
A Software Tool for Collecting Data from Online Auctions

Author

Balingit, Rodel, Trevathan, Jarrod, Lee, Yong Jin, Read, Wayne

Published

2009

Conference Title

2009 Sixth International Conference on Information Technology: New Generations

Version

Accepted Manuscript (AM)

DOI 

https://doi.org/10.1109/ITNG.2009.147

Copyright Statement

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Downloaded from

http://hdl.handle.net/10072/395892

Griffith Research Online

https://research-repository.griffith.edu.au



A Software Tool for Collecting Data from Online
Auctions

Rodel Balingit, Jarrod Trevathan, Yong Jin Lee and Wayne Read
Discipline of Information Technology

James Cook University, Australia
Email: rodel.balingit/jarrod.trevathan/yong.lee1/wayne.read@jcu.edu.au

Abstract— Online auctions are increasingly becoming the plat-
form of choice for dubious sellers to engage anonymously in
fraudulent behaviour. While researchers are noble in their efforts
to devise mechanisms to counter auction fraud, they are often
frustrated by the lack of available auction data. Such data is
an invaluable tool to gain insight about fraudulent traits and for
testing proposed security remedies. This is compounded by online
auction sources being non-cooperative in providing auction data,
usually citing “security and privacy” as reasons for not wanting
to help. This paper presents a software tool that can extract
data from various online auction sources. The system is able
to collect all the data for a given search criteria on auctions
that have completed, and also returns later to collect the data
from ongoing auctions once they have completed (without user
intervention). We share our experiences from the development
process and describe the challenges that must be overcome to
successfully set up such a system. The data collected is used to
analyse the behaviour and bidding patterns of sellers and buyers
that are engaged in online auctions. The work presented in this
paper represents the first serious attempt at creating an openly
available software tool and establishing a repository of online
auction data that will be free for use by other researchers.

Keywords: e-Commerce, Software Design, Parsing, Statistics.

I. INTRODUCTION

Online auctions have become a popular place to conduct
online trading. eBay1, the world’s largest online auction ser-
vice is becoming more popular each day. Millions of people
use eBay for its convenience and its ability to sell commonly
available items and rare collectables not typically found in
regular retail stores. However, the prospect of anonymity and
lack of accountability in online auctions make it easy for
individuals to engage in fraudulent behaviour. This behaviour
might include artificially inflating the auction’s price with fake
bids (referred to as shill bidding), selling stolen items, or
misrepresenting an item as being something that it is not.

Various techniques are now being designed to detect and/or
prevent fraudulent behaviour (see [1], [5], [6], [9]). In order
to enhance the effectiveness and the proposed mechanisms,
researchers require real online auction data. This data can be
used to analyse trends that allude to fraudulent behaviour and
also to see the affect on buyers’ and sellers’ strategies given
the presence of anti-fraud mechanisms. However, obtaining
quality and volumness online auction data is quite a difficult
task.

1http://www.ebay.com

Most commercial online auctioneers are unwilling to pro-
vide data and often cite security and privacy reasons. While
it is true that security and privacy is a valid concern, the type
of data required by researchers typically does not impede on
these factors. Usually all that is required is the bidding history
for a series of auctions. The bidders’ and sellers’ identities
do not even need to be revealed. Instead it seems that the
uncooperative nature of online auctioneers may be due to
fear of lost business should it be discovered that fraudulent
activity has taken place. By keeping the auction data private,
auctioneers can conveniently keep any fraud that actually
occurs from becoming public knowledge.

Researchers have used various techniques to obtain auc-
tion data without the help of online auctioneers. Some have
manually “cut and pasted” data from auction pages (e.g.,
Jank and Shmueli [4]), whereas others automate the process
using software tools (see Ruban et. al. [5], Shah et. al, [6]).
Furthermore, some researchers have conducted their own auc-
tions (see Trevathan and Read [9]), or used software bidding
agents to artificially generate auction data (see Hattori et.
al. [3], Trevathan and Read [8]). Regardless of the collection
means, there appears to be no standard or documented manner
in which the data collection has occurred. There also is
no publicly available repository from which researchers can
request data collected by other researchers.

