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a b s t r a c t

Process-based spatio-temporal models simulate changes over time using equations that represent real

world processes. They are widely applied in geography and earth science. Software implementation of

the model itself and integrating model results with observations through data assimilation are two

important steps in the model development cycle. Unlike most software frameworks that provide tools for

either implementation of the model or data assimilation, this paper describes a software framework that

integrates both steps. The software framework includes generic operations on 2D map and 3D block data

that can be combined in a Python script using a framework for time iterations and Monte Carlo

simulation. In addition, the framework contains components for data assimilation with the Ensemble

Kalman Filter and the Particle filter. Two case studies of distributed hydrological models show how the

framework integrates model construction and data assimilation.

� 2009 Elsevier Ltd. All rights reserved.

Software availability

Name: PCRaster

Developer: Department of Physical Geography, PO Box 80115, 3508

TC Utrecht, the Netherlands

Contact: d.karssenberg@geo.uu.nl

Required software: PCRaster, Windows (free), Linux and UNIX on

request; http://pcraster.geo.uu.nl

Python: all major platforms; http://www.python.org

NumPy: http://numpy.scipy.org

Online courses: http://pcraster.geo.uu.nl

1. Introduction

Spatio-temporal numerical models simulating geographic

change are one of the cornerstones of research in geography and

earth science and are frequently used in management, planning,

and risk assessment in application domains such as land use change

(Ligtenberg et al., 2004; Moulin et al., 2004), hazards and evacua-

tion (Helbing et al., 2000), ecosystem studies (Sydelko et al., 2001;

Gimblett et al., 2003), spread of diseases (Breukers et al., 2006),

criminology (Groff, 2007), land degradation and geomorphology

(Karssenberg and Bridge, 2008; Wilkinson et al., 2009), or

hydrology (Beven, 2002; Ajami et al., 2007; Blöschl et al., 2008;

Brown et al., 2008). Although the application fieldmay vary, spatio-

temporal numerical models have in common that they simulate

change over time using equations that represent real world

processes (Wesseling et al., 1996; Burrough, 1998), whereby the

state of the modelled system at each moment in time is a function

of its state in the past. Another common characteristic is that

processes are modelled in a spatially-explicit way, which means

that spatial patterns and spatial interaction in the system are taken

into account (Karssenberg and De Jong, 2005a). Spatio-temporal

numerical models are either individual-based or field-based.

Individual-based models, also referred to as agent-based or object-

based models, consider the geographic space as a set of objects
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(Benenson and Torrens, 2004; Grimm and Railsback, 2005).

Field-based models represent the geographic space using contin-

uous fields of attributes that have a value at all locations (Burrough

and McDonnell, 1998). The focus in this paper is on field-based

models, although many concepts presented here apply to indi-

vidual-based models, too.

As it is required to use models tailored to the research goals of

a project, the available data, and the properties of the system

being modelled (Karssenberg et al., 2006), model development is

central in almost any research project that involves modelling.

Three important steps in the model development cycle (Kars-

senberg et al., 2006) are the conversion of the conceptual model

structure to computer code, i.e. the implementation or

construction of the model, model calibration, and state estima-

tion by assimilation of spatio-temporal observational data

collected by remote sensing, automatic data loggers, or ques-

tionnaires, or retrieved from large data bases. The term calibra-

tion is used for the process that aims at finding model

parameters that result in an optimal fit between modelled and

observed state variables (e.g., Hill and Tiedeman, 2007). The term

data assimilation refers here to sequential Bayesian estimation.

This procedure sequentially updates the model state at time

steps when observations of state variables or parameters are

available (e.g., Gelb, 1974; Simon, 2006). Data assimilation is

increasingly being used to integrate data with spatio-temporal

models in a wide range of different fields in the earth sciences,

such as oceanography (van Leeuwen, 2003), hydrology (Clark

et al., 2006; Moradkhani, 2008), ecology (Chen et al., 2008), or

crop science (Naud et al., 2007). Below, we use the term

optimization to refer to both calibration and data assimilation.

Although both model development and optimization can be done

by programming software from scratch using system program-

ming languages, it is preferable to use software frameworks at

a higher level of abstraction that can be used by scientists and

modellers without specialist knowledge in programming (van

Deursen et al., 2000; Karssenberg, 2002).

A number of software frameworks exist for construction of

temporal numerical models in geography and earth science.Widely

used are graphical modelling languages (ModelMaker, 2009;

STELLA, 2009), languages incorporated in Geographical Informa-

tion Systems (GRASS, 2009; ESRI, 2009), technical computer

languages (MATLAB, 2008), and modelling languages designed for

spatio-temporal modelling in geography (SIMUMAP, Pullar, 2004;

PCRaster, 2009). Karssenberg (2002) and Karssenberg and De Jong

(2005a) evaluate and discuss these frameworks. Apart from

technical computer languages, none of these frameworks come

with integrated tools for calibration of models or data assimilation.

This is mostly done by interfacing the model with an external

framework that incorporates solution schemes for calibration

(e.g., PEST, 2008) or data assimilation (e.g., BUGS, 2008; COSTA,

2008; ReBEL, 2009).

The use of two different software frameworks for model

construction and optimization has the disadvantage that the user

requires knowledge of two different frameworks. This can be

a problem as the frameworks will have totally different

programming and visualisation environments. Also, the imple-

mentation of the interface between the model construction and

optimization frameworks can be cumbersome and hinders

modification of the model. The latter is because changing the

model often comes with changes in the variables and parame-

ters. As the optimization framework interfaces with the model

through these variables and parameters, the interface that

handles this needs to be adjusted. In many cases modifying the

interface is not feasible within a project. As a result, exploratory

model development whereby a number of candidate models are

developed and optimized in order to find the optimal model is

often not possible. A possible solution to these problems is the

use of a single framework that supports model construction and

optimization. This approach is followed here. Such integrated

frameworks have not yet been widely developed as the focus of

software development teams has been on either frameworks for

model construction or model optimization. The proprietary

MATLAB framework allows doing both when using the external

ReBEL toolkit for optimization that runs inside MATLAB. In this

paper we extend the PCRaster model construction framework

(van Deursen, 1995; Wesseling et al., 1996; PCRaster, 2009). New

modules for data assimilation with the widely used Ensemble

Kalman Filter (e.g., Evensen, 2003) and the particle filter (van

Leeuwen, 2003; Weerts and El Serafy, 2006) are added resulting

in an integrated framework for model construction and optimi-

zation. The modeller has access to these components and

combines them with the generic Python scripting language

(Python, 2009). Stochastic spatio-temporal model inputs and

outputs can be analysed with an integrated, interactive visual-

isation program. In addition to optimization of models built

within the framework, the framework provides an interface to

external models. The framework also integrates a calibration

toolbox using Genetic Algorithms. For a description of this

component the reader is referred to (AMORI, 2009).

