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Abst rac t .  We describe a fast, software-oriented, encryption algorithm. 
Computational cost on a 32-bit processor is about 5 elementary machine 
instructions per byte of text. The cipher is a pseudorandom function; un- 
der control of a key (first pre-processed into an internal table) it stretches 
a short index into a much longer pseudorandom string. This string can 
be used as a one-time pad. 

1 I n t r o d u c t i o n  

ENCRYPTING FAST IN SOFTWARE. Encryption must often be performed at high 
data  rates, a requirement usually achieved, when at all, with the help of sup- 
porting cryptographic hardware. Unfortunately, fast cryptographic hardware is 
often absent and data  confidentiality is sacrificed because the cost of software 
cryptography is deemed too expensive. 

The computational cost of software cryptography is a function of the un- 
derlying algorithm and the quality of the implementation of the algorithm. But 
regardless of implementation, a cryptographic algorithm designed to run well 
in hardware will not perform in software as well as an algorithm optimized 
for software execution. The hardware-efficient algorithm of the Data Encryp- 
tion Standard (DES) is no exception. Since this is the only popular method 
for symmetric encryption, what is needed is a well-designed, software-optimized 
encryption method for today's general purpose computers. 

To this end, we have designed SEAL (Software Encryption Algorithm; to 
be known as SEAL 1.0 should other versions arise). It is intended to be used 
as a stream cipher, providing strong data confidentiality. On a modern 32-bit 
processor SEAL can encrypt messages at a rate of about 5 instructions per byte. 
In comparison, the DES algorithm is some 10-30 times as expensive. Even a 
Cyclic Redundancy Code (CRC) is more costly. 

PREVIOUS WORK. We are not the first to realize the potential value of software- 
oriented cryptography. In 1991 Merkle described the utility of software-oriented 
cryptography and he proposed a suite of three software-efficient algorithms [3]. 
One of them, called "Khufu," uses pre-processing and is similar in spirit to SEAL 
In contrast to Khufu, SEAL is not a block cipher--i t  is instead intended for use 
as a stream cipher. This is one difference which has helped us to push the speed 



57 

advantage of SEAL further than Merkle had done in his most aggressiye (least 
number of rounds) instance of Khufu. 

An earlier software-oriented block cipher than Khufu is FEAL (Fast Data 
Encryption Algorithm) [7]. But this algorithm (and variants of it) has not proven 
to be particularly secure (see [1] for history and attacks). Nor is it all that  fast. 

RC2 and RC4 are RSA-proprietaxy algorithms designed by Rivest [6]. The 
former is a stream cipher which is said to be fast. We have not seen any technical 
exposition. 

2 C h a r a c t e r i s t i c s  o f  S E A L  

Key characteristics and design choices of SEAL are explained below. 

PREPROCESSING THE KEY. In typical applications requiring fast software cryp- 
tography, data  encryption is required over the course of a communication ses- 
sion to a remote partner, or over the course of a login session to a particular 
machine. In either case the key a which protects the session is determined at 
session setup. Typically this session setup takes at least a few milliseconds and 
is not a time-critical operation. It is therefore acceptable to spend some number 
of milliseconds at that  time to map the (short) key a to a (less concise) repre- 
sentation of the cryptographic transformation specialized to this key. Our cipher 
has this characteristic. 

LENGTH-INCREASING PSEUDORANDOM FUNCTION - VARIABLE OUTPUT AND 
KEY LENGTHS. The function SEAL is a type of cryptographic object called a 
"pseudorandom function." Such objects were first defined in [2]. Unlike many 
pseudorandom functions, SEAL is a length-increasing one: under control of a 160- 
bit key a, the function maps a 32-bit string n to an L-bit string SEAL,(n). The 
number L can be made as large or as small as is needed for a target application, 
but output lengths ranging from 512 bytes to 4096 bytes are anticipated. An 
arbitrary length key a ~ can index SEAL simply by defining a = SHA(ar). 