This paper presents a software tool for extracting auction
data from eBay. Once a user conducts a search on eBay, s/he
enters the URL containing the auction listings. The system
scans through listed auctions and extracts the item information
and bid history. This tool is able to collect all the data for a
given search criteria on auctions that have completed, and also
returns later to collect the data from ongoing auctions once
they have completed (without user intervention). The data is
parsed and then stored in a database. The system also provides
reporting features and statistics on the collected data. The work
presented in this paper represents the first serious attempt at
creating an openly available software tool and establishing a
repository of online auction data that will be free for use by
other researchers. (Note that in this paper we will be focusing
on auctions run by eBay as an example auction site, however,
the system can be adapted to extract auction data from other
online auctioneers.)

This paper is organised as follows: Section II provides
background on existing approaches that have been used to



collect data from online auction sources. Section III describes
the major software components of the system, the processes
involved in collecting and storing the auction data, and also
the reporting features to analyse the collected data. Section IV
gives a basic performance analysis of the system and Section V
describes some implementation specific issues. Section VI
provides some concluding remarks and avenues for future
work.

II. EXISTING DATA COLLECTION APPROACHES

This section discusses existing approaches and software
tools used by researchers to collect data from various online
auction sources.

Shah et. al. [6] developed a software tool called Spider that
executes a search through the historical data of each product
category. It collects the URLs to request individual auction
data and the bidding history pages. The bid history page
contains the details of submitted bids in a specific auction. The
Spider caches both the auction details and bid history pages
for each completed auction and parses them later. All requests
are staggered to avoid putting too much load on eBay’s server
(i.e., the server is periodically polled). From the cached pages,
the auction details were extracted and stored in a database.

Rubin et. al. [5] developed another type of software extrac-
tion tool. This tool procures basic information from an auction
including the Seller’s reputation according to eBay, and the
bids that were placed. For each bid submitted, the amount,
time, and bidder’s username are recorded. The data is stored
in a text file.

However, the problems with the aforementioned approaches
by Shah et. al. [6] and Rubin et. al. [5] are that the software
is not documented, nor is it publicly available for other
researchers to use. This makes it difficult to perform com-
parisons between systems (approaches). Furthermore, these
systems are now outdated due to the evolving structure of
eBay auctions (e.g., masking bid IDs, private auctions, etc.).

A commercial tool referred to as Auction Data Retriever2

exists that allows customers to harvest auction data directly
from eBay web pages to their own customised auction man-
agement system. Customers can import the data to Microsoft
Excel or Access. The fundamental problem with this system
is that it is sales-driven in that it only retrieves basic sales
information for a seller (but doesn’t actually retrieve the bid
history for any particular auction). Another deterring factor of
this approach is that it costs money to subscribe to the system.
Furthermore, there is no way to customise the type and amount
of data collected. We therefore conclude that commercial
systems aren’t really conducive to conducting research into
online auction fraud and security.

Trevathan and Read [7], [9] use a different approach to gath-
ering auction data. They developed an online auction server
that is capable of conducting real and simulated auctions.
In this way they can directly obtain auction data from the
participants. However, the problem with this approach is that

2http://rajeware.com/

Fig. 1. The High-Level Software Model for Collecting Online Auction Data

it takes a significant amount of time to set up, promote and
oversee the auctions. Essentially the researcher must become
a would-be auctioneer. It is also difficult to gather enough
willing people to cooperate in auctions in order to obtain
meaningful data.

To get around the aforementioned problem, the auction
server (and an approach outlined in Hattori et. al. [3]) also
allowed for software bidding agents to artificially generate data
(see Trevathan and Read [9]). While this is useful, software
bidding agents still don’t adequately capture the real-world
behaviour of human beings. Therefore generated auction data
has limited usefulness with regard to analysing fraudulent
trends and testing the effectiveness of anti-fraud techniques.

III. SOFTWARE MODEL AND DESIGN

This section presents the software model and design of
the auction data extraction tool. It describes the process of
collecting the auction data, the internal components, storage
of the data and reporting capabilities.

A. High Level Design

Figure 1 presents the high level software design for the
auction data extraction tool. Essentially the system sits on
a user’s computer and interacts with eBay across the web.
Once started, the tool is continually online until all auctions
have completed and their information has been extracted. If an
auction has not completed when initially observed, the system
records the finish time and then revisits the auction once it
has completed to extract its final data. The results (i.e., the
auction data) are written to a database. At any time the user
can interact with the software by a user interface. Once the
extraction process commences, the user can leave the system
running as a batch process. The system can also write data to
a database or an Excel file for statistical analysis.

B. Setting Up for Data Collection

Before a software tool is run, a user must initially visit
eBay’s auction site and undertake a search for the auctions
s/he desires to extract data from. Once the user has refined
his/her search, s/he uses the URL of the page as input into the
extraction tool. The tool uses the URL as the initial starting
point to commence the data extraction process. Note that this



Fig. 2. An Example of How to Set the System Up for Data Collection

is the only part of the process that requires manual intervention
by a user.

The basic steps involved for initialising the system are as
follows (refer to Figure 2):

1) The user visits the eBay auction site and searches for a
desired item on auction (e.g., Playstation 3 (PS3), Nokia
N95 8GB phone, iPhone).

2) The user selects the All Categories drop down menu to
refine search lists of Individual Auction Items and then
clicks the “Search” button.

3) The user selects the Auction only tab to display the items
on auction only.

4) The user must copy the URL found on the browser’s
address bar.

5) The user can verify that s/he has refined the search
correctly by checking that bids have been submitted for
an individual auction. This will indicate that the tool
will extract data from the correct auction format (refer
to Section III-C).

While, the search can be done in different ways to that
described above, the objective here is to get the correct URL
value from the browser’s address bar as input to the system.

C. The Data Collection Process

eBay offers differing buying formats for buyers and sell-
ers to conduct their business. These buying formats can be

categorised as:
• Auction – This format is an interaction of bidding among

competitive buyers. It has four types: Auction-like listings,
Second Chance Offer, Multiple Item Auction and Special
Sites (i.e., eBay Live auction, eBay Motors).

• Fixed Price – This format is offered to a buyer who
wants to pay a fixed price and get the item quickly.

• Advertisement – This format does not directly list the
item for sale, instead, it helps to connect buyers with sell-
ers (e.g., Want It Now and Best Offer auctions) (see [2]).
This format also encompasses the businesses affiliated
with eBay which offer goods directly to the customer via
eBay.

The software tool only extracts data from Auction listings.
At any point in time the tool categorises an auction as either
an ongoing auction or a completed auction. Generally, the
software extraction tool collects data from an ongoing auction
by individually parsing the Auction Items page list, then
parses/extracts the Individual Auction Item details and bid
history information. The software parsing tool can perform an
update on a recently completed auction automatically while
the software tool is busy extracting data from other auctions.

Figure 3 illustrates the process by which the tool collects
auction data from eBay. Once the system has been initialised
(i.e., set to the search page), the software tool constructs a
URLAuctionList page. This is done by extracting the URLs



Fig. 3. The Process Involved with Collecting Data from an Online Auction
Source

for each auction from the raw HTML in the search page.
For each URL page, the Individual Auction Item list page

is parsed and the following information is extracted:
• Item ID
• Seller ID
• Item image
• Item description
• Date (start/end)
• Item location

Next, the link to the item’s Bid History is followed and the
following information is extracted for each bid submitted:
• Bidder’s ID
• Price
• Time and date submitted

This data is cached until the last Individual Auction Item on
that page is completely parsed and extracted. The cached data
is written individually to a text file and then moves to the
next auction in the URLAuctionList page list. This process is
repeated until the last URLAuctionList page is reached.

D. Database Storage

The auction data collected is prepared and written in a form
of a SQL command stored procedure file. This allows the
data to be directly inserted into any database conforming to a
schema similar to the Research Auction Server (RAS). RAS is
an academic auction server designed to conduct both simulated
and real auctions for the purposes of collecting auction data.
Refer to Trevathan and Read [7] for the precise definition of
RAS’s database.

E. Internal Functional Components

Figure 4 illustrates the internal architecture of the processes
involved for extracting and storing the auction data. There are
several main components:

Fig. 4. The Online Auction Data Software Extraction Tool Design

1) PARSE/EXTRACT/AUTO UPDATE (PEAU) – This
parses eBay’s auction HTML documents, extracts auc-
tion data for each item on auction, and performs an
auto update of a recently completed auction. Both the
parse and extract processes are performed simultane-
ously. During this process, PEAU can detect if a specific
auction has completed, and then automatically updates
the previously extracted auction data. The auction data
is cached during the parse/extract process and written to
TEMPORARY INTERNAL STORAGE.

2) HTML URLAUCTIONLIST (HURL) – This holds a con-
structed URLAuctionList page during the parse/extract
process. The URLAuctionList page is appended with ad-
ditional URLAuctionList data as the parse/extract process
moves to the next page (increment P in Figure 3) until
the operation is completed. The constructed list is used
as reference to monitor and update the extracted auction
data from recently completed auctions.

