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A Solid Model Based Virtual Hairy Brush

Abstract

We present the detailed modeling of the hairy brush used typically in Chinese calligraphy. The complex

model, which includes also a model for the ink and the paper, covers the various stages of the brush

going through a calligraphy process. The model relies on the concept of writing primitives, which

are the smallest units of hair clusters, to reduce the load on the simulation. Each such primitive is

constructed through the general sweeping operation in CAD and described by a NURBS surface. The

writing primitives dynamically adjust themselves during the virtual writing process, leaving an imprint

on the virtual paper as they move. The behavior of the brush is an aggregation of the behavior of all the

writing primitives. A software system based on the model has been built and tested, which can be used

as a stand-alone system for creating calligraphic artwork in real time or integrated as a special-effect

feature into a design software program. Samples of imitation artwork from using the system were

obtained and found to be nearly indistinguishable from the real artwork.

Index Terms—virtual hairy brush, writing primitive, general sweeping operation, solid modeling,

real-time simulation, computer graphics, design software.

1 Introduction

1.1 Modeling the Brush

The problem of how to simulate Chinese calligraphy using the computer has attracted many researchers.

A good method could produce calligraphic fonts that are useful in printing and displaying Chinese. The

method must have a way of representing characters in the computer, such as using cubic Bezier curves and

straight lines [2, 3] or skeletal strokes [4]. One could also base the representation on the brush stroke’s

boundary [5, 6, 7, 8] or its trajectory [9]. Shamir and Rappoport have introduced a parametric method

to compactly represent existing outline-based oriental fonts [10]. Ip et al. discussed a method to encode

Chinese calligraphic characters using automatic fractal shape coding [11]. Given the representation of a

character, the technique of rasterization can then be used to generate the image of the character, to be used

in applications such as desktop publishing [12].

Character representation and rasterization are but the nuts and bolts; what is more interesting and chal-

lenging is the problem of generating new fonts [13]. Some new Chinese fonts have been generated through

shape operations in an algebra of geometric shapes [14]. In real life, however, the Chinese for centuries

1



have used the hairy brush to write characters because of the hairy brush’s special aesthetic and expressive

power. It therefore appears that the simulation of an “e-hairy brush” by the computer could provide a

most natural and effective means of creating Chinese fonts. This in fact has become a meaningful pursuit

for computer scientists in recent years. To design a good simulation of the brush is indeed theoretically

challenging. The paper by Henmi and Yoshikawa [15] describes one such virtual calligraphy system.

More discussion and research results on the “virtual brush” and its application and values can be found

in [16, 17, 18, 19, 20]. The paper by Strassmann [21] presents a detailed analysis of the effects a virtual

hairy brush can produce. Wong and Ip devised a virtual brush model for synthesizing Chinese calligraphic

writings [22], in which the main working units are the cone and some ellipses. There exist many software

approaches to modeling the brush [23, 24, 25, 26, 27, 28], of which most are physically based solutions.

There are also hardware approaches, such as the one by Greene [29].

The practical goal of research on virtual hairy brushes is to be able to generate beautiful characters and

realistic calligraphic artwork. The challenge therefore lies not only in the modeling of the e-brush itself,

but also the modeling of the paper and the ink [30]. A paper-ink model would describe the interaction

between the ink and the virtual paper. Some elaborate ink diffusion models have been proposed to simulate

different ink spreading effects [31, 32, 33]. On the other hand, classical artificial intelligence, fuzzy

logic, and knowledge based engineering techniques have been found to be useful in creating beautiful

calligraphic artwork with a virtual hairy brush [34, 35, 36, 37, 38].

With a good e-hairy brush model and a good paper-ink model, beautiful paintings can be generated

in the same way as generating beautiful calligraphic artwork [39, 40]. Way and Shih [41] used a simple

brush model to synthesize beautiful rock textures in Chinese landscape painting. With their method, the

contours of the rocks and the areas to which textures are applied are manually supplied by the user using

some existing image as reference. Many other papers have proposed a similar e-brush approach to tackle

the problem of painterly rendering [42, 43, 44, 45, 46, 47].

Simulating the hairy brush’s various rendering effects falls into the research area of non-photorealistic

rendering (NPR), of which a good survey can be found in the paper by Lansdown and Schofield [48].

Creating Chinese calligraphy or paintings by an e-hairy brush in real-time bears close resemblance to real-

time generation of pen-and-ink illustrations in terms of both the goal and the problem-solving strategies

[49, 50]. The aesthetic effects pen and ink can produce can be emulated by using a “fine” virtual hairy

brush; but the reverse is not that feasible. The complexity of a virtual hairy brush is obviously much greater

than that of a pen or pencil, as the brush is much more powerful in artistic expression. This paper describes

a complex virtual hairy brush and its associated paper-ink model, and shows, despite the complexity,
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how the simulated brush can operate efficiently in real-time. The next section discusses existing related

approaches and highlight the features of our design of the virtual hair brush that are superior.

1.2 Contributions and Special Features

Our method comprises an algorithmic software framework that can simulate the change of the physical

conditions of a hairy brush, including the brush’s geometric shape and its ink-related properties during the

Chinese calligraphic writing process, where ink-related properties refer to the brush’s degree of wetness

and color. An interactive software system implementing these algorithms has been constructed which can

be used to create calligraphic artwork fully electronically. The ease of use and expressive power of our

virtual brush, and the high quality outputs from using the brush attest to the effectiveness of our approach.

Pure hardware approaches such as Greene’s [29] tend to be expensive and not easily applicable in all

environments. The method by Pan et al. [14] can only generate new fonts from existing fonts, but not

user’s own writing into new fonts. The method by Way and Shih [41] requires the user to specify the

contour and the parameters of the object to be painted based on a reference image or figure. This painting

procedure is very different from the way traditional artists perform their painting tasks. In contrast, the

design of our virtual hairy brush is such that it can be used to to write or paint in the same way as using a

real physical brush. In the paper by Baxter et al. [43], the brush head is modeled as a subdivision surface

mesh wrapping a spring-mass particle system skeleton. The particle system produces the basic motion

and behavior of the brush head, with the deformable mesh skin around the skeleton representing the actual

shape of the head. This 3D brush model can capture the essential quality of the physical brush for creating

oil or watercolor paintings. Such a simple brush model, however, cannot capture all the complex physical

properties and conditions of a hairy brush and its ink distribution which are necessary for simulating

Chinese calligraphy and painting.

The virtual brush model by Wong and Ip [22], which is closest in the modeling approach and func-

tionalities to our model, offers a feasible means for artists to produce Chinese calligraphic characters

electronically. Their method, however, is inconvenient to use because of a complex set of interrelated pa-

rameters to control the shape, density and opacity of the current drawing mark. These parameters need to

be specified manually by the user, thus giving rise to a system that is limited in interactivity. More specif-

ically, the user needs to specify the profiles for seven parameters to control the brush motion dynamic

model, and another three parameters to control the ink deposition, a total of ten profiles. Only two of these

profiles, the stroke’s trajectory in the X and Y directions, can be sampled by a mouse or a digitizing pen;
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so there are eight profiles to be input manually. Whereas in our approach, there are many input devices

that can take in the six degrees of freedom of a solid object, and no profile needs to be supplied by the

user.

Other than the input parameters for the brush’s six degrees of freedom, several parameters have been

introduced in our design for controlling the virtual brush’s quality, whose values can be automatically set

via an optimization algorithm. Although our e-brush model is more complex than that of Wong and Ip

[22], all the modeling details and quality parameters of the e-brush can be hidden from the end user. The

user can in fact use the e-brush in the same way he/she uses the traditional hairy brush. It is fair to say

therefore that our e-brush is simpler and easier to manipulate than the e-brush of Wong and Ip. But because

of the more complex model we use and the automatically tunable quality parameters we introduce, we can

achieve better output results with our e-brush.

