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Abstract

Materials science research has witnessed an increasing use of data mining techniques

in establishing process-structure-property relationships. Significant advances in

high-throughput experiments and computational capability have resulted in the

generation of huge amounts of data. Various statistical methods are currently

employed to reduce the noise, redundancy, and the dimensionality of the data to

make analysis more tractable. Popular methods for reduction (like principal component

analysis) assume a linear relationship between the input and output variables. Recent

developments in non-linear reduction (neural networks, self-organizing maps), though

successful, have computational issues associated with convergence and scalability.

Another significant barrier to use dimensionality reduction techniques in materials

science is the lack of ease of use owing to their complex mathematical formulations.

This paper reviews various spectral-based techniques that efficiently unravel linear and

non-linear structures in the data which can subsequently be used to tractably

investigate process-structure-property relationships. In addition, we describe

techniques (based on graph-theoretic analysis) to estimate the optimal dimensionality

of the low-dimensional parametric representation. We show how these techniques can

be packaged into a modular, computationally scalable software framework with a

graphical user interface - Scalable Extensible Toolkit for Dimensionality Reduction

(SETDiR). This interface helps to separate out the mathematics and computational

aspects from the materials science applications, thus significantly enhancing utility to

the materials science community. The applicability of this framework in constructing

reduced order models of complicated materials dataset is illustrated with an example

dataset of apatites described in structural descriptor space. Cluster analysis of the

low-dimensional plots yielded interesting insights into the correlation between several

structural descriptors like ionic radius and covalence with characteristic properties like

apatite stability. This information is crucial as it can promote the use of apatite materials

as a potential host system for immobilizing toxic elements.
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Background

Using data mining techniques to probe and establish process-structure-property

relationships has witnessed a growing interest owing to its ability to accelerate the process

of tailoring materials by design. Before the advent of data mining techniques, scientists

used a variety of empirical and diagrammatic techniques [1], like pettifor maps [2], to

establish relationships between structure and mechanical properties. Pettifor maps, one

of the earliest graphical representation techniques, is exceedingly efficient except that it

requires a thorough understanding and intuition about the materials. Recent progress

in computational capabilities has seen the advent of more complicated paradigms - so-

called virtual interrogation techniques - which span from first-principles calculations

to multi-scale models [3-7]. These complex multi-physics and/or statistical techniques

and simulations [8,9] result in an integrated set of tools which can predict the rela-

tionships between chemical, microstructural, and mechanical properties producing an

exponentially large collection of data. Simultaneously, experimental methods - com-

binatorial materials synthesis [10,11], high-throughput experimentation, atom probe

tomography - allow synthesis and screening of a large number of materials while

generating huge amounts of multivariate data.

A key challenge is then to efficiently probe this large data to extract correlations

between structure and property. This data explosion has motivated the use of data mining

techniques in materials science to explore, design, and tailor materials and structures. A

key stage in this process is to reduce the size of the data, while minimizing the loss of infor-

mation during this data reduction. This process is called data dimensionality reduction.

By definition, dimensionality reduction (DR) is the process of reducing the dimensional-

ity of the given set of (usually unordered) data points and extracting the low-dimensional

(or parameter space) embedding with a desired property (for example, distance, topology,

etc.) being preserved throughout the process. Examples for DR methods are prin-

cipal component analysis (PCA) [12], Isomap [13], Hessian locally linear embedding

(hLLE) [14], etc. Applying DRmethods enables visualization of the high-dimensional data

and also estimates the optimal number of dimensions required to represent the data with-

out considerable loss of information. Additionally, burgeoning cyberinfrastructure-based

tools and collaborations sustained by the government’s recent Materials Genome Initia-

tive (MGI) provides a great platform to leverage the data dimensionality reduction tools.

This will enable integration of information obtained from the individual high-throughput

simulations and experimentation efforts in various domains (e.g., mechanical, electri-

cal, electro-magnetic, etc.) and at multiple length-scales (macro-meso-micro-nano) in a

fashion as never seen before [15].

Data dimensionality reduction is not a novel concept. Page [16] describes different

techniques of data reduction and their applicability for establishing process-structure-

property relationships. Statistical methods like PCA [17] and factor analysis (FA) [18]

have been used on materials data generated by first-principles calculations or by exper-

imental methods. However, dimensionality reduction techniques like PCA or factor

analysis to establish process-structure-property relationships traditionally assume a lin-

ear relationship among the variables. This is often not strictly valid; the data usually lies on

a non-linear manifold (or surface) [13,19]. Non-linear dimensionality reduction (NLDR)

techniques can be applied to unravel the non-linear structure from unordered data. An

example of such application for constructing a low-dimensional stochastic representation
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of property variations in random heterogenous media is [19]. Another exciting applica-

tion of data dimensionality reduction is in combination with quantum mechanics-based

calculations to predict the structure [20-22]. For a more mathematical list of linear and

non-linear DR techniques, the interested reader can consult [23,24].

