A solar concentrating photovoltaic / thermal collector

Joseph Sydney Coventry June 2004

A thesis submitted for the degree of Doctor of Philosophy at the Australian National University

Declaration

This PhD thesis contains no material that has been accepted for the award of any other degree or diploma in any university. To the best of the author's knowledge and belief, no material previously published or written by another person has been included in this thesis, except where due reference is made in the text.

Joe Coventry June 2004

Acknowledgements

This thesis would not have been possible without the generous academic support of my two supervisors, Andrew Blakers and Keith Lovegrove. They have given me solid guidance throughout the PhD, and their optimism and commitment towards the cause of renewable energy is certainly inspirational. Many thanks also to Chris Bales in Sweden for his help as an advisor, and for bringing me up to speed with TRNSYS during his year at the ANU.

I would like to acknowledge the generosity and patience shown by the administration at the Centre for Sustainable Energy Systems and the Faculty of Engineering and Information Technology during the last four years. I have had the opportunity to conduct an international study tour, attend local and international conferences, and to take some time out while working on the Bruce Hall solar project. Both CSES and FEIT have been generous with financial support and encouraged extra-curricular developmental activities. Thanks also to the now defunct CRC for Renewable Energy for their funding support and good fun post-graduate conferences.

To my fellow CHAPS team, it has been a pleasure to work with you, up on the roof, in the labs and sitting around the table discussing ideas. A few people deserve special mention: James Cotsell for his enthusiasm and willingness to get things done, and especially for accelerating the construction of the long trough; Bruce Condon, for advice on all things measurement and electrical; John Smeltink, for regularly getting his hands dirty to 'get the job done'; Greg Burgess, for his help on cold winter nights with the photogrammetry; Will Keogh, for advice with LabView and the flash tester; and the team of people who have helped out in the workshop, particularly Luke Clayton, Jeff Brown, Tony Ashmore, Ben Nash and Jaap den Hartog.

My office mates have been absolutely fantastic. Holger Kreetz was a real motivator, not just on the soccer field, but in discussions on thermodynamics and the thesis in general during the early days. Thanks to Mike Dennis for teaching me about wires and sharing the frustrations of TRNSYS, and Evan Franklin for a shot and a half of coffee, Monday footy analysis and help with the flux measurements (in no particular order). Thank you also Dave, Liz, Paul and Tom for helping make the office such a great work environment, and top notch place to hang out!

Thank you friends and family for your support. Most of all, thank you Leonie for moving up to Canberra, marrying me and making life outside the thesis good.

Abstract

This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water. The motivation for the development of the Combined Heat and Power Solar (CHAPS) collector is twofold: in the short term, to produce photovoltaic power and solar hot water at a cost which is competitive with other renewable energy technologies, and in the longer term, at a cost which is lower than possible with current technologies. To the author's knowledge, the CHAPS collector is the first PV/T system using a reflective linear concentrator with a concentration ratio in the range 20-40x. The work contained in this thesis is a thorough study of all facets of the CHAPS collector, through a combination of theoretical and experimental investigation.

A theoretical discussion of the concept of 'energy value' is presented, with the aim of developing methodologies that could be used in optimisation studies to compare the value of electrical and thermal energy. Three approaches are discussed; thermodynamic methods, using second law concepts of energy usefulness; economic valuation of the hot water and electricity through levelised energy costs; and environmental valuation, based on the greenhouse gas emissions associated with the generation of hot water and electricity. It is proposed that the value of electrical energy and thermal energy is best compared using a simple ratio.

Experimental measurement of the thermal and electrical efficiency of a CHAPS receiver was carried out for a range of operating temperatures and fluid flow rates. The effectiveness of internal fins incorporated to augment heat transfer was examined. The glass surface temperature was measured using an infrared camera, to assist in the calculation of thermal losses, and to help determine the extent of radiation absorbed in the cover materials. FEA analysis, using the software package Strand7, examines the conductive heat transfer within the receiver body to obtain a temperature profile under operating conditions.