Our virtual hairy brush is closer to the real brush than other similar brushes because our e-brush can

automatically determine both the geometric contour and the texture of its current drawing mark on the

virtual paper at the same time. This process is done in real-time and no human intervention is necessary,

which is not the case in Wong’s and Ip’s system [22]. Real-time response is most essential as our virtual

hairy brush is a fully interactive system. Moreover, Wong’s and Ip’s brush is limited in its artistic expres-

sive capabilities because its current drawing mark is always an ellipse. The drawing mark in our model

can be varied and of irregular shape which is generated from any planar parametric curve instead of just an

ellipse. This is a vital feature for achieving quality in an artist’s work. The delicate artwork we generated

(Section 8) attests to the expressive power of our approach having this feature.

We introduce a useful concept called writing primitive, which is a hair cluster, to serve as the basic

working unit of the virtual hairy brush. The cross section of each writing primitive as one indivisible entity

intersecting the virtual paper plane and its ink-related information are computed once during every time

step, which is much faster than the corresponding process in Wong’s and Ip’s approach for the same hair

bundle where every hair is operated on individually [22]. This makes real-time simulation of the hairy

brush’s writing and painting behavior possible in our system. We have implemented a prototype system,

with experimental results demonstrating the correctness and real-time quality of our algorithms.

By embedding ink-related information in the writing primitive’s control axis, a single primitive can

readily express reasonably complex, interesting, and even mysterious distribution of the ink, including its

color and wetness. In our proposed ink model, we use probabilities to create realistic effects to be used in

rendering the current ink-mark, thus enabling our virtual hairy brush to simulate the drying and running

effects of calligraphic artwork. Multiple gray levels, full-color paintings, dry brush writing effects, and
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saturation effects can all be produced using this new ink model. All these writing effects contribute to the

expressive power of the system for computer-aided art creation.

We also introduce an inertia predictor to calculate the brush’s virtual position based on its sampled

position during the writing process. This inertia predictor simulates the acceleration of the virtual hairy

brush, which gives the user the feeling of a real physical brush, and helps to produce output that rivals

real artwork. In addition to ways provided by our system to allow the user to manually edit various

quality parameters of the virtual hairy brush, special optimization algorithms are built into the system that

can customize these parameters for the user automatically. Optimally customized parameters can lead to

better maneuverability of the brush and improved quality in the output.

According to the six degrees of freedom of the hairy brush, which are sampled periodically, the com-

puter can simulate the whole Chinese calligraphy process with high accuracy. The process can be per-

formed with real-time response, as proven through experimentation. Since many of the geometrical and

dynamic parameters of the brush can be automatically determined by the system, it is not necessary to

store any bitmap image (for the brush’s cross section) during the writing process. After completing the

writing process, it is also not necessary to store the generated artwork in any standard format; a small

file containing the changes of the virtual hairy brush’s six degrees of freedom during the whole writing

process is sufficient to reconstruct the full final image. Hence, the storage requirement of our approach is

minimal.

Section 2 introduces and explains the concept of writing primitive. Section 3 presents the solid model

of the virtual hairy brush. Section 4 discusses the sampling and processing of the brush’s input. Section 5

discusses how to adjust the parametric models of the e-brush dynamically. Section 6 presents the rendering

of the brush’s current ink mark at any time instant. Section 7 discusses how the brush and its quality

parameters are configured by the system automatically. Section 8 gives an overview of the implemented

system and showcases some examples of artwork created using the system. Section 9 discusses some

possible future extensions. Section 10 summarizes and concludes the paper.

2 Writing Primitives

We rely on the concept of writing primitive, which represents a hair cluster (i.e., a small bundle of hair), to

reduce the complexity of the modeling and thus the computational requirement for the system. A virtual

hairy brush consists of one or more writing primitives. Each writing primitive is described by a NURBS

surface, and is constructed through the general sweeping operation in CAD. The behavior of the virtual
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hairy brush is an aggregation of the behavior of all its writing primitives. This is in sharp contrast with

the approach used in by Wong and Ip [22], where every hair is operated on. The use of writing primitives

does not diminish in any way the power of the virtual hairy brush in satisfactorily simulating all possible

behavior of a real hairy brush including the branching out behavior. This is because the clustering of hair

is a natural phenomenon and writing primitive appears to be a good model for capturing this phenomenon.

In the physical clustering of hair, hair in the same bundle share similar ink-related properties, which is

also captured in our modeling. Our experimental results have confirmed the correctness of this approach

in modeling the real brush, as well as the outstanding expressive power of our model. The artwork created

using our system can be seen as better than those in the paper by Wong and Ip.

A writing primitive in the model is defined by its four attributes as shown in Figure 2(a). Based on these

four attributes, the model is constructed through the general sweeping operation in CAD. This operation

will construct a NURBS sweeping surface by taking the curve of the writing primitive’s middle control axis

as its sweeping trajectory and the cross sections defined by the user at initialization as the given profiles.

Note that at the start of the writing process, the brush consists of a single writing primitive. The general

sweeping operation is implemented according to the minimized rotation frame algorithm by Maurer and

Juttler [51]. During the simulation, three of the four attributes (not including the bottom control circle) of

the writing primitive will be dynamically adjusted according to the input data which describe the brush’s

current position in the 3D space. The bottom control circle never changes during the writing process.

All the input data are preprocessed to take into account the inertia of the hairy brush, which creates a

realistic “feel” of the brush. We refer to the cross section of the intersection between a writing primitive

and the virtual paper plane as the writing primitive’s current drawing mark. For every time slice of the

writing process, ink will be deposited according to the state of the current drawing mark. The union of the

current drawing marks of all the writing primitives is the current mark made by the brush on the paper.

The final artwork is the accumulation of such marks over all the time slices. Figure 4 shows the state

transition of a writing primitive. The virtual hairy brush’s working diagram is shown in Figure 1. It will

be explained in detail in Sections 4–6.
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3 The Model and the States

3.1 The parametric model of the virtual hairy brush

Our model of a virtual hairy brush (HB) is in terms of the collection of writing primitives that the brush is

composed of. Formulation 1 defines HB.

8>>>>>>>><
>>>>>>>>:

HB , (CWP;Qp)

CWP , (WP1;WP2; � � � ;WPm)

Qp , (Qp1;Qp2)

Qp1
, (e; tre; �; re; ie; sm)

Qp2
, (ren; �; ab; pw; dry)

(1)

The brush’s writing primitives are denoted as WP1,WP2,� � �,WPm. Each writing primitive WPi (i =

1; 2; � � � ; m), described by a NURBS surface, is constructed by the general sweeping operation in CAD.

The number of HB’s compositive writing primitives,m, will be dynamically adjusted by the system. There

are several parameters for controlling the artwork style generated by the brush, the values of which are

within [0; 1℄. These parameters are called the quality parameters Qp of HB, which are classified into two

categories. The first category, Qp1, affects the created brush strokes’ boundary. The second category, Qp2,

affects the texture of the created brush strokes. Figure 8(a) contains a complete list of these parameters.

The meaning and detailed usage of these parameters and how they are configured will be explained later

in the paper.

3.2 The parametric model of a writing primitive

The parametric model of a writing primitive WPi (i = 1; 2; � � � ; m) is defined as: WPi , (Ci;Ei;Li;Ai).

To generate the parametric model of a writing primitive WPi (i = 1; 2; � � � ; m) through the general sweep-

ing operation, a circle Ci, an ellipse Ei, and a line Li are taken as the sweeping profiles, and an axis Ai

is used as the sweeping trajectory. Ci, Ei, Li, Ai are called WPi’s bottom control circle, middle control

ellipse, tip control line, and middle control axis, respectively (Figure 2(a)). Among these four attributes,

Ci is a static attribute of WPi, that is, once Ci is initialized at the beginning, it remains unchanged during

the whole process.
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3.2.1 The bottom control circle of a writing primitive

The bottom control circle Ci of writing primitive WPi is defined as:

8>><
>>:

Ci , (ceni; ri; corii)

ceni , (

xi; 

yi; 

zi)

corii , (
oxi; 
oyi; 
ozi)

(2)

where ceni is the coordinates of Ci’s center, ri its radius, and corii, a 3-dimensional unit vector represent-

ing Ci’s orientation. All the writing primitives of a brush share the same bottom control circle, and so this

circle is also called the bottom control circle of the brush, denoted as HB.C.

