
A Software Implementation of a Genetic Algorithm Based Approach to
Network Intrusion Detection

Ren Hui Gong, Mohammad Zulkernine, Purang Abolmaesumi
School of Computing
Queen’s University

Kingston, Ontario, Canada K7L 3N6
{rhgong, mzulker, purang}@cs.queensu.ca

Abstract

With the rapid expansion of Internet in recent
years, computer systems are facing increased number
of security threats. Despite numerous technological
innovations for information assurance, it is still very
difficult to protect computer systems. Therefore,
unwanted intrusions take place when the actual
software systems are running. Different soft computing
based approaches have been proposed to detect
computer network attacks. This paper presents a
genetic algorithm (GA) based approach to network
intrusion detection, and the software implementation
of the approach. The genetic algorithm is employed to
derive a set of classification rules from network audit
data, and the support-confidence framework is utilized
as fitness function to judge the quality of each rule.
The generated rules are then used to detect or classify
network intrusions in a real-time environment. Unlike
most existing GA-based approaches, because of the
simple representation of rules and the effective fitness
function, the proposed method is easier to implement
while providing the flexibility to either generally detect
network intrusions or precisely classify the types of
attacks. Experimental results show the achievement of
acceptable detection rates based on benchmark
DARPA data sets on intrusions, while no other
complementary techniques or relevant heuristics are
applied.

Keywords: Information assurance, misuse intrusion
detection, genetic algorithms, support-confidence
framework, software development.

1. Introduction

The Internet and local area networks are expanding
at an amazing rate in recent years. While we are
benefiting from the convenience that the new

technology has brought us, computer systems are
exposed to increasing security threats that originate
externally or internally. Different but complementary
technologies have been developed and deployed to
protect organizations’ computer systems against
network attacks, for example, anti-virus software,
firewall, message encryption, secured network
protocols, password protection, and so on. Despite
different protection mechanisms, it is nearly
impossible to have a completely secured system.
Therefore, intrusion detection is becoming an
increasingly important technology that monitors
network traffic and identifies network intrusions such
as anomalous network behaviors, unauthorized
network access, and malicious attacks to computer
systems [15].

There are two general categories of intrusion
detection systems (IDSs): misuse detection and
anomaly detection [16]. Misuse detection systems
detect intruders with known patterns, and anomaly
detection systems identify deviations from normal
network behaviors and alert for potential unknown
attacks. Some IDSs integrate both misuse and anomaly
detection and form hybrid detection systems. The IDSs
can also be classified into two categories depending on
where they look for intrusions. A host-based IDS
monitors activities associated with a particular host,
and a network-based IDS listens to network traffic.

A number of soft computing based approaches have
been proposed for detecting network intrusions [1, 2,
3, 4, 6, 10]. Soft computing refers to a group of
techniques that exploit the tolerance for imprecision,
uncertainty, partial truth, and approximation to achieve
robustness and low solution cost. The principle
constituents of soft computing are Fuzzy Logic (FL),
Artificial Neural Networks (ANNs), Probabilistic
Reasoning (PR), and Genetic Algorithms (GAs) [10].
When used for intrusion detection, soft computing
techniques are often used in conjunction with rule-

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

based expert systems acquiring expert knowledge [1,
4, 5, 6], where the knowledge is represented as a set of
if-then rules. Despite different soft computing based
approaches having been proposed, the possibilities of
using the techniques for intrusion detection are still
under-utilized.

In this paper, we present a GA-based approach to
network misuse detection. GA is chosen because of
some of its nice properties, e.g., robust to noise, no
gradient information is required to find a global
optimal or sub-optimal solution, self-learning
capabilities, etc. Using GAs for network intrusion
detection has proven to be a cost-effective approach [1,
2, 3, 7, 8, 9, 11]. In this work, we implement a
software based on the presented approach. The
software is experimented using DARPA data sets on
intrusions, which has become the de facto standard for
testing intrusion detection systems. The experimental
results show that our approach is effective, and it has
the flexibility to either generally detect network
intrusions or precisely classify the types of misuses.
This is due to the use of both categorical and
quantitative features of network audit data for deriving
the classification rules, and the use of the support-
confidence framework as the GA fitness function.