As a pseudorandom function, SEAL~(.) should "look like a random function" 
if a is random and unknown. The meaning of this is as follows. First a key 
a is taken at random from {0, 1} 16~ Next the adversary is given, at random, 
either a black-box for the function SEAL~(.) or else a black-box for a truly 
random function 7~(.). Either maps 32 bits to L bits. The adversary's job is to 
guess which type of box she has. Say that  the adversary wins if she correctly 
guesses "Random" or "Pseudorandom." Our goal is that  for any reasonable 
adversary, she should not win with probability significantly greater than 1/2. 
Though we will not at tempt to define "reasonable" or "significant," we aim to 
defeat adversaries with substantial computational resources and cleverness. 

A pseudorandom function can be used to make a good stream cipher. In a 
stream cipher the encryption of a message depends not only on the key a and 
the message x but also on the message's "position" n in the data  stream. This 
position is often a sequence number, present already in the application that  
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would be using the cryptographic method. At other times n may indicate the 
physical address of a piece of data. In any case the encryption of string x at 
position n is given by (n, x | SEAka(n)), where one uses L = Ixl bits of output  
of SEALa(n). 

TARGET PLATFORMS. Execution vehicles that  should run the algorithm well 
include the Intel386 TM, Intel486 TM, and Pentium TM Processor, and implemen- 
tations of the IBM Power Architecture TM. Because of the particular challenges 
involved in having a cipher run well on the 386/486, and because of the perva- 
siveness of this processor family, we optimized with it particularly in mind. By 
doing well on these difficult-to-optimize-for vehicles we expect to do well on any 
modern, 32-bit processor. 

The relevant limitations of the 386/486/Pentium are: a small register set; 
a two operand instruction architecture; a small first level cache. In more de- 
tail, these chips have the following characteristics. They are 32-bit CISC micro- 
processors, with current ones running at 25-66 MHz. They have eight general 
purpose registersi and six segment registers. The instructions generally work on 
two operands (A +-- A op B) instead of three (A +-- B o p  C). On the 486, the 
simplest forms of the instructions add, and, mov and xor  all take one clock; r o t  
(rotate right) takes two. On the 386, each of these numbers is one bigger. Among 
other assumptions, these instruction counts assume a cache hit, and cache misses 
can be expensive. The processors use a 4-stage instruction pipeline. As a conse- 
quence, if the base register for an address calculation is the destination register 
of the preceding instruction, an extra cycle will be consumed. Also, use of an 
index register (as opposed to just a base register) can add an additional cycle. 
On the 486, use of a non-default segment register may add an additional cycle. 
The 486 has an 8 Kbyte on-chip cache for data and instructions both; the Pen- 
t ium Processor has an 8 Kbyte data  cache and an 8 Kbyte instruction cache. 
The Pentium processor has dual pipes, designated U and V, one of which runs 
a very limited instruction set. It was not a design goal that  the cipher should 
exhibit an instruction dependency structure which would allow us to always fill 
both pipes. 

TABLE-DRIVEN CIPHER. One early decision was whether to make the cipher 
a straight-line program of logical operations (like MD5 or SHA) or whether to 
drive it by use of a large table (like Khufu or a software DES), instead. The 
table-driven approach was selected because we felt that  it would lead to a faster 
and easier-to-design cipher. With the table-driven algorithm we could get very 
rapid diffusion and there would be little temptat ion to produce a cipher whose 
efficient implementation needed self-modifying code. 

In view of first-level cache interaction issues and the fact that  servers may 
want to store in second-level cache the representation of the encryption trans- 
formation of tens of clients, it was decided that  we should not be too generous 
with the size of the tables that  we used. We would settle on a total  size for all 
tables of approximately 3 Kbytes. 
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p rocedu re  Initializea(n, ~, A, B, C, D, nl, n2, n3, n4) 

A +-- n | R[4~]; 
n +-- (n))) 8) @ R[4~ + 1]; 
C ~ (n))) la) @ R[4e + 2]; 
D +-- (n))) 24) @ R[4~ + 3]; 

for j + - - 1  to  2 do  
P +-- A & 0x7fc; B +-- B + T[P/4]; A +-- A ))) 9; 
P +-- B & 0x7fc; C +-- C + T[P/4]; B e- B ))) 9; 
P +-- C & 0x7fc; D+--D+T[P/4] ;  C~---C)))9; 
P +-- D & 0x7fc; A +-- A + T[P/4]; D +-- D ))) 9; 