3.2.2 The tip control line of a writing primitive

The tip control line Li of WPi is defined as:

8>><
>>:

Li , (leni;midi; lorii)

midi , (mixi; miyi; mizi)

lorii , (loxi; loyi; lozi)

(3)

where leni is the current length of Li, midi is Li’s midpoint, and lorii, a 3-dimensional unit vector repre-

senting Li’s orientation.

3.2.3 The middle control axis of a writing primitive

The middle control axis Ai is a cubic B-spline curve with interpolated key points Pi;1;Pi;2; � � � ;Pi;ni
. Each

of these points carries both geometric and ink-related information, including Pi;j’s color in RGB and its

degree of wetness. Pi;j is defined in Formulation 4:

8>>>>>>>><
>>>>>>>>:

Pi;j , (cci;j; coli;j; weti;j;wvi;j; cvi;j; wri;j; 
ri;j)

cci;j , (
xi;j; 
yi;j; 
zi;j)

wvi;j , (wxi;j; wyi;j; wzi;j)

cvi;j , (
xi;j; 
yi;j; 
zi;j)

i = 1; 2; � � � ; m; j = 1; 2; � � � ; ni

(4)

Here, cci;j is Pi;j’s coordinates. coli;j is Pi;j’s color in RGB format. With this formulation, we can generate

colorful calligraphic artwork and even create watercolor paintings. weti;j is Pi;j’s degree of wetness. For

each Ai, its first key point is always set at the center of the bottom control circle, and its last key point at the
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midpoint of the tip control line; that is,

8<
:

cci;1 , ceni

cci;ni
, midi

. Each key point has four fields for specifying the

point’s ink-related information: vector mode wetness changing vector wvi;j, vector mode color changing

vector cvi;j, radiation mode wetness changing factor wri;j, and radiation mode color changing factor 
ri;j.

Based on these fields, we can compute the ink-related information for any point Q on a plane perpendicular

to the middle control axis Ai passing through Pi;j. We allow two modes of ink distribution in the virtual

hairy brush: the vector mode, in which ink is distributed according to the direction of a certain vector;

and the radiation mode, in which ink is distributed radically. There is an ink-related texture function

associated with each key point, which produces some hybrid effect contributed by these two distribution

modes. Figure 3 explains these two modes of ink distribution. The contribution made by P i;j’s vector

mode ink distribution is:

8<
:

ÆvwetQ = wetPi;j
� ((ccQ � ccPi;j

) � wvi;j)

ÆvcolQ = colPi;j
� ((ccQ � ccPi;j

) � cvi;j)
where ccQ, wetQ and colQ

are point Q’s current coordinates in the 3D space, its degree of wetness, and its color, respectively; and

ccPi;j
, wetPi;j

and colPi;j
are the corresponding values of point Pi;j. Similarly for the contribution made

by Pi;j’s radiation mode ink distribution:

8<
:

ÆrwetQ = wetPi;j
� kccQ � ccPi;j

k � wri;j

ÆrcolQ = colPi;j
� kccQ � ccPi;j

k � 
ri;j
Thus, Pi;j’s

ink-related texture function, which computes the hybrid effect contributed by both the point’s vector mode

and radiation mode ink distribution patterns is defined as:

8<
:

wetQ , wetPi;j
+ ÆrwetQ + ÆvwetQ

colQ , colPi;j
+ ÆrcolQ + ÆvcolQ

, or

8<
:

wetQ = wetPi;j
� (1 + kccQ � ccPi;j

k � wri;j + (ccQ � ccPi;j
) � wvi;j)

colQ = colPi;j
� (1 + kccQ � ccPi;j

k � 
ri;j + (ccQ � ccPi;j
) � cvi;j)

: (5)

3.2.4 The middle control ellipse of a writing primitive

The middle control ellipse Ei of the writing primitive WPi is defined as:

8<
:

Ei , (ai; bi; lo
i; eorii)

eorii , (eoxi; eoyi; oezi)
(6)

where ai is the length of Ei’s major axis and bi the length of Ei’s minor axis. lo
i is Ei’s location parameter,

which indicates Ei’s relative position along the middle control axis to which it belongs. eori i represents

Ei’s minor axis’s orientation.
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3.3 The three states of a brush

A virtual hairy brush HB is assumed to have three possible states in its life cycle: the initial state, the

dipping state, and the working state (Figure 4).

3.4 The initial state of a virtual hairy brush

The initial state of the virtual hairy brush HB is when all of its compositive writing primitives are in their

free states (Figure 2(b)).

The three dynamic attributes of a writing primitive are simplest when in this state: the tip control line,

the middle control axis and the middle control ellipse are reduced to a point, a straight line, and a circle,

respectively. Varying the radius of the circle and its position along the middle control axis can result in a

series of modeling effects, as shown in Figure 5(a).

3.5 The dipping state of a virtual hairy brush

All the writing primitives of the virtual hairy brush shift to the dipping state after the brush is dipped

into the ink bottle and before touching the paper. Through dipping, writing primitives acquire ink-related

information, which includes color and degree of wetness and is according to how the brush is dipped.

If Pi;k; Pi;k+1; � � � ; Pi;ni
are WPi’s key points that are soaked in ink, their color is simply set to the ink

color. For the other key points, Pi;l; l = 2; 3; � � � ; k � 1, which are not soaked in ink, linear interpolations

are applied to compute their individual colors colPi;l
with the assumption that colPi;1

� 0, which is the

color code for pure white. Here, we assume the paper is white. If that is not the case, we would substitute

the color of the paper for pure white. The color distribution after dipping is depicted as:

8>>>>>>>><
>>>>>>>>:

coli;l = ink color

(l = k; k + 1; � � � ; ni)

coli;l =
kcci;k�cci;lk�coli;1+kcci;l�cci;1k�coli;k

kcci;k�cci;1k
(l = 2; 3; � � � ; k � 1)

coli;1 = 0

: (7)

Similarly for each key point’s degree of wetness. We assume wetPi;1
� 0, meaning that Pi;1 is all dry;

10



thus: 8>>>>>>>><
>>>>>>>>:

weti;l = the degree of wetness

(l = k; k + 1; � � � ; ni)

weti;l =
kcci;k�cci;lk�weti;1+kcci;l�cci;1k�weti;k

kcci;k�cci;1k
(l = 2; 3; � � � ; k � 1)

weti;1 = 0

: (8)

3.6 The working state of a virtual hairy brush

The working state of a virtual hairy brush is the “deformation” state of the brush. The brush deforms

due to touching or being pressed against the paper. This varies the eccentricity of the middle control

ellipse, the tip control line and the middle control axis, leading to a series of modeling effects, as shown

in Figure 5(b). The pressure against the paper may build up to the point where the brush hair will split, as

shown in Figure 5(c).

4 Sampling of the Input Data

During the writing process, the brush’s dynamic attributes are captured by sampling. Sampled input

data are used to adjust the virtual brush dynamically. All such adjustments will preserve the validity (with

respect to a real brush) of the parametric model. We need to first obtain the brush’s six degrees of freedom.

Assume that the sampled datum at time t is Samt
, (xt; yt; zt; dt; qt; rt), where (xt; yt; zt) is the center

of HB’s bottom control circle HB.C in the 3D space; dt the degree of HB’s sideways deflection; qt the

degree of HB’s forward deflection; and rt the degree of HB’s rotation (Figure 6(a)).