Paper Organization. Thus far, we have discussed the
motivation and a brief overview of the presented work.
The rest of the paper is organized as follows. Section 2
gives an overview of the genetic algorithm employed
in this work. Section 3 reviews the work relevant to
this research, while some of the more closely related
work are discussed in the relevant parts of this paper.
Sections 4 and 5 describe in detail the proposed
method and its software implementation. Section 6
presents the experimental results, and Section 7
concludes the paper with some future
recommendations.

2. Genetic Algorithms

Genetic algorithms [3, 12] employ metaphor from
biology and genetics to iteratively evolve a population
of initial individuals to a population of high quality
individuals, where each individual represents a
solution of the problem to be solved and is composed
of a fixed number of genes. The number of possible
values of each gene is called the cardinality of the
gene. Figure 1 illustrates the operation of a general
genetic algorithm. The operation starts from an initial
population of randomly generated individuals. Then
the population is evolved for a number of generations

and the qualities of the individuals are gradually
improved. During each generation, three basic genetic
operators are sequentially applied to each individual
with certain probabilities, i.e., selection, crossover, and
mutation. First, a number of best-fit individuals are
selected based on a user-defined fitness function. The
remaining individuals are discarded. Next, a number of
individuals are selected and paired with each other.
Each individual pair produces one offspring by
partially exchanging their genes around one or more
randomly selected crossing points. At the end, a certain
number of individuals are selected and the mutation
operations are applied, i.e., a randomly selected gene
of an individual abruptly changes its value.

One extension of genetic algorithms, namely
Genetic Programming (GP) [3, 8], is also commonly
used. It differs from GAs in the way of encoding
individuals. GAs use fixed length vectors to represent
individuals. In contrast, GP encodes each individual
with a parse tree, where leaf nodes are genes and non-
leaf nodes are primitive functions (e.g., AND, OR,
etc.). GP has the flexibility to represent very complex
individuals. In the context of rule based expert
systems, GAs are often used to efficiently derive
simple rules, and GP is used when more complex or
accurate rules are required.

Figure 1. The operation of a generic GA.

When a GA is used for problem-solving, three
factors will have impact on the effectiveness of the
algorithm, they are: 1) the selection of fitness function;
2) the representation of individuals; and 3) the values
of the GA parameters. The determination of these
factors often depends on applications. In our
implementation for network intrusion detection, the

initialization

selection

crossover

mutation

quit?

end

new population

initial population

old population

yes

no

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

support-confidence framework was used as fitness
function, a simple GA (rather than GP) was employed
to represent and derive rules, and appropriate GA
parameters, including selection rate, crossing over
style, mutation rate, etc, were chosen based on a large
number of experiments.

3. Related Work

This section briefly summarizes some of the
applications of soft computing techniques for intrusion
detection. However, a number of GA based IDSs are
discussed in the later part of the paper in order to
compare and contrast those work with our work.

GAs and GP have been used for network intrusion
detection in different ways. Some approaches directly
use GAs to derive the classification rules [2, 7, 8, 11],
while some others use different AI methods for
acquisition of rules, where GAs are used to select
appropriate features or to determine the optimal
parameters of some functions [1, 5, 9].

The early effort of using GAs for intrusion
detection can be dated back to 1995, when Crosbie et
al. [3] applied the multiple agent technology and GP to
detect network anomalies. Each agent monitors one
parameter of the network audit data and GP is used to
find the set of agents that collectively determine
anomalous network behaviors. This method has the
advantage of using many small autonomous agents, but
the communication among them is still a problem.
Also the training process can be time-consuming if the
agents are not appropriately initialized.

