
A Software Reference Architecture for Semantic-Aware

Big Data Systems

Sergi Nadala,∗, Victor Herreroa, Oscar Romeroa, Alberto Abellóa, Xavier
Francha, Stijn Vansummerenb, Danilo Valerioc

aUniversitat Politècnica de Catalunya - BarcelonaTech
bUniversité Libre de Bruxelles

cCorporate Research and Technology, Siemens AG Österreich

Abstract

Context: Big Data systems are a class of software systems that ingest, store,
process and serve massive amounts of heterogeneous data, from multiple sources.
Despite their undisputed impact in current society, their engineering is still in
its infancy and companies find it difficult to adopt them due to their inherent
complexity. Existing attempts to provide architectural guidelines for their engi-
neering fail to take into account important Big Data characteristics, such as the
management, evolution and quality of the data.
Objective: In this paper, we follow software engineering principles to refine the
λ-architecture, a reference model for Big Data systems, and use it as seed to
create Bolster, a software reference architecture (SRA) for semantic-aware Big
Data systems.
Method: By including a new layer into the λ-architecture, the Semantic Layer,
Bolster is capable of handling the most representative Big Data characteristics
(i.e., Volume, Velocity, Variety, Variability and Veracity).
Results: We present the successful implementation of Bolster in three industrial
projects, involving five organizations. The validation results show high level of
agreement among practitioners from all organizations with respect to standard
quality factors.
Conclusion: As an SRA, Bolster allows organizations to design concrete ar-
chitectures tailored to their specific needs. A distinguishing feature is that it
provides semantic-awareness in Big Data Systems. These are Big Data sys-
tem implementations that have components to simplify data definition and
exploitation. In particular, they leverage metadata (i.e., data describing data)
to enable (partial) automation of data exploitation and to aid the user in their

∗Corresponding author. Address: Campus Nord Omega-125, UPC - dept ESSI, C/Jordi
Girona Salgado 1-3, 08034 Barcelona, Spain

Email addresses: snadal@essi.upc.edu (Sergi Nadal), vherrero@essi.upc.edu (Victor
Herrero), oromero@essi.upc.edu (Oscar Romero), aabello@essi.upc.edu (Alberto Abelló),
franch@essi.upc.edu (Xavier Franch), stijn.vansummeren@ulb.ac.be (Stijn Vansummeren),
danilo.valerio@siemens.com (Danilo Valerio)

Preprint submitted to Information and Software Technology May 22, 2017



decision making processes. This simplification supports the differentiation of
responsibilities into cohesive roles enhancing data governance.

Keywords: Big Data, Software Reference Architecture, Semantic-Aware, Data
Management, Data Analysis

1. Introduction1

Major Big Data players, such as Google or Amazon, have developed large2

Big Data systems that align their business goals with complex data management3

and analysis. These companies exemplify an emerging paradigm shift towards4

data-driven organizations, where data are turned into valuable knowledge that5

becomes a key asset for their business. In spite of the inherent complexity of6

these systems, software engineering methods are still not widely adopted in their7

construction (Gorton and Klein, 2015). Instead, they are currently developed8

as ad-hoc, complex architectural solutions that blend together several software9

components (usually coming from open-source projects) according to the system10

requirements.11

An example is the Hadoop ecosystem. In Hadoop, lots of specialized Apache12

projects co-exist and it is up to Big Data system architects to select and orches-13

trate some of them to produce the desired result. This scenario, typical from14

immature technologies, raises high-entry barriers for non-expert players who15

struggle to deploy their own solutions overwhelmed by the amount of available16

and overlapping components. Furthermore, the complexity of the solutions17

currently produced requires an extremely high degree of specialization. The18

system end-user needs to be what is nowadays called a “data scientist”, a data19

analysis expert proficient in managing data stored in distributed systems to20

accommodate them to his/her analysis tasks. Thus, s/he needs to master two21

profiles that are clearly differentiated in traditional Business Intelligence (BI)22

settings: the data steward and the data analyst, the former responsible of data23

management and the latter of data analysis. Such combined profile is rare and24

subsequently entails an increment of costs and knowledge lock-in.25

Since the current practice of ad-hoc design when implementing Big Data26

systems is hence undesirable, improved software engineering approaches special-27

ized for Big Data systems are required. In order to contribute towards this goal,28

we explore the notion of Software Reference Architecture (SRA) and present29

Bolster, an SRA for Big Data systems. SRAs are generic architectures for a30

class of software systems (Angelov et al., 2012). They are used as a foundation31

to derive software architectures adapted to the requirements of a particular32

organizational context. Therefore, they open the door to effective and efficient33

production of complex systems. Furthermore, in an emergent class of systems34

(such as Big Data systems), they make it possible to synthesize in a systematic35

way a consolidated solution from available knowledge. As a matter of fact,36

the detailed design of such a complex architecture has already been designated37

as a major Big Data software engineering research challenge (Madhavji et al.,38

2



2015; Esteban, 2016). Well-known examples of SRAs include the successful39

AUTOSAR SRA (Martínez-Fernández et al., 2015) for the automotive industry,40

the Internet of Things Architecture (IoT-A) (Weyrich and Ebert, 2016), an41

SRA for web browsers (Grosskurth and Godfrey, 2005) and the NIST Cloud42

Computing Reference Architecture (Liu et al., 2012).43

As an SRA, Bolster paves the road to the prescriptive development of software44

architectures that lie at the heart of every new Big Data system. Using Bolster,45

the work of the software architect is not to produce a new architecture from a46

set of independent components that need to be assembled. Instead, the software47

architect knows beforehand what type of components are needed and how they48

are interconnected. Therefore, his/her main responsibility is the selection of49

technologies for those components given the concrete requirements and the50

goals of the organization. Bolster is a step towards the homogeneization and51

definition of a Big Data Management System (BDMS), as done in the past52

for Database Management Systems (DBMS) (Garcia-Molina et al., 2009) and53

Distributed Database Management Systems (DDBMS) (Özsu and Valduriez,54

2011). A distinguishing feature of Bolster is that it provides an SRA for semantic-55

aware Big Data Systems. These are Big Data system implementations that have56

components to simplify data definition and data exploitation. In particular,57

such type of systems leverage on metadata (i.e., data describing data) to enable58

(partial) automation of data exploitation and to aid the user in their decision59

making processes. This definition supports the differentiation of responsibilities60

into cohesive roles, the data steward and the data analyst, enhancing data61

governance.62

Contributions. The main contributions of this paper are as follows:63

• Taking as building blocks the five “V’s” that define Big Data systems (see64

Section 2), we define the set of functional requirements sought in each to65

realize a semantic-aware Big Data architecture. Such requirements will66

further drive the design of Bolster.67

• Aiming to study the related work on Big Data architectures, we perform a68

lightweight Systematic Literature Review. Its main outcome consists on69

the division of 21 works into two great families of Big Data architectures.70

• We present Bolster, an SRA for semantic-aware Big Data systems. Com-71

bining principles from the two identified families, it succeeds on satisfying72

all the posed Big Data requirements. Bolster relies on the systematic73

use of semantic annotations to govern its data lifecycle, overcoming the74

shortcomings present in the studied architectures.75

• We propose a framework to simplify the instantiation of Bolster to different76

Big Data ecosystems. For the sake of this paper, we precisely focus on77

the components of the Apache Hadoop and Amazon Web Services (AWS)78

ecosystems.79

3



• We detail the deployment of Bolster in three different industrial scenarios,80

showcasing how it adapts to their specific requirements. Furthermore, we81

provide the results of its validation after interviewing practitioners in such82

organizations.83

Outline. The paper is structured as follows. Section 2 introduces the Big84

Data dimensions and requirements sought. Section 3 presents the Systematic85

Literature Review. Sections 4, 5 and 6 detail the elements that compose Bolster,86

an exemplar case study implementing it and the proposed instantiation method87

respectively. Further, Sections 7 report the industrial deployments and validation.88

Finally, Section 8 wraps up the main conclusions derived from this work.89

2. Big Data Definition and Dimensions90

Big Data is a natural evolution of BI, and inherits its ultimate goal of91

transforming raw data into valuable knowledge. Nevertheless, traditional BI92

architectures, whose de-facto architectural standard is the Data Warehouse93

(DW), cannot be reused in Big Data settings. Indeed, the so-popular characteri-94

zation of Big Data in terms of the three “V’s (Volume, Velocity and Variety)”95

(Jagadish et al., 2014), refers to the inability of DW architectures, which typically96

rely on relational databases, to deal and adapt to such large, rapidly arriving97

and heterogeneous amounts of data. To overcome such limitations, Big Data98

architectures rely on NOSQL (Not Only SQL), co-relational database systems99

where the core data structure is not the relation (Meijer and Bierman, 2011), as100

their building blocks. Such systems propose new solutions to address the three101

V’s by (i) distributing data and processing in a cluster (typically of commod-102

ity machines) and (ii) by introducing alternative data models. Most NOSQL103

systems distribute data (i.e., fragment and replicate it) in order to parallelize104

its processing while exploiting the data locality principle, ideally yielding a105

close-to-linear scale-up and speed-up (Özsu and Valduriez, 2011). As enunciated106

by the CAP theorem (Brewer, 2000), distributed NOSQL systems must relax the107

well-known ACID (Atomicity, Consistency, Isolation, Durability) set of properties108

and the traditional concept of transaction to cope with large-scale distributed109

processing. As result, data consistency may be compromised but it enables the110

creation of fault-tolerant systems able to parallelize complex and time-consuming111

data processing tasks. Orthogonally, NOSQL systems also focus on new data112

models to reduce the impedance mismatch (Gray et al., 2005). Graph, key-value113

or document-based modeling provide the needed flexibility to accommodate114

dynamic data evolution and overcome the traditional staticity of relational DWs.115

Such flexibility is many times acknowledged by referring to such systems as116

schemaless databases. These two premises entailed a complete rethought of117

the internal structures as well as the means to couple data analytics on top of118

such systems. Consequently, it also gave rise to the Small and Big Analytics119

concepts (Stonebraker, 2012), which refer to performing traditional OLAP/-120

Query&Reporting to gain quick insight into the data sets by means of descriptive121

4



analytics (i.e., Small Analytics) and Data Mining/Machine Learning to enable122

predictive analytics (i.e., Big Analytics) on Big Data systems, respectively.123

In the last years, researchers and practitioners have widely extended the124

three “V’s” definition of Big Data as new challenges appear. Among all existing125

definitions of Big Data, we claim that the real nature of Big Data can be126

covered by five of those “V’s”, namely: (a) Volume, (b) Velocity, (c) Variety,127

(d) Variability and (e) Veracity. Note that, in contrast to other works, we do128

not consider Value. Considering that any decision support system (DSS) is the129

result of a tightly coupled collaboration between business and IT (García et al.,130

2016), Value falls into the business side while the aforementioned dimensions131

focus on the IT side. In the rest of this paper we refer to the above-mentioned132

“V’s” also as Big Data dimensions.133

In this section, we provide insights on each dimension as well as a list of134

linked requirements that we consider a Big Data architecture should fulfill. Such135

requirements were obtained in two ways: firstly inspired by reviewing related136

literature on Big Data requirements (Gani et al., 2016; Agrawal et al., 2011;137

Russom, 2011; Fox and Chang, 2015; Chen and Zhang, 2014); secondly they138

were validated and refined by informally discussing with the stakeholders from139

several industrial Big Data projects (see Section 7) and obtaining their feedback.140