There are many ways to input a solid object’s six degrees of freedom, such as using some special

device [43]. A three dimensional mouse, or a data glove or any other sensor that can take in the six

degrees of freedom for a rigid body can also be used as the input hardware for the virtual hairy brush.

Some other interesting methods have been introduced [52, 53]. Our current method for input is based on

a 3-button mouse. Figure 6(b) shows the user actions and their corresponding effects. Note that during

the writing process not all of the virtual hairy brush’s six degrees of freedom experience the same degree

of changing. Under most circumstances, (xt; yt; zt) will change much more frequently and sharply than

dt and qt; rt rarely changes. Our 3-button-mouse strategy offers an easy but effective way for the user

to input (xt; yt; zt); using the mouse to input dt; qt; rt is a little more awkward but acceptable, as can be

demonstrated by our experimental results. Of course, more expensive input devices such as the data glove
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or those with high dimensional sensors can certainly enhance the usability of the system.

During the writing process, HB’s virtual position at time t, St
, (sxt; syt; szt; sdt; sqt; srt), is com-

puted from the current sampled datum Samt together with an inertia predictor Mt = (mxt; myt; mzt; mdt; mqt; mrt),

using the following formula.

St = weisam � Samt + (1� weisam)� Mt (9)

Mt comes from HB’s displacements in its last few sampling intervals St�1,St�2,� � �,St�n:

Mt = Velt � dT + St�1

Velt =

Pel

k=1(weik �
S
t�k�S

t�k�1

dT
)Pel

k=1 weik

where Velt is a weighted sum representing an estimate of HB’s velocity, dT the length of a sampling

interval, and el the length of time over which our estimate is computed. weisam and the weik’s are the

relative weights given to the current sampled datum and the recent past velocities of the brush, respectively.

A heavy weisam for instance means that the brush has a small inertia. This simple method to determine

the position of HB turns out to be reasonable since the speed of the brush in real life rarely changes too

abruptly, as can be easily observed when artists create Chinese calligraphic artwork using real physical

brushes. By introducing an inertia predictor to influence the sampled position of the brush to yield its

virtual position, the user can move the virtual hairy brush more continually to emulate the effect and enjoy

the feeling of brush gliding; and although it is a simple mouse that is used to create electronic calligraphic

artwork, the system could still give the user the approximate feeling of a real physical brush in action. For

the above formulation, the default parameter configuration is: el = 4; wei1 = 4, wei2 = 2, wei3 = 1,

wei4 = 1; wei
sam

= 0:6. These default values were obtained by experiments. Changing these values can

yield different writing styles and feelings.

5 Dynamic Adjustments of the Brush

5.1 Estimating the physical conditions of the brush

Based on the sampled input data, the physical conditions of the virtual hairy brush are estimated at every

time step; these conditions include the writing primitive WPi’s inner stress strti at time t and the pressure

of the primitive due to its interaction with the paper. The greater the inner stress, the more likelihood there
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is for the brush hair to split, and the pressure is the force per unit area as experienced by the virtual paper

due to the inner stress of the brush. The parametric model of the e-brush is updated dynamically based on

these estimates.

5.1.1 Estimating a writing primitive’s current inner stress

Intuitively, the rigidity of WPi’s hair, WPi’s historical deformation, the wetness of WPi, and the size of

the part of WPi that is against the virtual paper plane  all have an effect on the value of strti. We devised

accordingly a formula to estimate strti based on these factors:

strti , (1� e)�
niPni

k=1 wetti;k
�

St
i � heiti

3
� histi �

� � ati � bti
4

(10)

The term e which has a value between 0 and 1 represents the elasticity of HB’s hair, and hence (1 � e)

indicates the rigidity of the hair. Since ati and bti are the lengths of WPi’s middle control ellipse Ei’s major

axis and minor axis at time t, respectively, the term
��ati�bti

4
is the area of Ei. It is used to approximate

WPi’s number of hair threads. The term

Pni
k=1

wett
i;k

ni
is used to approximate WPi’s overall average degree

of wetness, where ni is the number of key points along the middle control axis Ai of the i-th writing

primitive WPi. The reciprocal is used in the formulation since a wet brush will experience less force than

a dry brush. St
i is the area of WPi’s cross section against the virtual paper  at time t approximated by the

area of the section’s smallest bounding box. heiti is the distance between the cross section and the middle

point midi of WPi’s tip control line. We use a cone to approximate the part of WPi that is under  , which

has a volume of
St
i�heiti
3

. The larger this volume is, the more it contributes to the inner stress.

The deformation of the brush also has a bearing on the inner stress, which can be viewed as the

accumulated result of a series of per-time-step deformation since the starting of the writing process. The

factor histi represents this deformation factor in the formulation. It is decomposed into two parts: the

displacement from the initial state, hddt
i, and shape deformation, hsdti. And so histi is defined as:

8>>>>>><
>>>>>>:

histi , hsdti + hddti

hsdti ,
ati
bti
� 1

lent
i

hddti ,
Pni

j=2 (kcc0i;j�cct
i;j�mctk�kcct

i;j�cct
i;j�1k)

Pni
j=2 kcct

i;j�cct
i;j�1k

mct , cc0i;1 � ccti;1

: (11)

We use the ratio of middle control ellipse Ei’s major axis’ length to its minor axis’ length,
ati
bti

, and Li’s

length, lent
i, to evaluate Ei’s shape deformation due to past writing. hddt

i is a weighted sum of the dis-

placement, kcc0i;j� ccti;j�mctk, of each key point Pi;j , where cc0i;j is Pi;j’s coordinates when WPi is at its
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initial free state, cct
i;j is Pi;j’s coordinates at time t during writing, and mct is the accumulated displace-

ment of WPi’s bottom control circle Ci. Recall that WPi’s first key point (j = 1) is set as Ci’s center,

ceni. Here the weights are the difference of the relative positions of every pair of adjacent key points along

the control axis Ai. In our experiments, we found this formula to be a good approximation of the behavior

of a real brush. In comparison with the classical formulation in solid mechanics [54], this approximation

formulation is simpler, which is helpful in reducing the computation time.

5.1.2 Estimating the pressure due to interaction with the virtual paper

Given that we have a value for the inner stress, we can devise a formula to estimate WPi’s pressure 
t
i due

to interaction between a writing primitive and the virtual paper . This pressure contributes directly to the

degree of deformation of the brush during writing. It can be easily seen that fast movements of the virtual

hairy brush, a high degree of inner stress of the current writing primitive WPi, and a coarse virtual paper

can all severely deform HB (i.e., the middle control axes of the brush’s compositive writing primitives).

The formulation is as follows.


t
i , kVeltk � strti � sm� e (12)

where Velt is the virtual hairy brush’s velocity, strti its inner stress, sm the virtual paper’s degree of

smoothness, and e the e-brush’s degree of elasticity.

5.2 Dynamic adjustment of the middle control axis

5.2.1 The current active point

During the writing process, the intersection of the middle control axis Ai and the virtual paper  is the

current active point. The current active point is inserted into Ai’s series of key points dynamically. The

point’s ink-related information is computed from the neighboring points in A i by linear interpolation.

Supposing at time t the active point being inserted into Ai’s set of key points is Pt
i;j, and Pt

i;j+1 and Pt
i;j�1

are its neighboring key points, we have:

8<
:

colti;j =
col

t

i;j�1�kcct
i;j+1�cct

i;jk+col
t

i;j+1�kcct
i;j�cct

i;j�1k
kcct

i;j+1�cct
i;j�1k

wetti;j =
wetti;j�1�kcct

i;j+1�cct
i;jk+wetti;j+1�kcct

i;j�cct
i;j�1k

kcct
i;j+1�cct

i;j�1k
(13)

where colti;j is Pt
i;j’s color, cct

i;j is Pt
i;j’s coordinates, and wetti;j is Pt

i;j’s degree of wetness at time t.