Bridges et al. [1] develop a method that integrates
fuzzy data mining techniques and genetic algorithms to
detect both network misuses and anomalies. In most of
the existing GA based IDSs, the quantitative features
of network audit data are either ignored or simply
treated, though such features are often involved in
intrusion detection. This is because of the large
cardinalities of quantitative features. The authors
propose a way to include quantitative features by
introducing fuzzy numerical functions. Their
preliminary experiments show that the inclusion of
quantitative features and the fuzzy functions
significantly improved the accuracy of the generated
rules. In this approach, a GA is used to find the
optimal parameters of the fuzzy functions as well as to
select the most relevant network features.

Lu et al. [8] present an approach that uses GP to
directly derive a set of classification rules from
historical network data. The approach employs the
support-confidence framework as the fitness function

and is able to generally detect or precisely classify
network intrusions. However, the use of GP makes
implementation more difficult and more data or time
are required to train the system.

Li [7] propose a GA-based method to detect
anomalous network behaviors. Both quantitative and
categorical features of network data are included when
deriving classification rules using GA. The inclusion
of quantitative features may lead to increased detection
rates. However, no experimental results are available
yet.

Xiao et al. [17] present an approach that uses
information theory and GA to detect abnormal network
behaviors. Based on the mutual information between
network features and the types of network intrusions, a
small number of network features are closely identified
with network attacks. Then a linear structure rule is
derived using the selected features and a GA. The use
of mutual information reduces the complexity of GA,
and the single resulting linear rule makes intrusion
detection efficient in real-time environment. However,
the approach considers only discrete features.

4. A GA-Based IDS

The proposed GA-based intrusion detection
approach contains two modules where each works in a
different stage. In the training stage, a set of
classification rules are generated from network audit
data using the GA in an offline environment. In the
intrusion detection stage, the generated rules are used
to classify incoming network connections in the real-
time environment. Once the rules are generated, the
intrusion detection is simple and efficient. In the
following sections, we focus our discussions on
deriving the set of rules using GA.

4.1. Data Representation

Several network features have higher possibilities to
be involved in network intrusions [7, 9]. In our
approach, seven of those features are selected from the
network audit data to compose a classification rule.
Table 1 shows the features and their formats. The
feature names are given in the first column, while the
second and third columns indicate how each of the
network features is encoded in a chromosome. The
second column represents the feature format and the
third column shows the number of genes used for the
corresponding feature.

Note that different genes can be represented in
different data types such as byte, integer, and float.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

This is necessary because of different formats and data
ranges for different features. For example, the feature
“Duration” has three components (hours, minutes, and
seconds), each of which is represented by one gene of
type byte. Similarly, each of the features “Protocol”,
“Source port”, “Destination port” and “Attack name”
is encoded using one gene of type integer, and each of
the features “Source IP” and “Destination IP” has four
components (a, b, c, and d), each of which is
represented by one gene of type byte.

Table 1. Selected network features.

Feature Name Format Number of Genes
Duration h:m:s 3
Protocol Int 1
Source_port Int 1
Destination_port Int 1
Source_IP a.b.c.d 4
Destination_IP a.b.c.d 4
Attack_name Int 1

Each rule is an if-then clause, which contains a
“condition” and an “outcome”. The first six features in
Table 1 are connected using the logical AND
operations and compose the “condition” part of a rule.
The feature “Attack name” is used in the “outcome”
part, which indicates the classification of a network
record (at training stage) or connection (at intrusion
detection stage) when the “condition” part of a rule is
matched. The following shows a rule example that
classifies a network connection as the denial-of-service
attack neptune.

if (duration=“0:0:1” and protocol=“finger” and
source_port=18982 and destination_port=79 and
source_ip=“9.9.9.9” and
destination_ip=“172.16.112.50”)
then (attack_name=“neptune”)

The above rule expresses that if a network packet is
originated from IP address 9.9.9.9 and port 18982, and
sent to IP address 172.16.112.50 and port 79 using the
protocol finger, and the connection duration is 1
second, then most likely it is a network attack of type
neptune that may eventually cause the destination host
out of service.