Finally, a summary of devised requirements for each Big Data dimension is141

depicted in Table 1. Note that such list does not aim to provide an exhaustive142

set of requirements for Big Data architectures, but a high-level baseline on the143

main requirements any Big Data architecture should achieve to support each144

dimension.145

2.1. Volume146

Big Data has a tight connection with Volume, which refers to the large147

amount of digital information produced and stored in these systems, nowadays148

shifting from terabytes to petabytes (R1.1). The most widespread solution for149

Volume is data distribution and parallel processing, typically using cloud-based150

technologies. Descriptive analysis (Sharda et al., 2013) (R1.2), such as reporting151

and OLAP, has shown to naturally adapt to distributed data management152

solutions. However, predictive and prescriptive analysis (R1.3) show higher-153

entry barriers to fit into such distributed solutions (Tsai et al., 2015). Classically,154

data analysts would dump a fragment of the DW in order to run statistical155

methods in specialized software, (e.g., R or SAS) (Ordonez, 2010). However, this156

is clearly unfeasible in the presence of Volume, and thus typical predictive and157

prescriptive analysis methods must be rethought to run within the distributed158

infrastructure, exploiting the data locality principle (Özsu and Valduriez, 2011).159

2.2. Velocity160

Velocity refers to the pace at which data are generated, ingested (i.e., dealt161

with the arrival of), and processed, usually in the range of milliseconds to seconds.162

This gave rise to the concept of data stream (Babcock et al., 2002) and creates163

two main challenges. First, data stream ingestion, which relies on a sliding164

5



window buffering model to smooth arrival irregularities (R2.1). Second, data165

stream processing, which relies on linear or sublinear algorithms to provide near166

real-time analysis (R2.2).167

2.3. Variety168

Variety deals with the heterogeneity of data formats, paying special attention169

to semi-structured and unstructured external data (e.g., text from social networks,170

JSON/XML-formatted scrapped data, Internet of Things sensors, etc.) (R3.1).171

Aligned with it, the novel concept of Data Lake has emerged (Terrizzano et al.,172

2015), a massive repository of data in its original format. Unlike DW that173

follows a schema on-write approach, Data Lake proposes to store data as they174

are produced without any preprocessing until it is clear how they are going to175

be analyzed (R3.2), following the load-first model-later principle. The rationale176

behind a Data Lake is to store raw data and let the data analyst decide how177

to cook them. However, the extreme flexibility provided by the Data Lake is178

also its biggest flaw. The lack of schema prevents the system from knowing179

what is exactly stored and this burden is left on the data analyst shoulders180

(R3.3). Since loading is not that much of a challenge compared to the data181

transformations (data curation) to be done before exploiting the data, the Data182

Lake approach has received lots of criticism and the uncontrolled dump of data183

in the Data Lake is referred to as Data Swamp (Stonebraker, 2014).184

2.4. Variability185

Variability is concerned with the evolving nature of ingested data, and186

how the system copes with such changes for data integration and exchange.187

In the relational model, mechanisms to handle evolution of intension (R4.1)188

(i.e., schema-based), and extension (R4.2) (i.e., instance-based) are provided.189

However, achieving so in Big Data systems entails an additional challenge due190

to the schemaless nature of NOSQL databases. Moreover, during the lifecycle of191

a Big Data-based application, data sources may also vary (e.g., including a new192

social network or because of an outage in a sensor grid). Therefore, mechanisms193

to handle data source evolution should also be present in a Big Data architecture194

(R4.3).195

2.5. Veracity196

Veracity has a tight connection with data quality, achieved by means of data197

governance protocols. Data governance concerns the set of processes and decisions198

to be made in order to provide an effective management of the data assets (Khatri199

and Brown, 2010). This is usually achieved by means of best practices. These200

can either be defined at the organization level, depicting the business domain201

knowledge, or at a generic level by data governance initiatives (e.g., Six Sigma202

(Harry and Schroeder, 2005)). However, such large and heterogeneous amount203

of data present in Big Data systems begs for the adoption of an automated data204

governance protocol, which we believe should include, but might not be limited205

to, the following elements:206

6



• Data provenance (R5.1), related to how any piece of data can be tracked to207

the sources to reproduce its computation for lineage analysis. This requires208

storing metadata for all performed transformations into a common data209

model for further study or exchange (e.g., the Open Provenance Model210

(Moreau et al., 2011)).211

• Measurement of data quality (R5.2), providing metrics such as accuracy,212

completeness, soundness and timeliness, among others (Batini et al., 2015).213

Tagging all data with such adornments prevents analysts from using low214

quality data that might lead to poor analysis outcomes (e.g., missing values215

for some data).216

• Data liveliness (R5.3), leveraging on conversational metadata (Terrizzano217

et al., 2015) which records when data are used and what is the outcome218

users experience from it. Contextual analysis techniques (Aufaure, 2013)219

can leverage such metadata in order to aid the user in future analytical220

tasks (e.g., query recommendation (Giacometti et al., 2008)).221

• Data cleaning (R5.4), comprising a set of techniques to enhance data222

quality like standardization, deduplication, error localization or schema223

matching. Usually such activities are part of the preprocessing phase,224

however they can be introduced along the complete lifecycle. The degree225

of automation obtained here will vary depending on the required user226

interaction, for instance any entity resolution or profiling activity will infer227

better if user aided.228

Including the aforementioned automated data governance elements into an229

architecture is a challenge, as they should not be intrusive. First, they should230

be transparent to developers and run as under the hood processes. Second, they231

should not overburden the overall system performance (e.g., (Interlandi et al.,232

2015) shows how automatic data provenance support entails a 30% overhead on233

performance).234

2.6. Summary235

The discussion above shows that current BI architectures (i.e., relying on236

RDMS), cannot be reused in Big Data scenarios. Such modern DSS must adopt237

NOSQL tools to overcome the issues posed by Volume, Velocity and Variety.238

However, as discussed for Variability and Veracity, NOSQL does not satisfy key239

requirements that should be present in a mature DSS. Thus, Bolster is designed240

to completely satisfy the aforementioned set of requirements, summarized in241

Table 1.242

3. Related Work243

In this section, we follow the principles and guidelines of Systematic Literature244

Reviews (SLR) as established in (Kitchenham and Charters, 2007). The purpose245

of this review is to systematically analyze the current landscape of Big Data246

7



Requirement

1. Volume
R1.1 The BDA shall provide scalable storage of massive data sets.
R1.2 The BDA shall be capable of supporting descriptive analytics.
R1.3 The BDA shall be capable of supporting predictive and prescrip-

tive analytics.
2. Velocity
R2.1 The BDA shall be capable of ingesting multiple, continuous,

rapid, time varying data streams.
R2.2 The BDA shall be capable of processing data in a (near) real-time

manner.
3. Variety
R3.1 The BDA shall support ingestion of raw data (structured, semi-

structured and unstructured).
R3.2 The BDA shall support storage of raw data (structured, semi-

structured and unstructured).
R3.3 The BDA shall provide mechanisms to handle machine-readable

schemas for all present data.
4. Variability
R4.1 The BDA shall provide adaptation mechanisms to schema evolu-

tion.
R4.2 The BDA shall provide adaptation mechanisms to data evolution.
R4.3 The BDA shall provide mechanisms for automatic inclusion of

new data sources.
5. Veracity
R5.1 The BDA shall provide mechanisms for data provenance.
R5.2 The BDA shall provide mechanisms to measure data quality.
R5.3 The BDA shall provide mechanisms for tracing data liveliness.
R5.4 The BDA shall provide mechanisms for managing data cleaning.

Table 1: Requirements for a Big Data Architecture (BDA)

architectures, with the goal to identify how they meet the devised requirements,247

and thus aid in the design of an SRA. Nonetheless, in this paper we do not248

aim to perform an exhaustive review, but to depict, in a systematic manner, an249

overview on the landscape of Big Data architectures. To this end, we perform a250

lightweight SLR, where we focus on high quality works and evaluate them with251

respect to the previously devised requirements.252

8



3.1. Selection of papers253

The search was ranged from 2010 to 2016, as the first works on Big Data254

architectures appeared by then. The search engine selected was Scopus1, as255

it indexes all journals with a JCR impact factor, as well as the most relevant256

conferences based on the CORE index2. We have searched papers with title,257

abstract or keywords matching the terms “big data” AND “architecture”. The258

list was further refined by selecting papers only in the “Computer Science”259

and “Engineering” subject areas and only documents in English. Finally, only260

conference papers, articles, book chapters and books were selected.261

By applying the search protocol we obtained 1681 papers covering the search262

criteria. After a filter by title, 116 papers were kept. We further applied a263

filter by abstract in order to specifically remove works describing middlewares264

as part of a Big Data architecture (e.g., distributed storage or data stream265

management systems). This phase resulted in 44 selected papers. Finally, after266

reading them, sixteen papers were considered relevant to be included in this267

section. Furthermore, five non-indexed works considered grey literature were268

additionally added to the list, as considered relevant to depict the state of the269

practice in industry. The process was performed by our research team, and270

in case of contradictions a meeting was organized in order to reach consensus.271

Details of the search and filtering process are available at (Nadal et al., 2016).272

3.2. Analysis273

In the following subsections, we analyze to which extent the selected Big Data274

architectures fulfill the requirements devised in Section 2. Each architecture is275

evaluated by checking whether it satisfies a given requirement (✓) or it does not276

(✗). Results are summarized in Table 2, where we make the distinction between277

custom architectures and SRAs. For the sake of readability, references to studied278

papers have been substituted for their position in Table 2.279

3.2.1. Requirements on Volume280

Most architectures are capable of dealing with storage of massive data sets281

(R1.1). However, we claim those relying on Semantic Web principles (i.e. storing282

RDF data), [A1,A8] cannot deal with such requirement as they are inherently283

limited by the storage capabilities of triplestores. Great effort is put on improving284

such capabilities (Zeng et al., 2013), however no mature scalable solution is285

available in the W3C recommendations3. There is an exception to the previous286

discussion, as SHMR [A14] stores semantic data on HBase. However, this impacts287

its analytical capabilities with respect to those offered by triplestores. Oppositely,288

Liquid [A9] is the only case where no data are stored, offering only real-time289

support and thus not addressing the Volume dimension of Big Data. Regarding290

analytical capabilities, most architectures satisfy the descriptive level (R1.2) via291

1http://www.scopus.com
2http://www.core.edu.au/conference-portal
3https://www.w3.org/2001/sw/wiki/Category:Triple_Store

9

http://www.scopus.com
http://www.core.edu.au/conference-portal
https://www.w3.org/2001/sw/wiki/Category:Triple_Store


Custom Architectures Volume Velocity Variety Variability Veracity

R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A1 CQELS (Phuoc et al., 2012) ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

A2 AllJoyn Lambda (Villari et al., 2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A3 CloudMan (Qanbari et al., 2014) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A4 AsterixDB (Alsubaiee et al., 2014) ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

A5 M3Data (Ionescu et al., 2014) ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

A6 (Twardowski and Ryzko, 2014) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A7 λ-arch. (Marz and Warren, 2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A8 Solid (Martínez-Prieto et al., 2015) ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A9 Liquid (Fernandez et al., 2015) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

A10 RADStack (Yang et al., 2015) ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

A11 (Kroß et al., 2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A12 HaoLap (Song et al., 2015) ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A13 (Wang et al., 2015) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

A14 SHMR (Guo et al., 2015) ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A15 Tengu (Vanhove et al., 2015) ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

A16 (Xie et al., 2015) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗

A17 (e Sá et al., 2015) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

A18 D-Ocean (Zhuang et al., 2016) ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Software Reference Architectures Volume Velocity Variety Variability Veracity

R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

A19 NIST (Grady et al., 2014) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

A20 (Pääkkönen and Pakkala, 2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

A21 (Geerdink, 2015) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bolster ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Fulfillment of each requirement in the related work