14



5.2.2 Deformation of the middle control axis Ai

The middle control axis Ai of WPi changes form when subject to forces acting against the brush and the

paper. A local reference frame is set up by taking WPi’s bottom circle Ci as the X-Y plane, its center ceni

as the origin, and the brush shaft’s direction as the Z-axis (Figure 2(c)).

If the current active point Pi;j travels a certain distance in the reference frame during time slice t,

then all the key points that are underneath the virtual paper  will also travel the same distance, plus an

additional displacement dis in the local reference frame. We estimate this distance to be proportional to

the product of HB’s elasticity and WPi’s current pressure, namely dis = e� 
t
i . Note that by using a time

slice which is reasonably small, it is safe to assume that this active point remains to be the true active point

for the duration covered by the time slice.

5.2.3 Recovery of the middle control axis Ai

As an elastomer, a writing primitive WPi will recover in a certain fashion once the outer force exerted on

it is released, such as when the brush is partially or completely lifted. Each time when the virtual hairy

brush HB is lifted, every key point on each of HB’s compositive writing primitives will change its place

in the 3D space, that is, all the key points’ z components will increase by a certain amount. The higher the

virtual brush is lifted, the more intense the current writing primitive’s inner stress would be, and so would

be the recovery. That is, for every key point Pi;j (i = 1; 2; � � � ; m; j = 1; 2; � � � ; ni) along Ai, we have:


zt+1
i;j = 
zt

i;j + 
t
i � jszt+1 � sztj � tr(szt+1 � szt) (14)

where 
zt
i;j is Pi;j’s coordinates’ z component, 
t

i is WPi’s pressure against the virtual paper  at time t,

and the term jszt+1 � sztj is the amount by which the virtual hairy brush HB is lifted between the time

t and t + 1; tr() is the truncation function, which is defined as tr(x) ,

8<
:

0 (x < 0)

1 (x � 0)
. We have made a

simplification in our modeling, which combines the flexibility and the “springiness” of the brush into the

single concept of elasticity. The decision was based on the observation that having the distinction between

flexibility and springiness would make very minor differences in the final output.

5.2.4 Dynamic adjustment of the wetness

During the writing process, the color of HB is assumed to be constant. The only changing ink-related

information is HB’s degree of wetness. Suppose the intersecting point between the middle control axis A i
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and the virtual paper plane  , namely the current active point is inserted into Ai’s key points’ sequence

and denoted as Pi;j. The degree of wetness of all the key points on Ai will decrease by a certain amount

because of their contact with or proximity to the paper, which is estimated to be proportional to the product

of  ’s ink absorbing ability ab and WPi’s current pressure 
t
i against  :

wett+1i;j�s = wetti;j�s � ab� 
t
i �

1

2s+d
(15)

where d =

8<
:

2 (s 2 N)

1 (s = 0)
and (j � s) 2 [1; ni℄.

5.3 Dynamic adjustment of the middle control ellipse

The deformed virtual hairy brush has an orientation which is determined by the orientation of the middle

control ellipse. Our formulation for the latter is based on the phenomenon that if HB’s moving direction is

the same as the orientation of writing primitive WPi’s minor axis eoriti at time t, further writing movements

will rotate the ellipse by a certain angle rotti. If the moving direction does not coincide with the orientation

of the minor axis, this movement will increase the length of WPi’s major axis at
i; the amount of increase

is denoted by inct
i. incti and rotti are defined as:

8<
:

rotti = re� 
t
i � (Velt � eoriti)

incti = ie� 
t
i � kVelt � eoritik

(16)

where re and ie are HB’s rotation and elongation coefficients, respectively. Since writing primitive WPi’s

number of hair threads, approximated by Ei’s area,
��ati�bti

4
, is a constant if WPi does not split during

its writing process, Ei’s minor axis’ length bti can be determined given a certain value for its major axis’

length at
i.

The middle control ellipse Ei’s position lo
ti within the middle control axis Ai may also vary during

the writing process. We assume from intuition that the ideal position of the middle control ellipse should

be such that it divides the key points of the middle control axis into two equal groups, because at this loca-

tion the ellipse’s profile has the maximum capacity to control the writing primitive’s geometric modeling

characters. Since the speed in which the ellipse can relocate is limited by the mechanical and flowage

properties of the virtual hairy brush, the actual position of the middle control axis is a linear interpolation

of its ideal position (based on the ellipse’s ideal location) and its previous position. This is depicted as:

lo
t+1i = � � lo
ti + (1� �)�

Pni�1
j=1

Pj
k=1

kcct+1
i;k+1

�cct+1
i;k

k
Pni�1

k=1
kcct+1

i;k+1
�cct+1

i;k
k

ni

: (17)
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Here, � is the relocation factor, its default value is � = 0:75. And cct
i;k is the coordinates of WPi’s key point

Pi;k at time t. The complex summation term is used to estimate the ideal position of the middle control

ellipse. Here we use the term kcct+1
i;k+1 � cct+1i;k k to approximate the distance between the middle control

axis Ai’s two neighboring key points Pi;k+1 and Pi;k at time t+ 1. Thus, the sum
Pj

k=1 kcct+1
i;k+1 � cct+1i;k k

is the distance of key point Pi;j+1 from the the center of the bottom control circle of the brush, HB.C. The

fraction

Pj
k=1

kcct+1
i;k+1

�cct+1
i;k

k
Pni�1

k=1
kcct+1

i;k+1
�cct+1

i;k
k indicates key point Pi;j+1’s position along Ai. According to the assumption

about the ideal position of the middle control ellipse, this position actually is the arithmetic mean of all

the key points’ positions along Ai. Notice that HB.C’s position along Ai is always zero.

5.4 Dynamic adjustment of the tip control line

The tip control line of a writing primitive WPi is assumed to be a single point in its initial state. It changes

into a real line during writing. The line’s elongation and rotation are simulated by employing the same

strategy as is applied to the middle control ellipse Ei—that is, the tip control line Li will increase in length

by the amount of inct
i and be rotated by the same amount of rotti as for the major axis of the middle control

ellipse Ei. The tip control line does not have a direct effect on the current ink mark during writing in our

modeling, but it will define the shape of the end of a stroke, at the time when the brush is about to leave

the paper.

5.5 Splitting of the virtual hairy brush

There is a threshold tre which specifies the extent to which WPi can be deformed before splitting of the

hair occurs. When this threshold is reached or exceeded, the current writing primitive will split into several

smaller writing primitives. This simulates the “branching out” behavior of the virtual hairy brush during

the writing process. Specifically, if writing primitive WPi’s current inner stress strti becomes greater than

tre, WPi will split into

k = b
strti
tre


 (18)

new writing primitives WP1
i ,WP2

i ,� � �,WPk
i .

Each of the new writing primitives, WP
j
i (j = 1; � � � ; k), has a number of hair threads which is equal

to 1
k

of WPi’s total number. Note that in the virtual hairy brush, we use the area of the middle control

ellipse
��ati�bti

4
and the length of the tip control line lent

i to compute the number of hair threads. Therefore

the lengths of the middle control ellipse’s major axis a
t;j
i and minor axis b

t;j
i of each of the new writing

primitives WP
j
i are set to 1p

k
of WPi’s original values (j = 1; 2; � � � ; k); and the tip control line’s length
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len
t;j
i is set to 1

k
of the original value. That is:

8>><
>>:

a
t;j
i =

at
ip
k

b
t;j
i =

btip
k

len
t;j
i =

lent
i

k

(j = 1; 2; � � � ; k): (19)

At the beginning, the virtual hairy brush HB contains only one writing primitive, and so m = 1.

During the writing process, the number of HB’s compositive writing primitives may increase because of

the split operation. A brush with one writing primitive is probably good enough for official scripts, but

for cursive scripts, the brush must split into at least a dozen of primitives in order to achieve the necessary

effects.

