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A Software/Reconfigurable Hardware SAT Solver
Iouliia Skliarova and António B. Ferrari, Member, IEEE

Abstract—This paper introduces a novel approach for solving
the Boolean satisfiability (SAT) problem by combining software
and configurable hardware. The suggested technique avoids in-
stance-specific hardware compilation and, as a result, allows the
total problem solving time to be reduced compared to other ap-
proaches that have been proposed. Moreover, the technique per-
mits problems that exceed the resources of the available reconfig-
urable hardware to be solved. The paper presents the results ob-
tained with some of the DIMACS benchmarks and a comparison
of our implementation with other available SAT solvers based on
reconfigurable hardware. The hardware part of the satisfier was
realized on Virtex XCV812E FPGA, which has a large volume of
embedded memory blocks that provide direct support for the pro-
posed approach.

Index Terms—Boolean satisfiability, configurable computing,
field-programmable gate array (FPGA), partitioning.

I. INTRODUCTION

THE Boolean satisfiability (SAT) problem plays an impor-
tant role in the computer-aided design of integrated cir-

cuits [1], artificial intelligence, testing [2], etc. Because of the
universality and wide scope of applications, the problem has
been studied extensively. SAT is an NP-complete problem [3]
and the available algorithms are time and resource consuming.
Thus it is difficult (and sometimes even impossible) to solve
many existing problems in a reasonable time, or within the com-
putational resources that are typically available. Consequently a
great deal of research effort is aimed at accelerating the execu-
tion of the relevant algorithms.

There are many different ways to increase the performance
of computationally intensive algorithms. For example, it is pos-
sible to design ASICs with hardwired control and specialized
functional units that can be optimized for the given problem.
However, ASIC-based solutions have two main disadvantages.
First, they are completely inflexible since their functionality
cannot be modified after fabrication. Second, they have very
high development costs, which can only be justified for large
volume production.

Another solution is based on a pure software approach imple-
mented on general-purpose computers (GPC). The latter have a
fixed architecture and instruction set, and different applications
are programmed within these predefined constraints. An advan-
tage of this technique is the high level of flexibility since any
change in the algorithm can be easily provided in the software.

Manuscript received October 10, 2001; revised January 21, 2003. This work
was supported in part by the Portuguese Foundation of Science and Technology
under Grant FCT-PRAXIS XXI/BD/21353/99.

The authors are with the Department of Electronics and Telecommuni-
cations/IEETA, University of Aveiro, 3810-193 Aveiro, Portugal (e-mail:
iouliia@det.ua.pt; ferrari@det.ua.pt).

Digital Object Identifier 10.1109/TVLSI.2004.825859

However for many time-consuming procedures the performance
provided by a pure software approach is not sufficient.

An implementation based on reconfigurable hardware
avoids the disadvantages associated with “pure software”
(implemented in GPC) and “pure hardware” (ASIC) solutions.
Indeed, the speed and resources provided by recent FPGAs are
comparable with ASICs and they allow much of the flexibility
of software implementations. Note, that typical clock rates
for FPGAs are much lower than for GPCs of similar tech-
nology. This is due to the need to accommodate programmable
interconnections. Thus a simple mapping of an application
from software to FPGA does not necessarily provide a higher
performance than GPCs. To achieve much higher performance
three techniques are usually employed [4].

• Design of custom functional units that can perform in a
few clock cycles operations that require many more clock
cycles in a GPC (this is especially true for bit-level oper-
ations).

• Use of pipelining and parallel processing techniques.
• Tailoring of the memory interface to the problem require-

ments.
The majority of researches in the area of accelerating SAT

solutions using reconfigurable hardware apply an instance-spe-
cific approach, i.e., a specialized hardware circuit is generated
for each problem instance to be considered [5]–[7]. In this case
the total problem solving time is equal to “hardware circuit gen-
eration time” + “FPGA configuration time” + “actual execution
time.” The primary advantage of this strategy is that a direct
mapping of a given problem data to functional components per-
mits performance to be increased significantly and it provides a
good utilization of the resources. There exist a number of spe-
cial-purpose techniques that allow the generation of the required
configurations for FPGAs to be accelerated [7], [8]. These tech-
niques include developing of customized software tools instead
of using commercially-available ones, exploiting modular de-
sign styles, etc. Nevertheless the time for hardware compilation
is still considerable and for many problems (usually easy ones)
it is higher than the time for the execution of combinatorial al-
gorithms in both hardware and software. Thus this method can
only be used efficiently for difficult tasks, for which the hard-
ware compilation time is offset by the reduced execution time.