10



SQL-like [A4,A10,A11,A18] or SPARQL [A1,A8] languages. Furthermore, those292

offering MapReduce or similar interfaces [A2,A3,A6,A13,A14,A15,A20] meet the293

predictive and prescriptive level (R1.3). HaoLap [A12] and SHMR [A14] are294

the only works where MapReduce is narrowed to descriptive queries.295

3.2.2. Requirements on Velocity296

Several architectures are capable of ingesting data streams (R2.1), ei-297

ther by dividing the architecture in specialized Batch and Real-time Layers298

[A2,A6,A7,A10,A11,A15,A20], by providing specific channels like data feeds [A4]299

or by solely considering streams as input type [A1,A8,A9]. Regarding processing300

of such data streams (R2.2), all architectures dealing with its ingestion can addi-301

tionally perform processing, with the exception of AsterixDB [A4] and M3Data302

[A5], where data streams are stored prior to querying them.303

3.2.3. Requirements on Variety304

Variety is handled in diverse ways in the studied architectures. Concerning305

ingestion of raw data (R3.1), few proposals cannot deal with such requirement,306

either because they are narrowed to ingest specific data formats [A8,A16], or307

because specific wrappers need to be defined on the sources [A1,A19]. Concerning308

storage of raw data (R3.2), many architectures define views to merge and309

homogenize different formats into a common one (including those that do it310

at ingestion time) [A4,A5,A10,A12,A14,A15,A17]. On the other hand, the λ-311

architecture and some of the akin architectures [A2,A6,A7,A11] and [A20] are the312

only ones natively storing raw data. In schema management (R3.3), all those313

architectures that favored ingesting and storing raw data cannot deal with such314

requirement, as no additional mechanism is present to handle it. Oppositely, the315

ones defining unified views are able to manage them, likewise relational database316

schemas. There is an exception to the previous discussion, D-Ocean [A18], which317

defines a data model for unstructured data, hence favouring all requirements.318

3.2.4. Requirements on Variability319

Requirements on Variability are poorly covered among the reviewed works.320

Schema evolution is only handled by CQELS [A1], AsterixDB [A4] and D-Ocean321

[A18]. CQELS uses specific wrapper configuration files which via a user interface322

map new elements to ontology concepts. On the other hand, AsterixDB parses323

schemas at runtime. Finally, D-Ocean’s unstructured data model embraces the324

addition of new features. Furthermore, only AsterixDB considers data evolution325

(R4.2) using adaptive query processing techniques. With respect to automatic326

inclusion of data sources (R4.3), CQELS has a service allowing wrappers to327

be plugged at runtime. Moreover, other architectures provide such feature as328

AsterixDB with the definition of external tables at runtime, [A19] providing a329

discovery channel or Tengu [A15] by means of an Enterprise Service Bus.330

3.2.5. Requirements on Veracity331

Few of the studied architectures satisfy requirements on Veracity. All works332

covering data provenance (R5.1) log the operations applied on derived data in333

11



order to be reproduced later. On the other hand, measurement of data quality334

(R5.2) is only found in [A19] and [A13], the former by storing such metadata as335

part of its Big Data lifecycle and the latter by tracking data quality rules that336

validate the stored data. Regarding data liveliness (R5.3), [A16] tracks it in order337

to boost reusage of results computed by other users. Alternatively, [A19] as part338

of its Preservation Management activity applies aging strategies, however it is339

limited to its data retention policy. Finally, with respect to data cleaning (R5.4)340

we see two different architectures. In [A5,A13,A17,A19] cleansing processes341

are triggered as part of the data integration phase (i.e. before being stored).342

Differently, [A10,A20] execute such processes on unprocessed raw data before343

serving them to the user.344

3.3. Discussion345

Besides new technological proposals, we devise two main families of works in346

the Big Data architectures landscape. On the one hand, those presented as an347

evolution of the λ-architecture [A7] after refining it [A2,A6,A10,A11,A15]; and,348

on the other hand, those positioned on the Semantic Web principles [A1,A8].349

Some architectures aim to be of general-purpose, while others are tailored to350

specific domains, such as: multimedia data [A14], cloud manufacturing [A3],351

scientific testing [A15], Internet of Things [A2] or healthcare [A13].352

It can be concluded from Table 2 that requirements related to Volume,353

Velocity and Variety are more fulfilled with respect to those related to Variability354

and Veracity. This is due to the fact, to some extent, that Volume, Velocity and355

partly Variety (i.e., R3.1, R3.2) are core functionalities in NOSQL systems,356

and thus all architectures adopting them benefit from that. Furthermore, such357

dimensions have a clear impact on the performance of the system. Most of the358

architectures based on the λ-architecture naturally fulfil them for such reason.359

On the other hand, partly Variety (i.e., R3.3), Variability and Veracity are360

dimensions that need to be addressed by respectively considering evolution and361

data governance as first-class citizens. However, this fact has an impact on the362

architecture as a whole, and not on individual components, hence causing such363

low fulfiment across the studied works.364

4. Bolster: a Semantic Extension for the λ-Architecture365

In this section, we present Bolster, an SRA solution for Big Data systems366

that deals with the 5 “Vs”. Briefly, Bolster adopts the best out of the two367

families of Big Data architectures (i.e., λ-architecture and those relying on368

Semantic Web principles). Building on top of the λ-architecture, it ensures the369

fulfillment of requirements related to Volume and Velocity. However, in contrast370

to other approaches, it is capable of completely handling Variety, Variability371

and Veracity leveraging on Semantic Web technologies to represent machine-372

readable metadata, oppositely to the studied Semantic Web-based architectures373

representing data. We first present the methodology used to design the SRA.374

Next, we present the conceptual view of the SRA and describe its components.375

12



4.1. The design of Bolster376

Bolster has been designed following the framework for the design of empirically-377

grounded reference architectures (Galster and Avgeriou, 2011), which consists of378

a six-step process described as follows:379

Step 1: decision on type of SRA. The first step consists on deciding the type of380

SRA to be designed, which is driven by its purpose. Using the characterization381

from (Angelov et al., 2012), we conclude that Bolster should be of type 5 (a382

preliminary, facilitation architecture designed to be implemented in multiple383

organizations). This entails that the purpose of its design is to facilitate the384

design of Big Data systems, in multiple organizations and performed by a385

research-oriented team.386

Step 2: selection of design strategy. There are two strategies to design SRAs,387

from scratch or from existing architectures. We will design Bolster based on the388

two families of Big Data architectures identified in Section 3.389

Step 3: empirical acquisition of data. In this case, we leverage on the Big Data390

dimensions (the five “V’s”) discussed in Section 2 and the requirements defined391

for each of them. Such requirements, together with the design strategy, will392

drive the design of Bolster.393

Step 4: construction of SRA. The rationale and construction of Bolster is394

depicted in Section 4.2, where a conceptual view is presented. A functional395

description of its components is later presented in Section 4.3, and a functional396

example in Section 5.397

Step 5: enabling SRA with variability. The goal of enabling an SRA with398

variability is to facilitate its instantiation towards different use cases. To this399

end, we provide the annotated SRA using a conceptual view as well as the400

description of components, which can be selectively instantiated. Later, in401

Section 6, we present methods for its instantiation.402

Step 6: evaluation of the SRA. The last step of the design of an SRA is its403

evaluation. Here, and leveraging on the industrial projects where Bolster has404

been adopted, in Section 7.2, we present the results of its validation.405

4.2. Adding semantics to the λ-architecture406

The λ-architecture is the most widespread framework for scalable and fault-407

tolerant processing of Big Data. Its goal is to enable efficient real-time data408

management and analysis by being divided into three layers (Figure 1).409

• The Batch Layer stores a copy of the master data set in raw format as data410

are ingested. This layer also pre-computes Batch Views that are provided411

to the Serving Layer.412

13



Figure 1: λ-architecture

• The Speed Layer ingests and processes real-time data in form of streams.413

Results are then stored, indexed and published in Real-time Views.414

• The Serving Layer, similarly as the Speed Layer, also stores, indexes and415

publishes data resulting from the Batch Layer processing in Batch Views.416

The λ-architecture succeeds at Volume requirements, as tons of heterogeneous417

raw data can be stored in the master data set, while fast querying through the418

Serving Layer. Velocity is also guaranteed thanks to the Speed Layer, since real-419

time views complement query results with real-time data. For these reasons, the420

λ-architecture was chosen as departing point for Bolster. Nevertheless, we identify421

two main drawbacks. First, as pointed out previously, it completely overlooks422

Variety, Variability and Veracity. Second, it suffers from a vague definition,423

hindering its instantiation. For example, the Batch Layer is a complex subsystem424

that needs to deal with data ingestion, storage and processing. However, as425

the λ-architecture does not define any further component of this layer, its426

instantiation still remains challenging. Bolster (Figure 2) addresses the two427

drawbacks identified in the λ-architecture:428

• Variety, Variability and Veracity are considered first-class citizens. With429

this purpose, Bolster includes the Semantic Layer where the Metadata430

Repository stores machine-readable semantic annotations, in an analogous431

purpose as of the relational DBMS catalog.432

• Inspired by the functional architecture of relational DBMSs, we refine the433

λ-architecture to facilitate its instantiation. These changes boil down to434

a precise definition of the components and their interconnections. We435

therefore introduce possible instantiations for each component by means436

of off-the-shell software or service.437

Finally, note that this SRA aims to broadly cover different Big Data use438

cases, however it can be tailored by enabling or disabling components according439

to each particular context. In the following subsections we describe each layer440

present in Bolster as well as their interconnections. In bold, we highlight the441

14



Figure 2: Bolster SRA conceptual view

necessary functionalities they need to implement to cope with the respective442

requirements.443

4.3. Bolster Components444

In this subsection, we present, for each layer composing Bolster, the list of445

its components and functional description.446

4.3.1. Semantic Layer447

The Semantic Layer (depicted blue in Figure 2) contains the Metadata448

Management System (MDM), the cornerstone for a semantic-aware Big Data449

system. It is responsible of providing the other components with the necessary450

information to describe and model raw data, as well as keeping the footprint about451

data usage. With this purpose, the MDM contains all the metadata artifacts,452

represented by means of RDF ontologies leveraging the benefits provided by453

Semantic Web technologies, needed to deal with data governance and assist data454

exploitation. We list below the main artifacts and refer the interested reader455

to (Varga et al., 2014; Bilalli et al., 2016) for further details:456

1. Data analysts should work using their day-by-day vocabulary. With this457

purpose, the Domain Vocabulary contains the business concepts (e.g.,458

customer, order, lineitem) and their relationships (R5.1).459

2. In order to free data analysts from data management tasks and decouple460

this role from the data steward, each vocabulary term must be mapped to461

the system views. Thus, the MDM must be aware of the View Schemata462

(R3.3) and the mappings between the vocabulary and such schemata.463

15



3. Data analysts tend to repeat the same data preparation steps prior to464

conducting their analysis. To enable reusability and a collaborative exploita-465

tion of the data, on the one hand, the MDM must store Pre-processing466

Domain Knowledge about data preparation rules (e.g., data cleaning,467

discretization, etc.) related to a certain domain (R5.4), and on the other468

hand descriptive statistics to assess data evolution (R4.2).469

4. To deal with automatic inclusion of new data sources (R4.3), each ingested470

element must be annotated with its schema information (R4.1). To this471

end, the Data Source Register tracks all input data sources together472

with the required information to parse them, the physical schema, and each473

schema element has to be linked to the attributes it populates, the logical474

schema (R3.3). Furthermore, for data provenance (R5.1), the Data475

Transformations Log has to keep track of the performed transformation476

steps to produce the views, the last processing step within the Big Data477

system.478

Populating these artifacts is a challenge. Some of them can be automatically479

populated and some others must be manually annotated. Nonetheless, all of480

these artifacts are essential to enable a centralized master metadata management481

and hence, fulfil the requirements related to Variety, Variability and Veracity.482

Analogously to database systems, data stewards are responsible of populating483

and maintaining such artifacts. That is why we claim for the need that the MDM484

provides a user friendly interface to aid such processes. Finally, note that most485

of the present architectural components must be able to interact with the MDM,486

hence it is essential that it provides language-agnostic interfaces. Moreover, such487

interfaces cannot pose performance bottlenecks, as doing so would highly impact488

in the overall performance of the system.489

4.3.2. Batch Layer490

This layer (depicted yellow in Figure 2) is in charge of storing and processing491

massive volumes of data. In short, we first encounter Batch Ingestion, responsible492

for periodically ingesting data from the batch sources, then the Data Lake,493

capable of managing large amounts of data. The last step is the Batch Processing494

component, which prepares, transforms and runs iterative algorithms over the495

data stored in the Data Lake to shape them accordingly to the analytical needs496

of the use-case at hand.497

Batch Ingestion. Batch sources are commonly big static raw data sets that498

require periodic synchronizations (R3.1). Examples of batch sources can be499

relational databases, structured files, etc. For this reason, we advocate for a500

multiple component instantiation, as required by the number of sources and type.501