During the split operation, every new writing primitive generated, WP
j
i (j = 1; � � � ; k), has the same

number of key points as the original one, WPi, with coordinates at a certain distance from WPi’s. This

distance is proportional to the amount of WPi’s current inner stress exceeding the split threshold tre, and

the direction of this distance is assumed random. Therefore for each key point Pi;l (l = 1; 2; � � � ; ni) in

WPi, there is a corresponding key point P
j
i;l in WP

j
i (j = 1; 2; � � � ; k). The coordinates of Pi;l and P

j
i;l have

the following relationship: cc
P

j

i;l

= ccPi;l
+ S

P
j

i;l

, where S
P

j

i;l

is determined by S
P

j

i;l

= rand � (strti �

tre)� tr(strti � tre), and rand is a random unit vector in the 3D space.

5.6 Ink flowage between writing primitives

Although each primitive has full control over its behavior during the writing process, due to reciprocity

in mechanics and ink flowage, there could be interaction between writing primitives that are close to each

other. To simulate this interaction, we allow each key point’s degree of wetness to be affected by its

neighboring key points if the distance separating them is within the ink diffusion distance factor �. Linear

interpolation is used to compute one key point’s current degree of wetness based on its previous value and

the average degree of wetness of those neighboring key points. That is formulated as:

wett+1i;k = wetti;k � (1� pw) +

Pm

j=1;j 6=i

Pnj

l=1(wettj;l � tr(� � kcctj;l � ccti;kk))Pm

j=1;j 6=i

Pnj

l=1 tr(� � kcctj;l � ccti;kk)
� pw: (20)

i = 1; 2; � � � ; m; k = 1; 2; � � � ; ni

Here, pw is the diffusion control factors of virtual hairy brush HB; wetti;k is key point Pi;k’s degree of

wetness and ccti;k is its coordinates at time t; � is the ink diffusion distance factor, and tr() is the truncation

function.
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6 The Writing Process

At time t, each of HB’s writing primitives will intersect with the virtual paper plane to yield a cross section.

The drawing operations are executed taking into account the writing primitives’ ink-related information.

The following paragraphs outline the algorithm for this process—the virtual hairy brush’s real-time writ-

ing/painting algorithm.

The algorithm begins with a given writing primitive WPu constructed by the general sweeping opera-

tion. The generated sweeping surface is a NURBS surface denoted by SSu(s; t); s and t are the parameters

of this parameterized surface, whose values are within [0; 1℄. The direction of s is the same as that of WPu’s

middle control axis. The algorithm intersects SSu(s; t) with the virtual paper plane  to get an intersect-

ing curve 
uru that encloses an area which is the current ink mark (Figure 7). Each point Vu;v in 
uru is

projected onto WPu’s middle control axis Au to obtain the point V̂u;v. The ink-related information of the

two nearest key points Æ1u;v; Æ
2
u;v on Au to V̂u;v is then used to compute V̂u;v’s ink-related information by

linear interpolation, as follows.

8>><
>>:

col ^Vu;v

=
col

Æ2u;v
�kcc

Æ1u;v
�cc ^

Vu;v

k+col
Æ1u;v

�kcc ^
Vu;v

�cc
Æ2u;v

k
kcc

Æ1u;v
�cc

Æ2u;v
k

wet ^Vu;v

=
wet

Æ2u;v
�kcc

Æ1u;v
�cc ^

Vu;v

k+wet
Æ1u;v

�kcc ^
Vu;v

�cc
Æ2u;v

k
kcc

Æ1u;v
�cc

Æ2u;v
k

(21)

Vu;v’s ink-related information is derived from V̂u;v’s by following V̂u;v’s texture function (Equation 5):

8<
:

wetVu;v
= wet ^Vu;v

� (1 + kccVu;v
� cc ^Vu;v

k � wru;v + (ccVu;v
� cc ^Vu;v

) � wvu;v)

colVu;v
= col ^Vu;v

� (1 + kccVu;v
� cc ^Vu;v

k � 
ru;v + (ccVu;v
� cc ^Vu;v

) � cvu;v)
(22)

And for any pixel � on the virtual paper plane enclosed by the the curve 
uru, it must lie uniquely on a

certain line segment, Vu;vV̂u;v. Its ink-related information is computed based on Vu;v’s and V̂u;v’s ink-

related information:
8>>><
>>>:

col� =
col ^

Vu;v

�kccVu;v
�cc� k+colVu;v

�kcc��cc ^
Vu;v

k
kccVu;v

�cc ^
Vu;v

k

wet� =
wet ^

Vu;v

�kccVu;v
�cc� k+wetVu;v

�kcc��cc ^
Vu;v

k
kccVu;v

�cc ^
Vu;v

k

(23)

Denote the point that is within the volume of the solid model of the virtual hairy brush and that co-

incides with the pixel �u;v on  as � u;v. �u;v’s new degree of wetness is linear-interpolated from �u;v’s

previous value with � u;v’s degree of wetness and by using  ’s absorbing ability factor ab as the interpo-

lation weight. A drying factor dry is introduced to automatically reduce each pixel’s degree of wetness
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periodically until it reaches 0. That is,

wett+1
�u;v

= ab� wett
�u;v

+ (1� ab)� wett
�u;v

� dry: (24)

If the degree of wetness exceeds the upper bound of virtual paper  ’s degree of wetness, saturation

takes place. We assume that saturation would only affect �u;v’s eight neighboring pixels on . The degree

of wetness of a pixel will increase if it is not saturated. The increased amount is proportional to the

unsaturated degree. That is, �i;j , which is one of �u;v’s eight neighboring pixels on , will have its degree

of wetness increased according to the following formulation.

wett+1
�i;j

= wett
�i;j

+
(1� wett

�i;j
) � tr(1� wett

�i;j
)

%tu;v
� (wett

�u;v
� 1)� tr(wett

�u;v
� 1) (25)

where wett
�

, a real number between 0 and 1, is point �’s degree of wetness at time t, and %t
u;v =

Pu+1
g=u�1

Pv+1
h=v�1 (1� wett

�g;h
)� tr(1� wett

�g;h
), indicates the total degree of unsaturation that �u;v’s

eight neighboring pixels have attained. Note that tr(1� wett
�g;h

) is only non-zero when the point �g;h is

not saturated.

The rendering of the current ink-mark is based on a unique ink model we propose. The current color

of the pixel �u;v is the linear interpolation of �u;v’s previous color and � u;v’s color, as follows.

colt+1
�u;v

= colt
�u;v

� Crtu;v + colt
�u;v

� (1� Crtu;v) (26)

where Crtu;v, the interpolation weight, is a random number, which has the value of either 0 or wett
�u;v

based on the following probabilities.
8<
:

PfCrtu;v = 0g = min(ren� ab� 
t
i ; 1)

PfCrtu;v = wett
�u;v

g = 1�min(ren� ab� 
t
i ; 1)

(27)

where ren is HB’s color rendering control factor, ab is the virtual paper  ’s absorbing ability, and 
 t
i is

the pressure due to the interaction between the writing primitive and the virtual paper plane. We use this

formulation to simulate the dry brush drawing effect and the running style effect.

7 Customizing the Brush

7.1 Quality parameters

In real life, brushes having soft hair tend to branch out easily during writing. Some brushes have a good

deal of hair and tend to suck in more ink and cause serious saturation during the writing process, while
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other brushes have rather long hair and their tip tends to get deformed and rotated to a great extent easily.

For our virtual hairy brush, a number of quality parameters can be set to simulate these different kinds of

brush character. What comes out as the final electronic artwork from using the virtual hairy brush can be

much affected by the values of these parameters. Similarly, the virtual paper has a set of quality parameters

to be assigned a value for simulating different kinds of paper.