The purpose of this paper is to explain how the integrated

framework is used for model construction and data assimilation,

and to evaluate the framework with two case studies of distributed

models. The first case study is a simplified snowmelt model that is

constructed inside the framework. We will assimilate distributed

snow cover data into the model to improve estimation of snow

cover and discharge. The assimilation of snow cover data is

expected to improve the prediction of snow cover and discharge, as

has been shown by others using remotely sensed snow cover data

(e.g., Clark et al., 2006; Nagler et al., 2008). The second case study

shows how the external LISFLOOD model (Van der Knijf et al., in

press) can be optimized with the framework. LISFLOOD is

a hydrological model that runs at the river basin scale. The purpose

of the paper is mainly to show how the different filter techniques

can be used and does not pretend to provide an extensive

comparison of the performance of the filters. However, we provide

a preliminary comparison of the Ensemble Kalman Filter and the

Particle Filter.

2. Stochastic spatio-temporal modelling

2.1. Monte Carlo simulation and concepts of the framework

We first outline modelling concepts and define notations for the

case without data assimilation or calibration. Let the vector zt be

the state variables of the model at time index t¼ 1, 2,., T. Given an

initial state z0, zt evolves over time according to the governing

equation:

zt ¼ ftðzt�1; it ;ptÞ; for each t: (1)

In Eq. (1), ft is a system transition function that mimics real world

processes and pt is a vector containing the parameters used in ft.

The vector it contains the inputs or boundary conditions of the

system. Each of the vectors in Eq. (1) may represent spatial

attributes in two- or three-dimensional geographic space. In

a stochastic model at least one vector contains stochastic variables.

Also, ft may be a sample from a probability distribution of different

possible system transition functions.

Our software framework solves Eq. (1) by Monte Carlo simula-

tion using the scheme:
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for each n: (2a)

for each t: (2b)

z
ðnÞ
t ¼ f

ðnÞ
t ðz

ðnÞ
t�1; i

ðnÞ
t ;p

ðnÞ
t Þ

for each t: (2c)

Zt ¼ gðz
ð1;.;NÞ
t Þ; It ¼ gði

ð1;.;NÞ
t Þ;Pt ¼ gðp

ð1;.;NÞ
t Þ

In Eq. (2), the probability density functions (PDF) of the compo-

nents of Eq. (1) are represented by a collection of N independent

realizations, respectively, z
ðnÞ
t , i

ðnÞ
t , p

ðnÞ
t , and f

ðnÞ
t , with n¼ 1, 2,., N.

The iterations over time (Eq. (2b)) to evaluate the governing Eq. (1)

are performed inside the loop (Eq. (2a)) that iterates over the

realizations. After finishing the loops (Eqs. (2a) and (2b)), the PDFs

of the required components in Eq. (1) are available. The function g

calculates sample statistics (e.g., moments, quantiles) from these

PDFs and stores these in the vectors Zt, It, and Pt, respectively. The

calculation order in Eq. (2) was chosen because of its generic

application and ease of implementation. Alternative schemes are

discussed in (Karssenberg and De Jong, 2006).

The scheme in Eq. (2) contains components that are generic and

components that are specific for a particular model. The generation

of Monte Carlo samples and iteration over time steps, the use of 2D

or 3D spatio-temporal attributes and the calculations of sample

statistics are generic components (Karssenberg and De Jong,

2005b; Karssenberg and De Jong, 2005a). The framework stan-

dardizes these as pre-programmed methods, functions and data

types. However, the system transition function (ft) is specific for

a particular model and it needs to be defined by the model builder.

The modeller can do this by combining standard spatio-temporal

functions on the 2D and 3D attributes. The framework includes

a wide range of spatio-temporal functions taken from the PCRaster

library (van Deursen, 1995; Wesseling et al., 1996; Karssenberg and

De Jong, 2005a). In addition, pre-programmed functions are

provided to create the realizations z
ðnÞ
t , i

ðnÞ
t , and p

ðnÞ
t .

2.2. Case study model

The use of the framework is illustratedwith the implementation

of a distributed snowmelt model. As it is only used for illustrative

purposes, a number of processes are ignored and parameter values

are based on assumptions or estimates from literature. We first

outline the equations used by the model. The model uses a time

step Dt (days) of one day. The precipitation (ptm/day) is defined as

a non-spatial stochastic time series:

pt ¼ pm;t � et (3)

In Eq. (3), pm,t is the observed precipitation for time step t at the

meteorological station in the study area, and etwN(1, 0.04),

a random variable for each time step t, independent of other time

steps. The near-surface temperature t(s)t (
�C) is defined as a spatial

stochastic variable:

tðsÞt ¼ tm;t þ hðsÞ$l (4)

In Eq. (4), tm,t (
�C) is the observed near-surface temperature at the

meteorological station in the study area and h(s) is a spatial field

with the elevation (m) of each grid cell above the elevation at the

meteorological station. The spatial fields are indicated by the

spatial index s, which is defined on a regular 2D grid (i.e. the study

area). The lapse rate of the temperature (l, �Cm�1) is modelled as

a static non-spatial stochastic variable, with lwN(�0.005,1�10�6).

The value and the uncertainty of the season-averaged lapse rate

were estimated from Marshall et al. (2007), Blandford et al. (2008)

and Huang et al. (2008).

The snow pack a(s)t (m water equivalent) is:

aðsÞt ¼ aðsÞt�1þ
�

psðsÞt�bðsÞt
�

Dt (5)

In Eq. (5), ps(s)t is snowfall (m/day) and b(s)t is snowmelt

(m/day). These, and rainfall pr(s)t (m/day), are calculated at each

cell as:

psðsÞt ¼ pt ; prðsÞt ¼ 0; bðsÞt ¼ 0; for tðsÞt< 0
psðsÞt ¼ 0; prðsÞt ¼ pt ; bðsÞt ¼ m$tðsÞt ; for tðsÞt� 0

�

(6)

In Eq. (6), m (m day�1 �C�1) is the degree–day factor, with

a value of m¼ 0.01 mday�1 �C�1. For each cell, the discharge (q(s)t)

is calculated as the sum of b(s)tþ pr(s)t values in its upstream cells.

Upstream cells are derived from a local drain direction network

calculated from the digital elevation model using the 8-point pour

algorithm (Burrough and McDonnell, 1998).

The model is applied to a region in the Swiss Alps, south of the

Vierwaldstätter See (centred around 46�45’N, 8�26’W). Observed

rainfall (pm,t) and temperature (tm,t) time series for onewinter season

were synthesised from the ERA40 data set (Uppala et al., 2005).

Elevation was taken from the GTOPO30 data set (EIONET, 2009).

We created an artificial data set to serve as observations in the

data assimilation techniques described in the second part of the

paper. The data set consists of one model realization having a lapse

rate l of �0.004 �Cm�1.

2.3. Implementation of the snowmelt model

We will now explain the use of the frameworks with the

implementation of a distributed snowmelt model. Below, refer-

ences are made to lines in the entire script provided in Table 1. The

modeller creates a model by defining a standard Python class, here

SnowModel (line 4). Depending on the type of model, the modeller

needs to implement a set of methods that are invoked by the

associated frameworks. Here, the DynamicFramework requiring

initial and dynamic methods (line 17 and 23), and the

MonteCarloFramework requiring premcloop and postmcloop

methods (line 10 and 38), are used. By deriving from preset classes

the modeller is able to use methods allowing to query model

specific attributes. In line 42, self.timeSteps() returning a list

of time steps is an example of a method derived from the

DynamicModel class. The modeller can use the preset classes and

belonging methods as off-the-shelf components.