Another important issue affecting any algorithm imple-
mented on reconfigurable hardware is related to the capacity
of the hardware platform. If the required circuit cannot be
implemented in a single FPGA, it is possible to employ
several FPGAs by applying special methods for multi-FPGA
partitioning. Nevertheless there is no a priori guarantee that
a given task can be efficiently mapped onto a given set of
reconfigurable hardware resources, and that it will complete in
reasonable time.
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The remainder of this paper is organized as follows. In Sec-
tion II, the SAT problem is described in detail. Section III pro-
vides a survey of the related work. Section IV is devoted to the
algorithm we use. The architecture of the proposed SAT solver
is presented in Section V. Section VI describes the method-
ology for partitioning the problem between software and recon-
figurable hardware. Experimental results on benchmark prob-
lems, including performance comparisons, are presented in Sec-
tion VII. Finally, concluding remarks are given in Section VIII.

II. PROBLEM STATEMENT

The SAT problem consists of determining if a Boolean for-
mula is satisfiable, i.e., whether there exists an assignment of
values to variables that forces the formula to evaluate to “1.”
Usually, the formula is presented in conjunctive normal form
(CNF), which is composed of a conjunction of a number of
clauses, where a clause is a disjunction of one or more literals.
A literal is a variable or its negation. For example, the following
formula contains 3 variables and 4 clauses, and is satisfied when

“1”:

On the other hand the following formula is unsatisfiable:

Algorithms for solving the SAT problem can be divided in
two major groups: complete and incomplete [9]. Complete al-
gorithms are always able either to find a solution (although it
may take an unacceptable time) or to conclude that a formula is
unsatisfiable.

The most known complete algorithm for SAT is the classical
Davis-Putnam (DP) algorithm [10], in which the search process
is organized by implicitly traversing the space of all possible
assignments of values to variables, and is usually represented
by a decision tree. The root of the decision tree corresponds to
a start point, where all the variables are unassigned. The other
nodes represent situations that can be reached during the search
process. These nodes are characterized by the respective partial
assignments. If at any node a partial assignment satisfies a for-
mula then the search process is terminated. In the opposite case,
the search must proceed either forward (if there are no conflicts)
or backward (if a conflict has appeared).

In order to pass from one node of the decision tree to the sub-
sequent one it is necessary to make a decision. The decision
consists of choosing one unassigned variable and assigning a
value to it (this variable is called a decision variable). There are
two basic approaches to the selection of the decision variables:
static and dynamic. In the static approach, all the variables are
initially pre-ordered using some criteria. The resulting static se-
quence is used to fetch the next decision variable when required.
In the dynamic approach, a variable and a value are chosen such
that the formula is more likely to be satisfied (for this purpose
different heuristic methods are employed).

After each decision, special techniques can be applied to
prune the search space. The most known of these techniques
are the unit clause rule and the pure literal rule [9].

The unit clause rule permits the current partial assignment
to be extended by identifying all direct and transitive implica-

tions of the decision variable on other variables. This is accom-
plished by finding unit clauses, i.e., clauses that have only one
unassigned literal l. Obviously, in order to satisfy such clauses
the respective literal l must get the value “1.” The variable cor-
responding to this literal is said to be implied to the respective
value (to “1” if is positive, or to “0” if l is negative).

The pure literal rule consists of extending the current partial
assignment by finding pure literals. A literal is called pure if all
its occurrences in a formula are either all positive or all negative
[9]. The variables corresponding to such literals can be set to
either the value “1” (if a literal is positive) or the value “0” (if
a literal is negative), without affecting the satisfiability of the
formula.

When a value is assigned to a variable in a formula (either by
means of decision, implication, or application of the pure literal
rule), some clauses may become satisfied and some may remain
undefined. All satisfied clauses as well as all literals with the
value “0” are removed from the formula and the search process
continues.

If a variable has different values implied by two or more
clauses, then a conflict exists. In this case it is necessary to back-
track. For that the algorithm erases all the actions performed
after the last decision and inverts the value of the current deci-
sion variable. If a conflict occurs again, the algorithm recedes to
the most-recently assigned variable with unfinished revision and
inverts its value. If backtracking beyond the first decision vari-
able is attempted, it means that all possible assignments have
been exhausted and there is no solution to the problem.