Electrical efficiency is not only affected by temperature, but by non-uniformities in the radiation flux profile. Highly non-uniform illumination across the cells was found to reduce the efficiency by about 10% relative. The radiation flux profile longitudinal to the receivers was measured by a custom-built flux scanning device. The results show significant fluctuations in the flux profile and, at worst, the minimum flux intensity is as much as 27% lower than the median. A single cell with low flux intensity limits the current and performance of all cells in series, causing a significant drop in overall output. Therefore, a detailed understanding of the causes of flux non-uniformities is essential for the design of a single-axis tracking PV trough concentrator. Simulation of the flux profile was carried out

using the ray tracing software Opticad, and good agreement was achieved between the simulated and measured results. The ray tracing allows the effect of the receiver supports, the gap between mirrors and the mirror shape imperfections to be examined individually.

A detailed analytical model simulating the CHAPS collector was developed in the TRNSYS simulation environment. The accuracy of the new component was tested against measured data, with acceptable results. A system model was created to demonstrate how sub-components of the collector, such as the insulation thickness and the conductivity of the tape bonding the cells to the receiver, can be examined as part of a long term simulation.

Foreword

The author would like to acknowledge colleagues at CSES for their contributions to the design and production of the CHAPS system. The receiver design was modified from the air cooled system used for the Rockingham PV trough project, which is a two-axis tracking PV concentrator system designed by the ANU (Smeltink et al., 2000). The author was responsible for many of the key changes to this design, in particular, the shift to a full aluminium extrusion (with the use of anti-corrosive additives in the cooling fluid) and the inclusion of internal fins to improve the heat transfer. The design team, led by James Cotsell, assisted with realising the design and fabricating the receivers. The author was also responsible for the system design change from two-axis tracking CHAPS systems to singleaxis tracking long troughs. The detailed mechanical drawings for the single axis tracking system were coordinated by John Smeltink, and the manufacturing was outsourced. The mirrors were designed by Glen Johnston and Greg Burgess, and manufactured in the solar thermal workshop at the ANU. The monocrystalline silicon solar cells were manufactured in the photovoltaic laboratory at the ANU, by a dedicated and persistent team lead by Chris Holly. The solar tracking controller was developed and built by Mike Dennis. The author carried out the experimental work to examine the impact of non-uniform light across solar cells, but would like to acknowledge the work of Evan Franklin in developing a theoretical model to further explain the results. The author would like to acknowledge the contribution by Keith Lovegrove to chapter 3, which is largely taken from a co-authored journal paper (Coventry and Lovegrove, 2003). The author carried out all data gathering and analysis in this chapter, but Keith was very helpful in discussing the intricacies of the *concept* of energy value.

The following publications were produced during the course of the research project:

Journal papers

Coventry, J. S. and Lovegrove, K., 2003: Development of an approach to compare the 'value' of electrical and thermal output from a domestic PV/thermal system. *Solar Energy*, **75**, 63-72.

Coventry, J. S., 2004: Performance of a concentrating photovoltaic/thermal solar collector Solar Energy, In Press, Corrected Proof, Available online 10 May 2004 at http://www. sciencedirect.com

Conference papers

Coventry, J. and Lovegrove, K., 2001: Development of an approach to compare the 'value' of electrical and thermal output from a domestic PV/Thermal system. *ISES Solar World Congress*, Adelaide.

Coventry, J., 2002: Simulation of a concentrating PV/thermal collector using TRNSYS. *ANZSES Solar Energy Conference*, Newcastle.

Coventry, J., Franklin, E., and Blakers, A., 2002: Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector. *ANZSES Solar Energy Conference*, Newcastle.

Coventry, J., 2003: Performance of a Concentrating Photovoltaic/Thermal Solar Collector. *ISES Solar World Congress*, Gothenburg.

Coventry, J. S., 2003: Performance of the CHAPS collectors. *ANZSES Solar Energy Conference*, Melbourne.

Coventry, J. S., 2003: An investigation of non-uniformities in the longitudinal radiation flux profile of a single-axis tracking parabolic trough concentrator. *ANZSES Solar Energy Conference*, Melbourne.

Coventry, J. S., 2003: Optical performance of a parabolic trough concentrator. *International* solar concentrator conference for the generation of electricity or hydrogen, Alice Springs.

Blakers, A., Coventry, J. S., Franklin, E., Dennis, M., Cotsell, J., Holly, C., and Smeltink, J., 2003: Solar Concentrators at ANU. *International solar concentrator conference for the generation of electricity or hydrogen*, Alice Springs.