These components need to know which data have already been moved to the Data502

Lake by means of Incremental Bulks Scheduling and Orchestration. The503

MDM then comes into play as it traces this information. Interaction between the504

ingestion components and the MDM occurs in a two-phase manner. First, they505

16



learn which data are already stored in the Data Lake, to identify the according506

incremental bulk can be identified. Second, the MDM is enriched with specific507

information regarding the recently brought data (R5.3). Since Big Data systems508

are multi-source by nature, the ingestion components must be built to guarantee509

its adaptability in the presence of new sources (R4.3).510

Data Lake. This component is composed of a Massive Storage system (R1.1).511

Distributed file systems are naturally good candidates as they were born to512

hold large volumes of data in their source format (R3.2). One of their main513

drawbacks is that its read capabilities are only sequential and no complex514

querying is therefore feasible. Paradoxically, this turns out to be beneficial for515

the Batch Processing, as it exploits the power of cloud computing.516

Different file formats pursuing high performance capabilities are available,517

focusing on different types of workload (Munir et al., 2016). They are commonly518

classified as horizontal, vertical and hybrid, in an analogous fashion as row-519

oriented and column-oriented databases, respectively.520

Batch Processing. This component models and transforms the Data Lake’s files521

into Batch Views ready for the analytical use-cases. It is responsible to schedule522

and execute Batch Iterative Algorithms, such as sorting, searching, indexing523

(R1.2) or more complex algorithms such as PageRank, Bayesian classification524

or genetic algorithms (R1.3). The processing components, must be designed to525

maximize reusability by creating building blocks (from the domain-knowledge526

metadata artifacts) that can be reused in several views. Consequently, in order527

to track Batch Data Provenance, all performed transformations must be528

communicated to the MDM (R5.1).529

Batch processing is mostly represented by the MapReduce programming530

model. Its drawbacks appear twofold. On one hand, when processing huge531

amounts of batch data, several jobs may usually need to be chained so that532

more complex processing can be executed as a single one. On the other hand,533

intermediate results from Map to Reduce phases are physically stored in hard534

disk, completely detracting the Velocity (in terms of response time).535

Massive efforts are currently put on designing new solutions to overcome536

the issues posed by MapReduce. For instance, by natively including other more537

atomic relational algebra operations, connected by means of a directed acyclic538

graph; or by keeping intermediate results in main memory.539

4.3.3. Speed Layer540

The Speed Layer (depicted green in Figure 2) deals primarily with Velocity.541

Its input are continuous, unbounded streams of data with high timeliness and542

therefore require novel techniques to accommodate such arrival rate. Once543

ingested, data streams can be dispatched either to the Data Lake, in order to544

run historical queries or iterative algorithms, or to the Stream Processing engine,545

in charge of performing one-pass algorithms for real-time analysis.546

17



Stream Ingestion. The Stream Ingestion component acts as a message queue547

for raw data streams that are pushed from the data sources (R3.1). Multiple548

sources can continuously push data streams (e.g., sensor or social network data),549

therefore such component must be able to cope with high throughput rates and550

scale according to the number of sources (R2.1). One of the key responsibilities551

is to enable the ingestion of all incoming data (i.e., adopt a No Event Loss552

policy). To this end, it relies on a distributed memory or disk-based storage553

buffer (i.e. event queue), where streams are temporarily stored.554

This component does not require any knowledge about the data or schema of555

incoming data streams, however, for each event, it must know its source and type,556

for further matching with the MDM. To assure fault-tolerance and durability of557

results in such a distributed environment, techniques such as write-ahead logging558

or the two-phase commit protocol are used, nevertheless that has a clear impact559

on the availability of data to next components.560

Dispatcher. The responsibilities of the Dispatcher are twofold. On the one hand,561

to ensure data quality, via MDM communication, it must register and validate562

that all ingested events follow the specified schema and rules for the event on563

hand (i.e., Schema Typechecking (R4.1, R5.2)). Error handling mechanisms564

must be triggered when an event is detected as invalid, and various mitigation565

plans can be applied. The simplest alternative is event rejection, however most566

conservative approaches like routing invalid events to the Data Lake for future567

reprocess can contribute to data integrity.568

On the other hand, the second responsibility of the Dispatcher is to perform569

Event Routing, either to be processed in a real-time manner (i.e., to the570

Stream Processing component), or in a batch manner (i.e., to the Data Lake)571

for delayed process. In contrast to the λ-architecture, which duplicates all input572

streams to the Batch Layer, here only those that will be used by the processing573

components will be dispatched if required. Moreover, before dispatching such574

events, different routing strategies can influence the decision on where data is575

shipped, for instance by means of evaluating QoS cost models or analyzing the576

system workload, as done in (Kroß et al., 2015). Other approaches like sampling577

or load shedding can be used here, to ensure that either real-time processing or578

Data Lake ingestion are correctly performed.579

Stream Processing. The Stream Processing component is responsible of per-580

forming One-Pass Algorithms over the stream of events. The presence of a581

summary is required as most of these algorithms leverage on in-memory stateful582

data structures (e.g., the Loosy Counting algorithm to compute heavy hitters,583

or HyperLogLog to compute distinct values). Such data structures can be lever-584

aged to maintain aggregates over a sliding window for a certain period of time.585

Different processing strategies can be adopted, being the most popular tuple-586

at-a-time and micro-batch processing, the former providing low latency while587

the latter providing high throughput (R2.2). Similarly as the Batch Processing,588

this component must communicate to the MDM all transformations applied to589

18



populate Real-time Views in order to guarantee Stream Data Provenance590

(R5.1).591

4.3.4. Serving Layer592

The Serving Layer (depicted red in Figure 2) holds transformed data ready593

to be delivered to end-users (i.e. it acts as a set of database engines). Precisely,594

it is composed by Batch and Real-time Views repositories. Different alternatives595

exist when selecting each view engine, however as they impose a data model (e.g.,596

relational or key-value), it is key to perform a goal-driven selection according to597

end-user analytical requirements (Herrero et al., 2016). It is worth noting that598

views can also be considered new sources, in case it is required to perform trans-599

formations among multiple data models, resembling a feedback loop. Further,600

the repository of Query Engines is the entry point for data analysts to achieve601

their analytical task, querying the views and the Semantic Layer.602

Batch Views. As in the λ-architecture, we seek Scalable and Fault-Tolerant603

Databases capable to provide Random Reads, achieved by indexing, and604

the execution of Aggregations and UDFs (user defined functions) over large605

stable data sets (R1.1). The λ-architecture advocates for recomputing Batch606

Views every time a new version is available, however we claim incremental607

approaches should be adopted to avoid unnecessary writes and reduce processing608

latency. A common example of Batch View is a DW, commonly implemented609

in relational or columnar engines. However databases implementing other data610

models such as graph, key-value or documents also can serve the purpose of611

Batch Views. Each view must provide a high-level query language, serving as612

interface with the Query Engine (e.g., SQL), or a specific wrapper on top of it613

providing such funcionalities.614

Real-time Views. As opposite to Batch Views, Real-time Views need to provide615

Low Latency Querying over dynamic and continuously changing data sets616

(R2.1). In order to achieve so, in-memory databases are currently the most617

suitable option, as they dismiss the high cost it entails to retrieve data from disk.618

Additionally, Real-Time views should support low cost of updating in order to619

maintain Sketches and Sliding Windows. Finally, similarly to Batch Views,620

Real-time Views must provide mechanisms to be queried, considering as well621

Continuous Query Languages.622

Query Engines. Query Engines, play a crucial role to enable efficiently querying623

the views in a friendly manner for the analytical task on hand. Data analysts624

query the system using the vocabulary terms and apply domain-knowledge rules625

on them (R1.2, R1.3). Thanks to the MDM artifacts, the system must internally626

perform the translation from Business Requirements to Database Queries627

over Batch and Real-time Views (R3.3), hence making data management tasks628

transparent to the end-user. Furthermore, the Query Engine must provide to629

the user the ability for Metadata Query and Exploration on what is stored630

in the MDM (R5.1, R5.2, R5.3).631

19



4.3.5. Summary632

Table 3 summarizes for each component the fulfilled requirements discussed633

in Section 2.634

Component Volume Velocity Variety Variability Veracity

R1.1 R1.2 R1.3 R2.1 R2.2 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3 R5.1 R5.2 R5.3 R5.4

Metadata Management System ✓ ✓ ✓ ✓ ✓ ✓

Batch Ingestion ✓ ✓ ✓

Data Lake ✓ ✓

Batch Processing ✓ ✓ ✓

Stream Ingestion ✓ ✓

Dispatcher ✓ ✓

Stream Processing ✓ ✓

Batch Views ✓

Real-time Views ✓

Query Engines ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Bolster components and requirements fulfilled

5. Exemplar Use Case635

The goal of this section is to provide an exemplar use case to illustrate how636

Bolster would accommodate a Big Data management and analytics scenario.637

Precisely, we consider the online social network benchmark described in (Zhang638

et al., 2015). Such benchmark aims to provide insights on the stream of data639

provided by Twitter’s Streaming API, and is characterized by workloads in640

media, text, graph, activity and user analytics.641

5.1. Semantic representation642

Figure 3 depicts a high level excerpt of the content stored in the MDM. In643

dark and light blue, the domain knowledge and business vocabulary respectively644

which has been provided by the Domain Expert. In addition, the data steward645

has, possibly in a semi-automatic manner (Nadal et al., 2017), registered a646

new source (Twitter Stream API4) and provided mappings for all JSON fields647

to the logical attributes (in red). For the sake of brevity, only the relevant648

subgraph of the ontology is shown. Importantly, to meet the Linked Open Data649

principles, this ontology should be further linked to other ontologies (e.g., the650

Open Provenance Model (Moreau et al., 2011)).651

5.2. Data ingestion652

As raw JSON events are pushed to the Stream Ingestion component, they are653

temporary stored in the Event Queue. Once replicated, to guarantee durability654

and fault tolerance, they are made available to the Dispatcher, which is aware on655

how to retrieve and parse them by querying the MDM. Twitter’s documentation5
656

warns developers that events with missing counts rarely happen. To guarantee657

data quality such aspect must be checked. If an invalid event is detected, it658

4https://dev.twitter.com/streaming/overview
5https://dev.twitter.com/streaming/overview/processing

20

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview/processing


Legend

Status

ID

Creation 

Date

Fav 

Count

Language

hasAttribute

hasAttribute

hasAttribute

hasAttribute

User

tweetBy

ID
hasAttribute

Place

Text

hasAttribute

location

type

ID

hasAttribute

type
type

String

type

String

type

Date

type

int type

hasSource

JSON

hasFormat

id_str

https://api.twitter.com/

1.1/search/tweets.json

created_at

metadata.

iso_language_code

mapsTo

hasAttribute
hasAttributehasAttribute

favourites_count

hasAttribute

text

mapsTo

mapsTo

hasAttribute

mapsTo

mapsTo

hasAttribute

user.id_str

place

media.media_url

mapsTo

hasAttribute

hasAttribute

hasAttribute

mapsTo

NOT

NULL

rule

NOT

NULL

rule
NOT

NULL

rule
Domain 

Class

Logical 

Schema

Physical 

Schema

Legend

int

Media

hasMedia

IDhasAttribute

type

Image

hasAttribute

media.id

hasAttribute

mapsTo

mapsTo

URL

type

Figure 3: Excerpt of the content in the Metadata Repository

should be discarded. After this validation, the event at hand must be registered659

in the MDM to guarantee lineage analysis. Furthermore the Dispatcher sends660

the raw JSON event to the Stream Processing and Data Lake components. At661

this point, there is a last ingestion step missing before processing data. The662

first workload presented in the benchmark concerns media analytics, however as663

depicted in Figure 3, the API only provides the URL of the image. Hence, it is664

necessary to schedule a batch process periodically fetching such remote images665

and loading them into the Data Lake.666

5.3. Data processing and analysis667

Once all data are available to be processed in both Speed and Batch Layers,668

we can start executing the required workloads. Many of such workloads concern669

predictive analysis (e.g., topic modeling, sentiment analysis, location prediction670

or collaborative filtering). Hence, the proposed approach is to periodically refresh671

statistical models in an offline manner (i.e., in the Batch Layer), in order to672

assess predictions in an online manner (i.e., in the Speed Layer). We distinguish673

between those algorithms generating metadata (e.g., Latent Dirichlet Allocation674