The majority of the state-of-the-art software SAT solvers
(GRASP [11], Relsat [12], zChaff [13], BerkMin [14], etc.)
have been derived from the DP algorithm by augmenting
it with special sophisticated techniques to prune the search
space. Examples of such techniques are dynamic selection
of the next decision variable, nonchronological backtracking
(backtracking is called nonchronological if the algorithm is
able to go back a number of levels in the decision tree by
identifying and skipping those of its branches that cannot lead
to a solution), conflict clause recording (the purpose of conflict
clause recording is to prevent the occurrence of conflicts similar
to those that have already arisen), etc.

III. RELATED WORK

Recently, several research groups have explored different ap-
proaches to solve the SAT problem with the aid of reconfig-
urable hardware [6]–[8], [15]–[21].

Zhong et al. implemented a version of the DP algorithm.
In their early work [15] they constructed an implication cir-
cuit and a state machine for each variable in the formula. All
the state machines are connected in a serial chain. In each pe-
riod of time, only one state machine is active. As soon as this
state machine completes processing, it transfers control either
to the next state machine (forward search) or to the previous
one (backtracking). Thus the solver uses a distributed control
for variable assignments. Each state machine knows the current
value of its variable (that can be either “0,” “1,” or free) and is
aware of whether that value has been assigned or implied. The
solution is found if the last (right) state machine tries to acti-
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vate the next state machine. If the first (left) state machine tries
to pass control to the left, then the solution does not exist. As
a preprocessing step, all the variables are sorted taking into ac-
count the number of their appearances in a given formula. This
static order is used to arrange the variables in the serial chain.
For every decision variable the value “1” is always tried before
the value “0.” In [15] hardware implementation of nonchrono-
logical backtracking was also proposed. The resulting hardware
execution time was quite good but the design possessed two dis-
tinctive drawbacks. First, the clock frequency was low (ranging
from 700 kHz to 2 MHz for different formulae [15]). Second, the
hardware compilation time took several hours (on a Sun 5/110
MHz/64 MB) thus canceling all the advantages of fast hardware
execution for many problems.

In more recent work [6], [8], the basic design decisions were
revised. As a result, a regular ring-based interconnecting struc-
ture was employed instead of irregular global lines, essentially
reducing the compilation time (to an order of seconds) and in-
creasing the clock rate (to 20–30 MHz). Besides, a technique
enabling conflict clauses to be generated and added was pro-
posed. As opposite to [15], the design described in [6], [8] is
clause-oriented, with the clauses arranged in processing ele-
ments distributed along a pipelined communication network.
The main control unit keeps track of the current state of the
SAT solver and monitors the network for both variable’s value
changes and conflicts. To address large problems instances that
do not fit into one FPGA chip, the authors propose to employ
several interlinked FPGAs. The experimental results are based
on both hardware implementation (on an IKOS emulator) and
simulation. The speedups achieved over the software satisfier
GRASP [11] run on a Sun5/110 MHz/64 MB (in a restricted
mode), including the hardware compilation and configuration
time, are an order of magnitude [8] for a subset of the DIMACS
SAT benchmarks [22].

The SAT solver proposed by Abramovici et al. [16] is based
on the PODEM algorithm that is generally used to solve test
generation problems. Here, the goal is to set the primary output
of a combinational logic circuit (which represents a Boolean
function to be satisfied) to “1” by finding a suitable assignment
of the primary inputs. An important concept of this algorithm is
an objective, which is a desired assignment of some value to a
signal having initially an unknown value “x” [16]. An objective
can only be achieved by primary input assignments. A back-
trace procedure is used to propagate an objective along a path
to primary inputs and determines the primary input assignment
that is likely to help to achieve the objective. To accomplish this
goal two models of the circuit have been constructed: a forward
model for propagating primary input assignments and a back-
ward model for propagating objectives. In [7] an improved ar-
chitecture is suggested that employs the DP algorithm and im-
plements an enhanced variable selection strategy. For hardware
implementation Abramovici et al. suggest creating a library of
basic modules that are to be used for any formula. The modules
have predefined internal placement and routing. In this case the
solver circuit will be built from modules, which allows the com-
pilation time to be reduced (to the order of minutes). The authors
implemented simple circuits on XC6264 FPGA and simulated
the bigger ones. For a circuit occupying the whole area of the

XC6264 FPGA the clock frequency is about 3.5 MHz. In [7]
Abramovici et al. report speedups from 0.01 to 7000 (after time
unit justification) compared to GRASP [11] for a subset of DI-
MACS benchmarks [22]. In [7] a virtual logic system was also
proposed. It allows reconfigurable circuits to be constructed for
solving SAT problems that are larger than the available hardware
resources. This is achieved by decomposing a formula into inde-
pendent sub-formulae that can be processed in separate FPGAs
either concurrently or sequentially.