The approach followed in the design of the framework refactors

optimization logic out of individual models into reusable frame-

work classes. As a result the user models are easier tomaintain, and

the modeller is less burdened with framework logic. Furthermore,

models can be used in combination with different optimization

frameworks. An optimization framework is used by instantiating it

while passing a user model object, and calling the run member

function. Each framework thereby places requirements on the user

model it is utilising. For example, the DynamicFramework requires

its user model to have member functions called initial and

dynamic. The DynamicFrameworkwill call these functions once it

is run. The frameworks not only can be instantiated with user

models but also with other frameworks. For example, either

StaticFramework or DynamicFramework objects can be passed

to the MonteCarloFramework upon instantiation.

Model construction comes down to inserting the required

functions inside the methods associated with a framework.

Although any Python function could be used, here the model is

D. Karssenberg et al. / Environmental Modelling & Software 25 (2010) 489–502 491



built using the set of functions from the PCRaster library. The

framework provides these functions, as these are particularly useful

for spatially explicit modelling in geoscientific domains. In prin-

ciple, inputs and outputs of these functions are raster maps,

although most functions take non-spatials (i.e., single values) as

input, too.

The premcloop method is used to calculate parameters, inputs

or variables that are constant and deterministic. The calculations

defined in the premcloop are evaluated once, at the start of the

model execution. At line 11, the digital elevation map (Fig. 1A) is

read from disk and assigned to the map variable dem. In the next

line, the function lddcreate derives the local drain direction map

(Fig.1B) from dem. Unlike the variable dem, the local drain direction

map is defined as a member variable of the class SnowModel, using

the self prefix. A variable is required by Python to be defined as

member variable when it is used in other methods, too. Here, for

instance, ldd is defined in the premcloop while it is used in the

dynamic method.

The functions entered by the modeller in the initial and

dynamic methods are evaluated for each Monte Carlo sample,

representing the loop in Eq. (2a). All script variables calculated in

thesemethods refer to realizations. The initialmethod is used to

create or derive realizations of parameters, constant inputs, or the

initial value of state variables. The mapnormal() function, drawing

a realization from N(0,1), is used in line 19 to create a realization of

the temperature lapse rate (l in Eq. (4)). This non-spatial variable is

used in line 21 to derive the realization temperatureCorrection,

which gives for each cell a temperature corrected relative to an

observed temperature at the meteo station. It represents h(s)$l in

Eq. (4). Also, the initial value of the state variable snow pack (a(s)0,

in Eq. (5)) is set to zero assuming no snow pack at the start of the

simulation.

The dynamic method contains calculations that represent ft in

Eq. (1). These are executed for each time step, for each Monte Carlo

loop, with the order of calculations defined in Eq. (2). Observed

temperature and precipitation (pm,t and tm,t in Eqs. (3) and (4)) are

imported with the self.readDeterministic function (lines 24

and 25). This function reads for each time step a map from disk

containing the required input for that time step. Line 26 creates

a realization of the precipitation (pt, Eq. (3)) by adding for each time

step an independent realization to the observed precipitation. The

realization of the temperature t(s)t (Eq. (4)) is calculated in the next

line, by adding temperatureCorrection to the observed

temperature. Note that temperatureCorrection was created in

the initial, so it is the same for all time steps according to the model

description (Eq. (4)). Lines 27–33 represent Eq. (6) by a set of point

operations on maps. The map discharge (Fig. 1B) is calculated for

each time step in line 34 with the accuflux function that routes

rainfall plusmelt water downhill over the local drain directionmap.

The calculation of sampling statistics (Eq. (2c)) and visualisation

of model results requires the map data for all time steps and Monte

Carlo samples. As this is typically a number of gigabytes of data,

these data need to be stored to hard disk in Eqs. (2a) and (2b) and

read from hard disk again in Eq. (2c). This is done in the script with

the self.report function (used in lines 20, 35 and 36).

Depending on the method in which it is used, it either stores

a single map (when used in the initialmethod, e.g. in line 20) or

a time series of maps (in the dynamic, e.g. lines 35 and 36). This is

done for each Monte Carlo sample when these methods are used in

a MonteCarloFramework. Variables are stored using rules for file

names defined by the framework: numbered filename suffixes and

directory names represent time steps and Monte Carlo samples,

respectively. The same rules are used in visualisation routines and

functions that read files from disk, such as the functions calculating

sampling statistics explained below.

The postmcloop method contains functions to calculate

sampling statistics from the ensemble map data written to disk.

It represents Eq. (2c). The functions mcaveragevariance and

mcpercentiles calculate mean, variance and percentiles of the

file names defined in line 39, snow pack (s) and discharge (q).

These sampling statistics are calculated for the time steps provided

by the last argument in these functions. Here, the last argument is

self.timesteps() returning a list containing all time step

numbers. As a result, the sampling statistics are calculated here for

all time steps. The mcpercentiles function takes the list

percentiles defining the percentiles that need to be calculated.

Results are stored using file names defined by the framework.

2.4. Visualisation routines and results of the model

The Aguila visualisation tool (Pebesma et al., 2007) is integrated

with the framework. It allows prompt visualisation of model inputs

and outputs without conversion because it reads map data from

Table 1

Model script for stochastic snowmelt model.

1 from PCRaster import *

2 from PCRaster.Framework import *

3

4 class SnowModel(DynamicModel, MonteCarloModel):

5 def __init__(self):

6 DynamicModel. __init__(self)

7 MonteCarloModel.__init__(self)

8 setclone(’’clone.map’’)

9

10 def premcloop(self):

11 dem¼ self.readmap(’’dem’’)

12 self.ldd¼ lddcreate(dem, 1e31, 1e31, 1e31, 1e31)

13 elevationMeteoStation¼ scalar(2058.1)

14 self.elevationAboveMeteoStation¼ dem�

elevationMeteoStation

15 self.degreeDayFactor¼ 0.01

16

17 def initial(self):

18 self.snow¼ scalar(0)

19 self.temperatureLapseRate¼ 0.005þ (mapnormal() * 0.001)

20 self.report(self.temperatureLapseRate, ’’lapse’’)

21 self.temperatureCorrection¼ self.elevationAboveMeteoStation *

self.temperatureLapseRate

22

23 def dynamic(self):

24 temperatureObserved¼ self.readDeterministic(’’tavgo’’)

25 precipitationObserved¼ self.readDeterministic(’’pr’’)

26 precipitation¼max(0, precipitationObserved *

(mapnormal() * 0.2þ 1.0))

27 temperature¼ temperatureObserved� self.temperatureCorrection

28 snowFall¼ ifthenelse(temperature< 0, precipitation, 0)

29 self.snow¼ self.snowþ snowFall

30 potentialMelt¼ ifthenelse(temperature> 0, temperature

* self.degreeDayFactor, 0)

31 actualMelt¼min(self.snow, potentialMelt)

32 self.snow¼max(0, self.snow� actualMelt)

33 rain¼ ifthenelse(temperature>¼ 0, precipitation, 0)

34 discharge¼ accuflux(self.ldd, actualMeltþ rain)

35 self.report(self.snow, ’’s’’)

36 self.report(discharge, ’’q’’)

37

38 def postmcloop(self):

39 names¼ [’’s’’, ’’q’’]

40 mcaveragevariance(names, self.sampleNumbers(),

self.timeSteps())

41 percentiles¼ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

42 mcpercentiles(names, percentiles, self.sampleNumbers(),

self.timeSteps())

43

44 myModel¼ SnowModel()

45 dynamicModel¼DynamicFramework(myModel, 180)

46 mcModel¼MonteCarloFramework(dynamicModel, 1000)

47 mcModel.run()
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disk using rules for file names defined by themodelling framework.