(LDA)) and those generating data (e.g., PageRank). The former will store its675

results in the MDM using a comprehensive vocabulary (e.g., OntoDM (Panov676

et al., 2008)); and the latter will store them into Batch Views. Once events677

have been dispatched, the required statistical model has to be retrieved from the678

MDM to assess predictions and store outcomes into Real-time Views. Finally, as679

described in (Zhang et al., 2015), the prototype application provides insights680

21



based on tweets related to companies in the S&P 100 index. Leveraging on the681

MDM, the Query Engine is capable of generating queries to Batch and Real-time682

Views.683

6. Bolster Instantiation684

In this section we list a set of candidate tools, with special focus on the Apache685

Hadoop and Amazon Web Services ecosystems, to instantiate each component686

in Bolster. In the case when few tools from such ecosystems were available,687

we propose commercial tools which were considered in the industrial projects688

where Bolster was instantiated. Further, we present a method to instantiate689

the reference architecture. We propose a systematic scoring process driven by690

quality characteristics, yielding, for each component, the most suitable tool.691

6.1. Available tools692

6.1.1. Semantic Layer693

Metadata Management System. Two different off-the-shelf open source products694

can instantiate this layer, namely Apache Stanbol6 and Apache Atlas7. Never-695

theless, the features of the former fall short for the proposed requirements of the696

MDM. Not surprisingly, this is due to the novel nature of Bolster ’s Semantic697

Layer. Apache Atlas satisfies the required functionalities more naturally and it698

might appear as a better choice, however it is currently under heavy development699

as an Apache Incubator project. Commercial tools such as Cloudera Navigator8
700

or Palantir9 are also candidate tools.701

Metadata Storage. We advocate for the adoption of Semantic Web storage702

technologies (i.e. triplestores), to store all the metadata artifacts. Even though703

such tools allow storing and reasoning over large and complex ontologies, that704

is not the pursued purpose here, as our aim is to allow a simple and flexible705

representation of machine-readable schemas. That is why triplestores serve706

better the purpose of such storage. Virtuoso10 is at the moment the most mature707

triplestore platform, however other options are available such as 4store11 or708

GraphDB12. Nonetheless, given the graph nature of triples, any graph database709

can as well serve the purpose of metadata storage (e.g., AllegroGraph13 or710

Neo4j14).711

6https://stanbol.apache.org
7http://atlas.incubator.apache.org
8https://www.cloudera.com/products/cloudera-navigator.html
9https://www.palantir.com

10http://virtuoso.openlinksw.com
11http://4store.org
12http://graphdb.ontotext.com/graphdb
13http://allegrograph.com
14http://neo4j.com

22

https://stanbol.apache.org
http://atlas.incubator.apache.org
https://www.cloudera.com/products/cloudera-navigator.html
https://www.palantir.com
http://virtuoso.openlinksw.com
http://4store.org
http://graphdb.ontotext.com/graphdb
http://allegrograph.com
http://neo4j.com


6.1.2. Batch Layer712

Batch Ingestion. This components highly depends on the format of the data713

sources, hence it is complex to derive a universal driver due to technological714

heterogeneity. Instantiating this component usually means developing ad-hoc715

scripting solutions adapting to the data sources as well as enabling communication716

with the MDM. Massive data transfer protocols such as FTP or Hadoop’s717

copyFromLocal15 will complement such scripts. However, some drivers for specific718

protocols exist such as Apache Sqoop16, the most widespread solution to load719

data from/to relational sources through JDBC drivers.720

Data Lake. Hadoop Distributed File System and Amazon S3 17 perfectly fit in this721

category, as they are essentially file systems storing plain files. Regarding data722

file formats, some current popular options are Apache Avro18, Yahoo Zebra19 or723

Apache Parquet20 for horizontal, vertical and hybrid fragmentation respectively.724

Batch Processing. Apache MapReduce21 and Amazon Elastic MapReduce22 are725

nowadays the most popular solutions. Alternatively, Apache Spark23 and Apache726

Flink24 are gaining great popularity as next generation replacement for the727

MapReduce model. However, to the best of our knowledge, only Quarry (Jo-728

vanovic et al., 2015) is capable to interact with the MDM and, based on the729

information there stored, automatically produce batch processes based on user-730

defined information requirements.731

6.1.3. Speed Layer732

Stream Ingestion. All tools in the family of “message queues” are candidates733

to serve as component for Stream Ingestion. Originated with the purpose of734

serving as middleware to support enterprise messaging across heterogeneous735

systems, they have been enhanced with scalability mechanisms to handle high736

ingestion rates preserving durability of data. Some examples of such systems737

are Apache ActiveMQ25 or RabbitMQ26. However, some other tools were born738

following similar principles but aiming Big Data systems since its inception,739

being Apache Kafka27 and AWS Kinesis Firehose28 the most popular options.740

15https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/

FileSystemShell.html#copyFromLocal
16http://sqoop.apache.org
17https://aws.amazon.com/s3
18https://avro.apache.org
19http://pig.apache.org/docs/r0.9.1/zebra_overview.html
20https://parquet.apache.org
21https://hadoop.apache.org
22https://aws.amazon.com/elasticmapreduce
23http://spark.apache.org
24https://flink.apache.org
25http://activemq.apache.org
26https://www.rabbitmq.com
27http://kafka.apache.org
28https://aws.amazon.com/kinesis/firehose

23

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html# copyFromLocal
https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html# copyFromLocal
http://sqoop.apache.org
https://aws.amazon.com/s3
https://avro.apache.org
http://pig.apache.org/docs/r0.9.1/zebra_overview.html
https://parquet.apache.org
https://hadoop.apache.org
https://aws.amazon.com/elasticmapreduce
http://spark.apache.org
https://flink.apache.org
http://activemq.apache.org
https://www.rabbitmq.com
http://kafka.apache.org
https://aws.amazon.com/kinesis/firehose


Dispatcher. Here we look for tools that allow developers to define data pipelines741

routing data streams to multiple and heterogeneous destinations. It should also742

allow the developer to programmatically communicate with the MDM for quality743

checks. Apache Flume29 and Amazon Kinesis Streams30 are nowadays the most744

prevalent solutions.745

Stream Processing. In contrast to Batch Processing, it is unfeasible to adopt746

classical MapReduce solutions considering the performance impact they yield.747

Thus, in-memory distributed stream processing solutions like Apache Spark748

Streaming31, Apache Flink Streaming32 and Amazon Kinesis Analytics33 are the749

most common alternatives.750

6.1.4. Serving Layer751

Batch Views. A vast range of solutions are available to hold specialized views. We752

distinguish among three families of databases: (distributed) relational, NOSQL753

and NewSQL. The former is mostly represented by major vendors who evolved754

their traditional centralized databases into distributed ones seeking to improve755

its storage and performance capabilities. Some common solutions are Oracle34,756

Postgres-XL35 or MySQL Cluster36. Secondly, in the NOSQL category we757

might drill-down to the specific data model implemented: Apache HBase37
758

or Apache Cassandra38 for column-family key-value; Amazon DynamoDB39 or759

Voldemort40 for key-value; Amazon Redshift41 or Apache Kudu42 for column760

oriented; Neo4j43 or OrientDB44 for graph; and MongoDB45 or RethinkDB46
761

for document. Finally, NewSQL are high-availability main memory databases762

which usually are deployed in specialized hardware, where we encounter SAP763

Hana47, NuoDB48 or VoltDB49.764

29https://flume.apache.org
30https://aws.amazon.com/kinesis/streams
31http://spark.apache.org/streaming
32https://flink.apache.org
33https://aws.amazon.com/kinesis/analytics
34https://www.oracle.com/database
35http://www.postgres-xl.org
36https://www.mysql.com/products/cluster
37https://hbase.apache.org
38http://cassandra.apache.org
39https://aws.amazon.com/dynamodb
40http://www.project-voldemort.com/voldemort
41https://aws.amazon.com/redshift
42http://getkudu.io
43http://neo4j.com
44http://orientdb.com/orientdb
45https://www.mongodb.org
46https://www.rethinkdb.com
47https://hana.sap.com
48http://www.nuodb.com
49https://voltdb.com

24

https://flume.apache.org
https://aws.amazon.com/kinesis/streams
http://spark.apache.org/streaming
https://flink.apache.org
https://aws.amazon.com/kinesis/analytics
https://www.oracle.com/database
http://www.postgres-xl.org
https://www.mysql.com/products/cluster
https://hbase.apache.org
http://cassandra.apache.org
https://aws.amazon.com/dynamodb
http://www.project-voldemort.com/voldemort
https://aws.amazon.com/redshift
http://getkudu.io
http://neo4j.com
http://orientdb.com/orientdb
https://www.mongodb.org
https://www.rethinkdb.com
https://hana.sap.com
http://www.nuodb.com
https://voltdb.com


Real-time Views. In-memory databases are currently the most popular op-765

tions, for instance Redis50, Elastic51, Amazon ElastiCache52. Alternatively,766

PipelineDB53 offers mechanism to query a data stream via continuous query767

languages.768

Query Engine. There is a vast variety of tools available for query engines. OLAP769

engines such as Apache Kylin54 provide multidimensional analysis capabilities,770

on the other hand solutions like Kibana55 or Tableau56 enable the user to easily771

define complex charts over the data views.772

6.2. Component selection773

Selecting components to instantiate Bolster is a typical (C)OTS (commercial774

off-the-shelf) selection problem (Kontio, 1996). Considering a big part of the775

landscape of available Big Data tools is open source or well-documented, we776

follow a quality model approach for their selection, as done in (Behkamal et al.,777

2009). To this end, we adopt the ISO/IEC 25000 SQuaRE standard (Software778

Product Quality Requirements and Evaluation) (ISO, 2011) as reference quality779

model. Such model is divided into characteristics and subcharacteristics, where780

the latter allows the definition of metrics (see ISO 25020). In the context of781

(C)OTS, the two former map to the hierarchical criteria set, while the latter782

to evaluation attributes. Nevertheless, the aim of this paper is not to provide783

exhaustive guidelines on its usage whatsoever, but to supply a blueprint to be784

tailored to each organization. Figure 4 depicts the subset of characteristics785

considered relevant for such selection. Note that not all subcharacteristics are786

applicable, given that we are assessing the selection of off-the-shelf software for787

each component.788

Figure 4: Selected characteristics and subcharacteristics from SQuaRE

50http://redis.io
51https://www.elastic.co
52https://aws.amazon.com/elasticache
53https://www.pipelinedb.com
54http://kylin.apache.org
55https://www.elastic.co/products/kibana
56http://www.tableau.com

25

http://redis.io
https://www.elastic.co
https://aws.amazon.com/elasticache
https://www.pipelinedb.com
http://kylin.apache.org
https://www.elastic.co/products/kibana
http://www.tableau.com


6.2.1. Evaluation attributes789

Previously, we discussed that ISO 25020 proposes candidate metrics for790

each present subcharacteristic. However, we believe that they do not cover the791

singularities required for selecting open source Big Data tools. Thus, in the792

following subsections we present a candidate set of evaluation attributes which793

were used in the use case applications described in Section 7. Each has associated794

a set of ordered values from worst to better and its semantics.795

Functionality. After analyzing the artifacts derived from the requirement elici-796

tation process, a set of target functional areas should be devised. For instance,797

in an agile methodology, it is possible to derive such areas by clustering user798

stories. Some examples of functional areas related to Big Data are: Data and799

Process Mining, Metadata Management, Reporting, BI 2.0 or Real-time Analy-800

sis. Suitability specifically looks at such functional areas, while with the other801

evaluation attributes we evaluate information exchange and security concerns.802

Suitability
Number of functional areas targeted in the project which benefit
from its adoption.