A SAT solver proposed by Platzner et al. [17], [18] is sim-
ilar to that of Zhong [15]. It consists of a column of finite state
machines (FSM’s), deduction logic and a global control unit.
The deduction logic computes the result of the formula based
on the current partial variable assignment. All variable assign-
ments are tried in a fixed order and for each variable the value
“0”’ is tested before the value “1.” Initially, all variables are
unassigned and the control unit activates the first FSM. This
FSM tries to assign “0” to its variable and the deduction logic
calculates the result. If the formula evaluates to “1,” the solu-
tion has been found. Otherwise, if the formula evaluates to “0,”
the active FSM complements its value. If the formula evaluates
to “x,” the next FSM is activated. If an FSM tries both vari-
able assignments and the formula evaluates always to “0,” the
FSM resets its value and passes control to the previous FSM.
The authors implemented an accelerator prototype on the base
of a Pamette board containing 4 Xilinx XC4028 FPGAs. The
speedups obtained for benchmarks from DI-
MACS [22], including hardware compilation and configuration
time, range from 0.003 (for ) to 7.408 (for ) com-
pared to GRASP run on a PII/300 MHz/128 MB [18]. The de-
signs for the problems run at 20 MHz [18]. In [17] two
architecture extensions were described. In the first, additional
clauses are introduced to identify the conditions that point to
don’t care variables. This allows decisions on these variables to
be avoided. In the second architecture, logical implications that
are caused by value assignments are explored (the same as in
the DP algorithm).

More recent work in this direction is targeted at avoiding
instance-specific layout compilation. Boyd and Larrabee [20]
proposed an architecture for a SAT-specific PLD that excludes
instance-specific placement and routing. The suggested design
consumes polynomial hardware resources (with respect to the
number of variables and clauses) and requires polynomial time
to configure. The authors implemented a small version of their
satisfier for a problem having 8 variables and 8 clauses on a
Xilinx XC4005XL running at 12 MHz. However, no results on
large benchmark problems were reported.

Sousa et al. [21] were the first to propose partitioning the job
between software and reconfigurable hardware with the most
computationally intensive tasks (such as computing implica-
tions and choosing the next decision variable) assigned to hard-
ware, and the control-oriented tasks (such as conflict analysis,
backtrack control and clause database management) performed
in software. In order to deal with instances that exceed the avail-
able hardware capacity, a virtual hardware scheme with con-
text switching has been proposed. The results reported in [21]
are based on a software simulator of the system under an esti-
mated clock frequency of 80 MHz, assuming that the context-
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Fig. 1. Algorithm for solving the satisfiability problem formulated over a discrete matrix.

switching device can swap pages in one cycle. For
problems from DIMACS the speedup compared to GRASP is
about 3 .

IV. ALGORITHM

A SAT problem can be formulated over different mathemat-
ical models such as Boolean functions and discrete matrices. It
is important that one model can be formally transformed into an-
other. We have selected discrete matrices as the primary mathe-
matical model because they can easily be represented in both
software and hardware. Besides, the architecture of the SAT
solver that we are going to propose must allow a variety of
problem instances to be processed, and the suggested matrix
model is more suited to this purpose because it significantly
eases the process of configuring the circuit with the particular
problem data.

Let us formulate a SAT problem over a ternary matrix
by setting a correspondence between clauses and rows of

, and between variables and columns of . If there exist
clauses and variables in a formula then each element

, of the matrix is equal to:

• “1” — if clause contains variable ;
• “0” — if clause contains variable with negation;
• “-” (don’t care)—if clause does not contain variable .

For example, the following formula:

(1)

can be represented by a ternary matrix

Note that the problem of satisfying the Boolean formula is
equivalent to finding a ternary vector , which is orthogonal
to each row of the corresponding matrix [23]. Two ternary
vectors and are orthogonal
if there exists , such that either ‘ ’ and
‘ ’, or ‘ ’ and ‘ ’. If vector cannot be found then
the formula is unsatisfiable. On the other hand, if vector exists
then the zeros and ones in it correspond to those variables that
must receive values “1” and “0,” respectively, in order to satisfy
the formula. For the example considered above, a solution is

- , then ‘ ’ and ‘ ’. It is easy to check that
such assignment of values to variables satisfies the formula (1).