Spatial data are shown in map views. When stochastic data are

visualised, Aguila shows a map view of a variable at a user defined

percentile value. To visualise the full distribution of a variable at

a location on the map, Aguila can create a cumulative probability

distribution plot. In the case of temporal data, map views or

cumulative probability distribution views can be animated through

time. In addition, time series plots can be created containing the

(percentile) value of a variable at a particular cell. Fig. 2 shows how

Aguila visualises the snow pack. The top panels show the run with

the stochastic model, the second row of panels represent a runwith

data assimilation, which will be described in the next sections.

Aguila was started with the percentile data as input, written to disk

by the function mcpercentiles as explained above. Aguila

visualises the results of the model run representing a period

between autumn and spring. The top right panel is a time series of

the snow pack (m), showing the median value for a location

selected on the map (top left panel). The panel in the top centre

shows the cumulative probability distribution of the snow pack for

the same location and the selected time step (day 145). As the

Aguila software is interactive, the user can browse the map to show

time series or cumulative probability distributions of other

locations. In addition, the player window (bottom) can be used to

steer the animation while locations, time steps or percentile values

can be selected in the data window (bottom right).

The modelled median of the snow pack is greater than the

observed snow pack, as illustrated by the time series in Fig. 3A. This

is because the model uses a mean lapse rate (l¼�0.005 �Cm�1)

that is greater than the lapse rate used to generate the observa-

tional data (l¼�0.004 �Cm�1), resulting in too much precipitation

that falls as snow. This also results in an underestimation of

discharge for most time steps in the period of snow accumulation

(time steps 1–150), as shown in Fig. 4A and D. In the melting season

(time steps 150–180), the model overestimates discharge most of

the time, because too much snow is available for melting.

The width of the confidence interval of the snow pack increases

with time (Fig. 3A and E). This is partly due to the accumulation of

error introduced by the uncertainty in precipitation, which has an

error for each time step independent of the other time steps. Also,

the uncertainty in snow pack during the melting season at the end

of the run is large, because snowmelt is dependent on the lapse rate

having a large uncertainty.

3. General theory and framework for data assimilation

In sequential data assimilation, the model Eq. (1) is updated at

time indices when observational data are available, referred to here

as update moments. We give a short outline of the basic data

assimilation formulations here. For a more extensive explanation

the reader is referred to Doucet et al. (2001) and Simon (2006). Data

assimilation is mostly done with observations of the state variables

zt. In some cases, observations of model inputs it and parameters pt

are also assimilated. Let xt (t ¼ 1, 2, ., T) be a vector of model

components for which observations are available. It is a subset of zt,

it and pt. Let yt be a vector containing the corresponding instanta-

neous observation. It is defined as:

yt ¼ HtðxtÞ þ vt (7)

for each update moment t when observations are available. In Eq.

(7),Ht is themeasurement operator that transforms themodel state

to the observation, and vt is a zero-mean vector representing

measurement error. Let Yt be all past and current observations at

time index t. A data assimilation filter estimates the conditional

probability density function p(xtjYt). Each update moment it eval-

uates Bayes’s formula:

pðxt jYtÞ ¼ pðyt jxtÞpðxt jYt�1Þ=pðytÞ (8)

In (8), p(xtjYt) is the posterior probability density function of xt at t,

p(xtjYt�1) is thepriorprobabilitydensity functionat t calculatedwith

Eq. (1). For time indices for which no observations are available, Eq.

(1) is used to calculate p(xtjYt). Most approaches solve Eq. (8) using

a Monte Carlo computational method. We have implemented the

Particle Filter (e.g., Simon, 2006;Weerts and El Serafy, 2006) and the

Ensemble Kalman Filter (e.g., Evensen, 2003). Eq. (8) retrieves the

posterior probability density function of the model components for

which observations are available only. However in most cases it is

required to retrieve the posterior of all model components ((p(ztjYt),

Fig. 1. (A) Digital elevation model (dem, m), (B) discharge (discharge, m3/day) at time step 157 (days) with superimposed local drain direction network (ldd). The local drain

direction network contains flow directions to the steepest down slope neighbour. The marked cells represent the snow pack and the discharge measurement locations, indicated by

S and D on the left and right panel, respectively.
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p(itjYt), and p(ptjYt)) as these are required to evaluate Eq. (1) for time

steps without observations. These posteriors are calculated by both

filters implemented, although the Ensemble Kalman Filter requires

additional solution procedures, such as state augmentation (Hen-

dricks Franssen and Kinzelbach, 2008), as will be used here. The

filters are implemented in the software framework by adding an

extra loop to the scheme in Eq. (2):

for each period : (9a)

for each n: (9b)

for each t in period : (9c)

z
ðnÞ
t ¼ f

ðnÞ
t ðz

ðnÞ
t�1; i

ðnÞ
t ;p

ðnÞ
t Þ

evaluate Eq. (8)

for each t: (9d)

Zt ¼ gðz
ð1;.;NÞ
t Þ; It ¼ gði

ð1;.;NÞ
t Þ; Pt ¼ gðp

ð1;.;NÞ
t Þ

Each updatemoment is associated with a period consisting of all

time indices after the previous filter moment up to and including

the time index of the respective update moment itself. For each

period, the model is run in Monte Carlo mode. At the end of the

period, after executing all time steps, the filter is applied.