Interoperability
1, no input/output connectors with other considered tools
2, input/output connectors available with some other considered
tools
3, input/output connectors available with many other considered
tools

Compliance
1, might rise security or privacy issues
2, does not raise security or privacy issues

803

Reliability. It deals with trustworthiness and robustness factors. Maturity is804

directly linked to the stability of the software at hand. To that end, we evaluate805

it by means of the Semantic Versioning Specification57. The other two factors,806

Fault Tolerance and Recoverability, are key Big Data requirements to ensure the807

overall integrity of the system. We acknowledge it is impossible to develop a808

fault tolerant system, thus our goal here is to evaluate how the system reacts in809

the presence of faults.810

57http://semver.org

26

http://semver.org


Maturity
1, major version zero (0.y.z)
2, public release (1.0.0)
3, major version (x.y.z)

Fault Tolerance
1, the system will crash if there is a fault
2, the system can continue working if there is a fault but data might
be lost
3, the system can continue working and guarantees no data loss

Recoverability
1, requires manual attention after a fault
2, automatic recovery after fault

811

Usability. In this subcharacteristic, we look at productive factors regarding the812

development and maintenance of the system. In Understandability, we evaluate813

the complexity of the system’s building blocks (e.g., parallel data processing814

engines require knowledge of functional programming). On the other hand,815

Learnability measures the learning effort for the team to start developing the816

required functionalities. Finally, in Operability, we are concerned with the817

maintenance effort and technical complexity of the system.818

Understandability
1, high complexity
2, medium complexity
3, low complexity

Learnability
1, the operating team has no knowledge of the tool
2, the operating team has small knowledge of the tool and the
learning curve is known to be long
3, the operating team has small knowledge of the tool and the
learning curve is known to be short
4, the operating team has high knowledge of the tool

Operability
1, operation control must be done using command-line
2, offers a GUI for operation control

819

Efficiency. Here we evaluate efficiency aspects. Time Behaviour measures the820

performance at processing capabilities, measured by the way the evaluated tool821

shares intermediate results, which has a direct impact on the response time. On822

the other hand, Resource Utilisation measures the hardware needs for the system823

at hand, as it might affect other coexisting software.824

27



Time Behaviour
1, shares intermediate results over the network
2, shares intermediate results on disk
3, shares intermediate results in memory

Resource Utilisation
1, high amount of resources required (on both master and slaves)
2, high amount of resources required (either on master or slaves)
3, low amount of resources required

825

Maintainability. It concerns continuous control of software evolution. If a tool826

provides fully detailed and transparent documentation, it will allow developers827

to build robust and fault-tolerant software on top of them (Analyzability). Fur-828

thermore, if such developments can be tested automatically (by means of unit829

tests) the overall quality of the system will be increased (Testability).830

Analyzability
1, online up to date documentation
2, online up to date documentation with examples
3, online up to date documentation with examples and books available

Testability
1, doesn’t provide means for testing
2, provides means for unit testing
3, provides means for integration testing

831

Portability. Finally, here we evaluate the adjustment of the tool to different832

environments. In Adaptability, we analyse the programming languages offered833

by the tool. Instability and Co-existence evaluate the effort required to install834

such tool and coexistence constraints respectively.835

Adaptability
1, available in one programming language
2, available in many programming languages
3, available in different programming languages and offering API
access

Instability
1, requires manual build
2, self-installing package
3, shipped as part of a platform distribution

Co-existence
1, cannot coexist with other selected tools
2, can coexist with all selected tools

836

6.3. Tool evaluation837

The purpose of the evaluation process is, for each of the candidate tools to838

instantiate Bolster, to derive a ranking of the most suitable one according to the839

evaluation attributes previously described. The proposed method is based on840

the weighted sum model (WSM), which allows weighting criteria (wi) in order to841

prioritize the different subcharacteristics. Weights should be assigned according842

28



to the needs of the organization. Table 4 depicts an example selection for the843

Batch Processing component for the use case described in Section 7.1.2. For844

each studied tool, the Atomic and Weighted columns indicate its unweighted (fi)845

and weighted score (wifi), respectively using a range from one to five. For each846

characteristic, the weighted average of each component is shown in light grey847

(i.e., the average of each weighted subcharacteristic
∑

i
fi/

∑
i
wi). Finally, in848

black, the final score per tool is depicted. From the exemplar case of Table 4,849

we can conclude that, for the posed weights and evaluated scores, Apache Spark850

should be the selected tool, in from of Apache MapReduce and Apache Flink851

respectively.852

Evaluated Software

Apache Spark Apache MapReduce Apache Flink

Characteristic Subcharacteristic Weight Atomic Weighted Atomic Weighted Atomic Weighted

Functionality
Suitability 2 3 6 2 4 3 6

Interoperability 3 3 9 1 1 1 3

Compliance 1 2 2 2 2 2 2

2.83 1.50 1.83

Reliability
Maturity 1 3 3 3 3 1 1

Fault Tolerance 5 3 15 3 15 3 15

Recoverability 2 2 4 2 4 2 4

2.75 2.75 2.50

Usability
Understandability 5 2 10 3 15 2 10

Learnability 3 4 12 4 12 2 6

Operability 2 2 4 1 2 2 4

2.60 2.90 2.00

Efficiency
Time Behaviour 3 3 9 1 3 3 9

Resource Utilisation 4 1 4 2 8 1 4

1.86 1.57 1.86

Maintainability
Analyzability 4 3 12 3 12 2 8

Testability 2 2 4 1 2 1 2

2.67 2.33 1.67

Portability
Adaptability 3 2 6 1 3 2 6

Instability 4 3 12 3 12 2 8

Co-existence 1 2 2 2 2 2 2

2.50 2.13 2.00

2.53 2.27 2.00

Table 4: Example tool selection for Batch Processing

7. Industrial Experiences853

In this section we depict three industrial projects, involving five organizations,854

where Bolster has been successfully adopted. For each project, we describe the855

use case context and the specific Bolster instantiation in graphical form. Finally856

we present the results of a preliminary validation that measure the perception of857

Bolster from the relevant industrial stakeholders.858

29



7.1. Use cases and instantiation859

7.1.1. BDAL: Big Data Analytics Lab860

This project takes place in a multinational company in Barcelona58. It runs861

a data-driven business model and decision making relies on predictive models.862

Three main design issues were identified: (a) each department used its own863

processes to create data matrices, which were then processed to build predictive864

models. For reusability, data sets were preprocessed in ad-hoc repositories865

(e.g., Excel sheets), generating a data governance problem; (b) data analysts866

systematically performed data management tasks, such as parsing continuous867

variable discretization or handling missing values, with a negative impact on868

their efficiency; (c) data matrices computation resulted in an extremely time869

consuming process due to their large volumes. Thus, their update rate was870

usually in the range of weeks to months.871

The main goal was to develop a software solution to reduce the exposure872

of data analysts to data management and governance tasks, as well as boost873

performance in data processing.874

Bolster instantiation. Bolster ’s Semantic Layer allowed the organization to875

overcome the data governance problem, consider additional data sources, and876

provide automation of data management processes. Additionally, there was a877

boost of performance in data processing thanks to the distributed computing878

and parallelism in the storage and processing of the Batch and Serving Layers.879

The nature of the data sources and analytical requirements did not justify the880

components in the Speed Layer, thus Bolster ’s instantiation was narrowed to881

Batch, Semantic and Serving Layers. Figure 5 depicts the tools that compose882

Bolster ’s instantiation instantiation for this use case.883

7.1.2. H2020 SUPERSEDE Project884

The SUPERSEDE59 project proposes a feedback-driven approach for software885

life-cycle management. It considers user feedback and runtime data as an886

integral part of the design, development, and maintenance of software services887

and applications. The ultimate goal is to improve the quality perceived by888

software end-users as well as support developers and engineers to make the889

right software adaptation and evolution decisions. Three use cases proposed by890

industrial partners, namely: Siemens AG Oesterreich (Austria), Atos (Spain)891

and SEnerCon GmbH (Germany), are representative of different data-intensive892

application domains in the areas of energy consumption management in home893

automation and entertainment event webcasting.894

SUPERSEDE’s Big Data architecture is the heart of the analysis stage895

that takes place in the context of a monitor-analyze-plan-execute (MAPE) pro-896

cess (Kephart et al., 2007). Precisely, some of its responsibilities are (i) collecting897

and analyzing user feedback from a variety of sources, (ii) supporting decision898

58No details about the company can be revealed due to non-disclosure agreements.
59https://www.supersede.eu/

30

https://www.supersede.eu/


Figure 5: Bolster instantiation for the BDAL use case

making for software evolution and adaptation based on the collected data, and899

(iii) enacting the decision and assessing its impact. This set of requirements900

yielded the following challenges: (a) ingest multiple fast arriving data streams901

from monitored data and process them in real-time, for instance with sliding902

window operations; (b) store and integrate user feedback information from mul-903

tiple and different sources; (c) use all aforementioned data in order to analyze904

multi-modal user feedback, identify profiles, usage patterns and identify relevant905

indicators for usefulness of software services. All implemented in a performance906

oriented manner in order to minimize overhead.907

Bolster instantiation. Bolster allowed the definition of a data governance protocol908

encompassing the three use cases in a single instantiation of the architecture,909

while preserving data isolation. The Speed Layer enabled the ingestion of910

continuous data streams from a variety of sources, which were also dispatched911

to the Data Lake. The different analytical components in the Serving Layer912

allowed data analysts to perform an integrated analysis. Figure 6 depicts the913

tools that compose Bolster ’s instantiation for this use case.914

7.1.3. WISCC: World Information System for Chagas Control915

The WISCC project funded by the World Health Organization (WHO) is916

part of the Programme on Control of the Chagas disease. The goal of this project917

is to control and eliminate the Chagas disease, one of the 17 diseases in the 2010918

first Report on Neglected Tropical Diseases. To this end, the aim is to build an919

information system serving as an integrated repository of all information, from920

different countries and organizations, related to the Chagas disease. Such holistic921

view should aid scientists to derive valuable insights and forecasts, leading to922

Chagas’ eradication.923

31



Figure 6: Bolster instantiation for the SUPERSEDE use case

The role of the Big Data architecture is to ingest and integrate data from924

a variety of data sources and formats. Currently, the big chunk of data is925

ingested from DHIS260, an information system where national ministries enter926

data related to inspections, diagnoses, etc. Additionally, NGOs make available927

similar information according to their actions. The information dealt with928

is continuously changing by nature at all levels: data, schema and sources.929

Thus, the challenge falls in the flexibility of the system to accommodate such930

information and the one to come. Additionally, flexible mechanisms to query931

such data should be defined, as future information requirements will be totally932

different from today’s.933

Bolster instantiation. Instantiating Bolster favored a centralized management,934

in the Semantic Layer, of the different data sources along with the provided935

schemata, a feature that facilitated the data integration and Data Lake manage-936

ment tasks. Similarly to the BDAL use case, the ingestion and analysis of data937

was performed with batch processes, hence dismissing the need to instantiate938

the Speed Layer. Figure 7 depicts the tools that compose Bolster ’s instantiation939

for this use case.940

7.1.4. Summary941

In this subsection, we discuss and summarize the previously presented in-942

stantiations. We have shown how, as an SRA, Bolster can flexibly accomodate943

different use cases with different requirements by selectively instantiating its944

components. Due to space reasons, we cannot show the tool selection tables per945