Each rule is encoded as a chromosome using a fixed
length vector, where each network feature is encoded
using one or more genes of different types (see the
second and third column of Table 1). In the above
example, the encoded form of the rule would look like
as follows:

{0, 0, 1, 2, 18982, 79, 9, 9, 9, 9, 172, 16, 112, 50, 1}

To make the rules more general, wildcards are
allowed in several network features. In case of a
wildcard, the corresponding gene is encoded as -1. For
example, if the above rule was generalized to be
applicable to all packets originated from network
9.9.*.*, then the rule would be encoded as:

{0, 0, 1, 2, 18982, 79, 9, 9, -1, -1, 172, 16, 112, 50, 1}

4.2. Fitness Function

To determine the fitness of a rule, the support-
confidence framework [8] is used. If a rule is
represented as if A then B, then the fitness of the rule is
determined using following equations:

support = |A and B| / N
confidence = |A and B| / |A|
fitness = w1 * support + w2 * confidence

Here, N is the total number of network connections in
the audit data, |A| stands for the number of network
connections matching the condition A, and |A and B| is
the number of network connections that matches the
rule if A then B. The weights w1 and w2 are used to
control the balance between the two terms and have
the default values of w1=0.2 and w2=0.8.

One of the nice properties of using this fitness
function is that, by changing the weights w1 and w2,
the approach can be used for either simply identifying
network intrusions or precisely classifying the types of
intrusions. In the former case, w1 is set to 1 and w2 is
set to 0. On the other hand, w1 = 0 and w2 = 1 for the
latter case. Unlike other fitness functions used in the
GA, the selection of w1 and w2 in this framework is
not crucial to the performance of the approach.

4.3. Detection Algorithm Overview

Listing 1 shows the major steps of the employed
detection algorithm as well as the training process. It
first generates the initial population, sets the defaults
parameters, and loads the network audit data. Then the
initial population is evolved for a number of
generations. In each generation, the qualities of the
rules are firstly calculated, then a number of best-fit
rules are selected, and finally the GA operators are
applied to the selected rules.

The training process starts by randomly generating
an initial population of rules (line 1). The weights and
fitness threshold values are initialized in line 2. Line 3

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

calculates the total number of records in the audit data.
Lines 4-18 calculate the fitness of each rule and select
the best-fit rules into new population. Lines 19-22
apply the crossover and mutation operators to each rule
in the new population. Finally, line 23 checks and
decides whether to terminate the training process or to
enter the next generation to continue the evolution
process.

Algorithm : Rule set generation using genetic algorithm.
Input : Network audit data, number of generations,

and population size.
Output : A set of classification rules.

1. Initialize the population
2. W1 = 0.2, W2 = 0.8, T = 0.5
3. N = total number of records in the training set
4. For each chromosome in the population
5. A = 0, AB = 0
6. For each record in the training set
7. If the record matches the chromosome
8. AB = AB + 1
9. End if
10. If the record matches only the “condition” part
11. A = A + 1
12. End if
13. End for
14. Fitness = W1 * AB / N + W2 * AB / A
15. If Fitness > T
16. Select the chromosome into new population
17. End if
18. End for
19. For each chromosome in the new population
20. Apply crossover operator to the chromosome
21. Apply mutation operator to the chromosome
22. End for
23. If number of generations is not reached, goto line 4

Listing 1. Major steps of the detection algorithm.

A similar technique of generating rules using a GA
is used in Li’s approach [7]. However, the approach
proposed in this study differs with Li’s method in two
aspects: 1) the definition of fitness function; and 2) the
representation of rules. First, Li’s method uses a
simple form of weighted sum as fitness function, in
which weights are used to indicate the significance of
each network feature. The weight values are crucial to
the final detection performance. For practical usage,
additional techniques, for example artificial neural
networks, are required to accurately determine those
values. Second, Li’s approach encodes only the
“condition” parts of the rules so the method is only

suitable for detecting network anomalies. In contrast,
our approach uses the support-confidence framework
as fitness function and their values can be directly
computed from historical data. Moreover, both
“condition” and “outcome” of a rule are included in
encoding in our approach. This has led the benefit of
precisely detecting the types of network intrusions.