In this paper, the theory and mathematics behind various linear and non-linear dimen-

sionality reduction methods is explained. The mathematical aspects of dimensionality

reduction are packaged into an easy-to-use software framework called Scalable Exten-

sible Toolkit for Dimensionality Reduction (SETDiR) which (a) provides a user-friendly

interface that successfully abstracts user from the mathematical intricacies, (b) allows for

easy post-processing of the data, and (c) represents the data in a visual format and allows

the user to store the output in standard digital image format (eg: JPEG), thus making

data more tractable and providing an intuitive understanding of the data. We conclude

by applying the techniques discussed on a dataset of apatites [25-29] described using sev-

eral structural descriptors. This paper is seen as an extension of our recent work [30].

Apatites (AI
4A

II
6 (BO4)6X2) have the ability to accommodate numerous chemical substitu-

tions and hence represent a unique family of crystal chemistries with properties catering

many technological applications, such as toxic element immobilization, luminescence,

and electrolytes for intermediate temperature solid oxide fuel cells, to name a few [25-29].

The outline of the paper is as follows: The section ‘Methods: dimensionality reduc-

tion’ briefly describes the concepts of DR, algorithms, and the dimensionality estimators

that can be used to estimate the dimensionality. The software framework, SETDiR,

developed to apply DR techniques is described in the section ‘Software: SETDiR’. The

section ‘Results and discussion’ discusses the interpretation of low-dimensional results

obtained by applying SETDiR to the apatite dataset.

Methods: dimensionality reduction

The problem of dimensionality reduction can be formulated as follows. Consider a set

of data, X. This set consists of n data points, xi. Each of the data points xi is vectorized

to form a ‘column’ vector of size D. Usually, D is large. Thus, X = {x0, x1, . . . , xn−1} of

n points, where xi ∈ R
D and D ≫ 1. Visualizing and analyzing correlations, patterns,

and connections within high-dimensional dataset is difficult. Hence, we are interested in

finding a set of equivalent low-dimensional points, Y =
{

y0, y1, . . . , yn−1

}

, that exhibit

the same correlations, patterns, and connections as the high-dimensional data. This is

mathematically posed as

Find Y =
{

y0, y1, . . . , yn−1

}

, such that yi ∈ R
d, d ≪ D and ∀i,j |xi − xj|h = |yi − yj|h. Here,

|a− b|h denotes a specific norm that captures properties, connections, or correlations we

want to preserve during dimensionality reduction [23].

For instance, by defining h as Euclidean norm, we preserve Euclidean distance, thus

obtaining a reduction equivalent to the standard technique of PCA [12]. Similarly, defin-

ing h to be the angular distance (or conformal distance [31]) results in locally linear

embedding (LLE) [32] that preserves local angles between points. In a typical appli-

cation [33,34], xi represents a state of the analyzed system, e.g., temperature field,

concentration distribution, or characteristic properties of a system. Such state description

can be derived from experimental sensor data or can be the result of a numerical simula-

tion. However, irrespective of the source, it is characterized by high dimensionality, that

is D is typically of the order of 102 to 106 [35,36]. While xi represents just a single state of
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the system, contemporary data acquisition setups deliver large collections of such obser-

vations, which correspond to the temporal or parametric evolution of the system [33].

Thus, the cardinality n of the resulting set X is usually large (n ∼ 102 to 105). Intuitively,

information obfuscation increases with the data dimensionality. Therefore, in the process

of DR, we seek as small a dimension d as possible, given the constraints induced by the

norm |a − b|h [23]. Routinely, d < 4 as it permits, for instance, visualization of the set Y .

The key mathematical idea underpinning DR can be explained as follows: We encode

the desired information about X, i.e., topology or distance, in its entirety by considering

all pairs of points in X. This encoding is represented as a matrix An×n. Next, we sub-

ject matrix A to unitary transformation V , i.e., transformation that preserves the norm

of A (thus, preserving connectivities and correlations in the data), to obtain its sparsest

form �, where A = V�VT . Here, �n×n is a diagonal matrix with rapidly diminishing

entries. As a result, it is sufficient to consider only a small, d, number of entries of � to

capture all the information encoded in A. These d entries constitute the set Y . The above

procedure hinges on the fact that unitary transformations preserve original properties of

A [37]. Note also, that it requires a method to construct matrixA in the first place. Indeed,

what differentiates various spectral data dimensionality methods is the way information

is encoded in A.