60https://www.dhis2.org

32

https://www.dhis2.org


Figure 7: Bolster instantiation for the WISCC use case

component, instead we present the main driving forces for such selection using946

the dimensions devised in Section 2. Table 5 depicts the key dimensions that947

steered the instantiation of Bolster in each use case.948

Use Case Volume Velocity Variety Variability Veracity

BDAL ✓ ✓ ✓ ✓

SUPERSEDE ✓ ✓ ✓ ✓

WISCC ✓ ✓ ✓

Table 5: Characterization of use cases and Big Data dimensions

Most of the components have been successfully instantiated with off-the-shelf949

tools. However, in some cases it was necessary to develop customized solutions to950

satisfy specific project requirements. This was especially the case for the MDM,951

for which off-the-shelf tools were unsuitable in two out of three projects. It is also952

interesting to see that, due to the lack of connectors between components, it has953

been necessary to use glue code techniques (e.g., in WISCC dump files to a UNIX954

file system and batch loading in R). As final remark, note that the deployment955

of Bolster in all described use cases occurred in the context of research projects,956

which usually entail a low risk. However, in data-driven organizations such957

information processing architecture is the business’s backbone, and adopting958

Bolster can generate risk as few components from the legacy architecture will959

likely be reused. This is due to the novelty in the landscape of Big Data960

management and analysis tools, which lead to a paradigm shift on how data are961

stored and processed.962

33



7.2. Validation963

The overall objective of the validation is to “assess to which extent Bol-964

ster leads to a perceived quality improvement in the software or service targeted965

in each use case”. Hence, the validation of the SRA involves a quality evaluation966

where we investigated how Big Data practitioners perceive Bolster ’s quality im-967

provements. To this end, as before, we rely on SQuaRE’s quality model, however968

now focusing on the quality-in-use model. The model is hierarchically composed969

by a set of characteristics and sub-characteristics. Each (sub-)characteristic is970

quantified by a Quality Measure (QM), which is the output of a measurement971

function applied to a number of Quality Measure Elements (QME).972

7.2.1. Selection of participants973

For each of the five aforementioned organizations, in the three use cases,974

a set of practitioners was selected as participants to report their perception975

about the quality improvements achieved with Bolster using the data collection976

method detailed in Section 7.2.2. Care was taken in selecting participants with977

different backgrounds (e.g., a broad range of skills, different seniority levels) and978

representative of the actual target population of the SRA. This is summarized in979

Table 6, which depicts the characteristics of the respondents in each organization.980

Recall that the SUPERSEDE project involves three industrial partners, hence we981

refer by SUP-1, SUP-2 and SUP-3 to, respectively, Siemens, Atos and SEnerCon.982

ID Org. Function Seniority Specialties

#1 BDAL Data analyst Senior Statistics

#2 BDAL SW architect Junior Non-relational databases, Java

#3 SUP-1 Research scientist Senior Statistics, machine learning

#4 SUP-1 Key expert Senior Software engineering

#5 SUP-1 SW developer Junior Java, security

#6 SUP-1 Research scientist Senior Stream processing, semantic web

#7 SUP-2 Dev. team head Senior CDN, relational databases

#8 SUP-2 Project manager Senior Software engineering

#9 SUP-3 SW developer Junior Web technologies, statistics

#10 SUP-3 SW developer Junior Java, databases

#11 SUP-3 SW architect Senior Web technologies, project leader

#12 WISCC SW architect Senior Statistics, software engineering

#13 WISCC Research scientist Senior Non-relational databases, semantic web

#14 WISCC SW developer Junior Java, web technologies

Table 6: List of participants per organization

7.2.2. Definition of the data collection methods983

The quality characteristics were evaluated by means of questionnaires. In984

other words, for each characteristic (e.g., trust), the measurement method was the985

question whether a participant disagrees or agrees with a descriptive statement.986

The choice of the participant (i.e., the extent of agreement in a specific rating987

scale) was the QME. For each characteristic, a variable numbers of QMEs were988

34



collected (i.e., one per participant). The final QM was represented by the mean989

opinion score (MOS), computed by the measurement function
∑

N

i
QMEi/N ,990

where N is the total number of participants. We used a 7-values rating scale,991

ranging from 1 strongly disagree to 7 strongly agree. Table 7 depicts the set of992

questions in the questionnaire along with the quality subcharacteristic they map993

to.994

Subcharacteristic Question

Usefulness • The presented Big Data architecture would be useful in
my UC

Satisfaction • Overall I feel satisfied with the presented architecture
Trust • I would trust the Big Data architecture to handle my UC

data
Perceived Relative
Benefit

• Using the proposed Big Data architecture would be an
improvement with respect to my current way of handling
and analyzing UC data

Functional Com-
pleteness

• In general, the proposed Big Data architecture covers the
needs of the UC (subdivided into user stories)

Functional Appro-
priateness

• The proposed Big Data architecture facilitates the storing
and management of the UC data
• The proposed Big Data architecture facilitates the
analysis of historical UC data
• The proposed Big Data architecture facilitates the
real-time analysis of UC data stream
• The proposed Big Data architecture facilitates the
exploitation of the semantic annotation of UC data
• The proposed Big Data architecture facilitates the
visualization of UC data statistics

Functional Correct-
ness

• The extracted metrics obtained from the Big Data
architecture (test metrics) match the results rationally
expected

Willingness to
Adopt

• I would like to adopt the Big Data architecture in my UC

Table 7: Validation questions along with the subcharacteristics they map to

7.2.3. Execution of the validation995

The heterogeneity of organizations and respondents called for a strict plan-996

ning and coordination for the validation activities. A thorough time-plan was997

elaborated, so as to keep the progress of the evaluation among use cases. The998

actual collection of data spanned over a total duration of three weeks. Within999

these weeks, each use case evaluated the SRA in a 3-phase manner:1000

1. (1 week): A description of Bolster in form of an excerpt of Section 4 of this1001

paper was provided to the respondents, as well as access to the proposed1002

35



Figure 8: Validation per Quality Factor

solution tailored to each organization.1003

2. (1 hour): For each organization, a workshop involving a presentation on1004

the SRA and a Q&A session was carried out.1005

3. (1 day): The questionnaire was provided to each respondent to be answered1006

within a day after the workshop.1007

Once the collection of data was completed, we digitized the preferences1008

expressed by the participants in each questionnaire. We created summary1009

spreadsheets merging the results for its analysis.1010

7.2.4. Analysis of validation results1011

Figure 8 depicts, by means of boxplots, the aggregated MOS for all respon-1012

dents (we acknowledge the impossibility to average ordinal scales, however we1013

consider them as their results fall within the same range). The top and bottom1014

boxes respectively denote the first and third quartile, the solid line the median1015

and the whiskers maximum and minimum values. The dashed line denotes the1016

average, and the diamond shape the standard deviation. Note that Functional1017

Appropriateness is aggregated into the average of the 5 questions that com-1018

pose it, and functional completeness is aggregated into the average of multiple1019

user-stories (a variable number depending on the use case).1020

We can see that, when taking the aggregated number, none of the character-1021

istics scored below the mean of the rating scale (1-7) indicating that Bolster was1022

on average well-perceived by the use cases. Satisfaction sub-characteristics (i.e.,1023

Satisfaction, Trust, and Usefulness) present no anomaly, with usefulness standing1024

out as the highest rated one. As far as regards Functional Appropriateness,1025

Bolster was perceived to be overall effective, with some hesitation with regard1026

to the functionality offered for the semantic exploitation of the data. All other1027

scores are considerably satisfactory. The SRA is marked as functionally complete,1028

36



and correct, and expected to bring benefits in comparison to current techniques1029

used in the use cases. Ultimately this leads to a large intention to use.1030

Discussion. We can conclude that generally user’s perception is positive, being1031

most answers in the range from Neutral to Strongly Agree. The preliminary1032

assessment shows that the potential of the Bolster SRA is recognized also in the1033

industry domain and its application is perceived to be beneficial in improving1034

the quality-in-use of software products. It is worth noting, however, that some1035

respondents showed reluctancy regarding the Semantic Layer in Bolster. We1036

believe this aligns with the fact that Semantic Web technologies have not yet1037

been widely adopted in industry. Thus, lack of known successful industrial use1038

cases may raise caution among potential adopters.1039

8. Conclusions1040

Despite their current popularity, Big Data systems engineering is still in its1041

inception. As any other disruptive software-related technology, the consolidation1042

of emerging results is not easy and requires the effective application of solid1043

software engineering concepts. In this paper, we have focused on an architecture-1044

centric perspective and have defined an SRA, Bolster, to harmonize the different1045

components that lie in the core of such kind of systems. The approach uses the1046

semantic-aware strategy as main principle to define the different components1047

and their relationships. The benefits of Bolster are twofold. On the one hand, as1048

any SRA, it facilitates the technological work of Big Data adopters by providing1049

a unified framework which can be tailored to a specific context instead of a set1050

of independent components that are glued together in an ad-hoc manner. On1051

the other hand, as a semantic-aware solution, it supports non-expert Big Data1052

adopters in the definition and exploitation of the data stored in the system by1053

facilitating the decoupling of the data steward and analyst profiles. However,1054

we anticipate that in the long run, with the maturity of such technologies, the1055

role of software architect will be replaced in favor of the database administrator.1056

In this initial deployment, Bolster includes components for data management1057

and analysis as a first step towards the systematic development of the core1058

elements of Big Data systems. Thus, Bolster currently maps to the role played1059

by a relational DBMS in traditional BI systems. As future work, we foresee the1060

need to design a generic tool providing full-fledged functionalities for Metadata1061

Management System.1062

Acknowledgements1063

We thank Gerhard Engelbrecht for his assistance in setting up the validation1064

process, and Silverio Martínez for his comments and insights that helped to1065

improve this paper. This work was partly supported by the H2020 SUPERSEDE1066

project, funded by the EU Information and Communication Technologies Pro-1067

gramme under grant agreement no 644018, and the GENESIS project, funded by1068

the Spanish Ministerio de Ciencia e Innovación under project TIN2016-79269-R.1069

37



9. References1070

Agrawal, D., Das, S., El Abbadi, A., 2011. Big Data and Cloud Computing:1071

Current State and Future Opportunities. In: EDBT 2011.1072

Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar, V. R., Bu, Y.,1073

Carey, M. J., Cetindil, I., Cheelangi, M., Faraaz, K., Gabrielova, E., Grover,1074

R., Heilbron, Z., Kim, Y., Li, C., Li, G., Ok, J. M., Onose, N., Pirzadeh,1075

P., Tsotras, V. J., Vernica, R., Wen, J., Westmann, T., 2014. AsterixDB: A1076

Scalable, Open Source BDMS. PVLDB 7 (14), 1905–1916.1077

Angelov, S., Grefen, P. W. P. J., Greefhorst, D., 2012. A Framework for Analysis1078

and Design of Software Reference Architectures. Information & Software1079

Technology 54 (4), 417–431.1080

Aufaure, M., 2013. What’s Up in Business Intelligence? A Contextual and1081

Knowledge-Based Perspective. In: ER 2013.1082

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J., 2002. Models and1083

Issues in Data Stream Systems. In: PODS 2002.1084

Batini, C., Rula, A., Scannapieco, M., Viscusi, G., 2015. From Data Quality to1085

Big Data Quality. J. Database Manag. 26 (1), 60–82.1086

Behkamal, B., Kahani, M., Akbari, M. K., 2009. Customizing ISO 9126 Quality1087

Model for Evaluation of B2B Applications. Information & Software Technology1088

51 (3), 599–609.1089

Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R., 2016. Towards Intelligent1090

Data Analysis: The Metadata Challenge. In: IoTBD 2016. pp. 331–338.1091

Brewer, E. A., 2000. Towards Robust Distributed Systems (abstract). In: PODC1092

2000.1093

Chen, C. L. P., Zhang, C., 2014. Data-intensive Applications, Challenges, Tech-1094

niques and Technologies: A Survey on Big Data. Inf. Sci. 275, 314–347.1095

e Sá, J. O., Martins, C., Simões, P., 2015. Big Data in Cloud: A Data Architecture.1096

In: WorldCIST 2015.1097

Esteban, D., 2016. Interoperability and Standards in the European Data Economy1098

- Report on EC Workshop. European Commission.1099

Fernandez, R. C., Pietzuch, P., Kreps, J., Narkhede, N., Rao, J., Koshy, J., Lin,1100