In order to solve the SAT problem formulated in terms of
a ternary matrix we applied an algorithm proposed in [23]
(see Fig. 1). The algorithm consists of a sequential application
of various reduction and splitting methods. The reduction
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methods allow the matrix to be simplified by deleting rows
and columns that cannot influence the final solution, and to
assign the value “1” or “0” to some component of vector that
initially is completely undetermined, i.e., - - . Let us
describe the reduction methods applied indicating how they
relate to the DP algorithm outlined in Section II. There are five
reduction methods:

• Method 1. All the columns that are completely undeter-
mined (i.e., do not contain either “0” or “1”) are deleted
from the matrix . This method enables us to detect don’t
care variables. The variable is don’t care because it does
not influence in any way the satisfiability of the formula,
and consequently it can be excluded from further consid-
eration.

• Method 2. All the rows that are orthogonal to the vector
are deleted from the matrix . This method is equivalent
to deleting the satisfied clauses from the formula.

• Method 3. All the columns that correspond to determined
components of vector are deleted from the matrix .
This operation deletes an assigned variable from further
consideration.

• Method 4. If there exists a row in the matrix that has
only one component with the value “0” or “1” and all the
other components equal to ‘-‘, then the corresponding ele-
ment of vector is set to the inverse value. This operation
corresponds to the application of the unit clause rule.

• Method 5. If there exists a column in the matrix that
does not contain the value “0” (“1”) then this value is as-
signed to the corresponding component of vector . This
method is equivalent to the application of the pure literal
rule.

When further reduction becomes impossible a splitting
method is applied. The method selects an undetermined
component of vector and tries to assign a value to it. It is
necessary to choose the component that corresponds to the
more determined column of the matrix , i.e., to a column that
has a minimal number of values “-.” Basically, the splitting
method employed corresponds to the selection of the next
decision variable and assigning a value to it. The implemented
strategy is equivalent to the so-called maximum occurrence in
clauses heuristics, which tries to satisfy as many clauses as
possible. In our case we choose a variable that appears in the
maximum number of rows of the matrix , and assign a value
to it that makes as many rows as possible become orthogonal
to the vector . Thus a dynamic selection of the next decision
variable is performed.

If after deleting a row the matrix becomes empty, then the
current value of the vector represents the solution, because in
this case all the clauses are satisfied. On the other hand, if the
matrix becomes empty after deleting a column or if it contains a
row without values “1” and “0,” then the current partial assign-
ment will not lead to the solution. Such a situation corresponds
to having an empty clause in a formula. In this case the algorithm
backtracks to the most-recently assigned component of vector
with unfinished revision and inverts its value, i.e., chronological
backtracking has been implemented. If backtracking beyond the

first decision variable is attempted, it means that the formula is
unsatisfiable.

The algorithm can be presented in the form of a decision tree.
In this case each node of the decision tree is characterized by a
ternary vector and by the matrix composed of some minors
of (i.e., some submatrices of ). At the beginning the vector

is completely undetermined and . The transition from
one node of the decision tree to another is performed when a
reduction or splitting method is applied.

Let us employ the algorithm considered above to verify if the
following Boolean formula is satisfiable:

(2)

The formula can be converted to the following matrix :

Fig. 2 depicts the decision tree for this example. The deci-
sion tree is relatively simple and has just two branching points
(nodes 1a-b and 3a). The numbers of nodes indicate the order
in which various intermediate situations are examined. Fig. 2
also presents data about current values of the vector and in-
termediate matrices , which have been constructed during the
search for results, and the names of methods that have been em-
ployed at the various steps of the algorithm (see information in
parentheses).

It is easy to check that the discovered vector is orthogonal
to each row of the matrix . Thus formula (2) is satisfied by the
following assignment of values to variables: ‘ ’ ‘ ’

‘ ’ ‘ ’ ‘ ’, and ‘ ’.

V. ARCHITECTURE OF SAT SOLVER

As mentioned in the introduction, hardware compilation
time restricts the range of problems where the instance-specific
approach can be useful compared to software SAT solvers. In
order to eliminate this constraint we have attempted to design a
universal circuit, or hardware template, whose structure is not
changed for different problems.