We focus on four different DR methods: (a) PCA, a linear DR method; (b) Isomap, a

non-linear isometry-preserving DR method; (c) LLE, a non-linear conformal-preserving

DR method; and (d) Hessian LLE, a topology-preserving DR method.

Principal component analysis

PCA is a powerful and a popular DR strategy due to its simplicity and ease in implemen-

tation. It is based on the premise that the high-dimensional data is a linear combination

of a set of hidden low-dimensional axes. PCA then extracts the latent parameters or low-

dimensional axes by reorienting the axes of the high-dimensional space in such a way that

the variance of the variables is maximized [23].

PCA algorithm

1. Compute the pair-wise Euclidean distance for all points in the input data X. Store it

as a matrix [E].

2. Construct a matrix [W ∗] such that the elements of [W ∗] are −0.5 times the square

of the elements of the euclidean distance matrix [E].

3. Find the dissimilarity matrix [A] by double centering [W ∗]:

[A]=
[

HT
]

[

W ∗
]

[H] (1)

Hij =

⎧

⎨

⎩

(1 − 1/n) ∀ i = j,

(−1/n) ∀ i �= j.
(2)

4. Solve for the largest d eigenpairs of [A]:

[A]= [U] [�]
[

UT
]

. (3)

5. Construct the low-dimensional representation in R
d from the eigenpairs:

[Y ] = [I] [�]1/2
[

UT
]

. (4)
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The functionality of the identity matrix is to extract the most important

d-dimensions from the eigenpairs of [A].

The limitation of PCA is that it assumes the data lies on a linear space and hence per-

forms poorly on the data that are inherently non-linear. In these cases, PCA also tends to

over-estimate the dimensionality of the data.

Isomap

Isomap relaxes the assumption of PCA that the data lies on a linear space. A classic exam-

ple of a non-linear manifold is the Swiss roll. Figure 1 shows how PCA tries to fit the

best linear plane while Isomap unravels the low-dimensional surface. Isomap essentially

smooths out the non-linear manifold into a corresponding linear space and subsequently

applies PCA. This smoothing out can intuitively be understood in the context of the spi-

ral, where the ends of the spiral are pulled out to straighten the spiral into a straight line.

Isomap accomplishes this objective mathematically by ensuring that the geodesic dis-

tance between data points are preserved under transformations. The geodesic distance

is the distance measured along the curved surface on which the points rest [23]. Since it

preserves (geodesic) distances, Isomap is an isometry (distance-preserving) transforma-

tion. The underlying mathematics of the Isomap algorithm assumes that the data lies on

a manifold which is convex (but not necessarily linear). Note that both PCA and Isomap

are isometric mappings; PCA preserves pair-wise Euclidean distances of the points while

Isomap preserves the geodesic distance.

Isomap algorithm

1. Compute the pair-wise Euclidean distance matrix [E] from the input data X.

2. Compute the k-nearest neighbors of each point from the distance matrix [E].

3. Compute the pair-wise geodesic distance matrix [G] from [E]. This is done using

Floyd’s algorithm [38].

4. Construct a matrix [W ∗] such that the elements of [W ∗] are −0.5 times the square

of the elements of the geodesic distance matrix [G].

5. Find the dissimilarity matrix [A] by double centering [W ∗]:

[A]=
[

HT
]

[

W ∗
]

[H] (5)

Figure 1 Comparison of performance of PCA and Isomap on a dataset lying on non-linear manifold.



Samudrala et al. IntegratingMaterials andManufacturing Innovation 2014, 3:17 Page 6 of 20

http://www.immijournal.com/content/3/1/17

Hij =

⎧

⎨

⎩

(1 − 1/n) ∀ i = j,

(−1/n) ∀ i �= j.
(6)

6. Solve for the largest d eigenpairs of A:

[A] = [U] [�]
[

UT
]

. (7)

7. Construct the low-dimensional representation in R
d from the eigenpairs:

[Y ] = [I] [�]1/2
[

UT
]

. (8)

The non-linearity in the data is accounted for by using geodesic distance metric. The

graph distance is used to approximate the geodesic distance [39]. Graph distance between

a pair of points in a graph (V , E) is the shortest path connecting the two given points. The

graph distances are calculated using the well-known Floyd’s algorithm [38].

Locally linear embedding

In contrast to PCA and Isomap methods which preserve distances, LLE preserves the

local topology (or local orientation, or angles between data points). LLE uses the notion

that locally a non-linear manifold (or curve) is well-approximated by a linear curve. In

other words, the manifold is locally linear and hence can be represented as a patchwork of

linear curves. The algorithm first divides the manifold into patches and reconstructs each

point in the patch based on the information (or weights) obtained from its neighbors (i.e.,

infer how a specific point is located with respect to its neighbors). This process extracts

the local topology of the data. Finally, the algorithm reconstructs the global structure

by combining individual patches and finding an optimized, low-dimensional represen-

tation. Numerically, local topology information is constructed by finding the k-nearest

neighbors of each data point and reconstructing each point from the information about

the weights of the neighbors. The global reconstruction from the local patches is accom-

plished by assimilating the individual weight matrices to form a global weight matrix [W ]

and evaluating the smallest eigenvalues of normalized global weight matrix [A].