D., Riccomini, C., Wang, G., 2015. Liquid: Unifying Nearline and Offline Big1101

Data Integration. In: CIDR 2015.1102

Fox, G., Chang, W., 2015. NIST Big Data Interoperability Framework: Volume1103

3, Use Case and General Requirements. NIST Special Publication (1500-3).1104

38



Galster, M., Avgeriou, P., 2011. Empirically-grounded Reference Architectures:1105

A Proposal. In: QoSA+ISARCS 2011. pp. 153–158.1106

Gani, A., Siddiqa, A., Shamshirband, S., Hanum, F., 2016. A Survey on Indexing1107

Techniques for Big Data: Taxonomy and Performance Evaluation. Knowl. Inf.1108

Syst. 46 (2), 241–284.1109

Garcia-Molina, H., Ullman, J. D., Widom, J., 2009. Database Systems - The1110

Complete Book (2. ed.). Pearson Education.1111

García, S., Romero, O., Raventós, R., 2016. DSS from an RE Perspective: A1112

Systematic Mapping. Journal of Systems and Software 117, 488 – 507.1113

Geerdink, B., 2015. A Reference Architecture for Big Data Solutions - Introducing1114

a Model to Perform Predictive Analytics Using Big Data Technology. IJBDI1115

2015 2 (4), 236–249.1116

Giacometti, A., Marcel, P., Negre, E., 2008. A Framework for Recommending1117

OLAP Queries. In: DOLAP 2008.1118

Gorton, I., Klein, J., 2015. Distribution, Data, Deployment: Software Architec-1119

ture Convergence in Big Data Systems. IEEE Software 32 (3), 78–85.1120

Grady, N. W., Underwood, M., Roy, A., Chang, W. L., 2014. Big Data: Chal-1121

lenges, Practices and Technologies: NIST Big Data Public Working Group1122

Workshop at IEEE Big Data 2014. In: IEEE Big Data 2014.1123

Gray, J., Liu, D. T., Nieto-Santisteban, M. A., Szalay, A. S., DeWitt, D. J.,1124

Heber, G., 2005. Scientific Data Management in the Coming Decade. SIGMOD1125

Record 34 (4), 34–41.1126

Grosskurth, A., Godfrey, M. W., 2005. A reference architecture for web browsers.1127

In: ICSM 2005. pp. 661–664.1128

Guo, K., Pan, W., Lu, M., Zhou, X., Ma, J., 2015. An Effective and Economical1129

Architecture for Semantic-based Heterogeneous Multimedia Big Data Retrieval.1130

Journal of Systems and Software 102, 207–216.1131

Harry, M. J., Schroeder, R. R., 2005. Six Sigma: The Breakthrough Management1132

Strategy Revolutionizing the World’s Top Corporations. Broadway Business.1133

Herrero, V., Abelló, A., Romero, O., 2016. NOSQL Design for Analytical1134

Workloads: Variability Matters. In: ER 2016. pp. 50–64.1135

Interlandi, M., Shah, K., Tetali, S. D., Gulzar, M., Yoo, S., Kim, M., Millstein,1136

T. D., Condie, T., 2015. Titian: Data Provenance Support in Spark. PVLDB1137

9 (3), 216–227.1138

Ionescu, B., Ionescu, D., Gadea, C., Solomon, B., Trifan, M., 2014. An Architec-1139

ture and Methods for Big Data Analysis. In: SOFA 2014.1140

39



ISO, 2011. IEC25010: 2011 Systems and software engineering–Systems and1141

software Quality Requirements and Evaluation (SQuaRE)–System and software1142

quality models.1143

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M.,1144

Ramakrishnan, R., Shahabi, C., 2014. Big Data and its Technical Challenges.1145

Commun. ACM 57 (7), 86–94.1146

Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Candón, H., Nadal, S., 2015.1147

Quarry: Digging Up the Gems of Your Data Treasury. In: EDBT 2015.1148

Kephart, J., Chess, D., Boutilier, C., Das, R., Kephart, J. O., Walsh, W. E.,1149

2007. An Architectural Blueprint for Autonomic Computing.1150

Khatri, V., Brown, C. V., 2010. Designing Data Governance. Commun. ACM1151

53 (1), 148–152.1152

Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Liter-1153

ature Reviews in Software Engineering.1154

Kontio, J., 1996. A Case Study in Applying a Systematic Method for COTS1155

Selection. In: ICSE 1996. pp. 201–209.1156

Kroß, J., Brunnert, A., Prehofer, C., Runkler, T. A., Krcmar, H., 2015. Stream1157

Processing on Demand for Lambda Architectures. In: EPEW 2015.1158

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D., 2012.1159

NIST Cloud Computing Reference Architecture: Recommendations of the1160

National Institute of Standards and Technology.1161

Madhavji, N. H., Miranskyy, A. V., Kontogiannis, K., 2015. Big Picture of Big1162

Data Software Engineering: With Example Research Challenges. In: BIGDSE1163

2015.1164

Martínez-Fernández, S., Ayala, C. P., Franch, X., Nakagawa, E. Y., 2015. A1165

Survey on the Benefits and Drawbacks of AUTOSAR. In: WASA 2015.1166

Martínez-Prieto, M. A., Cuesta, C. E., Arias, M., Fernández, J. D., 2015. The1167

Solid Architecture for Real-time Management of Big Semantic Data. Future1168

Generation Comp. Syst. 47, 62–79.1169

Marz, N., Warren, J., 2015. Big Data: Principles and Best Practices of Scalable1170

Realtime Data Systems. Manning Publications Co.1171

Meijer, E., Bierman, G. M., 2011. A Co-relational Model of Data for Large1172

Shared Data Banks. Commun. ACM 54 (4), 49–58.1173

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P. T., Kwas-1174

nikowska, N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan,1175

E. G., den Bussche, J. V., 2011. The Open Provenance Model core specification1176

(v1.1). Future Generation Comp. Syst. 27 (6), 743–756.1177

40



Munir, R. F., Romero, O., Abelló, A., Bilalli, B., Thiele, M., Lehner, W., 2016.1178

ResilientStore: A Heuristic-Based Data Format Selector for Intermediate1179

Results. In: MEDI 2016. pp. 42–56.1180

Nadal, S., Herrero, V., Romero, O., Abelló, A., Franch, X., Vansummeren, S.,1181

2016. Details on Bolster - State of the Art.1182

URL www.essi.upc.edu/~snadal/Bolster_SLR.html1183

Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., Vansummeren, S., 2017. An1184

Integration-Oriented Ontology to Govern Evolution in Big Data Ecosystems.1185

In: DOLAP 2017.1186

Ordonez, C., 2010. Statistical Model Computation with UDFs. IEEE Trans.1187

Knowl. Data Eng. 22 (12), 1752–1765.1188

Özsu, M. T., Valduriez, P., 2011. Principles of Distributed Database Systems,1189

Third Edition. Springer.1190

Pääkkönen, P., Pakkala, D., 2015. Reference Architecture and Classification of1191

Technologies, Products and Services for Big Data Systems. Big Data Research1192

2 (4), 166–186.1193

Panov, P., Dzeroski, S., Soldatova, L. N., 2008. OntoDM: An Ontology of Data1194

Mining. In: ICDM 2008.1195

Phuoc, D. L., Nguyen-Mau, H. Q., Parreira, J. X., Hauswirth, M., 2012. A1196

Middleware Framework for Scalable Management of Linked Streams. J. Web1197

Sem. 16, 42–51.1198

Qanbari, S., Zadeh, S. M., Vedaei, S., Dustdar, S., 2014. CloudMan: A Platform1199

for Portable Cloud Manufacturing Services. In: IEEE Big Data 2014.1200

Russom, P., 2011. Big Data Analytics. TDWI Best Practices Report, Fourth1201

Quarter, 6.1202

Sharda, R., Asamoah, D. A., Ponna, N., 2013. Business Analytics: Research and1203

Teaching Perspectives. In: ITI 2013.1204

Song, J., Guo, C., Wang, Z., Zhang, Y., Yu, G., Pierson, J., 2015. HaoLap: A1205

Hadoop Based OLAP System for Big Data. Journal of Systems and Software1206

102, 167–181.1207

Stonebraker, M., 2012. What Does ‘Big Data’ Mean. BLOG@ACM.1208

Stonebraker, M., 2014. Why the ’Data Lake’ is Really a ’Data Swamp’.1209

BLOG@ACM.1210

Terrizzano, I., Schwarz, P. M., Roth, M., Colino, J. E., 2015. Data Wrangling:1211

The Challenging Journey from the Wild to the Lake. In: CIDR 2015.1212

41

www.essi.upc.edu/~snadal/Bolster_SLR.html


Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A. V., 2015. Big Data Analytics:1213

a Survey. Journal of Big Data 2 (1), 1–32.1214

Twardowski, B., Ryzko, D., 2014. Multi-agent Architecture for Real-Time Big1215

Data Processing. In: IEEE/WIC/ACM 2014.1216

Vanhove, T., van Seghbroeck, G., Wauters, T., Turck, F. D., Vermeulen, B.,1217

Demeester, P., 2015. Tengu: An Experimentation Platform for Big Data1218

Applications. In: ICDCS 2015.1219

Varga, J., Romero, O., Pedersen, T. B., Thomsen, C., 2014. Towards Next1220

Generation BI Systems: The Analytical Metadata Challenge. In: DaWaK1221

2014.1222

Villari, M., Celesti, A., Fazio, M., Puliafito, A., 2014. AllJoyn Lambda: An Archi-1223

tecture for the Management of Smart Environments in IoT. In: SMARTCOMP1224

2014.1225

Wang, Y., Kung, L., Ting, C., Byrd, T. A., 2015. Beyond a Technical Perspective:1226

Understanding Big Data Capabilities in Health Care. In: HICSS 2015.1227

Weyrich, M., Ebert, C., 2016. Reference architectures for the internet of things.1228

IEEE Software 33 (1), 112–116.1229

Xie, Z., Chen, Y., Speer, J., Walters, T., Tarazaga, P. A., Kasarda, M., 2015.1230

Towards Use And Reuse Driven Big Data Management. In: ACM/IEEE-CE1231

2015.1232

Yang, F., Merlino, G., Léauté, X., 2015. The RADStack: Open Source Lambda1233

Architecture for Interactive Analytics.1234

Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z., 2013. A Distributed Graph1235

Engine for Web Scale RDF Data. PVLDB 6 (4), 265–276.1236

Zhang, R., Manotas, I., Li, M., Hildebrand, D., 2015. Towards a Big Data1237

Benchmarking and Demonstration Suite for the Online Social Network Era1238

with Realistic Workloads and Live Data. In: BPOE 2015.1239

Zhuang, Y., Wang, Y., Shao, J., Chen, L., Lu, W., Sun, J., Wei, B., Wu, J.,1240

2016. D-Ocean: An Unstructured Data Management System for Data Ocean1241

Environment. Frontiers of Computer Science 10 (2), 353–369.1242

42


	Introduction
	Big Data Definition and Dimensions
	Volume
	Velocity
	Variety
	Variability
	Veracity
	Summary

	Related Work
	Selection of papers
	Analysis
	Requirements on Volume
	Requirements on Velocity
	Requirements on Variety
	Requirements on Variability
	Requirements on Veracity

	Discussion

	Bolster: a Semantic Extension for the -Architecture
	The design of Bolster
	Adding semantics to the -architecture
	Bolster Components
	Semantic Layer
	Batch Layer
	Speed Layer
	Serving Layer
	Summary


	Exemplar Use Case
	Semantic representation
	Data ingestion
	Data processing and analysis

	Bolster Instantiation
	Available tools
	Semantic Layer
	Batch Layer
	Speed Layer
	Serving Layer

	Component selection
	Evaluation attributes

	Tool evaluation

	Industrial Experiences
	Use cases and instantiation
	BDAL: Big Data Analytics Lab
	H2020 SUPERSEDE Project
	WISCC: World Information System for Chagas Control
	Summary

	Validation
	Selection of participants
	Definition of the data collection methods
	Execution of the validation
	Analysis of validation results


	Conclusions
	References