(nl,  n2, n3, n4)+--(D, B, A, C); 

P +- A & 0x7fc; B +-- B + T[P/4]; A +- A ))) 9; 
P +- B & 0x7fc; C +-- C + T[P/4]; B +-- B)))  9; 
P ~- C & 0x7fc; D +-- D + T[P/4]; C +-- C) ) )  9; 
P +- D & 0x7fc; A +-- A + T[P/4]; D +- D ))) 9; 

Fig. 1. Initialization of ( A, B, C, D , nl  , n2, n3, n4) from (n,g). This initialization de- 
pends on a-derived tables T and R. 

3 Definit ion of SEAL 

NOTATION. We call a 32-bit string a "word" and an 8-bit string a "byte." The 
empty string is denoted A. The bits of a length-t string x will be numbered 
xox~ . . .  x t -1 .  We write numbers in hexadecimal by preceding them with "0x" and 
then using the symbols "a" -" f"  to represent decimal numbers 10-15, respectively. 
By y })) t we denote a right circular shift of the word y by t bits; in other words, 
the i-th bit of y )/) t is Y(i-t) mod 32. By "A" "V" and "| we denote bitwise AND, 
OR, and XOR; by A we denote the complement of A. By A + B we denote the 
sum, ignoring the carry, of the unsigned integers A and B; this is of course the 
sum mod 2 "~2 of numbers A and B. By "11" we denote the concatenation operator.  
By odd(.) we mean the predicate which is true if and only if its argument is an 
odd number. 

OUTPUT LENGTtI. Recall that  we think of SEAL as producing variable length 
output.  Let L be the number of output  bits desired. We assume a large bound 
on L, say L < 64 �9 1024.8 .  Our algorithm stops generating bits as soon as it 
produces L ~ of them, where L ~ is the least multiple of 128 which is at least L. 

~/[APPING TItE KEY TO THE TABLES. Our first task is to specify the tables T,  
R, and S, all of which depend only on a. The key a is used only to define these 
three tables. 
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funct ion SEALa (n) 

y = A ;  

for ~ + - 0  to co do 

Initialize~(n, ~, A, B, C, D, nl, 

f o r i + - I  to  64 do 

P +- A & 0xTfc; B +- 
Q +-- B & 0x7fc; C t -  
P +- (P + C) & 0xTfc; D +- 
Q +-- (Q + D) & 0xTfc; A +-- 

P e- (P + A) & 0xTfc; B +-- 
Q +- (Q + B) & 0xTfc; C 
P +-- (P + C) & 0xTfc; D ~-- 

n2~ n3~ n 4 ) ;  

B + T[P/4]; A +- A))) 9; B ~ B @ A; 
C@T[Q/4]; B +- B)))9;  C +- C + B; 
D+T[P/4]; C +-- C))) 9; D ~ D@C; 
A @ T[Q/4]; D +-- D ))) 9; A +- A + D; 

B @ T[P/4]; d +- g ))) 9; 
C +  T[Q/4]; B ~-- B))) 9; 
D@T[P/4]; C +- C))) 9; 

Q ~-- (Q + D) & 0x7fc; A +- A + T[Q/4]; D +-- D ))) 9; 

Y+-Y I[ B+S[4i-4]  I[ C@S[4i-3] I[ D+S[4i-2] 

if [Yt -> L then  r e tu r n  (yoyl.. .  yL-1); 

if  odd(i) t hen  (A, C) +- (A + nl, C + n2) 
else (A, C) +-- (A + n3, C -~- n4); 

II A@S[4i-1]; 

Fig. 2. Cipher mapping 32-bit index n to L-bit string SEAI-a(n) under the control of 
a-derived tables T, R, and S. 

We specify the tables using a function G. For a a 160-bit string and i an 
integer, 0 __ i < 232, Ga(i) is a 160-bit value. The function G is based directly 
on the Secure Hash Algorithm (SHA) [5]. Its definition is given in Appendix A. 