When comparing to Lu’s method [8], the same
fitness function is used in both methods, however, our
approach uses GA rather than GP to derive the
classification rules. GP has the advantage of
representing complex rules, but often more training
data and longer training period are required.

5. IDS Implementation

The proposed method is implemented using the
Java language, and it is built on top of a third party
software package ECJ [14]. ECJ is a comprehensive
GA/GP Java toolkit developed and maintained by the
ECLab of George Manson University. The package
provides a rich set of GA foundation classes. When
using ECJ to solve user problems, one of two ways can
be used: using the full power of ECJ or only using the
ECJ foundation classes. In the former case, minimal
programming is required and configuration files are
heavily used. In the latter case, more programming
effort is involved but it allows more flexibilities and
better user customizations. We adopted the second
approach, mainly because the genes in our approach
have different data types.

The implementation contains two systems: an
offline training system for deriving rules from
historical data, and an online detection system that uses
the generated rules to classify incoming network
connections in real-time environment. Figure 2 shows
the high-level class diagram of the training system.
Four types of classes are present in the diagram:

A main class (Main) that integrates all
components and records the generated rules.
A class (DarpaReader)that interfaces with
DARPA data. This class reads and preprocesses
the DARPA data.
Classes that interface with ECJ include
Initializer, Individual, Evaluator,
Fitness, and Breeder. These classes are
extended from the abstract counterparts of ECJ.
The classes below the thick horizontal line are
base classes from the ECJ package [14]. An "ec"
prefix is used in each of the class names to
indicate that.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

When the training process starts, the
Initializer first initializes the population with a
number of randomly generated individuals. Then the
GA is executed for a number of generations, each
generation contains following two steps:

1) The classes Evaluator and Fitness are used
to select a set of best-fit individuals from the
population; and

2) The class Breeder applies other genetic
operators, i.e. crossover and mutation, to each
individual with a certain probability.

Figure 2. High-level class diagram of the training system.

6. Experimental Results

6.1. Training and Testing Data

The DARPA data from MIT Lincoln Laboratory
[13] is broadly used to evaluate IDSs. In this study,
two subsets were extracted from the 1998 DARPA
data and used as the training and testing datasets. Each
record of the datasets consists of 9 network features
and 1 manually assigned record type. Six network
features were used in the GA [7, 9], which are
connection duration, protocol, source port, destination
port, source IP address, and destination IP address.
The record type indicates whether a record is a normal
network connection or a particular network intrusion.
Table 2 shows the distributions of record types in
training and testing datasets. The first row shows the
numbers of normal network packets, while the second
and third rows give the distributions of two network
attacks.

As shown in Table 2, most network packets in the
selected datasets are normal, and two kinds of network
attacks are present: Portsweep and Pod. Portsweep is a

kind of attack that sweeps through many ports to
determine which services are supported on a single
host. Pod is a denial of service attack that keeps
pinging a host until the service is not available.

Table 2. The distributions of record types.

Record Type Training Set Testing Set
Normal 48886 27322
Portsweep 1804 1009
Pod 450 241
Total 51144 28574

6.2. Experiments

Two experiments have been conducted. In the first
experiment, the system was trained with the training
dataset, and the default fitness function and the GA
parameters were used, i.e., w1=0.2, w2=0.8, 5000
generations, 500 initial rules in the population,
crossover rate of 0.5, two-point crossover, and
mutation rate of 0.02. When the training process was
finished, the top 20 best quality rules were taken as the

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

final classification rules. The rules were then used to
classify the training data and the testing data
respectively. The results are presented in Table 3.

Table 3. Results (detection rates) of Experiment 1.

