity of
technological frameworks as well as coping with legacy systems is a crucial fact. Existing
methodologies and tools are not overwhelming these problems. They often do not integrate
aspects of enterprise- or process-modelling, CASE (Computer Aided Software Engineering),
workflow management and client/server execution. As a consequence, new kinds of
architectures are needed. This paper outlines an approach, developed at FA W for the
described scenario. The main objective of this solution is to cope with heterogeneity by a
neutralizing approach instead of standardization. The described software engineering
paradigm supports a model-oriented development of distributed data, services and processes
in a uniform way towards a neutralizing execution environment. The FA W software
engineering paradigm complies with the specifications of CIMOSA and accomplishes the
requirements of the CORBA architecture.

Keywords

Client/Server, Enterprise Engineering, Enterprise Integration, Execution Environment,
Integrating Infrastructure, Operational Paradigm, Process Modelling, Software Engineering.

P. Ladet et al. (eds.), Integrated Manufacturing Systems Engineering

© Springer Science+Business Media Dordrecht 1995

A software engineering paradigm as a basis for enterprise integration 249

1 INTRODUCTION

Since '87, the FAW (Research Institute for Applied Knowledge Processing, Ulm) has devoted
continous efforts to develop a comprehensive framework for enterprise engineering and
application development, which consists of an overall systems architecture and a pertaining
software engineering paradigm (Holocher et al., 1993, Radermacher and Solte, 1994). The
most important aspect when developing this overall strategy is the observation that none of the
relevant standardization activities will really lead to a worldwide homogeneous standard for a
wide body of services (Verall, 1991). As a matter of fact, heterogeneity will always prevail
with respect to infrastructural components, but also in methodologies and other aspects of IT
technologies. Taking this into account, the main aim of the FA W software engineering
paradigm is to define and implement a framework that actively supports enterprises in
building an integrated and cooperative engineering and execution environment for distributed

data, services and (business) processes. Related to the requirements described by (ESPRIT

Consortium AMICE, 1993) (cf. Figure l) this leads to the development of an integrating
infrastructure named AMBAS (Adaptive Method Base Shell, c.f. Holocher and Solte, 1992)

and an engineering environment named Qmega (Operational Modelling Environment and

Generator for AMBAS Applications).

Enterpri.se Engineering Environment

source: CIMOSA: Open System Architecture for CIM

Enterprise Operation
Environment

Figure 1 Positioning ofQmega/AMBAS within CIMOSA.

Product
Life Cycle

Aeqtirements/
Marl<eting

Design/
Development

Release

Manufacturing

Distributicnl
Sales

Maintenance

250 Part Seven Manufacturing System Coordination and Integration

An important issue for the design of the systems architecture was the consideration of

migration needs of enterprises, since taking into account the existing infrastructural

components and methodologies already used. This has lead to a so-called active federation

strategy as a framework for a knowledge-based approach that tries to cover heterogeneity by

neutralization instead of standardization. Neutralization is thereby performed by using models

of the different components and translating the models using knowledge-based mechanisms as

proposed in (Petrie (ed.), 1992).

Besides that more principal design aspect, the framework (c.f. Figure 2) consists of several

parts which are combined in an overall architecture. The main parts are the information

model, the process model (including methodological concepts) and the tool model. The tool

model consists mainly of the repository, I/0 editors, generators (Omega) and an execution

environment (AMBAS).

Figure2

User

Engineering Environment .Qmega

Process Model + Methodology

Editors

Execution Environment
AM BAS

Heterogeneous IT-Components

Enterprise engineering and execution framework.

The FA W software engineering paradigm has its roots in project TIMM (Technical

Infrastructure and MultiMedia). TIMM established the first heterogeneous and distributed

computing environment at FA W (c.f. Figure 3), ranging from personal systems over

workstations to a mainframe (Solte and Heerklotz, 1991). Moreover, these systems were

connected to special equipment such as PABX and state-of-the-art multimedia components by

using several networks (ISDN, Ethernet, Token-Ring, Broadband, Sinec-H1).

A software engineering paradigm as a basis for enterprise integration 251

Figure 3 Heterogeneity at FA W.

The chief objective of the FA W software engineering paradigm is the definition of concepts
and tool designs to support the cooperative development of distributed data and applications
(including process-engineering and control) for this kind of heterogeneous platforms in
particular consiering reliability aspects. The basic foundation has been laid by project MIDA
(Model-Oriented Integration of Data and Algorithms) (Holocher et al., 1993) which continued
the work of project SESAM (Decision Support for Job-Shop Scheduling) (Miiller and Solte,
1994). Project KIWI 2000 (Communications Infrastructure 2000) further expanded the
framework with special focus on the execution environment by incorporating several tele
communication devices and services. KIWI 2000, which has been finished in 1995, was the
largest joint project of the State of Baden-Wiirttemberg. It involved 14 industrial partners, 2
chambers of commerce and the German Telecom (Kopaczyk et al., 1993).