LLE algorithm

1. For each of the n input vectors from X = {x0, x1, . . . , xn−1}:

(a) Find the k-nearest neighbors of the data point xi.

(b) Construct the local covariance or Gram matrix Gi

gr,s(i) = (xi − xr)
T (xi − xs) (9)

where xr and xs are neighbors of xi.

(c) Weight vector, wi is computed by solving the linear system:

Giwi = 1 (10)

where 1 is a k × 1 vector of ones.

2. Using the vectors wi, build the sparse matrixW . The (i, j) ofW is zero if xi and xj

are not neighbors. If xi and xj are neighbors, thenW (i, j) takes the values of the

corresponding with vector, wi(j).

3. FromW , build A:

[A]= (I − W )T (I − W ). (11)
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4. Compute the eigenpairs (corresponding to the smallest eigenvalues) for A:

[A]= [U] [�]
[

UT
]

. (12)

5. Compute the low-dimensional points in R
d from the smallest eigenpairs.

Hessian LLE

Hessian LLE [14] (hLLE) is a modification of LLE and Laplacian Eigenmaps [40]. Mathe-

matically, hLLE replaces the Laplacian (first derivative) operator with a Hessian (second

derivative) operator over the graph. hLLE constructs patches, performs a local PCA on

each patch, constructs a global Hessian from the eigenvectors thus obtained, and finally

finds the low-dimensional representation from the eigenpairs of the Hessian. hLLE is a

topology preservation method and assumes that the manifold is locally linear.

hLLE algorithm

1. At each given point xi, construct a k × n neighborhood matrixMi such that each

row, j, of the matrix represents a point

xj = xj − x̄i, (13)

where x̄i is the mean of k neighboring points.

2. Perform singular value decomposition (SVD) of theMi to obtain the SVD matrices,

U , V , D.

3. Construct the (N ∗ d(d + 1)/2) local Hessian matrix [H]i such that the first

column is a vector of all ones and the next d columns are the columns of U

followed by the products of all the d columns of [U].

4. Compute Gram-Schmidt orthogonalization [37] on the local Hessians [H]i and

assimilate the last d(d + 1)/2 orthonormal vectors of each to construct the global

Hessian matrix [A] [14].

5. Compute the eigenpairs (corresponding to the smallest eigenvalues) of the Hessian

matrix:

[A] = [W ] [�] [W ]T . (14)

6. Compute the low-dimensional points [Y ] in R
d from the eigenpairs:

[Y ] = [W ]
(

[W ]T [W ]
)−1/2

. (15)

An important point to note here is that, as discussed in the section ‘Methods: dimen-

sionality reduction’, matrix [A] encodes the required information for each of the DR

techniques, and the construction of this matrix is what differentiates a spectral DR

method from the rest. Matrix [A] is a normalized Euclidean matrix in the case of PCA, a

normalized geodesic matrix in the case of Isomap, a normalized Hessian matrix for hLLE,

and so on.

Dimensionality estimators

A key step in constructing the low-dimensional points from the data is the choice of the

low dimensionality or optimal dimensionality d. Methods like PCA and Isomap have an

implicit technique to estimate the low dimensionality (approximately) using scree plots.

We introduce a graph-based technique that rigorously estimates the latent dimensionality

of the data, which can be used in conjunction with the scree plot.
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Dimensionality from the scree plot

Scree plot is a plot of the eigenvalues with the eigenvalues arranged in decreasing order

of their magnitude. Scree plots obtained from PCA and Isomap (distance-preserving

methods) give an estimate of the dimensionality. A heuristic method of identifying the

dimensionality is by identifying the elbow in the scree plot. A more quantitative estimate

of dimensionality is estimated by choosing a value for pvar(d) that ensures a threshold of

the minimum percentage variability. If λ1 >= λ2 >= . . . λn are the individual eigenvalues

arranged in descending order, the percentage variability (pvar(d)) covered by considering

first d eigenvalues is given by

pvar(d) = 100 ×

d
∑

i=1

λi

n
∑

i=1

λi

(16)

A usual approach is to choose a d that takes 95% of the variability into account.