Let us re-index G to construct a func t ion /"  whose images are 32-bit words 
instead of 160-bit ones. The function F is defined by / '~ ( i )  = H[mod 5 where 

$ $ z $ H~H1H~H~H ~ = Ga([i/5]). Thus a table of /"-values  is exactly a table for 
G-values read left-to-right, top-to-bottom. 

Now define 

T[/] = r~(i)  for all 0 < / < 512, 
S[j] ~-Fa(0xl000 + j)  for all 0 < j < 256, and 
R[k] = Fa(0x2000 + k ) fo r  all 0 < k < 4[(L - 1)/8192]. 

We note tha t  the computation of these tables requires calculating the com- 
pression function of the SHA on a variable number of blocks--131 times to 
get an output  length of 512 bytes, 207 times for the maximal output  length of 
64 Kbytes. 

THE PSEUDORANDOM FUNCTION. Given the number L, the tables T, R, and S 
determined by a, and a 32-bit index n, the algorithm of Figure 2 stretches n to 
an L-bit pseudorandom string y. 
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The algorithm uses a routine Initialize to map n and ~ to the words A, B, C, D, 
n l ,  n2, n3, n4. Tha t  procedure is given in Figure 1. 

The outer loop of Figure 2 is to be broken by line 10 when enough output  
bits have been collected. 

We comment that  all those divisions by 4 in the algorithm description aren' t  
really to be thought of as divisions or even as shifts; we are just indexing into 
the table in units of bytes, instead of units of words. This is more efficient on 
some platforms and no less efficient on any byte-addressable execution vehicles. 

4 P e r f o r m a n c e  

An assembly implementation with L = 512 x 8 bits and the key already mapped 
into tables encrypts at a rate of 3.6 Mbytes/second on an IBM PS/2  T M  with a 
25 MHz 486. A PC with a 50 MHz 486 ran the same code at 7.2 Mbytes/second. 
A C-language implementation performing the same computation encrypts at 
4.5 Mbytes/second on a RISC System/6000 T M  Model 530. (This is a 40 MHz 
machine.) These experiments compute | ) for a large M. 

5 C o n c l u d i n g  R e m a r k s  

Many applications which require fast software encryption also require fast mes- 
sage authentication. For such applications SEAL can be combined with a software 
optimized message authentication code (MAC). An efficient software MAC is the 
subject of separate research. 

A cipher very similar to SEAL can be given for 64-bit architectures. The 
tables would be twice as wide and Initialize would be slightly changed. 

As is customary in introducing a new primitive, we call for and encourage 
attacks. 
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A p p e n d i x  A .  T h e  T a b l e - G e n e r a t i o n  F u n c t i o n  

We specify Ga(i) for 160-bit string a and integer 0 < i < 232. The latter is 
treated as a 32-bit string whose value as an unsigned binary number is i. This 
function is defined directly from Sections 5-7 of [5]; the definition is repeated 
here only for ease of reference. 

First we make the following definitions. For 0 < t < 19, set Kt  = 0x5a827999 
and f t ( B , C , D )  = (B A C) Y (B A D). For 20 < 't < 39 set Kt  = 0x6ed9ebal 
and f t ( B , C , D )  = B | C @ D. For 40 < t < 59 set Kt  = 0x8flbbcdc and 
ft  (B, C, D) = (B A C) V (B A D) V (C A D). For 60 < t < 79 set Kt  = 0xca62cld6 
and f t ( B , C , D )  = B @ C @ D .  

The 160-bit string a is broken up into five 32-bit words, a = HoHIH2H3H4,  
and the 512-bit M1 is set to i II 04s~ and then processed by: 

a. Divide M1 into 16 words W0, W1, . . . ,  W15 where W0 is the left-most word, 
so that  Wo = i, W1 = W2 . . . . .  W15. 

b. For t = 16 to 79 let Wt = Wt-3  @ W t - s  | W~-14 @ Wt-16. 

c. Let A = Ho, B = H1, C = H2, D = H3, E = H4. 

d. For t = 0 to 79 do 
TEMP = A))) 27 + f t ( B , V , D )  + E + Wt + Kt  
E = D; D = C; C = B)) )2 ;  B = A; A =TEMP;  

e. Ho = Ho + A; HI = HI + B; H2 = H2 + C; H3 = H3 + D; Ha = H4 + E; 

After processing M1 the value of Ga(i) is the 160-bit string HoH1H2H3H4. 