2 THE ENGINEERING PARADIGM

The FA W software engineering paradigm focuses on the development of distributed data,
services and processes in (multi-)client/server architecture. By (multi-)client/server
architecture we mean the possibility to distribute presentation, process logic and data
management within heterogeneous environments, where these components are implemented
as servers. One server can be executed by several clients, one client can have access to several
servers and servers can act as clients.

252 Part Seven Manufacturing System Coordination and Integration

Figure 4 (Multi-)client/server architecture.

It is one important aspect that the binding of clients and servers should be possible during

runtime, instead of compilation time. To support this kind of architecture, the execution

environment contains mechanisms of a request broker (c.f. OMG, 1991) and the engineering

environment consequently devides the applications logic from its implementation details.

Distributed data and methods (services, applications and processes) have to be modelled at an

abstract model layer and will be translated automatically to corresponding (C++-) code after

customizing the models due to implementation details. The compiled code can be executed by

the neutralizing platform (AMBAS). In addition, one has to consider that information is

needed to administrate productive implementations, and for systems management. To cover

all these aspects, the information model comprises six representation layers, as depicted in

Figure 5.

Figure 5 The ilmega Information Model.

A software engineering paradigm as a basis for enterprise integration 253

The first layer administrates natural language based descriptions. These are informal

descriptions of all data and method components (services, applications and processes) of the

enterprise (i.e. the ontology). The second layer represents the formal descriptions (models) of

these components. At this layer - called the conceptual model - only the logical aspects of

data, services, applications and processes are modelled. For reliability, reuse etc. it is

important that no information about implementation details should be merged with the

components logic. Instead, this information is modelled at a separate representation layer

(customization). This includes technical and organizational aspects (communications

infrastructure knowledge, e.g., GUI, CUI, file system, database management system, operating

system, user model etc.) and incorporates the principle of definition moduls (conceptual

model) and implementation models (customization) derived from modular programming

concepts (c.f. Teufel, 1991) applied to models to the FA W software engineering paradigm.

Using a conceptual model and a corresponding customization, a C++-representation is

generated automatically and stored in the code-layer. The binary layer administrates the

compiled components. The product layer captures information about installed (productive)

data, services, applications and processes.

We have developed a specific strategy (the operational paradigm firstly introduced by Solte,

1987) to support the representation-framework (metameta-model) of this information model.
We have chosen an approach with a modelling layer (analysis), with an orientation to rather

classical concepts (data and functions) and with an implementation of data and functions in a

strictly defined way as objects. Coming from a mathematical view functions are classified

using their input and output signature leading to so-called function classes

where each concrete function represents an object of this class. Yi specifies the functions input

and Yo the functions output. When implementing the function as an object, the function is

encapsulated by a well-defined set of elementary access functions.

These are

create:

delete:

assign:

evaluate:

access:

link:

the creation of an object.

to delete an object.
the assignment of a value to the input of the function.

to activate asynchronously the evaluation of the function.

to read the output of the function. If it is not yet evaluated, access also
activates the method evaluate, otherwise access synchronizes the

requesting process by waiting for the function to be terminated.

to make the object only a reference to an already existing object.

When implementing data, we interpret them as special function classes

Y:={id(y), e.g. id:Y-?Y}. With this interpretation the same capsule, as it is defined for

functions, can be implemented for data which leads to a uniform implementation and

administration of data and functions for execution.

254 Part Seven Manufacturing System Coordination and Integration

The operational paradigm overcomes problems using object-oriented principles "naively" for
analysis (Holocher et al., 1994) but uses the full potential of object orientation for the
implementation and execution of distributed applications. At FA W, we have developed a
modelling language called OML (Operational Modelling Language) dedicated to support a
reasonable combination of object orientation, semantic data modelling, a strict functional
characteristic of the language (especially to support process modelling) and the capability to
model constraints (but with a restricted constraint calculus). OML should mainly be perceived
as the repository's metarneta-model, it is not intended to be a solitaire modelling language for
software engineering. We have already proved, that one could use different editors (supporting
different languages) to build and modify models, e.g. STEP/Express (c.f. Ander!, 1993 and
Grabowski, 1993) or GRAPES (c.f. Kaufmann, 1993).