Record Type Training Set Testing Set
Normal 97.7% 94.2%
Portsweep 91.8% 67.4%
Pod 94.3% 78%

The experimental results show that the proposed
method yielded good detection rates when using the
generated rules to classify the training data itself (the
second column in the table). That is what we expected.
The detection rates could be higher if the fitness
function and the GA parameters were chosen more
appropriately. When the resulting rules were used to
classify the testing dataset, the detection rates of
network attacks were decreased by around 20% (the
third column in the table). The results have indicated
that the generated rules were biased to the training
data. This is a typical over-fitting problem inherent in
major learning techniques, and this problem may be
solved in the following two ways: 1) have less number
of generations when training the system; or 2) use less
number of best-fit rules when classifying new network
data. In either approach, an appropriate number (i.e.,
number of generations or number of best-fit rules) has
to be found. This is often done by trial and error.

In the second experiment, the training data was
employed to train the system, and the default GA
parameters were used. The top 20 best-fit final rules
were used to classify the training data. The experiment
investigated how the two weights of the fitness
function can be used to steer the system to simply
detect general network intrusions or to precisely
classify the types of intrusions. The experiment was
repeated for two kinds of weight settings: 1) w1=0,
w2=1; and 2) w1=1, w2=0. Table 4 shows the
experimental results.

Table 4. Results (detection rates) of Experiment 2.

Record Type w1=0, w2=1 w1=1, w2=0
Normal 97.9% 98.0%
Portsweep 94.9% 35.4%
Pod 96.1% 25.6%
Anomaly 95.7% 96.3%

An additional row (the last row) has been added to
Table 4, which shows the percentages of network
intrusions being correctly detected, without

considering their attack types. When an intrusion of a
specific type (Portsweep or Pod) is detected, it is also
classified as an anomaly. As indicated in the table,
when w2 was set to 1, the detection rates of network
attacks Portsweep and Pod were fairly high (second
column). On the other hand, when w1 was set to 1 and
w2 was set to 0, the detection rates for particular
attacks were poor, but the total detection rate of
network intrusions remained high (third column).

7. Conclusions and Recommendations

In this paper, a method of applying genetic
algorithms for network intrusion detection is
presented. A software is implemented for the presented
method, and its architecture and operations are
described in detail using high level class diagram and
pseudo-code. A number of experiments have been
carried out using a benchmark data set in order to show
the efficacy of the developed software. One of the
major advantages of this technique is due to the fact
that in the real world, the types of intrusions change
and become complicated very rapidly. The proposed
detection system can upload and update new rules to
the systems as the new intrusions become known.
Therefore, it is cost effective and adaptive.

A GA is used to derive a set of classification rules
from network audit data. Seven network features
including both categorical and quantitative data fields
were used when encoding and deriving the rules. A
simple but efficient and flexible fitness function, i.e.
the support-confidence framework, is used to select the
appropriate rules. Depending on the selection of fitness
function weight values, the generated rules can be used
to either generally detect network intrusions or
precisely classify the types of intrusions.

The method has been implemented using Java and
the third party package ECJ. The implementation was
tested using selected subsets of the 1998 DARPA data.
Experimental results showed that the proposed method
worked effectively for the selected datasets and has the
flexibility to be used in different ways to meet users’
special requirements.

However, some limitations of the method are also
observed. First, the generated rules were biased to the
training dataset. This issue may be resolved by
carefully selecting either the number of generations in
the training phase or the number of top best-fit rules in
the intrusion detection phase. The problem of low
extrapolation power of the presented technique to a
new dataset is primarily due to some inherent
shortcomings associated with the most soft computing

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

techniques, and this paper is mainly an initial attempt
towards overcoming those various shortcomings in the
context of network intrusion detection. Nevertheless,
the deployment of a number of complimentary
techniques and some potential heuristics are being
investigated to resolve this problem. Second, while the
support-confidence framework is simple to implement
and provides improved accuracy to final rules, it
requires the whole training data to be loaded into
memory before any computation. For large training
datasets, it is neither efficient nor feasible. The use of
some sorts of cache technologies may solve the
problem.