All the quality parameters Qp are classified into two categories. The first category, Qp1 = (e; tre; �; re; ie; sm),

can affect the brush strokes’ boundaries while the second category, Qp2 = (ren; �; ab; pw; dry), can affect

the brush strokes’ texture. Different combinations of possible values for these quality parameters of the

virtual hairy brush would result in an e-brush with different qualities. Please refer to Figure 8(a) for the

concise meaning of each of these parameters.

To ease the task of selecting the appropriate values to achieve the desired quality, our implemented

system offers a set of predefined quality configurations in a library for the user to choose from. This is

similar to what happens in reality when a calligrapher chooses the most suitable real hairy brush from many

brushes in his collection or in a shop. Some of which could have been contributed by the users themselves.

Others are prefabricated based on empirical knowledge provided by real-life calligraphers and painters.

After choosing or creating a certain quality configuration, the end user can write/paint with the chosen or

created virtual hairy brush. He can change his decision later and choose another new configuration until he

is satisfied with the e-brush and the created artwork. Although not implemented in the current prototype,

it is possible to allow an artwork to be automatically transformed using a new configuration because all

the input leading to the creation of the artwork is already recorded in a file.

The implemented system provides a window in which the user can adjust the above parameters visually.

If he feels that the virtual hairy brush dries too quickly and the final artwork should have more versatile

color layers, he can increase the value of the color rendering control parameter ren. If he feels that

the virtual hairy brush deforms too slowly, he can increase the values of the parameters �, re and ie

which govern the deformability of the brush. And if the virtual hairy brush recovers too quickly from

deformation, he can decrease the value of the elasticity parameter e. To increase the tendency of brush

splitting, he can assign a small value to tre, the splitting threshold. If his strokes are fast so that the

brush tends to brush out more easily, he may need to adjust the parameters pw and ab which control the

diffusion and absorption abilities of the paper, since fast movements of the brush leave little time for the

paper to diffuse or absorb the ink, and hence the proper setting of these parameters is important for any

desired effect. Of course, the user can save all this trouble of assigning values to the parameters by simply

accepting an offered configuration.
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7.2 Configuring the brush with machine intelligence

In addition to user-created configurations, the system can configure a brush automatically. To enable the

computer to adjust the quality parameters of the virtual hairy brush as well as those for the virtual paper

automatically, a special procedure needs to be carried out to train the computer. The training samples

consist of brush strokes being painted within boundaries specified by the training module. The procedure

is similar to a beginner starting to learn how to use a hairy brush in real life, referred to as the “MiaoHong”

process in Chinese calligraphy. The number of training samples can be set by the user. Of course, the

more samples used the better would be the resulting quality of the brush. Simple artwork such as the one

in Figure 10(a) can be rendered after a few minutes of training.

Let Si[len℄[wid℄ and Ci[len℄[wid℄ be two matrices where each of the elements is the RGB color code

of a pixel of the virtual paper  . The first matrix corresponds to the ith sample of n training samples,

and the second matrix the ith user-generated result. Figure 8(b),(c) shows some examples of real training

samples.

We define a target function # to indicate the difference between the system’s specified training samples

and the user-created images using the virtual hairy brush:

# ,

nX
i=1

#i
,

nX
i=1

lenX
p=1

widX
q=1

(Si[p℄[q℄
O

Ci[p℄[q℄) (28)

where the operator
N

is defined as (r1; g1; b1)
N

(r2; g2; b2) , jr1 � r2j + jg1 � g2j + jb1 � b2j. All the

quality parameters of the virtual hairy brush contribute to #, in the sense that with a certain set of initial

values for all the quality parameters, a collection of user-created image, based on which the corresponding

# can be computed. Thus, the problem to determine a good set of values to configure the virtual hairy

brush with is reduced to the problem of finding a configuration which can minimize or nearly minimize

#, which is a typical optimization problem. We devised and used an optimization algorithm based on

the Steepest Descent Algorithm [55] in nonlinear programming to find the needed solution, as described

below.

We use ordered training procedures to compute the optimal configuration of HB’s quality parameters

Qp. Firstly, we need to train and determine all the first-category quality parameters Qp1, followed by the

second-category parameters Qp2. Like the quality parameters, the training samples are divided into two

classes. The first class of samples are used to train the e-brush to draw brush strokes with proper stroke

boundaries, and so parameters that have to do with the texture of the brush stroke are ignored, namely Qp2.

Hence, to determine Qp1, we set Qp2 � (0; 0; 0; 0; 0), which means no drying brush effect nor diffusion
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effect. After the algorithm yields the value for Qp1, the value for Qp2 is computed, this time with Qp1

being assigned the value derived from the previous computation.

Because the values of all the quality parameters of the virtual hairy brush share the same range of [0; 1℄,

we can view this problem as a minimization problem with its feasible solution space being a unit cube in

a 6-dimensional space. We equally divide the edges of the cube to decompose the cube into subcubes,

and take every resultant grid point (at a corner of a subcube) as a possible initial point; so each initial

point’s coordinates in the 5-dimensional space are in the form of X0 = (d1
d
; d2
d
; � � � ; d6

d
), where d 2 N is

the number of parts an edge is divided into, and di = 0; 1; � � � ; d (i = 1; 2; � � � ; 6). With X0 as the initial

point, we use the Steepest Descent Algorithm [55] to find a satisfactory solution that minimizes #(X0).

That is,

1. Set k = 0. Compute yk = �r#(Xk);

2. If kykk < ", the algorithm stops, where " is the error bound;

3. Determine �k, such that #(Xk + �k � yk) = min(Xk + �� yk); � � 0;

4. Let Xk+1 = Xk + �k � yk; k = k + 1; go to Step 2.

The value of r#(Xk) is approximated by #’s differential at the point Xk. That is, we disturb the position

of Xk along the coordinate system’s axis xi by a short distance 4xi; and run the algorithm for the virtual

hairy brush to yield #(Xk +4xi). The differential of #(Xk) can then be approximated by
#(X

k
+4xi)
4xi

. After

taking several (d1
d
; d2
d
; � � � ; d6

d
); di = 0; 1; � � � ; d (i = 1; � � � ; 6), as the initial point X0, we can determine

an X (= (
di;1
d
;
di;2
d
; � � � ;

di;6
d
)) which yields the nearly minimum #(X). We then take [

di;1�1
d

;
di;1+1

d
℄ �

[
di;2�1

d
;
di;2+1

d
℄� � � � � [

di;6�1
d

;
di;6+1

d
℄ as a new cube, and re-run the above procedure to search for a smaller

#, until meeting a solution that satisfies the user’s specified error bound.

Of course, the user can adjust the the parameters of the configuration if he feels that the result from the

above procedure still falls short of his demand. Any of the preset configurations in the system’s library can

be used as the initial point for the optimization procedure so that a solution to the problem can be arrived

at much more quickly and accurately. In this sense, all the above strategies to determine the quality

parameters for the virtual hairy brush can be combined to achieve better performance and results.
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8 System Implementation and Experiment Results

Figure 9 shows a screen shot of the implemented system in action, where there is one window responsible

for displaying the current sampled input; one for the current control parameters derived from the input;

one for parameter values automatically assigned to the writing primitives by an internal algorithm; one for

the current drawing mark; one for the current writing primitives in the 3D space; and one for the current

writing mark imprinted on the paper and the history of all the sampled input.

Figure 10 shows some real artwork digitized from calligraphy samples together with the imitation

artwork created by our virtual hairy brush. These samples prove that very realistic-looking calligraphic

artwork can be generated by our virtual hairy brush. If carefully tuned, the simulation’s result can be

nearly indistinguishable from the original one to a human viewer. By fiddling with the quality parameters

and the input data for the brush’s six degrees of freedom, users can create interesting calligraphy fully

electronically. It is well known that to imitate an original calligraphic artwork is a nontrivial task. With

our electronic environment, however, such an imitation task becomes relatively easy. The system offers

a friendly user interface, which supports adjusting the quality parameters and the input data dynamically

to achieve whatever delicate effect the user desires. Figure 11 shows a series of computer artwork created

by the first author, a non-artist, using the virtual hairy brush. To give an idea on the effort required for the

more complex artwork, the horse picture (the horse in Figure 11(b)left) took about 1.5 hours to complete.

Although these figures show only imitation artwork generated by our virtual brush, the real imitation that

our design and implementation have set out to achieve is to imitate the manipulatability, aesthetic features,

and expressive power of traditional hairy brushes. A person who has mastered our virtual brush should be

able to create high-quality calligraphic artwork as can be done by a real brush.

9 Future Work

A real brush operates in a fashion that is orders of magnitude more complex than can be modeled by

a computer. Features that can be added in the future versions to further enhance the modeling include

dynamic merging of writing primitives, repeated dipping effects, and more user’s control of the brush

during writing. Other features requiring longer-term effort include mapping of 2D calligraphic artwork to

3D and feature extraction of real artwork. We explain some of these in the following.

� Multiple dipping effects. In the current design, dipping operations only take place before the first

time the virtual hairy brush touches the paper plane. In real life, an artist may dip the brush either
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partially or completely multiple times. Partial dipping would cause local changes in the brush’s

wetness and color.

� More control. Another problem with the current prototype is that, once the simulation is on its way,

the number of key points in the middle control axis would keep increasing, which is not quite in

line with the real case where an artist may caress a deformed brush to restore its shape. A variety of

interfaces are required to allow the user to control and edit the writing primitive’s geometry, as well

as its color and its degree of wetness as the linear interpolation in the current design is just one of

many possibilities.

� Hair merging. In the current virtual hairy brush model, writing primitives will split into several

smaller ones, which simulates the branching out of the hair in a real writing process. In real life,

branched-out hair bundles may merge together later. Such a feature is not in the current implemen-

tation.

� 3D writing effects. Many famous Chinese calligraphic artwork creations are chiseled in monu-

ments. How to map 2D calligraphy work into 3D is an interesting research problem. So is the

problem of directly creating 3D calligraphic artwork.

� Automatic imitation. Pattern recognition and machine learning mechanisms can equip the system

with the ability to duplicate existing artwork fully automatically, and in the process to extract useful

components such as the brush’s path and the thicknesses of the strokes. These components will then

be useful in automatic imitation of calligraphic artwork or computer-assisted calligraphy.

10 Summary and Conclusion

In this paper, by modeling the hairy brush using a few writing primitives which work independently, a real-

time virtual hairy brush system has been implemented for creating artwork by the computer. Experimental

results have verified the correctness and real-time quality of the algorithms, as well as its resemblance to

the real brush in terms of the output.

We use writing primitives instead of individual hair threads to serve as the basic working units in the

virtual hairy brush. In general, a single primitive is probably enough for regular scripts, official scripts,

and most running scripts, and perhaps a dozen or so for cursive scripts. Hence, our software needs to
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handle only a small number of writing primitives most of the time. In comparison with [22], where the

brush is modeled as a cone, our virtual brush can produce a a drawing mark that is more variable in shape.

Like the virtual hairy itself, the proposed ink model is also physically based, which blends wetness, ink

color, and the current inner stress of the brush with rendering probabilities, and reduces all the complex

interactions into a set of simple equations. Compared to [44], where complex differential equations are

used, our model is computationally efficient. The ink model is integrated into the e-brush system so that

much of the brush’s computation can also be used in computing for the ink model.

With the ink-related information that is lodged in the writing primitive’s control axis, a single primitive

can readily express complex, interesting and even mysterious distribution of the ink, color and wetness.

Together with the use of rendering probabilities, our brush can achieve the effects of multiple gray levels,

colorful painting, dry brush writing and saturation.

During the writing process, the simulation takes into account the acceleration of the virtual hairy brush,

producing an effect that emulates the manipulation of a real physical brush.

Although the system provides methods to manually edit a collection of parameters that can affect

the rendering and the final result, it is not necessary for the user to interactively input values for these

parameters. All that is needed from the user is the series of six degrees of freedom of the hairy brush,

based on which the computer can simulate the whole writing process. This leads to an efficient system

operable in real-time, and which is easy to use for the user. Since most of the handwriting’s geometrical

and dynamic parameters can be automatically tuned by the system on the fly, little storage space is required

to keep track of state information.

The simplicity and expressive power of the system introduce a wide space to carry out computer-aided

artwork creation.
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Figure 1: Virtual hairy brush’s working diagram.
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(a) A writing primitive and its four attributes.

(b) A writing primitive in its initial state.

(c) A deformed writing primitive.

Figure 2: A writing primitive.
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Figure 3: Radiation (left) and vector (right) ink distribution modes.
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Figure 4: State transitions of a writing primitive.
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(a) Writing primitives with the middle control ellipse at different locations (left); writing primitives with

different circle radii (right).

(b) Writing primitives with different ratios of major-to-minor axis length of the middle control ellipse (top

row); writing primitives with different tip control line lengths (middle); writing primitives with different

middle control axes (bottom).

(c) Virtual brushes with hair split into several writing primitives.

Figure 5: Virtual brushes in various forms.
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(a) The six degrees of freedom of an input sample.

User Action Corresponding Effect

Moving the mouse Generate the (xt; yt) coordinates

Scrolling the middle wheel of the mouse Generates the zt coordinate

Pressing key “q” by the little finger Reduces the value of dt

Pressing key “w” by the ring finger Increases the value of dt

Pressing key “e” by the middle finger Reduces the value of qt

Pressing key “r” by the index finger Increases the value of qt

Pressing key “c” by the thumb Reduces the value of rt

Pressing key “v” by the thumb Increases the value of rt

Pressing a key while the left button is pressed The key is pressed twice

Pressing a key while the right button is pressed The key is pressed four times

(b) 3-button-mouse input method.

Figure 6: The six degrees of freedom of an input sample and its 3-button-mouse input method.
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Figure 7: The virtual paper plane and its drawing mark.
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Virtual Hairy Brush System’s Quality Parameters

Name Concise Meaning Category Usage

e HB’s degree of elasticity Qp1 Eq. 10, Eq. 12

tre HB’s threshold for splitting Qp1 Eq. 18

� HB’s relocation factor Qp1 Eq. 17

re HB’s rotation coefficient Qp1 Eq. 16

ie HB’s elongation coefficient Qp1 Eq. 16

sm  ’s degree of smoothness Qp1 Eq. 12

ren HB’s color rendering control factor Qp2 Eq. 27

� HB’s ink diffusion distance factor Qp2 Eq. 20

ab  ’s absorbing ability Qp2 Eq. 15, Eq. 24, Eq. 27

pw  ’s diffusion control factor Qp2 Eq. 20

dry  ’s drying factor Qp2 Eq. 24

HB refers to the virtual hairy brush;  refers to the virtual paper.

Notes Qp1 is HB’s quality parameters for shape, and Qp2 quality parameters for texture.

(a) Virtual hairy brush system’s quality parameters

(b) Some selected training samples for the first category of quality parameters.

(c) Some selected training samples for the second category of quality parameters.

Figure 8: Virtual hairy brush system’s quality parameters and training samples.
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Figure 9: The running system.
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(a) Real artwork (first from left; third) vs. imitation (second; fourth).

(b) Real artwork (first from left; fourth), and imitations; the one in the middle has the brush’s trajectories

highlighted.

(c) Two Chinese love poems: real artwork (left) vs. imitation (right).

Figure 10: Real artwork vs. imitation created by the virtual hairy brush.
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(a) pinasters (left) and stones (right).

(b) A running horse (left) and parrots (right).
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(c) Orchid.

(d) Bamboos.

(e) Song birds (left) and mandarin ducks (right).

Figure 11: Paintings created by the virtual hairy brush.
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