A p p e n d i x  B .  T e s t  C a s e  

The purpose of this appendix is to provide adequate data  to verify a correct 
implementation of SEAL. So suppose the key is the 160-bit string 

a - -6?452301 efcdab89 98badcfe 103254?6 c3d2el f0  

and assume we want SEAL to produce 4 Kbyte outputs (i.e., L = 32768 bits). 
Then the table R consists of words R[0], R[1],. . . ,  R[15]: 

e55c4955 59a40fbl 495a4508 850454f4 5b0200e9 8594d576 dcl0d31e lecdbl6b 
e699bcf5 e2d35068 300f8bdc bd39f67c c06491dc i19fd703 2dbTfdf7 2fee5c42 

The table T consists of words T[0], T[1],..., T[511]: 

92b404e5 56588ced 6clacd4e bf053f68 09f73a93 e786e543 b184176b 081df5cc 
da3a23e0 a2a758ea e85e0feb 078b776d a13956cb 9e7c092c 6970262b d1472567 

ece03c22 82031f4d c09f5ed8 88e489f0 61a376e7 2056695a 814a313d e48fTe71 

The table S consists of words S[0]~ S[I],..., S[255]: 
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68318e58 0781c371 8b f691be  8a fd6893  l a421779  b d f e c 8 6 e  8382b844 da3ecc73  

bc20de5c  5755b8fd  a 8 2 f e 7 d a  e2c59ebc  3c43fbd0  db005522 64ee8a5e  97553175 
. . . . . . . . . . . . . . . . . . .  o . o , .  o . . o o , . ,  . o ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

f l a b 9 d a b  72c8d7c9  57222650 e 4 1 f c l 0 a  4 7 3 a f 4 e 3  6364b447 c173fe02  8 c b e T f b f  

L e t t i n g  n = 0 1 3 5 7 7 a f ,  t h e  s t r i n g  y = 5 E A L a ( n )  c o n s i s t s  of  y [ 0 ] y [ 1 ] . . ,  y[1023]  

( t h e  X O R  of  t h e s e  1024  w o r d s  b e i n g  c 2 5 a l f f S ) :  

9 c 3 c f 4 e b  56ec2dd2 cd663283 e a f 8 b 9 f 7  
e 3 a d c l 6 f  c a f41b01  972186cf  07e119c3 
0 b d l 3 f c 5  b0bbb36d  7 f 6 6 9 1 6 f  c92ed8c2  
50eaee36  f 5 7 6 1 0 e e  92602e91 4 f d f 9 6 6 8  
b 3 a 4 e a a a  6a454573 7 0 f b a 3 a 9  a390caba  
0 f 9 3 f 3 8 f  l a a 8 e 9 f 6  c99b9d09 c67f0822 
8cdbb45b  5b2b59ae  d634d2de 925368b9 
64a4270a  03ec3e43  555bba96 53f3b90d  
d943162e 4093e3d8 7e7c f817  c3f76a81  
969b22a2  8 d f a f 9 6 4  b e c 9 5 7 3 f  1143255c 
3ca899b3  917828a8 d 8 b l a a 3 e  8a8b049f  
c T a f 4 f a 2  231f8764  fSbdd20e  760b0cc8  
f e b 2 9 e f d  a7c847d8 5f122847  f4975e56  
6 b 2 f e 6 f 9  80 f2a776  f e c 2 5 5 0 b  c49d9638 
f T c c 4 e 7 3  cbc5d581 b838425a  a8d5e544 
b 4 7 2 e 6 0 a  8ed0ee05  38695e83 a e 6 8 f e l l  
f 8 1 c d b b 6  0cdbade3  cacd8914  f63a02b7  
c a 2 f 5 f 3 a  8a85d550 4b7705ea  43e503a f  
61b316f6  a2d82105 ab2e2b5e  2e40c41a  
75d3a064 4ad93f0c  8d586701 6 5 9 c c 5 f f  
8 4 a 6 e 3 4 a  f a T a f 3 7 c  c0319633 dec46921 
36555173 e4e9758c  ccce0e6c  d l c 9 b e 9 9  
a 8 c a f b c 2  be54edae  6 f f f f 7 c c  0 1 e 3 f 2 7 f  
3 c c 9 c f 2 1  329ca864 0cb34429 f b a b a 6 0 1  
a 3 c l c f 0 a  b 3 9 e a 8 f 7  dc867345 3b2271ba  
b4a544d4  59749976 7 1 2 e f 2 f 2  6 f c b e d 5 d  
7a14e5e4  9 e 2 a c 9 b d  9 f56764c  7 0 f 2 e f 3 c  
5ce89c3e  459d37af  a189c13d 8d lb5568  
f a 4 7 f d c a  e7760d48 bb243dec  bddcd8e0  
9 a 0 5 e b f 0  638a6eb3  c 6 f f f a f 3  9c817b53 
c f 4 1 8 e b f  560a13dd eab6b5d7  d368f422  
66 f5822c  laTd26b2 32227ef7  2b5cba59  