Geodesic minimal spanning tree estimator

We have recently utilized a dimensionality estimator based on the BHH theorem

(Breadwood-Halton-Hammersley Theorem) [41]. This theorem states that the rate of

convergence of the length of minimal spanning treea gives a measure of the latent dimen-

sionality. This theorem allows one to express the dimensionality (d) of an unordered

dataset as a function of the length of geodesicminimal spanning tree (GMST) of the graph

of the dataset. Specifically, the slope of a log(n) vs. log(Ln) plot constructed by calculating

the GMST length (Ln) with respect to increasing size of randomly chosen data points (n)

provides an estimate of the dimensionality: d = 1
(1−m)

, wherem is the slope of the log-log

plot [19].

Correlation dimension

Correlation dimension is a space-filling dimension which is derived from a more generic

fractal dimension by assigning a value of q = 2 in

C(μ, ǫ) =

∫

[

μB̄e(z)
]q−1

dμ(z) (17)

where μ is a Borel probability measure on a metric space Z. B̄e(z) is a closed ball of radius

ǫ centered on z.

Numerical definition of correlation dimension is given by

dcor(ǫ1, ǫ2) =
log(Ĉ2(ǫ2)) − log(Ĉ2(ǫ1))

log(ǫ2) − log(ǫ1)
(18)

where Ĉ2(ǫ2) is a measure of proportion of distances less than ǫ [23,42]. Intuitively, these

ǫ values are like window ranges through which one zooms through the data. Too small ǫ

will render the data as individual points, while too huge ǫ will make the entire dataset look

like a single fuzzy spot. Hence, correlation dimension is sensitive to the epsilon values.

One important point to note, however, is that the correlation dimension provides the user

with a lower bound of the optimal dimensionality.
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Software: SETDiR

These DR techniques are packaged into a modular, scalable framework for ease of use by

the materials science community. We call this package, SETDiR. This framework contains

two major components:

1. Core functionality: developed using C++

2. User interface: developed based on Java (Swing)

Figure 2 describes the scope of the functionality of both modules in SETDiR.

Core functionality

Functionality is developed using object-oriented C++ programming language. It imple-

ments the following methods: PCA, Isomap, LLE, and dimensionality estimators like

GMST and correlation dimension estimators [23].

User interface

A graphical user interface (shown in Figure 3) is developed using Java™ Swings Compo-

nents with the following features which make it user-friendly:

1. Abstracts the user from the mathematical and programming details.

2. Displays the results graphically and enhances the visualization of low-dimensional

points.

3. Easy post-processing of results: in-built cluster analysis, ability to save plots as

image files.

4. Organized settings tabs: Based on the niche of the user, the solver settings are

organized as Basic User and Advanced User tabs which abstract a new or a naive

user from, otherwise overwhelming, details.

Figure 2 Description of the software.
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Figure 3 Snapshot of clustering pattern displayed using SETDiR for apatite dataset.

This framework can be downloaded from SETDiR (http://setdir.engineering.iastate.edu/

doku.php?id=download). A more detailed discussion of the parallel features of the code is

deferred to another publication. We next showcase the framework and the mathematical

strategies on the apatite dataset.

Results and discussion

In this section of the paper, we compare and contrast the algorithms on an interesting

dataset of apatites with immense technological and scientific significance. Apatites have

the ability to accommodate numerous chemical substitutions and exhibit a broad range

of multifunctional properties. The rich chemical and structural diversity provides a fer-

tile ground for the synthesis of technologically relevant compounds [25-29]. Chemically,

apatites are conveniently described by the general formula AI
4A

II
6 (BO4)6X2 , where A

I and

AII are distinct crystallographic sites that usually accommodate larger monovalent (Na+,

Li+, etc.), divalent (Ca2+, Sr2+, Ba2+, Pb2+, etc.), and trivalent (Y3+, Ce3+, La3+, etc.),

B-site is occupied by smaller tetrahedrally coordinated cations (Si4+, P5+, V5+, Cr5+,

etc.), and the X-site is occupied by halides (F−, Cl−, Br−), oxides, and hydroxides. Estab-

lishing the relationship between the microscopic properties of apatite complexes with

those of the macroscopic properties can help us in gaining an understanding and promote

the use of apatites in various technological applications. For example, information about

the relative stability of the apatite complexes can promote the utilization of apatites as a

suitable host material for immobilizing toxic elements such as lead, cadmium, and mer-

cury (i.e., by identifying an apatite chemical composition that contain at least one of the

aforementioned toxic elements and yet remaining thermodynamically stable). DR tech-

niques offer unique insights into the originally intractable high-dimensional datasets by

enabling visual clustering and pattern association, thereby establishing process-structure-

property relationship for chemically complex solids such as apatites.

http://setdir.engineering.iastate.edu/doku.php?id=download
http://setdir.engineering.iastate.edu/doku.php?id=download
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Apatite data description

The crystal structure of the aristotype P63/m CaI4Ca
II
6 (PO4)6F2 apatite with hexagonal

unit cell is shown in the Figure 4 with the atoms projected along the (001) axis. The

polyhedral representation of AIO6 and BO4 structural units are clearly shown with the

CaII-site (pink atoms) and F-site (green atoms) occupying the tunnel. Thin black line

represents the unit-cell of the hexagonal lattice.

The sample apatite dataset considered consists of 25 different compositions described

using 29 structural descriptors. These structural descriptors, when modified, affect the

crystal structure [44]. Therefore, by establishing the relationship between the crys-

tal structure and these structural descriptors and analyzing the clustering of different

compositions, conclusions can be drawn about how the changes in these structural

descriptors (defining the atomic features) could affect the macroscopic properties (such

as elastic modulus, band gap, and conductivity). The bond length, bond angle, lattice

constants, and total energy data are taken from the work of Mercier et al. [26]; the

ionic radii data are taken from the work of Shannon [45] and the electronegativity

data is based on the Pauling’s scale [46]. The ionic radii of AI-site (rAI ) has a coor-

dination number nine and AII-site (rAII ) has a coordination number seven (when the

X-site is F−) or eight (when the X-site is Cl− or Br−). Our database describes Ca, Ba,

Sr, Pb, Hg, Zn, and Cd in the A-site; P, As, Cr, V, and Mn in the B-site; and F, Cl,

and Br in the X-site. The 25 compounds considered in this study belong to the aristo-

type P63/m hexagonal space group. We utilize SETDiR on the apatite data and present

some of the results below. More information regarding the source of the apatite data

can be found in [44]. A preliminary analysis (focusing only on PCA) can be found

in [30].

Figure 4 Crystal structure of a typical P63/mCaI4Ca
II
6(PO4)6F2 apatite with hexagonal unit cell [43,44].
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Dimensionality estimation

SETDiR first estimates the dimensionality using the scree plot. A scree plot is a plot

of eigenvalue indices vs. eigenvalues. The occurrence of an elbow (or a sharp drop in

eigenvalues) in a scree plot gives the estimate of the dimensionality of the data. Figure 5

displays the scree plots when the input vectors {x0, x1, . . . , xn−1} were normalized with

respect to that when they were not normalized. We plot for comparison the eigenvalues

that are obtained from both PCA and Isomap. This plot shows how the second eigen-

value collapses to zero when the input vectors are not normalized and hence emphasizes

the importance of normalization of input vectorsb. It is also interesting to compare the

eigenvalues of PCA and Isomap for normalized input: PCA being a linear method over-

estimates the dimensionality as 5, while Isomap estimates it to be 3. SETDiR subsequently

uses the geodesic minimal spanning tree method to estimate the dimensionality of the

apatite data. This method gives a rigorous estimate of 3 (Figure 6), which matches the

outcome of the more heuristic scree plot estimate.

Low-dimensional plots

In this section, we discuss the visual interpretation of the low-dimensional plots obtained

by applying the dimensionality reduction techniques - PCA, Isomap, LLE, and hLLE - to

a set of apatites described using structural descriptors. Figure 7 (left) shows the 2D plot

between principal components 2 and 3. The reason for showing this plot is that PC2-

PC3 map captures pattern that is similar to Isomap components 1 and 2. While we find

associations among compounds that are similar to those as shown in Figure 7 (right), the

nature of information is manifested differently. This is mainly attributed to the differences

in the underlying mathematics of the two techniques, where PCA is essentially a linear

technique and, on the other hand, Isomap is a non-linear technique. To further interpret

the hidden information captured by Isomap classificationmap (Figure 7), we have focused

on the three regions separately.

Figure 7 (right) shows a two-dimensional classification map with isomap components

1 and 2 in the orthogonal axes. The two-dimensional classification map groups various

apatite compounds into three distinct regions that capture various interactions between
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Figure 6 Sensitivity analysis of dimensionality estimators with change in neighborhood size.

A-, B-, and X-site ions in complex apatite crystal structure. Region 1 corresponds to

apatite compounds with fluoride (F) ion in theX-site. All apatite compounds in this region

contain only F in the X-site but has different A-site (Ca, Sr, Pb, Ba, Cd, Zn) and B-site

elements (P, Mn, V). Therefore, this unique region classifies F-apatites from Cl and Br-

apatites. Region 2 belongs to apatite compounds with phosphorus (P) ion in the B-site

and contains Cl and Br ions in the X-site. The uniqueness of this region is manifested

mainly due to the presence of only smaller P ions in the B-site. Similarly, region 3 belongs

to apatite compounds with Cl ions in the X-site and contains larger B-site Cr, V, and As

cations.

Figure 8 (right) presents the results from hLLE. It can be observed that the com-

pounds that have highly covalent A-site cation (e.g., Hg2+ and Pb2+) and highly covalent

B-site cation (P5+) clearly separate out from the rest. An exception to this rule is

Pb10(CrO4)6Cl2. Our PCA-derived structure map also revealed similar pattern - i.e.,

Figure 7 Apatite PCA (left) and Isomap (right) result interpretation [43].
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Figure 8 Apatite LLE (left) and hLLE (right) result interpretation [43].

Pb10(CrO4)6Cl2 was found to not obey the general trend [44]. Note that the presence of

Cr cation in the B-site has been known to cause structural distortions in apatites.

For example, Sr10(PO4)6Cl2 has a P63/m symmetry, whereas Sr10(CrO4)6Cl2 has a dis-

torted P63 symmetry [28]. Based on the previous PCA work [44], we attribute the cause

for this exception to two bond distortion angles: (i) rotation angle ofAII-AII-AII triangular

units and the angle that bond AI-O1 makes with the c-axis. Compared to Hessian LLE, we

cannot find any clear pattern with respect to chemical bonding in the LLE result Figure 8

(left).

Figure 9 shows a zoomed-in plot of the Hessian LLE result.c Around the origin, we can

find two clusters of compounds: (i) one on the left with negative component 1 value cor-

responding to compounds that have ionic alkaline earth metal cations in the A-site and

(ii) one on the right with positive component 1 value corresponding to compounds that

have covalentA-site cations. An exception here is Ca10(CrO4)6Cl2, which is found among

the covalent A-site cluster indicating that Ca10(CrO4)6Cl2 may have a distorted symme-

try. It is important to recognize that neither PCA nor Isomap identifies Ca10(CrO4)6Cl2

as an exception. Compared to hLLE, we do not find any intriguing insights from the LLE

analysis and therefore, we do not discuss LLE results.

One needs to explore different manifold methods to fully understand high dimensional

correlations and mappings. Hence, in the following section, we shall explore the impact

of the Isomap analysis.

In Figure 10 region 1, the ionic radii of A-site elements increases along the direction

shown, with Zn2+ cation being the smallest and Ba2+ being the largest. Note that this

A-site ionic radii trend is not clearly seen in the PC2-PC3 classification map (Figure 7).

One of the key outcomes from Figure 10 is the identification that Pb10(PO4)6F2 com-

pound is an outlier. In terms of Shannon’s ionic radii scale, Pb2+ is larger than Ca2+ but

smaller than Sr2+ cation. Ideally (assuming apatites as ionic crystals), the relative position

of Pb10(PO4)6F2 should have been between Ca10(PO4)6F2 and Sr10(PO4)6F2 compounds

in the map. However, this was not the case. The physical reason behind this observation

could be attributed to the electronic structure of Pb2+ ions [47]. The theoretical elec-

tronic structure calculations indicate that in the atom-projected density of states curves,

the Pb2+ ions have active 6s2 lone-pair electrons that hybridize with oxygen 2p electrons

resulting in a strong covalent bond formation. Indeed, recent density functional theory
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Figure 9 Apatite hLLE result interpretation [43].

(DFT) calculations [48] show that the electronic band gap (at the generalized gradient

approximation (GGA) level) for Pb10(PO4)6F2 is 3.7 eV, which is approximately 2 eV

smaller compared to Ca10(PO4)6F2 (5.67 eV) and Sr10(PO4)6F2 compounds (5.35 eV).

In our dataset, the electronic structure information of A-site elements was quantified

using Pauling’s electronegativity data. While PCA captures this behavior, the dominating

effect of the electronic structure of Pb2+ ions is more transparent within themathematical

framework of non-linear Isomap analysis.

Figure 10 Apatite Isomap result interpretation (region 1) [43].
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Besides, from Figure 10, it can also be inferred that the bond distortions of Zn apatite

is different from other compounds. This trend correlates well with the non-existence of

Zn10(PO4)6F2 compounds due to the difficulty in experimental synthesis [49]. On the

other hand, the relative correlation position of Hg10(PO4)6F2 compound offer intriguing

insights. In fact, the uniqueness of Hg10(PO4)6F2 chemistry was previously detected in

a PCA-derived structure map [44], which clearly identified the composition as an out-

lier among other isostructural compounds. Guided by this original insight from PCA,

recently, Balachandran et al. [48] showed using DFT calculations that the ground state

structure of Hg10(PO4)6F2 is triclinic (space group P1̄). Although the ionic size of Hg2+

is very close to that of Ca2+, the aristotype P63/m symmetry distorts to P1̄ symmetry

in Hg10(PO4)6F2 due to the mixing of fully occupied Hg-5d10 orbitals with the empty

Hg-6s0 orbitals. This mixing is unavailable to the Ca10(PO4)6F2 compound, because it

does not have orbitals of appropriate symmetry.