The basic components of the proposed architecture are shown
in Fig. 3. The central control unit executes the algorithm de-
scribed in Section IV. The control unit is described in VHDL
and is implemented as a finite state machine. Its behavior cor-
responds to the flowchart depicted in Fig. 1.

The block Registers consists of the following components:

• — is a -bit register that indicates the
address of the active row of the matrix .
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Fig. 2. Decision tree for finding the vector v, which is orthogonal to any row of the matrix T.

• — is a -bit register that keeps the ad-
dress of the active column of the matrix .

• — is composed of two -bit registers containing the
current value of the vector . The first of these registers
( ) contains ones in the positions in which vector

is equal to “1,” whereas the second register ( )
holds ones in the positions where is equal to “0.” As
a result, ‘ ’ if and only if ‘ ’, and

‘ ’ if and only if ‘ ’ .
• — is an -bit register that indicates (by ones)

which rows of the matrix have been deleted.
• — is an -bit register that indicates (by ones)

which columns of the matrix have been deleted.
• — is a -bit register that stores the number

of the current decision variable.
• — is a 2-bit register that keeps track of what value

has been assigned to the current decision variable and in-
dicates whether both values have already been tried.

• — a number of auxiliary registers that will not
be discussed here.

There are four RAM blocks storing matrices in Fig. 3. The
first two ( and ) correspond directly to the matrix

and the remaining blocks ( and ) represent a

transpose of . Each element ,
of is encoded as follows:

• if ‘ ’, then ‘ ’, ‘ ’,
‘ ’ and ‘ ’.

• if ‘ ’, then ‘ ’,
‘ ’, ‘ ’, and ‘ ’.

• if ‘ ’, then ‘ ’, ‘ ’,
‘ ’, and ‘ ’.

Since we keep both the matrix and its transpose, we can
access any row and column of within one clock cycle. The
matrices themselves are not modified during the search process.
All possible changes (such as deleting rows and columns) are
reflected in the registers. Thus there is no need to keep the in-
termediate matrices in the stack. The matrices are stored in the
FPGA embedded memory blocks.

The maximal dimensions of matrix have been fixed and
they are equal to . If it is necessary to process a
matrix of smaller dimensions then the actual parameters,
and , will be stored in two special registers. Taking into ac-
count these values the control unit will only enforce the handling
of the required area of the matrices as shown in Fig. 4.

The ALU is used to calculate the number of ones and zeros in
rows and columns of the matrix, to determine whether any row
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Fig. 3. The SAT solver architecture.

Fig. 4. Treatment of the matrices in the FPGA.

is orthogonal to the vector , etc. For example, Fig. 5 presents
a sub-circuit that is utilized in methods 1 and 5 of the algorithm
from Fig. 1 and allows a column to be processed in one clock
cycle.

The stack memory supports the backtracking process.
Structurally, the stack is composed of a ( -1)-bit counter,
which stores the current decision level (i.e., the cur-
rent depth of the decision tree), and six RAM blocks
of depth ( -1) that store the values of the registers

, and ,
respectively for each decision level. As a result, the largest
depth of the decision tree can be ( -1). Obviously, such a big
number is not required and can be reduced. When a splitting
method is applied, the current values from the registers are
stored at the respective addresses in the RAM blocks, and the
stack pointer is incremented. During the backtracking process,
the stack pointer is decremented and the required values are
restored, i.e., the data is moved from the RAM blocks back to
the registers.

An ADM-XRC PCI board [24] containing one XCV812E
Virtex Extended Memory FPGA [25] was used as the reconfig-
urable hardware platform. This FPGA is composed of a 56 84
array of CLB’s and it incorporates 140 KB of dedicated block
RAM. This type of FPGA is very well suited to the proposed
architecture of a SAT solver because large amounts of block
RAM can be used to store matrices. Interaction with the FPGA
is carried out with the aid of the ADM-XRC API library, which
provides support for initialization, loading configuration bit-
streams, data transfers, interrupt processing, clock management
and error handling.
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Fig. 5. A circuit that is utilized in methods 1 and 5 of the algorithm.