3) AUCTION ITEM PAGE (AuIP) – This holds a list of
items on an auction as per the URLAuctionList page.
Each item parsed is checked to determine if submitted
bids are found. Then, it moves to the IvAuIP, otherwise
it continues to parse the next auctioned item (increment
N in Figure 3), or goes to the next URLAuctionList page
as the last auctioned item is reached.

4) INDIVIDUAL AUCTION ITEM PAGE (IvAuIP) – An
IvAuIP holds the bid history details. At this point, an
extraction of data commences and is then stored in
TEMPORARY INTERNAL STORAGE.

5) TEMPORARY INTERNAL STORAGE – This is a central
repository of an extracted auction data from eBay. The
data stored are organised and prepared for file creation
like url.txt, auction.sql, bidinfor.sql, updatebidinfor.sql,
and image file. The url.txt file is a list of URLs collected
from eBay. The files auction, bidinfor and updatebid-
infor are SQL command procedures used for inserting



Fig. 5. An example summary of auctions which are being extracted from eBay (showing both in-progress and recently completed auctions). 1) illustrates
where the URL for the auction search page is entered. 2) indicates how far through the entire extraction process the tool currently is. 3) shows a summary
of the auctions from which data is being collected. 4) presents the bid history data collected from a specific auction. 5) provides summary statistics for the
auction data collected.

the data directly into the database.
6) AUCTION ITEM IMAGE (AII) – This extracts the

images for each item auctioned.
7) SQL QUERY FILES – This creates a SQL stored pro-

cedure to insert extracted auction data into a RAS-
style auction database. It creates three files: auction.sql,
bidinfor.sql and updatebidinfor.sql.

8) VIEW AUCTION DATA (VAD) – This allows a user
to view the extracted auction data. The view feature
includes auction data, URL list and updates of recently
completed auctions.

F. Reporting Features

The auction data extraction tool can perform a preliminary
statistical analysis and provides a histogram/graph to initially
analyse the extracted auction data.

Figure 5 shows an example of the software parsing tool’s
processed output. The five separate windows are displayed
when the software tool starts the auction data extraction
process. First, the copied URL address is placed in the input
text field by a user initially (refer to Window 1 of Figure 5).
The user has the option to tick the “Extract All Auction”
checkbox and then selects the “Start Parsing” button to execute
the process. The advantage of this feature is that the software
parsing tool can perform an auto increment to proceed to
the next URLAuctionList page to undertake the parse/extract
process until the last page is reached. Otherwise, only the

current URLAuctionList page is parsed/extracted.
Window 2 of Figure 5 shows the overall progress made on

extracting the auction data. It lists the number of completed
auctions that have been processed and the number of ongoing
auctions that the system is still waiting on to finalise data
extraction. If the user clicks the “View Auctions” button,
Window 3 appears (see Figure 5). This window presents the
details for all of the auctions that will have their data extracted.
Window 4 allows the user to view to bid history that has been
extracted for a specific auction. Window 5 presents statistics
for the software tool pertaining to the total elapsed time since
the tool commenced execution, the number of bids extracted,
the number of auctions extracted, and the average number of
bids per auction that have been extracted.

IV. COMPLEXITY ANALYSIS

This section performs a basic complexity analysis of the
auction data extraction software.

The factors that influence the system’s running time include:
1) the number of auctions to extract; and 2) the finishing times
of the auctions. Assuming that all auctions have completed, the
execution time is linear in relation to the number of auctions.
That is, given n auctions, the running time is O(n).

To extract auction URLs from the initial search page, the
system must open the HTML file and sequentially scan the
HTML tags to remove the relevant data. This process is also
similar for extracting the auction data and bidding history for



each auction.
Since the system extracts data from ongoing and completed

auctions, when it encounters an ongoing auction, it must later
return to that auction to extract its final data. As previously
mentioned, the system does this by recording the auction’s
closing time. It then returns when the user’s computer’s system
clock indicates that the time on the auction server has passed
the auction’s closing time. Using this approach, the system
does not need to continually poll the auction server (as in
the approach by Shah et. al. [6]). The only load the system
places on the auction server is a one off extraction of the
search page and each relevant auction page. Given n auctions
with m ongoing auctions (where m ≤ n), the system places a
maximum load on the auction server of O(n+m) (in addition
to the extraction of URLs from the search page).