In Figure 11, region 2 is highlighted where we find a clear trend of apatite com-

pounds with respect to the ionic radii of A-site elements. Similar to region 1, Pb apatites

manifest themselves as outliers in region 2. The unique electronic structure of Pb2+

cations in forming a covalent bond with oxygen 2p-states is identified as the reason for

the deviation of Pb apatites from the expected trend. The covalent bonding among Pb

compounds appear to be independent of X-site anion, when the B-site is occupied by

phosphorus cations. In Figure 11, Hg10(PO4)6Cl2 compound is found to be closely asso-

ciated with Ca10(PO4)6Br2 indicating some similarity in the bond distortions of the two

compounds. In comparing the relative correlation position of all Cl-containing apatites

(except Pb-based compounds) in region 2, we predict Hg10(PO4)6Cl2 to have a stable

apatite structure type (in sharp contrast to Hg10(PO4)6F2).

Figure 12 describes region 3 where we find clusters of apatite compounds with Cl ions

in the X-site and contain larger V, Cr, and As cations in the B-site. The ionic radius of

A-site element increases in the direction as shown in the figure, and in this case, the Pb

apatites are not outliers. The presence of large V, Cr, and As cations (compared to smaller

P cations in regions 1 and 2) in the B-site were identified as the reason for this behavior.

Figure 11 Apatite Isomap result interpretation (region 2) [43].
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Figure 12 Apatite Isomap result interpretation (region 3) [43].

Region 3 also identifies the existence of complex relationship between A-site and B-site

chemistries in Cl apatites.

Several topological observations can bemade on the data. Firstly, since low-dimensional

points obtained are different for both Isomap and PCA, it could be interpreted that the

apatite data lie on a non-linear manifold in the embedding space. However, a counter

argument can be made based on the fact that PC2-PC3 plot shows similar trends and

clustering as that in Isomap1-Isomap2. One possible reason for this happening could be

due to the existence of outliers dominating and deviating the first PCA component (PC1)

while Isomap being unaffected by this outlier; in which case, the data could actually be

lying on a linear manifold. Secondly, the different clustering phenomena observed along

different dimensionality reduction techniques might imply that the pattern/features seen

in PCA and Isomap clusters are a function of the distance preserved, while those in hLLE

and LLE is a function of the topology preserved. Hence, these chosen features represented

by these clusters happen to be preserved all along the dimensionality reduction process

from the embedded space to the lower-dimensional space.

Conclusions

In this paper, we have detailed a mathematical framework of various data dimen-

sionality reduction techniques for constructing reduced order models of complicated

datasets and discussed the key questions involved in data selection. We introduced

the basic principles behind data dimensionality reductiond. The techniques are pack-

aged into a modular, computational scalable software framework with a graphical user

interface - SETDiR. This interface helps to separate out the mathematics and computa-

tional aspects from the scientific applications, thus significantly enhancing utility of DR

techniques to the scientific community. The applicability of this framework in construct-

ing reduced order models of complicated materials dataset is illustrated with an example

dataset of apatites. SETDiR was applied to a dataset of 25 apatites being described by
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29 of its structural descriptors. The corresponding low-dimensional plots revealed pre-

viously unappreciated insights into the correlation between structural descriptors like

ionic radius, bond covalence, etc., with properties such as apatite compound forma-

bility and crystal symmetry. The plots also uncovered that the shape of the surface

on which the data lies could be non-linear. This information is crucial as it can pro-

mote the use of apatite materials as a potential host lattice for immobilizing toxic

elements.

Availability of supporting data

Information regarding the source of the apatite data can be found in [44].

Endnotes
aA tree is a graph where each pair of vertices is connected exactly with one path. A

spanning tree of a graph G(V ,E) is a sub-graph that traces all the vertices in the graph. A

minimal spanning tree (MST) of a weighted graph G(V ,E,W ) is a spanning tree with a

minimal sum of the edge weights (length of the MST) along the tree. A geodesic

minimal spanning tree (GMST) is an MST with edge weight representing geodesic

distance. Computationally, GMST is computed using Prim’s (greedy) algorithm [50].
bNormalization of a variable is forcing a limit of [−1, 1] or [0, 1] to an existing limit of

[a, b] of a variable by dividing the sequence of numbers with the maximum absolute

value of the sequence.
cHessian LLE is highly sensitive to neighborhood size and is much more sensitive to

the input estimated dimensionality. Incorrect input of estimated dimensionality implies

construction of tangent planes of incorrect dimensions which, in turn, implies

sub-optimal low-dimensional representation.
dA comprehensive catalogue of non-linear dimensionality reduction techniques along

with the mathematical prerequisites for understanding dimensionality reduction could

be found in [23].
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