TABLE I
PARAMETERS OF THE CIRCUITS IMPLEMENTED

Three different circuits have been implemented with the
following maximal dimensions of matrix :
64 32, 128 64, and 256 128 (we will refer to these
designs as and ). Table I contains information
about the area occupied by each circuit and its clock frequency.
The area is shown in the number of Virtex slices (each CLB is
composed of two slices). It should be noted that the hardware
requirements of the proposed SAT solver are not a function of
the size and complexity of the formula being solved.

VI. SOFTWARE/RECONFIGURABLE HARDWARE PARTITIONING

The hardware SAT solver described in Section V satisfies the
requirements considered above: its structure is not changed from
one problem to another. It is only necessary to specify the actual
dimensions of the matrix (i.e., parameters and ).

An important problem to point out is that obviously it is
not possible to store and process matrices of arbitrary sizes
in an FPGA. Because of that we suggest the strategy con-
sidered below should be applied. When the decision tree is
being constructed, various splitting and reduction methods are
applied. As a result the initial matrix dimensions are gradually
decreased as we move from the root of the tree to its leaves
(this can be seen in Fig. 2). Thus each problem can be treated
according to the technique depicted in Fig. 6.

Initially, the algorithm described in Section IV was imple-
mented by a software application developed in C++. Then, for
each problem instance the software program configures the
FPGA with the respective SAT circuit. After that, if the initial
matrix dimensions satisfy the predefined constraints (i.e., the
maximum allowed number of rows and columns )
then the matrix data will be entirely transferred to FPGA and
the problem will be completely solved in hardware. Otherwise,
the software will be trying to solve the problem. During this
process it will apply special splitting and reduction methods
until an intermediate matrix that does not exceed the capacity
constraints is obtained. The FPGA will then be responsible for
the subsequent steps. If the reconfigurable hardware finds a
solution, the problem is solved and the result will be dispatched

Fig. 6. Collaboration of software and reconfigurable hardware.

to the host computer. If it does not, control will be returned to
software. The software will continue to traverse the decision
tree eventually reaching some other point where the matrix
dimensions will fall within the constraints. Then the matrix
data will be transferred to the FPGA and it will try to solve the
sub-problem. These steps will be repeated until we either get
the solution or conclude that the formula is unsatisfiable.

VII. EXPERIMENTAL RESULTS

In order to estimate the effectiveness of the proposed ap-
proach, a number of experiments have been conducted. For
this purpose the Pigeon hole problem from DIMACS [22] was
chosen. The problem consists of checking whether it is possible
to place pigeons in holes without two pigeons being in
the same hole. Obviously, it is not possible, thus all instances
are unsatisfiable.

This problem is very time-consuming when it is being solved
in software. Tables II–IV contain the results of handling this
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TABLE II
EXPERIMENTAL RESULTS FOR THE PIGEON HOLE PROBLEM (SAT SOLVER SOFT/C64)

TABLE III
EXPERIMENTAL RESULTS FOR THE PIGEON HOLE PROBLEM (SAT SOLVER SOFT/C128)

TABLE IV
EXPERIMENTAL RESULTS FOR THE PIGEON HOLE PROBLEM (SAT SOLVER SOFT/C256)

task with the aid of three architectures that include a software
part and one of the implemented circuits . We
will refer to these software/reconfigurable hardware implemen-
tations as and .

If the initial matrix dimensions for the considered problem
instance exceed the capacity of the hardware satisfier then the
respective task will be treated at the beginning in software
that realizes the same algorithm as hardware. As soon as an
intermediate matrix will satisfy the predefined constraints of
the hardware SAT solver, it will be transferred to the FPGA and
processed there. The right-hand columns in Tables II, –IV show
how many times the hardware was activated for each problem.
Obviously, the bigger the predefined parameters and

are, the larger the part of the decision tree handled in
hardware (see Fig. 7) and, as a result, the fewer times it is
necessary to transfer the matrix data to the FPGA.

In our case the total time required to solve a problem is equal
to:

The FPGA configuration time ranges from 0.31 s for
to 0.37 s for and starting from the instance it be-

comes negligible compared with the execution time. It should be
noted that the value could be omitted altogether from con-
sideration since the FPGA must be configured only once after

Fig. 7. Processing of the decision tree in software and in the reconfigurable
hardware.

which it can be used for a series of problems without the need for
reconfiguration. The value is the time for solving a part of
the problem in software. The value is the time for solving a
part of the problem in the reconfigurable hardware SAT solver.
The software part for all the experiments was executed on an
AMD Athlon/1 GHz/256 MB running Windows2000 and the
hardware part was performed in an ADM-XRC board attached
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Fig. 8. Comparison with Platzner’s hardware SAT satisfier [18].