The representation framework defined by the metameta-model OML allows the uniform
knowledge representation of application concepts under different perspectives (Figure 6).

Figure6

Process
modeling with

OML

Reduction to
easy-to-manage

constructs

Functional view
toOO

Use of
CO-modelling

principles

close to
natural

language

Function
modeling with

OML

Distribution of
data and
functions

well defined
input and

output spaces
(data or

functions)

"role-'models (data, functions and constraints

=> Operational Paradigm

Uniform knowledge representation.

The strict functional characteristic allows the analysis and the requirements engineering in a
process driven way but also on the basis of services (e.g., if specific technical servers like fax,
telephone or others have to be modelled). On the other hand, the capabilities of semantic data

A software engineering paradigm as a basis for enterprise integration 255

modelling and object orientation allow the comfortable description of any kind of data. In
addition, there is a possibility to collect data, functions and constraints in a context -oriented
way by forming models, containing all these data, functions and constraints that fit to the
specified context. This enables the integrated view of the different perspectives followed
during modelling.

Part of the FA W software engineering paradigm is an analysis and design technique that
forces the development of a model hierarchy, thereby allowing the different perspectives (e.g.,
process, service or data-oriented). At the bottom level, the models have to describe
organizational or technical roles (by means of data that has to be provided; and functions the
role is responsible for) of the enterprise. This leads to a role-based structure of the enterprise
model (as depicted in Figure 7). A distribution logic could directly be derived from this
structure. Role models are implemented as a whole and could be installed on all computers
accessable by those organizations and agents that are capable of taking these roles. The
structure within the information model, that supports the management of role-based enterprise
models, is called resource model.

Figure 7

relation chamel
l<lCCIICO!:IS:

• peanit (delegation)
-canpaol!y)
• has l<l (wspcnsl:ily)

rrlation cllanMI
to resources::
·pctlW!es
·has~ to

relalioncllanMI
to resources:
. needs

Construction of the Resource Model (Coarse Structure).

In the resource model all models are specializations of the term "concept" which has relations
to terms "agent" and "resource". Agents are all acting objects (things that could take a role) of
an enterprise which means technical systems like computers, printers, terminals and so on, but
also humans or organizations. In addition, "concepts" need "resources" and an "agent"
provides "resources". It is important that, based on these three top level terms of the
enterprise's ontology, one can define specific views forming the basis to model all kind of

256 Part Seven Manufacturing System Coordination and Integration

communication's infrastructure and organizational knowledge. This is for example the
definition of addresses as a possibility to describe communication models.

3 THE SYSTEMS ARCHITECTURE

The first operational prototype of the entire tool model for the FA W software engineering
paradigm is now available. ilmega (Operational Modelling Environment and Generator for
AMBAS applications) contains specific components (in particular the repository/information
model, I/O-Editors, generators and the neutralizing execution environment AMBAS) to
develop models and to produce executable code. Available commercial products are

integrated in Qmega whereever appropriate.

Figure 8

::!
Q)
tJ

E
a.
Cl
c
~
Q)

c
"01
c
Q)

Q)

£ ...
.l2
§
.g

"' a.
Cl
c
:~

~
:;
Q)

c

ooncepttml
models

+

customizalion

code
+

binaries

I
s
A

Components of Qmega.

M
0
0

FAW·ProtoryptS

An· T der
Anaty.sls

&

e ro~N~

I .. ,
"' c

I
(/)Q)

- c
aio

(Edl- I '5E

· ·~ I
-'- o
0 tJ

.s~

I - a>
roC:

I
~ Q)

.!2"'
OML

I ~.E Gene·
rator

I
(f) X
0-z

I ::J

I

I

I

T
Generator

J..

A software engineering paradigm as a basis for enterprise integration 257

As indicated in Figure 8, Omega provides different components to edit the different

representation layers of the knowledge representation framework defined by Omega's

information model. For the natural language based description, we use a generic editor that we

build for any kind of AMBAS-objects. Part of this editor is a generator that maps the structure

of implemented objects onto a page-layout. Besides the implementation of this editor with

Omega (which means the use of the ISA dialogue manager for the GUI) we have developed a

low-cost variant based on HTML. This allows to edit AMBAS-objects with any kind of

HTML-editor (e.g. MOSAIC). Applying this to the natural language based description every

page generated relates to an ontological component, defined as data, a service, an application

or a process in the model. For the conceptual models, we have developed a graphics-oriented

finder and browser which allows to navigate in the information model. In addition, textual

editors can be used to edit models using the language OML. For the custornization we have

integrated the ISA dialogue manager for GUI components and the MAESTRO database

designer (MDD) for relational database management systems. This means we are using the

generator components of ISA and MDD in combination with our own generator for

distributed data, services, applications and processes. All the client parts of Omega are

available for OS/2, the processes logic could also be distributed on several UNIX-platforms.

As indicated, the FAW software engineering paradigm focuses on the development of

distributed software for heterogeneous computing environments, covering a large variety of

computer systems and communication facilities together with multimedia components and

telecommunication components as well. A neutralizing execution environment for this kind of

communication infrastructure comes as part of the systems architecture. Taking into account

that several standardization proposals are competing worldwide and large companies are

seeking proprietary interoperability solutions, the FA W software engineering paradigm

favours a neutralizing approach instead of a standardization approach to bring companies into

the position to actively integrate heterogeneous environments for their applications. By using

a knowledge based approach (runtime repository including knowledge about the

communications infrastructure and the available data and methods) this execution

environment - AMBAS - has been implemented at FA W. AMBAS provides a COREA

compliant execution environment (Common Object Request Broker Architecture from the
Object Management Group (c.f. OMG, 1991)) which has been shown in (Eck et al., 1994) and

meets the CIMOSA-specification of an integrating infrastructure (Heimann et al., 1994).

However, it provides additional functionalities, especially for intelligent request brokerage
and integration of existing even non-COREA-compliant networking environments, e.g. DCE,
TCPIIP, SNA, NetBIOS and DECnet. The AMBAS execution environment also supports
aspects of a knowledge-based API (Application Programming Interface), a distributed

operating system, a distributed data-base management system, workflow control and

monitoring functionalities.

The knowledge representation framework (Omega information model) is implemented as an

AMBAS-object which can alternatively be made persistent in flle systems, the OMSIPCMS

Repository (part of MAESTRO m or ObjectStore (an object-oriented database management

system). The architecture of AMBAS is depicted in the following Figure 9.

258 Part Seven Manufacturing System Coordination and Integration

Figure 9

KnowTedge
Base

(federated
repository)

'-..._./

Application (Client)

Components of the execution environment AMBAS

Components of an AM BAS object server (data and
service provider)

AMBAS - Architecture overview.

AMBAS provides its application programming interface (Requester API) in a problem
oriented fashion. Applications can issue problems to the system instead of specifying the
name and location of the function to be executed by specifying the output requested and the
input that should be used. The intelligent request broker facility of AMBAS searches for
matching methods and presents the most appropriate methods with respect to the problem
description based on preference elicitation and other search strategies for selection. Current
work done on Eigenmodel-based systems (c.f. Bartusch et a!., 1989) applies the algorithmic
concepts of Job-Shop Scheduling to this matching process (Mohring eta!., 1994).

Based on the data stored in the information model AMBAS supports the development of new

kinds of intelligent decision support systems in heterogeneous distributed computing

environments by employing AMBAS' intelligent method base facilities. AMBAS allows the

distribution of data and methods and eases the integration of new components (data, services,

applications and processes) into this framework. This builds the fundamental basis for

cooperative development of software including decision support systems with the possibility

to transfer new algorithms directly into industrial use.

A software engineering paradigm as a basis for enterprise integration 259

Within the FA W software engineering paradigm a generator has been implemented to produce
C++ for AMBAS-executables directly from OML-models as depicted in the following
Figure 10.

AM BAS object

storage

local: storage and persistence
product

product
remote: storage and integration in object server

Figure 10 The Qmega generator.

By using ObjectStore or a file system as the underlying technical framework for the
knowledge administration, the generated C++-code can be made immediately persistent. Since
data and methods (services, applications and processes) are implemented as objects the same
way, AMBAS can be seen as a data and method base management system (extending the
concepts of DBMS also to the administration of methods) with OML as its 4GL.

4 CONCLUSION

In this paper the main architectural components of the FA W Software engineering paradigm
have been described. In addition, we gave an overview about the architecture of Qmega and
AMBAS, which implements this paradigm. This implementation of a neutralizing execution
environment (AMBAS) and an engineering environment (Qmega) has proven that an overall
architecture for enterprise engineering, including process modelling and application
development, can be built. Current work focuses on the enhancement of the prototypes.
Several mechanisms (preference elicitation, graph-search et.) are added to the request-broker
component of AMBAS as well as monitoring-functions for intelligent load-balancing. Based
on the complex modelling of the communication infrastructure knowledge, components of an
autonomous and intelligent systems management especially for configuration, change &
distribution are built to cover the needs to administrate large environments.

260 Part Seven Manufacturing System Coordination and Integration

5 REFERENCES

Anderl, R. (1993) STEP-Grundlagen der Produktmodelltechnologie, in Datenbanksysteme in
Biiro, Technik und Wissenschaft, ed. W.A. Stucky.

Bartusch, M., Mohring, R. H., Radermacher, F. J. (1989) Design Aspects of an Advanced
Model-Oriented DSS for Scheduling Problems in Civil Engineering; Decision Support
Systems, Vol. 5, No.4.

Eck, 0., Heimann, M., Holocher, M. (1994) Abdeckung der OMG/CORBA-Spezifikation
durch die FA W -Software Engineering Strategie, FA W Technical Report, FA W-TR -94015.

ESPRIT Consortium AMICE (Eds.) (1993) CIMOSA- Open System Architecture for CIM,
Research Reports ESPRIT, Springer.

Grabowski, H. (1993) STEP als Integrationskem fiir die Produktdatengenerierung, VDI
Zeitschrift 135, Nr. 7.

Heimann, M., Holocher, M., Solte, D. (1994) AMBAS- A CIMOSA Compliant Execution
Environment, Correspondence of the CIMOSA Integrating InfraStructure and the FA W
Execution Environment AMBAS, FA W Technical Report, FA W-TR-94019.

Holocher, M., Michalski, R., Radermacher, F. J., Rapl, K., Solte, D. (1994)
Gegentiberstellung von Konzepten der relationalen Modellierung der objektorientierten
Modellierung und der vollen Modellierung, FA W Technical Report, FA W-TR-94002.

Holocher, M., Michalski, R., Solte, D., Vicuna, F. (1993) MIDA - An Open Systems
Architecture for the Model-Oriented Integration of Data and Algorithms, FA W Technical
Report, FAW-TR-93018.

Holocher, M., Solte, D. (1992) AMBAS - An Adaptive Method Base Shell; in Enterprise
Integration Modelling, ed. C.J. Petrie, Jr., MIT Press.

Kaufmann, F. (1993) Erstellen von Modellen fiir Organisations- und DV-Losungen, Entwurf
und Spezifikation betrieblicher Objektsysteme mit der grafischen Entwurfssprache GRAPES,
SNI-AG, Berlin, Mtinchen.

Kopaczyk, A., Michalski, R., Rapl, K., Solte, D. (1993) Kommunikationsinfrastruktur 2000,
FA W Technical Report, FA W-TR-93023.

Mohring, R. H., Muller, R., Radermacher, F. J. (1994) Advanced DSS for Scheduling:
Software Engineering Aspects and the role of Eigenmodels; Proceedings 27th Annual Hawaii

International Conference on System Sciences.

A software engineering paradigm as a basis for enterprise integration 261

Muller, R., Solte, D. (1994) How to make OR-results available - a proposal for project

scheduling, will appear in special volume of annals of operations research.

OMG (1991) The common object request broker; architecture and specification, OMG

Document No. 91.12.1.

Petrie, C.J. Jr. (Ed.) (1992) Enterprise Integration Modelling: Proceedings of the first

international conference, MIT Press, Cambridge.

Radermacher, F. J., Solte, D. (1994) Die PAW-Software-Engineering Strategie fiir Multi

Client/Server-Umgebungen, Proceedings On-line '94.

Solte, D. (1987) Open Systems, Ein lernendes Verwaltungssystem fiir die rechneruntersttitzte

Methodenkonstruktion im Bereich des Operations Research, VDI Reihe 16, Nr. 38.

Solte, D., Heerklotz, K.-D. (1991) Knowledgebased Management of Distributed Ressources,

FAW Technical Report, FAW-TR 91001.

Teufel, B. (1991) Organization of Programming Languages, Springer.

Verall, M. S. (1991) Unity Doesn't Imply Unification of Overcoming Heterogeneity Problems

in Distributed Software Engineering Environments, The Computer Journal, Vol. 34, No.6.

6 BIOGRAPHY

Dirk Solte received his doctoral degree after studying business engineering with focus on

operations research and computer science at the University of Karlsruhe. Since 1988, he has

been a senior scientist at FAW, heading the department "Communication Systems I Industrial

Software Production" and co-heading the department "Enterprise Integration I Decision

Support Systems". He is also responsible for the sophisticated technical infrastructure of

FAW. This focuses his work in these domains to solutions in heterogeneous distributed

environments. Dr. Solte has published several papers in these fields, directed a number of

ambitious research and software development projects and consulted industry.