2 e b 4 f d 0 f  f 5 b c 9 e b b  11429760 6555325a  
35050126 c9c6a240  15f90e07  16611570 
a75d7b65 2c2e92 f8  25c55f8d  c8260443 
eb540c64  9160c136 47f77586  94e58747 
6789c508 726621ed e4133cca  3c39a962 
20c996d2 43ad4c2d  c l a 7 d 3 b 2  0c8686e f  
ce376564 a f 0 b 0 f 2 b  c70507e0 3 7 3 d f b c 0  
18ca353d dba6bb48  4b5a20ce  d003c675 
8128e2a4 c c c c 4 f 1 3  f c 2 4 1 e b b  87ba5da0  
3c75 f42e  1 9 e e f b c 7  l f 3 b 3 a a d  66400bfc  
b2bf6441  7 b e 6 c l e 2  f7415160  24264ad6 
e 8 f a 9 1 e l  5 1 f b f 4 0 3  f b 4 e d c c 3  c6b727bb  
8d8722a9 0a67702a  f 6 c d e b d 9  e l a d 6 b d d  
edbTe43e l ea22586  c l c 1 8 4 f 5  0349c93e  
22dd84b2 691b4672 d4dc9852 88ba4e0c  
63c8c25e  92 fd803a  a477d7ec  65eea731  
8083234b 96f3bTe5 6ebc8e9b  3571 f02d  
6d6db5e3 127fd171 f eb7d0d0  b7266434 

a l b 0 5 9 b 3  01c2f977  3b526317 5 5 0 f a 3 b e  
74c63d51 ff9fS4b8 131185f2 2afd8814 

0724320f afac79d8 6373edc9 264421fa 

d7dceegf elce2eal cOb1582e 336ccc6b 

279d43fO b223411a c764ed5f e33afO6d 

4aO8627a 2198fbda 4336d3e5 6cf34c6b 

9ec86148 f59ala9b 51dc5f27 Of 96337e 

18df76f2 ee20e250 d92f376f d97efafl 

282fdcf7 ff572655 f28eO93b c0806736 

2e7922c8 840e4072 70e3e497 bbdab75f 

83d04879 eb8cc529 cb66b4b5 92103aTb 

286e8c06 e048e226 634ee8cd b39b9507 

5d87f4f8 70a87bc9 a22688bc 08549fTc 

e8d8e3b8 ce9aObab 075aea70 9af456ed 

d2f91c98  f 7 5 7 3 a b d  c90e510f  8bbede45  4b3db413 e b 9 0 f 4 7 b  d6cO5dbl  8c437e10  
ac58339a  69c8a201 089c412e 9c5ea298  c l a 4 b d f 4  3a4088aO c b l d 7 f 4 6  9 3 c 3 d f 3 d  

. . . . . . . .  ~  . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

d a 9 f 4 c 7 3  cOb7e6f5 aeb46849 5dd72e83 b5770d75 e18c7336 f 6 2 0 e f 9 c  b2d84735 
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