TABLE V
EXPERIMENTAL RESULTS FOR BENCHMARKS AVAILABLE FROM [22] (SAT SOLVER soft=c256)

to the host computer via the PCI bus. The value is the
time spent in communications between the host computer and
the FPGA. It includes the time required to transfer the matrix
data to the FPGA, and to receive the result from the FPGA.

We did a comparison of our results with GRASP [11], which
is one of the most known software SAT satisfiers. GRASP
was executed on the same platform (i.e., on an AMD Athlon/1
GHz/256 MB) with the options for

- instances and
for instance. The speedup resulting from our approach
is given by . Since the considered hardware
implementation was specially designed for bit-level operations
on data with the required size, these operations were performed
much faster than in software. As a result, the speedup of
the proposed software/hardware implementation compared
to GRASP grows with the increase of the predefined matrix
dimensions in the FPGA.

Fig. 8 shows a comparison of the proposed SAT
solver with the reconfigurable hardware satisfier described by

Platzner et al. in [18]. The latter circuit runs at 20 MHz and
the total problem solving time includes in this case the hard-
ware compilation time (which dominates in all the instances
considered) and the hardware execution time. These values to-
gether with a speedup of Platzner’s implementation compared
to GRASP were taken from [18]. However in [18] the soft-
ware SAT solver GRASP was executed on a Pentium-II/300
MHz/128 MB running Linux. We think that it is very problem-
atic to present a more exact comparison because with changing
software platform the hardware compilation time of Platzner’s
SAT solver should also be changed.

Results achieved with one benchmark cannot be considered
as representative. Hence a number of experiments have been
conducted on some other benchmarks from [22]. The respec-
tive results obtained with the aid of the architecture
are presented in Table V. The meanings of the column names
are the same as for Tables II–IV. However, in Table V the value

is omitted because the FPGA is configured with the cir-
cuit only once and the configuration is reused for all the
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problem instances. As it can be seen from Table V the consid-
ered benchmarks are easily solved by GRASP. Consequently,
our approach does not provide useful speedups for problems that
can be solved in fractions of a second by a software application.
Essentially, this can be explained by the two following reasons.
First, GRASP is based on a more advanced algorithm and in-
cludes many sophisticated techniques such as nonchronological
backtracking and dynamic clause addition [11]. The complexity
of the XCV812E FPGA allows some of these techniques to be
implemented in our hardware SAT solver, which should result
in further performance improvements. The second reason is that
for easy problems the communication overhead turns out to be
significant. However, it is possible to enlarge the size of ma-
trices that can be handled in hardware since the capacity of cur-
rent FPGAs is increasing very rapidly. Thus the communication
time between the FPGA and the host computer can be reduced.

VIII. CONCLUSION

An architecture for a SAT solver that is based on a rational
collaboration between software and reconfigurable hardware
has been presented. The sequence of hardware operations is
managed by a central control unit using a stack memory to
support the backtracking process. The proposed technique
allows instance-specific hardware compilation to be avoided
and permits SAT problems to be solved that are larger than the
available capacity of the reconfigurable hardware platform.
As a result, a significant speedup has been achieved for the
Pigeon hole problem compared to the state-of-the-art software
SAT solver, GRASP. This considerable acceleration can be ex-
plained by the following primary reasons. Firstly, the algorithm
requires execution of quite simple operations over multiple
regular data and these operations are not well supported by
conventional ALUs. In order to realize these operations, custom
functional units have been designed and their architectures were
specially optimized for the SAT problem. Secondly, memory
in general-purpose computers is organized as a collection of
fixed size words. The data structures for the SAT problem do
not fit exactly into one word. Thus multiple memory accesses
are required even to execute a simple operation. On the other
hand, in the proposed architecture the memory organization is
tailored to the required data size.

It should be noted that the speedups achieved by the consid-
ered SAT solver compared to a software solution are significant
just for certain classes of SAT instances, for which the optimiza-
tion techniques proposed and implemented by software SAT sat-
isfiers are not very efficient. However, we expect to achieve fur-
ther improvements in the results in future work based on the pro-
posed technique and potential architectural advances. One of the
interesting possibilities is to implement nonchronological back-
tracking in hardware since this would allow large regions of the
decision tree to be pruned away, thus speeding up the search for
a solution.
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