V. IMPLEMENTATION

This section briefly describes the specifics of the implemen-
tation and practical issues we faced with using the system.

The auction data extraction tool is developed and im-
plemented using the Java programming language. Several
versions were implemented and unit tested prior to the com-
mencement of a concerted acquisition attempt to obtain data.
We ran the software tool on several standard desktop com-
puters simultaneously to extract auction data. Each computer
extracted data from different search criterias for different
auctions. At the end of the process, all of the auction data
was collated and stored in a central repository.

At the time of writing, the system has collected data from
over 1300 auctions spanning three categories of items. The
data has taken one month to collect. There were several major
impediments to the time it took to collect this data. The first
constraint is the number of auctions available for the desired
search criteria. Next the system is constrained by the duration
of each of the auctions. For example, some auctions can run
for a day, whereas others may run for ten days. Obviously
more data can be collected for a large number of auctions that
run for a short duration.

A significant limiting factor specific to our data collection
was a proxy authentication system within our research insti-
tution. To gain external Internet access, each user (or process)
must authenticate him/herself to the proxy. The authentication
remains active for twelve hours of continuous use before
requiring reauthentication. This essentially denied the system
external access to eBay when performing a batch job (i.e.,
it exceeded the twelve hours of activity), thereby forcing the
system to have to be restarted. We eventually overcome this
by allowing the system to reinitialise and take up where it left
off from disconnections.

VI. CONCLUSIONS

This paper presented a software tool to collect data from
eBay’s new auction structure. This work is motivated by
the unwillingness of commercial auctioneers to contribute
auction data for the purposes of testing auction fraud detec-
tion/prevention mechanisms that are proposed by researchers.

The software tool parses/extracts auction data from both
ongoing and completed auctions, and collects description
information pertaining to the item auctioned as well as its
bidding history. The collected data can be exported to an
Excel spread sheet to graph for analysis. Additionally, the
auction data collected can be uploaded to a customised auction
server. The work presented in this paper represents the first
serious attempt at creating an openly available software tool
and establishing a repository of online auction data that will
be free for use by other researchers.

Future work involves opening the software tool to col-
laboration with other researchers to improve its performance
(e.g., increase its efficiency to extract auction data, revise the
software model and architecture design, etc.). The database of
collected data will be put online for other researchers to copy
and/or add their own extracted auction data to. We also intend
on allowing the software tool to extract all the completed
auctions for a specific seller, and adding additional statisitical
functionality. Furthermore, there is scope to implement basic
data mining algorithms in an attempt to analyse previously
unknown trends in the auction data over time.

REFERENCES

[1] Y. Cheng and H. Xu, “A Formal Approach to Detecting Shilling Be-
haviours in Concurrent Online Auctions,” in Proceedings of the 8th

International Conference on Enterprise Information Systems, 2006.
[2] eBay, “Guide to Buying Formats”, Online,

http://pages.ebay.com.au/help/buy/formats-ov.html, 04 August 2008.
[3] H. Hattori, R. Yamada, T. Ozono and T. Shintani, “A Multiple-Bidding

Support Framework for Bidding and Browsing Information” - Technical
Report, Department of Intelligence and Computer Science Nagoya Insti-
tute of Technology, 2002.

[4] Jank and Shmueli. Dynamic Profiling of Online Auctions Using Curve
Clustering. In Proceedings of the 11th Annual Spring Research Confer-
ence (SRC) on Statistics in Industry and Technology, 2004.

[5] S. Rubin, M. Christodorescu, V. Ganapathy, J. Giffin, L. Kouger and H.
Wang, “An Auctioning Reputation System Based on Anomaly Detection”,
in the Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS), pages 270–279, Alexandria Virginia,
2005.

[6] H. Shah, N. Joshi and P. Wurman “Mining for Bidding Strategies on
eBay”, in SIGKDD’2002 Workshop on Web Mining for Usage Patterns
and User Profiles, 2002.

[7] J. Trevathan and W. Read, RAS: a system for supporting research in
online auctions, ACM Crossroads, 12.4, 23–30, 2006.

[8] J. Trevathan and W. Read, “Detecting Collusive Shill Bidding,” in
the Proceedings of the 4th International Conference on Information
Technology - New Generations, pages 799–808, 2007.

[9] J. Trevathan and W. Read “Detecting Shill Bidding in Online English
Auctions,” Social and Human Elements of Information Security: Emerg-
ing Trends and Countermeasures, IGI Press, pages 446–470, 2008.