Nomenclature and Abbreviations

Nomenclature

Α	Area	Ι	Local radiation flux intensity
A_m	Mirror aperture area	J	Current
A_s	Nominal cross-sectional area for	J_0	Dark current, or reverse saturation
	the fluid conduit (excluding fins)		current
A_{xs}	Cross-sectional area of the fluid	J_L	Light generated current
	conduit	J_{mp}	Current at the maximum power
À	Exergy (or Availability)		point
c_p	Specific heat	J_{SC}	Short circuit current
$C_{p\text{-}col}$	Thermal capacitance of the solar	k	Thermal conductivity
	collector	k _b	Boltzmann's constant
C_0	Capital cost	,	= 1.381 X 10 J.K
C_t	Net cash flow generated at time t	k _d	
D	Diameter	K	
D_h	Hydraulic diameter	kT/q	Thermal voltage
FF	Fill factor	T	= 0.02586 V (300 K)
F_H	Carnavos correction factor	L	
F _{dirt}	Scaling factor for dirt on a mirror	m	Mass
F_{shade}	Scaling factor for shading of a	т	Mass flow of fluid
	mirror	п	Refractive index
F_{shape}	Scaling factor for mirror shape	n_p	Lifetime of a project
	error	Nu	Nusselt number
$F_{uniformity}$	Scaling factor to account for the	р	Pressure
	effect of non-uniform radiation on	Р	Perimeter of a fluid conduit
	electrical output	P_n	Nominal wetted perimeter for the
g	Acceleration due to gravity 0.04 mm^{-2}	D	fluid conduit (excluding fins)
	= 9.81 ms	Pr	
G	Radiation flux intensity	q	Elementary charge -1.602×10^{-19} C
\dot{G}_T	Total (direct and diffuse) radiation	0	
	intensity	0	Energy
\dot{G}_d	Direct beam radiation flux intensity	Qeq.elec	
Gr	Grashof number	Q_{th}	Thermal output power
h	Specific enthalpy	Q_{elec}	Electrical output power
h_c	Heat transfer coefficient for	Ż	Rate of (heat) energy transfer
	convection	\dot{Q}_{rad}	Thermal heat loss due to radiation

Q_{sun}	Solar radiation incident upon the	V	Velocity of fluid
		V_{cc}	Open circuit voltage
$\dot{Q}_{abs-cells}$	Radiation absorbed by the solar	V_{mp}	Voltage at the maximum power
			point
$Q_{abs-glass}$	Radiation absorbed in the glass-	z	Height
		α	Absorption
Q'_{rad}	I hermal heat loss due to radiation	α_H	Helix angle of the fins = 0 for the
.,			CHAPS receiver
Q'_{conv}	Convection loss from the class	β	Temperature coefficient for the
	surface		relationship between solar cell
ė	Thermal heat transfer through the		efficiency and temperature
Q_{ins}	insulation	δ	Thickness
ò"	Thermal heat loss due to	γ	Azimuth angle
Qconv	convection loss from the insulation	∆t	Small time interval
	cover	ε_g	Emissivity of glass
\dot{O}''_{rad}	Thermal heat loss due to radiation	η_{pes}	Primary-energy saving efficiency
Zruu	from the insulation cover	η_{power}	Conversion efficiency of a
R _{cond}	Thermal resistance for conduction		conventional thermal power station
R _{conv}	Thermal resistance for convection	η_{th}	Thermal efficiency
Re	Reynolds number	η_{elec}	Electrical efficiency
R_s	Series resistance	θ	Angle of incidence of radiation
R_{sh}	Shunt resistance	θ_{TIR}	Escape angle for Total Internal
S	Specific entropy		Reflection
Т	Temperature	θ_z	Zenith angle
t	Time	μ	Dynamic viscosity
T_0	Environmental temperature	μ_w	Dynamic viscosity evaluated at the
T_{∞}	Fluid temperature		wall temperature
T_{f}	Film temperature (the average of	ν	Kinematic viscosity = μ/ρ
	the fluid and surface temperatures)	ρ	Reflectivity
T_s	Surface temperature	σ	Stefan-Boltzmann constant
U	Overall heat transfer coefficient =		$= 5.67 \times 10^{-8} \text{ W.m}^{-2}.\text{K}^{-4}$
	k/t	(τα)	Transmission-absorption product
u_m	Mean fluid velocity		$= 1 - \rho$
u_{wind}	Wind speed	τ	Transmissivity

Abbreviations

AMO	Air Mass 0, referring to the spectral distribution of sunlight outside the atmosphere
AMx	Air Mass 1.5, referring to the spectral distribution of sunlight when the sun is at angle
	cos ⁻¹ (1/x) from vertical
ANU	Australian National University
BOS	Balance of system
CHAPS	The Combined Heat and Power Solar collector
CPC	Compound Parabolic Concentrator
CSES	Centre for Sustainable Energy Systems, at the Australian National University
CSR	Circumsolar Ratio
DOE	U.S. Department of Energy
EQE	External Quantum Efficiency
FES	Fractional Energy Saving
GHG	Greenhouse gas
GOML	Glass On Metal Laminate - the material used to fabricate CHAPS mirrors
HWS	Hot water system
LEC	Levelised energy cost
LGBG	Laser Grooved Buried Grid
MPPT	Maximum power point tracker
NPV	Net present value
PT100	Temperature sensor using a platinum resistive device
PV	Photovoltaic
PV/T	Combined Photovoltaic / Thermal
SEF	Solar Energy Fraction
SHWS	Solar hot water system
SRCC	Solar Rating and Certification Corporation
ТК	Thermocouple Type K
TRNSYS	A TRaNsient SYStem simulation program, used for solar system simulations

Table of contents

Declaration	iii
Acknowledgements	v
Abstract	vii
Foreword	ix
Nomenclature and Abbreviations	xi
Nomenclature	xi
Abbreviations	xiii
Table of contents	XV
Introduction Chapter 1	
1.1 Energy today	1
1.2 Solar aparay	1
1.2 Objectives of this work	2
1.4 Thesis structure	3
Background Chanter 2	7
a t	,
2.1 The sun	
2.2 Photovoltaics	
2.2.1 Concentrator photovoltaic systems	
2.4 Solar thermal	16
2.5 Combined photovoltaic – thermal	19
2.5.1 Water cooled PV/T	
2.5.2 Air cooled PV/T collectors	
2.5.3 Concentrating PV/T collectors	
2.6 Introduction to TRNSYS	
2.7 Heat transfer theory	
2.7.1 Convective heat transfer for internal flow	
2.7.2 Convective heat transfer for external flow	
Energy Value Comparison Chapter 3	
3.1 Introduction	
3.2 Thermodynamic valuation	
3.2.1 Energy	
3.2.2 Primary-energy saving	
3.2.3 Exergy	
3.3 Economic valuation	
3.3.1 Open Market Approach	
3.3.2 Renewable Energy Market Approach	

3.3.	2.1 Grid-connected photovoltaics levelised energy cost	
3.3.	2.2 Solar hot water levelised energy cost	
3.4 E	nvironmental valuation	
3.4.1	Avoided emissions	
3.4.2	Life cycle emissions	
3.5 C	omparison of methods	
3.6 C	ptimisation methodology	
The CHAI	PS system Chapter 4	41
4.1 S	olar cells	
4.2 N	1irrors	
4.3 R	eceivers	
4.3.1	Evolution of the design	
4.3.2	Summary of the current design	
4.3.3	Receiver sub-components	
4.4 S	un tracking	
4.4.1	Single-axis versus two-axis tracking	
4.4.2	Tracking tolerance	
4.5 S	pectral dependency	
4.5.1	Transmission through the cover	
4.5.2	Measurement of transmission, reflection and absorption	
4.5.3	Results of spectrophotometer measurements	
4.5.4	Spectral dependency of the mirror reflection	
4.5.5	Spectral dependency of the glass transmission	
4.5.6	Spectral dependency of the silicone transmission	60
4.5.7	Glass-silicone cover reflection	61
4.5.8	Spectral dependency of the solar cell absorption	
Thermal F	Performance Chapter 5	65
5.1 E	xperimental method	
5.1.1	The mirror	
5.1.2	The receiver	
5.1.3	Data logging equipment	
5.1.	3.1 Data Logger	
5.1.	3.2 Direct beam radiation	
5.1.	3.3 Ambient temperature	
5.1.	3.4 Wind speed	
5.1.	3.5 Inlet water temperature	
5.1.	3.6 Temperature difference across the receiver	67
5.1.	3.7 Volumetric flow	
5.1.	3.8 Current and voltage	
5.1.	3.9 Temperature of the receiver body	
5.2 N	leasured efficiency	
5.2.1	Range of conditions	
5.2.2	Error	
5.2.3	Discussion	71

5.3 Heat	transfer between the receiver and the fluid	73
5.3.1 De	termination of the rate of heat transfer in a receiver	74
5.3.2 Re	sults and correlations for internal fins	75
5.4 Heat	transfer from the surface of the receiver	77
5.4.1 Ra	diative heat transfer	77
5.4.1.1	Measurement of glass temperature	78
5.4.1.2	Calculation of radiation losses	78
5.4.2 Co	onvective heat transfer	80
5.4.2.1	Free convection	80
5.4.2.2	Forced convection	80
5.4.2.3	Mixed convection	81
5.4.2.4	Convection calculations for a CHAPS receiver	81
5.5 Heat	transfer within the receiver materials	84
5.5.1 M	easurement of thermal resistance tests for various heat sinking tapes	84
5.5.2 Ot	her materials	87
5.5.3 M	easured losses through the insulation	87
5.6 Simul	ation of the conduction using Strand7	
5.6.1 Er	ergy input	89
5.6.2 Er	ergy loss	90
5.6.3 Ba	ise case	91
5.6.4 Va	lidation	92
5.6.5 Se	nsitivity analysis	94
5.6.6 Re	sults of the Strand7 modelling	98
5.6.6.1	Wind speed and direction	98
5.6.6.2	Fluid temperature and flow rate	99
5.6.6.3	Conductivity of the thermal tape	99
Electrical Per	formance Chapter 6	101
6.1 Temp	erature dependency	
6.1.1 M	easurement of I-V curves using the flash tester	
6.1.2 Te	emperature dependency results from flash tester measurements	
6.1.3 Te	emperature dependency results from a full receiver	103
6.2 Illum	ination profile	104
6.2.1 Th	ie sun shape	
6.3 Non-u	iniform illumination in the transverse direction	106
6.3.1 M	odelling the effect of a non-uniform illumination profile	106
6.3.2 Ex	perimental comparison with the model	109
6.4 Non-u	iniform illumination in the longitudinal direction	111
6.4.1 Th	e 'Skywalker' module - measurement of the longitudinal flux profile	112
6.4.2 Re	sults from the skywalker module	113
6.4.2.1	Comparison of mirrors	113
6.4.2.2	Results from a single mirror for a range of incidence angles	115
6.4.2.3	Attenuation of peaks and troughs	117
6.4.3 Sh	ape error of the mirror	118
6.4.4 Th	e effect of slope error on the reflected flux profile	121
6.4.5 Ra	y tracing – simulation of the longitudinal flux profile	124

6.4.5.1 Preliminaries	
6.4.5.2 Validation of the ray tracing	
6.4.5.3 Analysis	
6.4.6 Improvement of the flux profile	133
6.5 Mitigation of the effect of an uneven flux profile	
6.6 Bypass diodes	134
6.6.1 Bypass diodes for two axis tracking systems	136
6.6.1 Bypass diodes for single axis tracking systems	137
Simulation in TRNSYS Chapter 7	139
7.1 The new PV/T collector component	139
7.1.1 Theoretical formulation	139
7.1.2 Discrete element model	140
7.1.3 Energy balance	141
7.1.4 Inputs	142
7.1.5 Outputs	144
7.1.6 Thermal losses	146
7.1.7 Other relationships	148
7.1.8 Incidence angle modifiers	149
7.2 Validation of the PV/T collector component	151
7.2.1 Parameters	151
7.2.2 Dynamic effects	
7.2.3 Optical efficiency	
7.2.4 Calibration at different operating temperatures	
7.3 Annual simulations	161
7.3.1 Performance measures	
7.3.2 System inputs and parameters	
7.3.3 Sample output from the system model	
7.3.4 Sensitivity of performance to key system parameters	167
7.3.5 Analysis of the CHAPS collector through annual simulations	
7.3.5.1 Insulation thickness	
7.3.5.2 Conductivity of the tape bonding the cells to the receiver	
7.3.5.3 Optimal use of the cooling fins	
7.3.5.4 Comparison to a flat plate collector	
7.3.6 Further case studies	
Conclusions and recommendations for further work Chapter 8	179
8.1 Conclusions	179
8.2 Recommendations for further work	
Bibliography	
Appendix A	197
A1 Fortran code for the PV/T TRNSYS component	
A2 Fortran code for the End Loss TRNSYS component	
A3 Fortran code for the Fin-tube TRNSYS component	
A4 Fortran code for the controller component	

A5 TRNSYS deck file for the system base case	.240
Appendix B	257
Appendix C	261