Fig. 2. Screenshot showing Aguila visualisations of the Monte Carlo (upper three windows) and the Particle Filter (lower three windows) modelled snow pack (snow, m). Left, map

view; centre, cumulative probability density function; right, time series. The location, time step and percentile value for which results are shown are interactively selected in the

plots or in the cursor window (bottom right). All windows show results for that cursor location in the spatial, temporal and stochastic dimension. Here, we selected the location

shown by the cross in the left panels, the time step 145 (days) shown by the vertical line in the right panels and the percentile value of 0.5 (median) shown in the centre panels. All

panels can be animated over time with the Animation Dialog (bottom centre panel).
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4. Particle filter

4.1. Theory

The Particle Filter approximates the posterior probability

density function in Eq. (8) by the collection of Monte Carlo samples

(i.e., particles), assigning a weight to each sample:

pðxt jYtÞz
X

N

n¼1

p
ðnÞ
t dðxt � x

ðnÞ
t Þ (10)

The weights p
ðnÞ
t , also referred to as probability masses, sum to

one. In Eq. (10), dð Þ denotes the Dirac delta function. For Gaussian

measurement error vt, the weights are proportional to (Simon,

2006; Chin et al., 2007):

ant ¼ expð � ½yt �Htðx
ðnÞ
t Þ�TR�1

t ½yt �Htðx
ðnÞ
t Þ�=2Þ

pntfant

�

(11)

where Rt is the covariance matrix of the measurement error vt. The

weights are calculated by normalization of a
ðnÞ
t :

p
ðnÞ
t ¼ a

ðnÞ
t =

X

N

j¼1

a
ðjÞ
t (12)

When the observation errors are uncorrelated the off-diagonal

elements of Rt are zero and Eq. (11) is equivalent to the equations
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Fig. 3. Snow pack (a(s)t, m) at the location indicated in Fig. 1, left panel. (A) Stochastic

model; (B) Particle Filter; (C) Ensemble Kalman Filter; solid line, median; grey area,

values between 10th and 90th percentile; dotted line, observed (from artificial data

set). (D) Modelled median value minus observed. (E) Width of confidence interval
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update moments.
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Fig. 4. Discharge (q(s)t, m3/day) at the location indicated in Fig. 1, right panel.

(A) Stochastic model; (B) Particle Filter; (C) Ensemble Kalman Filter; solid line, median;

grey area, values between 10th and 90th percentile; dotted line, observed (from arti-

ficial data set). (D) Modelled median value minus observed value (m3/day). (E) Width

of confidence interval (90th percentile value minus 10th percentile value, m3/day).

Vertical dotted lines indicate update moments.
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provided by van Leeuwen (2003) and Weerts and El Serafy (2006).

An example of the weights is provided in Fig. 5A. Next, a new set of

N Monte Carlo samples is created that consists of exact copies of

a subset of the Monte Carlo samples in the prior probability density

p(xtjYt�1). This step is referred to as resampling. As the weights in

Eq. (12) can be used to calculate the posteriors of all model

components (p(ztjYt), p(itjYt), and p(ptjYt)), exact copies of a subset

of Monte Carlo samples in the prior probability density of all model

components can be made to retrieve the posteriors of all model

components. A number of different approaches exist to do the

resampling step. Each approach represents the intuitive idea that

the number of copies of a sample in the prior probability density

should be approximately proportional to p
ðnÞ
t . In Sequential

Importance Resampling or SIR for short (e.g., Gelman et al., 2004),

a cumulative distribution function is constructed from the weights

p
ðnÞ
t (Fig. 5B). From this distribution, N samples are randomly drawn

with replacement using a uniform distribution between zero and

one. This draw of samples represents the posterior probability

distribution of model states p(xtjYt) and all other model compo-

nents (Fig. 5C). Residual Resampling (RR, Liu and Chen, 1998;

Weerts and El Serafy, 2006) copies samples in two steps. In the first

step, a sample is copied a number of times equal to

k
ðnÞ
t ¼ roundðp

ðnÞ
t $NÞ, where round(x) is a function that rounds to

the nearest integer towards zero. In the second step, residual

weights r
ðnÞ
t are calculated:

r
ðnÞ
t ¼

p
ðnÞ
t $N � k

ðnÞ
t

N �
PN

n¼1 k
ðnÞ
t

(13)

A number of N �
PN

n¼1 k
ðnÞ
t additional copies of samples is made

using the residual weights r
ðnÞ
t . This is done in a similar way as in SIR

by uniform sampling from a cumulative distribution function

constructed now from the residual weights r
ðnÞ
t . The samples copied

in step one and two result again in N samples representing the

posterior probability density of all model components.

4.2. Software framework

In order to illustrate how particle filtering can be done with the

framework, snow pack data will be assimilated into the snowmelt

model using sequential importance resampling (SIR). Wemimic the

availability of snow pack data from remote sensing or field obser-

vations by using the artificial observational data set generated with

the model (see Section 2.2). This data set contains a map of snow

pack a(s)t for each time step. In principle this map could directly

serve as observational data yt (Eq. (7)). However, the covariance

matrix Rt (Eq. (11)), in particular the non-diagonal elements, cannot

be estimated here because the spatial correlation structure of the

measurement error at the support of the grid cells of the model is

unknown. We circumvent this problem by assimilating snow pack

data at a larger spatial support under the assumption that the

errors at a larger support can be considered independent. Five

elevation zones with an equal area are created. For each time step,

the snow pack observations are averaged over each area, resulting

in five snow pack observations that are used as observational data

yt with associated errors vt. The standard deviation of the errors vt
is assumed to be 40% of the observed average snow pack in the area

and provide the variances in Rt. The covariances in Rt are set to zero

representing independent errors.

We designed the software framework such that Particle Filtering

can be done by a small number of additions to a script for stochastic

dynamic modelling. These additions consist of the methods

suspend, updateWeight, and resume that are added at the

bottom of the script (Table 2). Aside from initialising the Parti-

cleFilterModel class, the content of the methods defined in the

original snowmelt model (Table 1) does not need to be adjusted for

Particle Filtering. Thus, the user can easily switch between running

the model with or without Particle Filtering, simply by using

another framework.

The suspend, updateWeight and resume methods are

invoked, in this order, at an update moment. The line numbers

below refer to these in Table 2. The suspend method (line 44)

needs to contain self.report functions to store the realizations

representing the prior probability density functions of the state

variables p(ztjYt�1) and these of the stochastic parameters

p(ptjYt�1). Here, this is the lapse rate and the snowpack (line 45 and

46). The suspend method stores these for each sample in

directories referred to as filter directories. These are different from

the directories containing the data written to disk in the dynamic

method. This is because the filter directories will be copied in the

resampling step. The subdirectories containing the data written to
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Table 2

Bottom part of script for Particle Filtering.

44 def suspend(self):

45 self.report(self.temperatureLapseRate, ’’lapse’’)

46 self.report(self.snow, ’’s’’)

47

48 def updateWeight(self):

49 modelledData¼ self.readmap(’’s’’)

50 modelledAverageMap¼ areaaverage(modelledData,

’’zones.map’’)

51 observedAverageMap¼ self.readmap(’’avgObs’’, ’’observations’’)

52 observedStdDevMap¼ ifthenelse(observedAverageMap> 0,

observedAverageMap * 0.4, 0.01)

53 sum¼maptotal(((observedAverageMap�modelledAverageMap)

** 2)/(2.0 * (observedStdDevMap ** 2)))

54 weight¼ exp(sum)

55 weightFloatingPoint, valid¼ cellvalue(weight, 1)

56 return weightFloatingPoint

57

58 def resume(self):

59 self.temperatureLapseRate¼ self.read(’’lapse’’)

60 self.temperatureCorrection¼ self.elevationAboveMeteoStation

* self.temperatureLapseRate

61 self.snow¼ self.read(’’s’’)

62

63 myModel¼ SnowModel()

64 dynamicModel¼DynamicFramework(myModel, 180)

65 mcModel¼MonteCarloFramework(dynamicModel, 1000)

66 pfModel¼ SequentialImportanceResamplingFramework(mcModel,

[70,100,150])

67 pfModel.run()
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disk in the dynamic need to be kept untouched as these are

required to calculate the sampling statistics in the postmcloop.

Next, the framework executes the resampling step copying the

filter directories a number of times, either using the RR or the SIR

algorithm. Both algorithms need for each sample the value of a
ðnÞ
t ,

a value proportional to the weight of each sample (Eq. 11). This

value is calculated by the user-defined functions in the update-

Weight method (line 48). Thus, the calculation of a
ðnÞ
t itself is not

done by the framework as in some cases the user may want to use

a weight function different from Eq. (11), for instance when the

errors vt are non-Gaussian (e.g., van Leeuwen, 2003). Here, the

updateWeight method contains PCRaster functions on maps to

read the modelled snow pack from disk and to average this snow

pack over the five elevation zones (lines 49 and 50). Line 51 reads

the observed snow pack data, which were already averaged over

the zones. Line 52 calculates the standard deviation of the snow

pack data. Eq. (11) is represented by lines 53 and 54. Finally, the

method needs to return to the framework the value that is

proportional to the weight (line 56). The framework does the

normalization (Eq. (12)).

After the resampling, the filter directories contain the realiza-

tions representing the posterior probability density functions of

the state variables p(ztjYt) and of the stochastic parameters

p(ptjYt). To evaluate the transfer function Eq. (1) for the next time

step, these realizations need to be read from disk. This is done in

the resume method (line 58). Here, it reads the temperature lapse

rate maps from disk and calculates the variable temper-

atureCorrection derived from this parameter, as was done in

the initial. Also, the state variable snow is read from disk. Now, the

framework invokes the dynamic method for the next time step,

using temperatureCorrection and snow, calculated in resume,

as input.

Line 66 defines the algorithm used for resampling, which in this

example is SIR. The time indices corresponding to the update

moment are given as constructor arguments.

5. Ensemble Kalman Filter

5.1. Theory

The Ensemble Kalman Filter is a Monte Carlo approximation of

the Kalman filter (e.g., Evensen, 2003; Simon, 2006). The evaluation

scheme is identical to the one given in Eq. (9), and evaluation of

Eq. (8) is done by:

u
ðnÞ;þ
t ¼ u

ðnÞ;0
t þ P0

t H
T
t ðHtP

0
t H

T
t þ RtÞ

�1

ðy
ðnÞ
t �Htu

ðnÞ;0
t Þ; for each n (14)

In a standard Ensemble Kalman Filter, u
ðnÞ
t is equal to z

ðnÞ
t , the

realizations of all state variables in the model. It contains the state

variables for which observations are available, referred to above as

x
ðnÞ
t , and all other state variables. Unlike the Particle Filter, the

standard Ensemble Kalman Filter does not provide the posterior of

the parameters p(ptjYt) and the inputs p(itjYt). A number of

different approaches exist to find the posterior of these model

components (Hendricks Franssen and Kinzelbach, 2008). In our

case study we use state augmentation, which is a procedure that is

also supported by the framework. In this procedure, the state

vector u
ðnÞ
t (Eq. (14)) is extended with the model components (pt

and/or it) for which posterior probability density functions are

required to be calculated. In Eq. (14), the superscript 0 in u
ðnÞ
t

indicates the prior state vector and superscript þ indicates the

posterior state vector calculated by the update. P0
t is the covari-

ance matrix of u
ðnÞ;0
t and y

ðnÞ
t is a realization of yt (Eq. (7)). The size

of the vectors and matrices in Eq. (14) is u
ðnÞ
t , ktþ l; P0

t ,

(ktþ l)� (ktþ l); Ht, (kt� ktþ l); Rt, (kt� kt); y
ðnÞ
t , kt; with kt being

the number of observations at t. In the standard Ensemble Kalman

Filter, l is the number of values in the state variables without

observations. In the augmented filter, l is the number of values in

the state variables, the parameters and inputs minus the number

of observations. We have implemented the Ensemble Kalman

Filter following Evensen (2003).

5.2. Software framework

In our case study, snow data are assimilated with the Ensemble

Kalman Filter using state augmentation in order to include the

temperature lapse rate in the update. For each update moment,

the state vector u
ðnÞ
t contains the values of the snow pack and the

temperature lapse rate. The measurement operator Ht is used to

convert the individual cell values of the snow pack to five average

values, i.e. an average value for each of the five elevation zones. The

stochastic dynamic modelling script can again be used with small

modifications (Table 3). The user has to provide the content of three

methods passing information on observations and state variables

between the model and the Ensemble Kalman Filter framework.

This information is in the form of matrices as used by NumPy

(Oliphant, 2006; NumPy, 2009). The software framework includes

functions to convert PCRaster maps to NumPy matrices and vice-

versa. These can be used, for instance, to convert between state

variables stored as PCRaster maps and state variables stored in

a Numeric Python matrix.

The setObservations method (Table 3, line 44) is run once

per update moment passing the observational data as matrices to

the framework. The content of the matrices needs to be defined by

the user (computations omitted in Table 3). The matrices that need

to be passed include the matrix realizationObs, containing the

realizations of the observations (y
ðnÞ
t for all n), the matrix covEr-

rorObs, the covariance matrix of the measurement error on the

observations (Rt), and the matrix measurementOperator (Ht).

Setting the measurementOperator (line 50) is optional. By

default, the measurementOperator is a matrix with ones on the

main diagonal and zeros elsewhere, applicablewhen the first values

in u
ðnÞ
t can directly (one-to-one) be mapped to the values in y

ðnÞ
t .

Table 3

Bottom part of script for Ensemble Kalman Filter.

44 def setObservations(self):

45 # left out: create realizationObs and covErrorObs

46 # pass the matrices to the filter framework

47 self.setObservedMatrices(realizationObs, covErrorObs)

48 # left out: create measurementOperator matrix

49 # pass the measurement operator matrix to the framework (optional)

50 self.setMeasurementOperator(measurementOperator)

51

52 def setState(self):

53 # left out: collect snow pack values and temp. lapse rate in stateVector

54 # pass the state vector to the framework

55 return stateVector

56

57 def resume(self):

58 # retrieve updated state vector for current sample

59 updatedStateVector¼ self.getStateVector(self.currentSampleNumber())

60 # left out: convert state vector to model variables containing the state

61

62 myModel¼ SnowModel()

63 dynamicModel¼DynamicFramework(myModel, 180)

64 mcModel¼MonteCarloFramework(dynamicModel, samples)

65 ekfModel¼ EnsKalmanFilterFramework(mcModel, [70, 100, 150])

66 ekfModel.run()

Left out parts indicated.
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The setStatemethod (Table 3, line 52) is run for each sample n

for each update moment. It is used to pass the stateVector

variable, representing u
ðnÞ
t , to the framework. The user defines this

vector by converting state variables, parameters and/or inputs to

a single vector. At each filter moment, the framework evaluates

Eq. (14) using the information provided by the setObservations

and setStatemethods. It returns a state vector with the posterior

state of the model. This is done in the resume method (line 57). The

user has to provide code to convert this state vector to model

variables that are used in the main script of the model.

Where the Particle Filter deletes or copies entire samples, the

Ensemble Kalman Filter adjusts the values of state variables,

parameters, and/or inputs of each sample. This is done for each

sample in place, in the folder containing the results for that sample.

Thus, the Ensemble Kalman Filter does not create a separate folder

structure with cloned (resampled) samples, as is the case in the

Particle Filter.

6. Results and discussion of filters applied to the snow model

When a small number of particles is copied a large number of

times in the Particle Filter, it may happen that the posterior

probability density function of the model is represented by a too

small number of different, unique, particles. This is known as

particle collapse or impoverishment. In our model, this problem

does not occur as can be seen in the plots created from files stored

by the framework (Figs. 5 and 6). Each update moment, a relatively

large number of samples is copied. As a result, a diverse population

of samples remains to exist up to and including the posterior

distribution at the last update moment (Fig. 6). Hence, employing

1000 samples appears to be sufficient for the model and data used.

This is confirmed by a model run using 10,000 samples that gave

probability density functions that were comparable to the results

reported here. Our runs indicate that with a time varying noise in

the input (here, precipitation), particle collapse is not a problem in

the application of the particle filter. However, further evaluation of

the particle filter is required under various conditions of stochastic

inputs and model structures.

To evaluate the performance of the stochastic model without

data assimilation, the particle filter, and the Ensemble Kalman

Filter, Figs. 3 and 4 provide time series of snow pack and

discharge. From these time series values, statistics were calculated.

The mean squared error (MSE) is calculated as

MSE ¼
PT

t¼1ðat � aobs;tÞ
2=T , with at , the median of the modelled

variable (either snow pack or discharge) at time step t and aobs;t

the observed value at t (artificial data set). The mean width of the

80% confidence interval (MW) is MW ¼
PT

t¼1ðP90;t � P10;tÞ=T ,

with P90,t, the 90th percentile value of the modelled variable at

time step t and P10,t, the 10th percentile value at t. The results are

provided in Table 4. The table shows that the data assimilation

techniques reduce the MSE and MW compared to the run without

data assimilation. The reduction is largest for the snow pack,

resulting in an MSE value that is 17% of the MSE value of the

stochastic model. The Particle Filter and the Ensemble Kalman

Filter use different methods to represent the Bayesian update.

However, the results in terms of MSE and MW are comparable

(Table 4). It should be noted that the results in Table 4 are not

representative for performance of the two schemes in general

terms, as performance depends on a number of factors not studied

here, including the number of samples (particles), the linearity of

the model and the statistical properties of the errors.

In the data assimilation runs, the width in the 80% confidence

interval for snow pack reduces at update moments (Fig. 3),

particularly at t¼ 70. Also, the filters are capable of reducing the

large error in snow pack estimates during spring observed in the

runwithout data assimilation, as can be seen by comparing the last

part (the spring period) of the time series in Fig. 3A and B and this

part of the time series shown in Fig. 3E. As a result, the 80%

confidence intervals of discharge in this period also become

narrower (Fig. 4A, B and E) as most discharge in the spring is

generated from snowmelt.

Fig. 6. Resampling of samples at the three update moments, Sequential Importance

Sampling, snowmelt model. Arrows indicate copies of samples at update moments.

Samples are represented by two numbers (e.g. 2 and 85), the first number is the update

moment and the second number is the unique sample number. Only subset of samples

shown.
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As discussed in a previous section, Fig. 2 shows how the user can

interactively evaluate different scenarios using the Aguila software.

The panels in the first row show the results of the stochastic model

while these in the second row show the results of the run with the

Particle Filter. The panels in the centre can be used to compare the

cumulative probability density function of the two runs. The panels

show that the width of the probability density function for the

Particle Filter is small compared to the width of the stochastic

model confirming the results discussed above.

7. Data assimilation with external models

7.1. Framework concepts

The software framework provides a close integration between

the definition of a model itself, i.e. the code describing the model

equations, and the code to integrate observations using data

assimilation. However, in some cases it is required to perform

Monte Carlo simulation or data assimilation using an existing

model. This is also supported by the software framework through

functions that pass information from the software framework to

the external model. The information that needs to be passed to the

model includes the time steps of update moments, and directory

names for storing model data according to the definitions of the

software framework, using subdirectories for Monte Carlo samples.

Below, we illustrate the possibility of calling external models with

the LISFLOOD model Van der Knijf et al. (in press). The emphasis is

here on themodel and the results of Particle Filtering. For details on

the use of the software framework when calling external models,

the reader is referred to the manual (Schmitz et al., 2009).

7.2. Case study: discharge assimilation using the distributed

rainfall-runoff model LISFLOOD

LISFLOOD is a spatially distributed, grid based rainfall-runoff

model that has been developed for the simulation of hydrological

processes in large European river basins. It is implemented using

a combination of the PCRaster and the Python scripting language.

The model was designed to facilitate the handling of large spatial

data sets on soils, land cover, topography, and meteorology.

LISFLOOD is driven by meteorological input time series and the

simulated hydrological processes include snowmelt, infiltration,

interception of rainfall, leaf drainage, evaporation and water uptake

by vegetation, surface runoff, preferential flow, exchange of soil

moisture between soil layers and drainage to the groundwater,

sub-surface and groundwater flow, and flow through river chan-

nels. A more detailed description of LISFLOOD can be found in van

der Knijf (forthcoming). In this case study we evaluate whether the

assimilation of observed discharges using the Particle Filter can

improve model output. This is especially important when model

output derived from near-real time meteorological forcing is used

as initial conditions in operational flood forecasting, as is the case

for LISFLOOD, which is currently employed in the European Flood

Alert System (Thielen et al., 2008).

The results of this case study are obtained using the Meuse

catchment upstream of Borgharen, covering an area of approxi-

mately 21,000 km2 (see Fig. 7). The Meuse catchment is situated in

Belgium, France, and the Netherlands and is mainly fed by rain all

year roundwith the highest flows occurring generally inwinter and

the lowest flows occurring during summer. The topography of the

area has an elevation ranging from 50 to 700 m. To obtain all

necessary soil and land use related parameters we employ the Soil

Geographical Database of Europe (King et al., 1994), the HYPRES

database on hydraulic soil properties (Wösten et al., 1999), and the

CORINE Land Cover database (EIONET, 2009). The interpolated

meteorological input grids were obtained using ordinary kriging

with daily observations of approximately 23 stations from the

Meteorological Archiving and Retrieving System (Rijks et al., 1998).

The remaining parameters have been estimated by a previous

calibration of the system on discharge at the Borgharen gauging

station. The model setup employed uses a 5-km grid resolution and

Table 4

Mean squared error (MSE) and mean width of confidence interval (MW) for snow pack a(s)t (m) and discharge q(s)t (m
3/day).

Snow pack Discharge

MSE MW (m) MSE (x1012) MW (x106, m2/day)

Stochastic model 0.00218 (100%) 0.105 (100%) 0.56 (100%) 0.74 (100%)

Particle Filter 0.00037 (17%) 0.051 (49%) 0.37 (66%) 0.56 (76%)

Ensemble Kalman Filter 0.00037 (17%) 0.036 (34 %) 0.42 (75%) 0.56 (76%)

The values are calculated for the locations indicated in Fig. 1. Values between brackets: value as a percentage of the corresponding value for the stochastic model.

Fig. 7. Overview of the Meuse catchment with gauging station Borgharen (from Feyen

et al., 2007).
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a daily time step. Particle Filtering was performed using daily-

observed discharges for the Borgharen gauging station for the

period from 1/12/1993 to 30/04/1994.

Data assimilation using the Particle Filter requires the explicit

specification of the measurement error model in order to calculate

and update particle weights as shown in Eqs. (11)–(13). Most of the

streamflow measurement error models assume a Gaussian distri-

bution having zero mean and a heteroscedastic variance due to the

nonlinear nature of the rating curves used to transformwater levels

into discharges (Thiemann et al., 2001). Here, we employ

a non-parametric approach to estimate the error deviation as

suggested by (Vrugt et al., 2005). An exponential function was fit

through nine years of observed discharge data, which was then

employed to derive the variance of the streamflow measurement

error at each time step as a function of observed streamflow. In this

case study we assume that precipitation is the largest source of

uncertainty in modelling hydrological processes. Hence we perturb

the observed precipitation grids according to Eq. (3) using

a uniform distribution with an error range of �30%. As nowadays

usually observed discharge values are available with a high

frequency in real time we assimilate discharge for each day using

a total of 100 particles. Similar to the snow model, the realizations

of the state variables need to be stored in the filter directories,

which for the case of LISFLOOD results in a total of twelve state

variables maps for each filter moment.

Fig. 8 presents the results of the data assimilation using the SIR

algorithm. A general improvement in modelled discharges in

comparison to the simulated discharge without data assimilation

can be observed. Especially, in phases with strong rainfall the

Particle Filter clearly improves model output and the 95 percentile

confidence interval embraces well the measured discharges.

However, there are still periods where the model is not capable to

reproduce the observed discharge properly. This is especially

significant for periods not influenced by strong precipitation

events, i.e., during the decrease in discharge after high flow periods

or during low flow periods. During these stages the mismatch

between modelled and observed discharges is mainly caused by

model structural errors, which originate from an inadequate

representation of the hydrological processes in the model.

Including these uncertainties into the data assimilation would

further improve model output. However, the proper treatment of

model structural errors in hydrological modelling and its imple-

mentation in data assimilation techniques is not a trivial task and is

beyond the scope of this paper. Nevertheless, the presented results

illustrate that Particle Filtering is a valuable tool to merge various

sources of data and their corresponding uncertainties into distrib-

uted hydrological models and therewith improve model output.

8. Discussion and conclusions

We have built a software framework that integrates a frame-

work for model construction and routines for visualisation of

model data. The software framework for model construction

includes a large set of spatial operations on raster maps. These

operations can be used in various framework classes that provide

control flow for a number of different modelling approaches and

activities: static modelling, spatio-temporal modelling, determin-

istic modelling, stochastic modelling, and data assimilation. The

framework makes it fairly easy for the modeller to switch between

the different modelling approaches as each of the framework

classes use highly similar methods. As a result, model code can be

reused or even copied without any changes when switching

betweenmodelling frameworks. It is for instance possible to switch

from Particle Filtering to Monte Carlo mode (no data assimilation)

by just selecting the Monte Carlo framework class at the bottom of

the script. The software framework comes with routines for

visualisation of stochastic spatio-temporal data read andwritten by

models running in the framework. These routines allow prompt

visualisation of data without conversion of data formats or

configuration of displays. The software framework makes it fairly

easy to explore and evaluate alternative process representations

because changing the code of a model can be done by recombining

high level functions on raster maps while evaluation of model

inputs and outputs is possible with the integrated visualisation

routines. As data assimilation techniques are integrated in the

framework, the integration of data using advanced data assimila-

tion techniques can be done in relatively little time. To our

knowledge this is the first software framework that closely

integrates construction of spatio-temporal stochastic models, data

assimilation, and visualisation of spatio-temporal stochastic data.

It is preferable to perform Monte Carlo simulation or data

assimilation with models that are constructed with the framework

itself, as this guarantees seamless integration of the model and the

framework. However, it is also possible to call external models, as

shown in the case study with LISFLOOD. This can be done with any

external model, given that the external model can be called from

a command line. Also, the model needs to be capable of directing

output data to directories containing results for the individual

Monte Carlo samples, as specified by the framework. Alternatively

small programs can be written that redirect the data. In the case of

Fig. 8. Hydrograph at the Borgharen gauging station for the data assimilation period (12/01/1993–04/30/1994). Daily observed discharges are represented by squares. The black

solid line denotes simulated discharge without data assimilation. The light grey shaded area denotes the prediction uncertainty (95% confidence interval) resulting from particle

filtering with precipitation uncertainty. The dark grey shaded solid line depicts the simulated discharge of the particle with the highest weight during sequential data assimilation.
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data assimilation, the external model also needs to be capable of

being interrupted at update moments. At an update moment, the

model needs to stop its execution, store its prior state to disk, and

restart from disk reading the posterior state from disk again. In the

LISFLOOD model, a Python wrapper redirects model input and

output and modifies start and end time steps according to the filter

periods.

The Particle Filter and the Ensemble Kalman Filter give

comparable results when applied to the example snowmelt model.

In a certain way this confirms the reliability of the filter techniques,

because similar results are found by two different approaches to

solve the Bayesian update equation. While the Ensemble Kalman

Filter modifies the state vector of each Monte Carlo sample at the

update moment, the Particle Filter leaves the state vector of each

Monte Carlo sample unchanged, as it represents the Bayesian

update by copying entire Monte Carlo samples. As a result, the

problem of violation of the conservation of mass, momentum, or

energy encountered sometimes with the Ensemble Kalman Filter

does not occur with the Particle Filter. This is an advantage of the

Particle Filter. The difference between the methods in how the

Bayesian update equation is solved has also its consequences for

the run time of a data assimilation procedure. In our imple-

mentation of the Ensemble Kalman Filter, the update equation

involves an evaluation of matrices that can become very large in the

case of a large number of observations. The Particle Filter does not

have this problem because the update equation is solved in

a computationally less intensive way. However, the Particle Filter is

assumed to require a large number of Monte Carlo samples.

A review and comparison of the filtering techniques implemented

in our framework is provided by e.g. Evensen (2003), van Leeuwen

(2003). In our opinion the Particle Filter needs further attention as

its application in environmental modelling is relatively recent, and

because it is promising, also because of its relatively simple

approach to solve the Bayesian update.

The software framework presented in this paper can be

extended by other components for data assimilation and calibra-

tion. An example of such a component is the AMORI software for

calibration of spatio-temporal models using genetic algorithms

(AMORI, 2009).
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