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Abstract

This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T)
collector that has been designed to produce both electricity and hot water. The motivation for
the development of the Combined Heat and Power Solar (CHAPS) collector is twofold: in the
short term, to produce photovoltaic power and solar hot water at a cost which is competitive
with other renewable energy technologies, and in the longer term, at a cost which is lower
than possible with current technologies. To the author’s knowledge, the CHAPS collector is
the first PV/T system using a reflective linear concentrator with a concentration ratio in the
range 20-40x. The work contained in this thesis is a thorough study of all facets of the
CHAPS callector, through a combination of theoretical and experimental investigation.

A theoretical discussion of the concept of ‘energy value' is presented, with the aim of
developing methodologies that could be used in optimisation studies to compare the value of
electrical and thermal energy. Three approaches are discussed; thermodynamic methods,
using second law concepts of energy usefulness, economic valuation of the hot water and
electricity through levelised energy costs, and environmental valuation, based on the
greenhouse gas emissions associated with the generation of hot water and electricity. It is
proposed that the value of electrical energy and thermal energy is best compared using a
simpleratio.

Experimental measurement of the thermal and electrical efficiency of a CHAPS receiver was
carried out for a range of operating temperatures and fluid flow rates. The effectiveness of
internal fins incorporated to augment heat transfer was examined. The glass surface
temperature was measured using an infrared camera, to assist in the calculation of thermal
losses, and to help determine the extent of radiation absorbed in the cover materials. FEA
analysis, using the software package Strand7, examines the conductive heat transfer within
the receiver body to obtain atemperature profile under operating conditions.

Electrical efficiency is not only affected by temperature, but by non-uniformities in the
radiation flux profile. Highly non-uniform illumination across the cells was found to reduce
the efficiency by about 10% relative. The radiation flux profile longitudinal to the receivers
was measured by a custom-built flux scanning device. The results show significant
fluctuations in the flux profile and, at worst, the minimum flux intensity is as much as 27%
lower than the median. A single cell with low flux intensity limits the current and
performance of all cells in series, causing a significant drop in overall output. Therefore, a
detailed understanding of the causes of flux non-uniformities is essentia for the design of a
single-axis tracking PV trough concentrator. Simulation of the flux profile was carried out
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using the ray tracing software Opticad, and good agreement was achieved between the
simulated and measured results. The ray tracing allows the effect of the receiver supports, the
gap between mirrors and the mirror shape imperfections to be examined individually.

A detailed analytical model simulating the CHAPS collector was developed in the TRNSY S
simulation environment. The accuracy of the new component was tested against measured
data, with acceptable results. A system model was created to demonstrate how
sub-components of the collector, such as the insulation thickness and the conductivity of the
tape bonding the cells to the receiver, can be examined as part of along term simulation.
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Nomenclature and Abbreviations

Nomenclature

»F &>

Fu
Fairt

Fshade

Fshape

Funiformity

Area
Mirror aperture area

Nominal cross-sectional area for
the fluid conduit (excluding fins)

Cross-sectional area of the fluid
conduit

Exergy (or Availability)

Specific heat

Thermal capacitance of the solar
collector

Capital cost

Net cash flow generated at time t
Diameter

Hydraulic diameter

Fill factor

Carnavos correction factor
Scaling factor for dirt on a mirror

Scaling factor for shading of a
mirror

Scaling factor for mirror shape
error

Scaling factor to account for the
effect of non-uniform radiation on
electrical output

Acceleration due to gravity
=9.81 ms”
Radiation flux intensity

Total (direct and diffuse) radiation
intensity

Direct beam radiation flux intensity
Grashof number

Specific enthalpy

Heat transfer coefficient for
convection

Jo

J

Jsc

x

kT/q

Qeq.elec
Qh

Qd ec

Qrad

Local radiation flux intensity
Current

Dark current, or reverse saturation
current

Light generated current
Current at the maximum power
point

Short circuit current

Thermal conductivity

Boltzmann’s constant
=1.381x 102 JK*

Discount rate
Extinction coefficient

Thermal voltage
=0.02586 V (300 K)

Characteristic length

Mass

Mass flow of fluid
Refractive index

Lifetime of a project
Nusselt number

Pressure

Perimeter of a fluid conduit

Nominal wetted perimeter for the
fluid conduit (excluding fins)

Prandtl number

Elementary charge
=1.602x 10" C

Energy
Equivalent electrical energy

Thermal output power
Electrical output power
Rate of (heat) energy transfer

Thermal heat loss due to radiation
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Qaun
Qabs—cel Is
Qabs— glass
Q}ad
Q&onv

Qins

ngnv

Qad

Rcond
RCOI’]V

Un

Unind

Solar radiation incident upon the
receiver

Radiation absorbed by the solar
cells

Radiation absorbed in the glass-
silicone cover

Thermal heat loss due to radiation
from the glass surface

Thermal heat loss due to
convection loss from the glass
surface

Thermal heat transfer through the
insulation

Thermal heat loss due to
convection loss from the insulation
cover

Thermal heat loss due to radiation
from the insulation cover

Thermal resistance for conduction
Thermal resistance for convection
Reynolds number

Series resistance

Shunt resistance

Specific entropy

Temperature

Time

Environmental temperature

Fluid temperature

Film temperature (the average of
the fluid and surface temperatures)

Surface temperature

Overall heat transfer coefficient =
k/t

Mean fluid velocity

Wind speed

GH

At
&y
Mpes

Hpower

Tth

elec

0TI R

(ra)

Velocity of fluid

Open circuit voltage

Voltage at the maximum power
point

Height

Absorption

Helix angle of the fins = 0 for the
CHAPS receiver

Temperature coefficient for the
relationship between solar cell
efficiency and temperature

Thickness

Azimuth angle

Small time interval

Emissivity of glass
Primary-energy saving efficiency

Conversion efficiency of a
conventional thermal power station

Thermal efficiency
Electrical efficiency

Angle of incidence of radiation

Escape angle for Total Internal
Reflection

Zenith angle
Dynamic viscosity

Dynamic viscosity evaluated at the
wall temperature

Kinematic viscosity = ulp
Reflectivity

Stefan-Boltzmann constant
=5.67 x 10° W.m?.K™*
Transmission-absorption product
=1-p

Transmissivity
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Abbreviations

AMO
AMX

ANU
BOS
CHAPS
CPC
CSES
CSR
DOE
EQE
FES
GHG
GOML
HWS
LEC
LGBG
MPPT
NPV
PT100
PV
PVIT
SEF
SHWS
SRCC
TK
TRNSYS

Air Mass 0, referring to the spectral distribution of sunlight outside the atmosphere

Air Mass 1.5, referring to the spectral distribution of sunlight when the sun is at angle
cos™(1/x) from vertical

Australian National University

Balance of system

The Combined Heat and Power Solar collector
Compound Parabolic Concentrator

Centre for Sustainable Energy Systems, at the Australian National University
Circumsolar Ratio

U.S. Department of Energy

External Quantum Efficiency

Fractional Energy Saving

Greenhouse gas

Glass On Metal Laminate - the material used to fabricate CHAPS mirrors
Hot water system

Levelised energy cost

Laser Grooved Buried Grid

Maximum power point tracker

Net present value

Temperature sensor using a platinum resistive device
Photovoltaic

Combined Photovoltaic / Thermal

Solar Energy Fraction

Solar hot water system

Solar Rating and Certification Corporation
Thermocouple Type K

A TRaNsient SYStem simulation program, used for solar system simulations
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