7. References

[1] S. M. Bridges and R. B. Vaughn, “Fuzzy Data
Mining And Genetic Algorithms Applied To Intrusion
Detection”, Proceedings of 12th Annual Canadian
Information Technology Security Symposium, pp. 109-
122, 2000.

[2] A. Chittur, “Model Generation for an Intrusion
Detection System Using Genetic Algorithms”, http://
www1.cs.columbia.edu/ids/publications/gaids-thesis
01.pdf (accessed in January 2005).

[3] M. Crosbie and E. Spafford, “Applying Genetic
Programming to Intrusion Detection”, Proceedings of
the AAAI Fall Symposium, 1995

[4] D. Dasgupta and F. A. Gonzalez, “An Intelligent
Decision Support System for Intrusion Detection and
Response”, MMM-ACNS, Lecture Notes in Computer
Science, vol. 2052, pp. 1-14, 2001.

[5] J. Gomez and D. Dasgupta, “Evolving Fuzzy
Classifiers for Intrusion Detection”, Proceedings of the
IEEE, 2002.

[6] G. Helmer, J. Wong, V. Honavar and L. Miller,
“Automated discovery of concise predictive rules for
intrusion detection”, The Journal of Systems and
Software, issue 60, pp. 165-175, 2002.

[7] W. Li, “A Genetic Algorithm Approach to Network
Intrusion Detection”, SANS Institute, USA, 2004.

[8] W. Lu and I. Traore, “Detecting New Forms of
Network Intrusion Using Genetic Programming”,
Computational Intelligence, vol. 20, pp. 3, Blackwell
Publishing, Malden, pp. 475-494, 2004.

[9] M. Middlemiss and G. Dick, “Feature selection of
intrusion detection data using a hybrid genetic
algorithm/KNN approach”, Design and application of
hybrid intelligent systems, IOS Press Amsterdam, pp.
519-527, 2003.

[10] M. Moradi and M. Zulkernine, "A Neural
Network Based System for Intrusion Detection and
Classification of Attacks", Proceedings of the 2004
IEEE International Conference on Advances in
Intelligent Systems - Theory and Applications,
Luxembourg, November 2004.

[11] M. M. Pillai, J. H. P. Eloff and H. S. Venter, “An
Approach to Implement a Network Intrusion Detection
System using Genetic Algorithms”, Proceedings of
SAICSIT, pp. 221-228, 2004.

[12] H. Pohlheim, “Genetic and Evolutionary
Algorithms: Principles, Methods and Algorithms”,
http://www.geatbx.com/docu/index.html (accessed in
January 2005).

[13] MIT Lincoln Laboratory, DARPA datasets, MIT,
USA,
http://www.ll.mit.edu/IST/ideval/data/data_index.html
(accessed in November 2004).

[14] ECLab: evolutionary Computation laboratory, A
Java-based Evolutionary Computation (ECJ) and
Genetic Programming Research System, George
Mason University, Fairfax, VA, USA,
http://cs.gmu.edu/~eclab/projects/ecj/ (accessed in
November 2004).

[15] A. Adetoye, A. Choi, M. Md. Arshad, and O.
Soretire, “Network Intrusion Detection & Response
System”, Group Report, September 2003,
http://www.cs.ucl.ac.uk/teaching/dcnds/group-reports
/2003/2003-hailes-b.pdf (accessed in January 2005).

[16] B. Mukherjee, L. T. Heberlein, and K. N. Levitt,
“Network intrusion detection”, IEEE Network, 8(3):
26-41, May/June 1994.

[17] T. Xiao, G. Qu, S. Hariri, and M. Yousif, “An
Efficient Network Intrusion Detection Method Based
on Information Theory and Genetic Algorithm”,
Proceedings of the 24th IEEE International
Performance Computing and Communications
Conference (IPCCC ‘05), Phoenix, AZ, USA. 2005.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE

