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A Solution for Large-Scale Multi-Object Tracking
Michael Beard , Ba Tuong Vo , and Ba-Ngu Vo

Abstract—A large-scale multi-object tracker based on the gen-
eralised labeled multi-Bernoulli (GLMB) filter is proposed. The
algorithm is capable of tracking a very large, unknown and time-
varying number of objects simultaneously, in the presence of a
high number of false alarms, as well as missed detections and
measurement origin uncertainty due to closely spaced objects.
The algorithm is demonstrated on a simulated tracking scenario,
where the peak number objects appearing simultaneously exceeds
one million. Additionally, we introduce a new method of applying
the optimal sub-pattern assignment (OSPA) metric to determine a
meaningful distance between two sets of tracks. We also develop an
efficient strategy for its exact computation in large-scale scenarios
to evaluate the performance of the proposed tracker.

Index Terms—Random finite sets, generalised labeled multi-
Bernoulli, multi-object tracking, large-scale tracking, OSPA.

I. INTRODUCTION

M
ULTI-OBJECT tracking is a problem with a wide variety
of applications across diverse disciplines, and numerous

effective solutions have been developed in recent decades [1]–
[3]. The common goal of multi-object tracking is to estimate
the trajectories of an unknown and time-varying number of
objects, using sensor measurements corrupted by phenomena
including observation noise, false alarms, missed detections,
and data association uncertainty. The combination of these
effects gives rise to a highly demanding computational task,
with complexity that grows exponentially as the number of
objects/measurements increases. Tracking a very large number
of objects simultaneously (in excess of hundreds of thousands)
is thus a challenging problem, with important practical ap-
plications. A few notable examples are: (i) space situational
awareness, which requires tracking thousands of satellites and
millions of debris objects [4]–[6]; (ii) wide area surveillance
(e.g. monitoring large urban environments), requires tracking
hundreds of thousands of objects over time, including vehicles
and people in crowded environments [7]–[9]; (iii) cell biology,
where tracking the motion of large numbers of cells is critical
to understanding their behaviour in living tissues [10], [11];
(iv) wildlife biology, where tracking large animal populations
is needed to study the behaviour of wildlife in their natural
habitats [16].
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The total number of objects in a scenario is often quoted
as a major factor influencing the computational complexity of
a multi-object tracking problem. This is partially true, since
an increase in the number of objects leads to an increase in
the number of possible events that a tracking algorithm must
consider. However, this is not the only concern, and a more
meaningful indication of complexity is the density of the objects
and measurements in both space and time. For example, it is
straightforward to track a large cumulative number of objects
over time, when only a small number are present simultaneously
at any given instant. Likewise, a large number of spatially
well-separated objects is relatively easy to track, since they
can be considered as statistically independent entities. In these
cases, it is likely that running single-object filters in parallel
would suffice. Difficulties begin to arise when objects come into
close spatial proximity from the point of view of the sensor, and
the ensuing increase in data association ambiguity leads to a
combinatorial explosion in the number of statistically likely ob-
servation events. In dynamic multi-object scenarios, the problem
is further compounded by the motion of the objects.

Various methods have been proposed to address the com-
putational challenges of tracking a large number of objects
simultaneously. One of the earliest works on large scale multi-
object tracking proposed the use of efficient spatial searching
algorithms to associate measurements to tracks [12]. Although
capable of processing a very large number of objects, the
proposed method does not account for dependencies between
closely spaced objects, and thus its performance is likely to
degrade in such cases. In [13] it was suggested that the same
techniques could be applied to help improve the efficiency of
the joint probabilistic data association (JPDA) algorithm, but
no numerical results were provided. An alternative approach
was proposed in [14], known as linear multi-target integrated
probabilistic data association (LMIPDA). This method reduces
computation using an approximation that treats nearby objects
as additional sources of clutter, and the resulting algorithm was
demonstrated on a simulated 50-object scenario. An approach
based on 2D assignment of measurements to tracks was proposed
in [15], with an application to large-scale air traffic surveillance.
The scenario had a total of about 800 tracks, however, the
target/measurement density and the number of simultaneous
objects was not provided.

Algorithms based on multiple hypothesis tracking (MHT)
have also been proposed for tracking large numbers of objects.
For example, applications to cell tracking [10] and wildlife
tracking [16], have been demonstrated on thousands of objects
in total, with several hundred objects simultaneously [16]. The
labelled multi-Bernoulli (LMB) filter, a one-term approxima-
tion of the generalised labeled multi-Bernoulli (GLMB) fil-
ter, has also been demonstrated on a simulated scenario with
over a thousand objects simultaneously [17], and in [18] it
was used with spatial searching to track hundreds of sea-ice
objects.
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An alternative approach to improving the scalability of multi-
target tracking systems is the concept of distributed estima-
tion, which spreads the computational load across multiple
sensor nodes, each of which only processes observations from
its local region. Random finite set (RFS) based multi-sensor
fusion algorithms have been proposed for the PHD/CPHD
filters [19]–[22], multi-Bernoulli filter [23]–[26], and hybrid
Poisson multi-Bernoulli filter [27]. However these approaches
are not true multi-object trackers, since only the current states are
estimated. Multi-sensor fusion for multi-object tracking filters
was first examined in [28], where fusion rules for the LMB
filter [29] and marginalised GLMB filter [30], were proposed and
demonstrated for multi-sensor multi-object tracking. A variation
for the LMB filter was subsequently proposed in [31], where
sensor fusion is performed based on a Cauchy–Schwarz diver-
gence. Further works on robustness of distributed multi-object
estimation have been reported in [32], [33], and the latest works
on computationally efficient implementations were proposed
in [34].

To satisfy the competing demands of computational effi-
ciency versus accuracy, a trade-off is necessary. In this paper,
we present a multi-object tracking filter that accomplishes this
trade-off by exploiting the properties of GLMB densities, and
the standard multi-object likelihood through a principled ap-
proximation. The result is an algorithm that can be applied
to large-scale multi-object tracking scenarios exhibiting com-
monly encountered structural properties, without suffering from
an intractable increase in computational complexity. The al-
gorithm is highly effective when the scenario consists of iso-
lated groups of high object/measurement density, and is capable
of adapting to changes in the structure of these groups over
time.

Our proposed method is based on functional approximation
of the multi-object density (equivalent to a probability density
for finite-set-valued random variable [35]) – a key element of
the random finite set (RFS) approach – that encapsulates all
information on the current set of tracks in a single non-negative
function. Processing the large number of combinations of events
translates to recursive computation of the multi-object filtering
density [36]–[38]. Tractability hinges on efficient functional
approximation/computation of the so-called GLMB filtering
recursion, under limited processing/memory resources. Concep-
tually, the key enablers in our proposed large-scale tracker are:
(i) adaptive approximation of the GLMB filtering density, at each
time, by a product of tractable and approximately independent
GLMB densities; and (ii) efficient parallel computation of these
GLMB densities by exploiting the conjugacy of the GLMB fam-
ily. This strategy is distinct from the approach in [17], where the
GLMB is approximated by a single term. In essence, our strategy
efficiently identifies and processes significant combinations by
exploiting structural properties and parallelisation, to make the
most of the limited computing resources. Consequently, while
the focus of this paper is on large-scale problems, our solution
also provides significant efficiency gains when applied to smaller
scale problems.

Our study would be incomplete without evaluating the track-
ing performance of the proposed multi-object tracker, which is
a challenging task in itself [39], [40]. We require a measure of
dissimilarity between two sets of tracks, which: (i) is physically
meaningful; (ii) satisfies the properties of a metric for mathemat-
ical consistency; and (iii) is computable for scenarios involving
millions of tracks. The optimal sub-pattern assignment (OSPA)

metric [41], in its most commonly used form, measures the dis-
tance between two sets of states, and does not take into account
phenomena such as track switching and track fragmentation.
Nonetheless, by developing a meaningful base-distance between
two tracks, we are able to use OSPA to construct a physically
meaningful distance between two sets of tracks, which we called
OSPA(2) to distinguish it from the standard use. To evaluate the
performance of the proposed tracker on a scenario involving an
unknown and time-varying number of objects with a peak in
excess of one million, we developed a scalable procedure for
exact computation of the OSPA(2) metric. Preliminary results
on OSPA(2) were published in [42], [43]. This paper provides
complete mathematical details.

The rest of the paper is structured as follows. Section II pro-
vides the necessary background on the GLMB filter. Section III
presents some theoretical results regarding the decomposition of
GLMB densities. In section IV we apply these results to imple-
ment an efficient GLMB filter, capable of handling large-scale
multi-object tracking problems. Sections V and VI present the
OSPA(2) metric, and its use to evaluate the proposed large-scale
tracker. Some concluding remarks are given in section VII.
Mathematical proofs are given in the Appendix.

II. BACKGROUND: GENERALISED LABELED

MULTI-BERNOULLI TRACKER

In multi-object systems, tracking is distinct from filtering, in
the sense that tracking involves the estimation of the trajectories
of objects over time, as opposed to the multi-object state at each
time instant. The generalised labelled multi-Bernoulli (GLMB)
filter is an algorithm that is specifically designed to provide
estimates of object trajectories by modeling the multi-object
state as a labeled random finite set (RFS). In this section we
briefly revisit the GLMB filter, and the interested reader is
referred to [36]–[38] for more detailed treatments.

We begin by defining the notion of a labeled RFS. Let X be a
single-object state space, L a discrete label space, L : X× L →
L the projection defined by L((x, ℓ)) = ℓ for all points (x, ℓ) ∈
X× L. Denote by F(S) the collection of all finite subsets of
some underlying space S. Now consider X∈ F(X× L) and
its corresponding label set L(X) = {L(x) : x ∈ X}. Then the
labels of the points in X are distinct if and only if X and
its label set L(X) have equal cardinality. This is expressed
mathematically by defining a distinct label indicator function

∆(X) � δ|X| [|L (X)|] ,

which has value 1 if the labels in X are distinct and 0 other-
wise. A labeled RFS is defined as a marked RFS with distinct
marks [36]. More precisely, a labeled RFS with state space X

and label space L is an RFS of X× L, constructed by marking
the elements of an RFS of X with distinct labels from L, i.e. any
realisation X must satisfy ∆(X) = 1.

A. Multi-Object Dynamic Model

Given the multi-object state X (at time k) with label space L,
each (x, ℓ) ∈ X either survives with probability PS(x, ℓ) and
evolves to a new state (x+, ℓ+) (at time k + 1) with probability
density f+(x+|x, ℓ)δℓ[ℓ+] or dies with probability 1− PS(x, ℓ).
The surviving label space L � Lk is given by a disjoint union
of birth label spaces Bt for all times t = 0, . . . , k, i.e. Lk =
⊎k

t=0 Bt. To ensure that the birth label spaces are disjoint,
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each birth label is constructed as an ordered pair, consisting
of the birth time and a unique index, i.e. Bt = {(t, i)}

|Bt|
i=1.

The set B+ of new objects (born at time k + 1) with birth
label space B+ � Bk+1 is distributed according to the labeled
multi-Bernoulli (LMB) density

f
(B+)
B,+ (B+) =∆(B+)

[
1B+

rB,+

]L(B+)
[1−rB,+]

B+−L(B+)p
B+

B,+,

where [h]X �
∏

x∈X h(x) (with [h]∅ = 1) is a multi-object
exponential, rB,+(ℓ) is the probability that a new object with
label ℓ is born, and pB,+(·, ℓ) is the distribution of its kinematic
state [36]. The multi-object state X+ (at time k + 1) with label
space L+ � L ∪ B+ is formed by the union of surviving objects
and new born objects. Using the standard assumption that,
conditional onX , objects move, appear and die independently of
each other, the expression for the multi-object transition density
f+ is given by [36]–[38]

f+(X+|X)=fS,+(X+∩(X×L) |X)f
(B+)
B,+ (X+−(X×L))

where

fS,+ (W |X) = ∆(W )∆(X)1L(X) (L (W ))[Φ (W ; ·)]X

Φ(W ;x, ℓ) =
(
1− 1L(W ) (ℓ)

)
(1− PS (x, ℓ))

+
∑

(x+,ℓ+)∈W

δℓ [ℓ+]PS (x, ℓ)f+ (x+|x, ℓ) .

B. Multi-Object Observation Model

For a given multi-object stateX , each (x, ℓ) ∈ X is either de-
tected with probabilityPD(x, ℓ) and generates a detection z with
likelihood g(z|x, ℓ) or missed with probability 1− PD(x, ℓ).
The multi-object observation Z is the union of the observations
from detected objects and Poisson clutter with intensity κ. The
multi-object likelihood function is given by [36]–[38]

g (Z|X) =
∑

θ∈Θ(L(X))

∏

(x,ℓ)∈X

ψ
(θ(ℓ))
Z (x, ℓ) (1)

where Θ is the set of positive 1-1 maps θ : L → {0 : |Z|}, i.e.
maps such that no two distinct labels are assigned the same
positive value, Θ(I) is the subset of Θ with domain I , and

ψ
(j)

{z1:|Z|}
(x, ℓ) =

{
PD(x,ℓ)g(zj |x,ℓ)

κ(zj)
, j ∈ {1, . . . , |Z|}

1− PD (x, ℓ) , j = 0
.

The map θ specifies that object ℓ generates detection zθ(ℓ) ∈ Z,
with θ(ℓ) = 0 if ℓ is undetected. The positive 1-1 property means
that θ is 1-1 on {ℓ : θ(ℓ) > 0}, and ensures that any detection in
Z is generated from at most one object.

C. Generalised Labelled Multi-Bernoulli Random Finite Sets

A generalised labeled multi-Bernoulli RFS is defined as a
class of labeled RFS that is distributed according to a multi-
object density with the form

π (X) = ∆ (X)
∑

(I,c)∈F(L)×C

w(I,c)δI (L (X)))
[

p(c)
]X

, (2)

where F(L) is the space of all finite subsets of L, C is some
finite space, each w(I,ξ) is a non-negative weight such that

∑

I∈F(L)

∑

c∈C w(I,c) = 1 and each p(c)(·, ℓ) is a probability
density onX. For convenience, we denote the space of all GLMB
densities on F(X× L) by GL, and adopt the following abbrevi-
ated notation for a GLMB density in terms of its parameters

π �

{(

w(I,c), p(c)
)}

(I,c)∈F(L)×C. (3)

If the multi-object filtering density at the current time step is
a GLMB given by (3), then the multi-object filtering density at
the next time step, given by the multi-object Bayes recursion

π+(X+|Z+) ∝ g (Z+|X+)

∫

π(X+)f (X+|X)δX, (4)

is also a GLMB with parameters [38]

π+=
{(

w
(I+,c,θ+)
Z+

, p
(c,θ+)
Z+

)}

(I+,c,θ+)∈F(L+)×C×Θ+

(5)

where

w
(I+,c,θ+)
Z+

∝
∑

I

w(I,c)ω
(I,c,I+,θ+)
Z+

, (6)

ω
(I,c,I+,θ+)
Z+

= 1Θ+(I+) (θ+)
[

1− P̄
(c)
S

]I−I+ [

P̄
(c)
S

]I∩I+
,

(7)

× [1− rB,+]
B+−I+ r

B+∩I+
B,+

[

ψ̄
(c,θ+)
Z+

]I+
,

(8)

P̄
(c)
S (ℓ) =

〈

p(c) (·, ℓ) , PS (·, ℓ)
〉

, (9)

ψ̄
(c,θ+)
Z+

(ℓ+) =
〈

p̄
(c)
+ (·, ℓ+) , ψ

(θ+(ℓ+))
Z+

(·, ℓ+)
〉

, (10)

p̄
(c)
+ (x+, ℓ+) = 1L(ℓ+)

〈
PS(·, ℓ+)f+(x+|·, ℓ+) , p

(c)(·, ℓ+)
〉

P̄
(c)
S (ℓ+)

+ 1B+
(ℓ+) pB,+ (x+, ℓ+) , (11)

p
(c,θ+)
Z+

(x+, ℓ+) =
p̄
(c)
+ (x+, ℓ+)ψ

(θ+(ℓ+))
Z+

(x+, ℓ+)

ψ̄
(c,θ+)
Z+

(ℓ+)
. (12)

The recursive propagation of the current filtering density
(3) to the next time is more compactly expressed by a GLMB
joint prediction and update operator Ω : GL → GL+

defined by

Ω(π;f
(B+)
B , Z+) = π+ according to (5)–(12), where f

(B+)
B is

the next birth density and Z+ is the next measurement set.

III. LARGE-SCALE GLMB FILTERING

Due to practical limitations on computational resources, the
original implementation of the GLMB filter proposed in [36],
[37] cannot accommodate a very large number of objects simul-
taneously. The main computational bottleneck occurs in the mea-
surement update, which involves processing each component of
the predicted GLMB density using Murty’s algorithm to find
theK most significant components according to their weights. If
there areN labels in a component andM measurements in total,
then the complexity of the update is O(K(N +M)3). Murty’s
algorithm can be replaced with Gibbs sampling to reduce the
computational complexity of processing each component down
to O(KN2M) [38]. However, the quadratic complexity in the
number of objects will still render this algorithm infeasible for
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tracking a large number of objects simultaneously. Arguably,
any feasible solution for large-scale multi-object tracking should
have a maximum computational complexity of approximately
O(KNM · log(NM)).

In many practical multi-object scenarios, the objects are
not uniformly distributed across the state space, but often in
separate groups. This structure can be exploited to improve
computational efficiency of the multi-object tracker. Rather
than representing the entire multi-object density as one “large”
GLMB, we can approximate it as a product of much “smaller”
GLMBs, herein referred to as label-partitioned GLMBs. This is
based on the premise that a large GLMB, with well-separated
groups of estimated objects, is decomposable into a product
of almost independent smaller GLMBs. Consequently, such an
approximation results in a negligible loss of information, whilst
providing significant gains in computational efficiency.

A. Label-Partitioned GLMB

A labeled RFS density on F(X× L) is said to be label-
partitioned if it can be written as the following product

πL (X) =
∏

L∈L

π
(L)
L (X ∩ (X× L)) ,

where L is some partition of the label space L, and each
factor π(L)

L is a labeled RFS density on F(X× L). Note that
for all X ∈ F(X× L), X =

⊎

L∈L X ∩ (X× L),1 and hence
{F(X× L)}L∈L is also a partition of F(X× L). We call πL,

denoted by its factors {π(L)
L }L∈L, an L-partitioned labeled RFS

density. Further, if each factorπ(L)
L is a GLMB, thenπL is said to

be an L-partitioned GLMB on F(X× L). We denote by GL(L)
the space of all L-partitioned GLMBs on F(X× L).

Suppose that the current filtering density πL is an L-
partitioned GLMB on F(X× L). Then, the prediction to the
next time is also anL-partitioned GLMB. However, the resulting
filtering density generally does not take on the same form. While
the new filtering density π+ is still a GLMB that, in principle,
can be computed [36]–[38], a direct computation via expansion
of the product and subsequent update is not scalable in practice.
Moreover, due to object births, deaths and transitions, the current
partition L of L is unsuitable as a basis for approximating the
new filtering density.

Nonetheless, when estimated objects in the new filtering den-
sity also occur in separate groups, as do the sets of measurements
which are associated with different groups of objects, it is possi-
ble to exploit this structure to improve computational efficiency.
To maintain scalability and parallelisability, we approximate the
new filtering density as a label-partitioned GLMB. This entails
selection of the optimal partition of labels and measurements,
and the optimal association of groups of labels to groups of
measurements, in some statistical sense. Intuitively the selection
of the partitions and associations should result in negligible
statistical dependence between labels and measurements across
different groups.

Let P(L), P(L+) and P(Z+) denote the sets of all partitions
of the current label space L, the new label space L+ and the
new measurements Z+ respectively. Suppose that the current

1The disjoint union notation (⊎), in expressions involving unions over a
partition, would be equivalent to the standard union. However, we use it to
serve as a reminder that the constituent sets of the union are disjoint.

filtering density is an L-partitioned GLMB on F(X× L),

πL =
{

π
(L)
L

}

L∈L
. (13)

Consider a new partition L+ ∈ P(L+), where each set of la-
bels L ∈ L+ is associated with a set of gated measurements
Z

(L)
+ ⊂ Z+, such that Z

(I)
+ ∩ Z

(J)
+ = ∅ for I 
= J . We seek

to approximate the new filtering density as an L+-partitioned
GLMB on F(X× L+).

For a particular choice of L+ ∈ P(L+) and Z+ ∈ P(Z+),
let A+(L+,Z+) denote the space of all positive 1-1 mappings
A+ : L+ → {∅} ⊎ Z+, where positive 1-1 means 1-1 on Z+.
In other words, a given A+ ∈ A+(L+,Z+) maps each group
of labels in the partition L+, to either {∅} or a unique group
of measurements in the partition Z+, i.e. A+(L) is the set of
measurements corresponding to the set of labels L. Ideally, we
seek the approximation

πL+,Z+,A+
=
{

π
(L)
L+,Z+,A+

}

L∈L+

(14)

π
(L)
L+,Z+,A+

= Ω
(

πL;f
(L∩B+)
B , A+(L)

)

(15)

where

(L+,Z+, A+) = argmin
L+∈P(L+)
Z+∈P(Z+)

A+∈A(L+,Z+)

DKL

(
π+,πL+,Z+,A+

)
(16)

s.t. |L| ≤ Lmax, ∀L ∈ L+ (17)

and DKL(·, ·) denotes the Kullback-Leibler divergence (KLD).
Here Lmax is a user parameter determined by the available
computational resources. Higher values ofLmax result in a more
accurate approximation to the multi-object filtering density,
however, more memory and faster processing will be required
to achieve real-time performance. Smaller values yield a coarser
approximation, but real-time performance is achievable with less
computational resources. Choosing Lmax = 1 is equivalent to
running parallel Bernoulli filters [3, Section 14.7].

The combinatorial optimization problem in (16) is intractable,
since the space of partitions is prohibitively large. We propose
an approximate two-step solution which is tractable for large-
scale problems. The first step involves choosing a suboptimal
partition of L+, subject to a constraint on the maximum group
cardinality. The second step involves parallel computation of the
factors in the new filtering density, directly as a product of factors
from the old filtering density. This strategy avoids the explicit
expansion of the product, and subsequent refactorization after
update, which would be intractable. These steps are described
in the following two subsections.

B. Label Partitioning

We aim to find a partition of the label space such that any pair
of labels that do not appear in the same group are approximately
statistically independent. In the standard multi-object tracking
model, as defined in Sections II-A and II-B, this statistical
dependence arises solely via the uncertainty in the unknown
association between measurements and objects. That is, if a
particular detection could have originated from one of several
objects, then there will be a statistical dependence between those
objects in the multi-object filtering density.
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Intuitively, tracks that are well-separated in the measurement
space will have low statistical dependence, because the proba-
bility that these tracks give rise to closely spaced measurements
is extremely low. In this context, “well-separated” means that
the distance between tracks in the measurement space is large
compared to the measurement noise and the uncertainty in the
objects’ predicted location. This is the key property that we ex-
ploit in order to partition the label space in a way that minimises
the amount of potential measurement sharing between objects
in different groups.

In principle, this can be achieved by analysing the distribu-
tions of the predicted measurements corresponding to all objects
represented in a GLMB. Suppose each factor has the form

π
(L)
L =

{(

w
(I,c)
L,L , p

(c)
L,L

)}

(I,c)∈F(L)×C(L)
(18)

Then for each label ℓ ∈ L+ we compute the distribution of the
predicted measurement

p̃+(z, ℓ) = 〈g(z|·, ℓ), p+(·, ℓ)〉 (19)

via the distribution of the predicted state

p+ (x, ℓ) ∝ 1B+
(ℓ) rB (ℓ) pB (x, ℓ)

+
∑

L∈L

∑

(I(L),c(L))∈
F(L)×C(L)

1L (ℓ) 1I(L) (ℓ)

× w
(I(L),c(L))
L,L

〈

p
(c(L))
L,L (·) , f (x|·, ℓ)

〉

. (20)

The distribution p̃+(·, ℓ) can be used to construct a “measure-
ment gating region,” B(ℓ) ⊆ Z for each label ℓ ∈ L+, which
contains the majority of the probability mass for the predicted
measurement. These gating regions are the basis for partitioning
the next label space L+. A partition L+ = {L1, . . . , L|L|} is
formed by splitting L+ into groups of labels whose correspond-
ing gating regions intersect (either directly, or indirectly via
a sequence of labels in the same group), and where there is
no intersection between gating regions for labels in different
groups. Furthermore, for computational feasibility, the gating
regions must be sufficiently small such thatL+ can be partitioned
into groups no larger than some predefined cardinality threshold
Lmax. That is, L must satisfy the following three conditions:

1) For all L ∈ L+, and for any ℓi, ℓj ∈ L, either
B(ℓi) ∩B(ℓj) 
= ∅ or there exists {ℓ1, . . . , ℓn} ⊆ L
such that B(ℓi) ∩B(ℓ1) 
= ∅, B(ℓ1) ∩B(ℓ2) 
=
∅, . . . , B(ℓn−1) ∩B(ℓn) 
= ∅, B(ℓn) ∩B(ℓj) 
= ∅

2) [
⋃

ℓ∈Li
B(ℓ)] ∩ [

⋃

ℓ∈Lj
B(ℓ)] = ∅, for all i, j ∈

{1, . . . |L+|}, i 
= j,
3) |L| ≤ Lmax for all L ∈ L+.
Under these conditions, the label space is partitioned such

that there is no overlap between the regions of Z corresponding
to the groups of labels represented by L+, taking into account
the prediction and likelihood. Consequently the multi-object
filtering density at the next time should exhibit negligible sta-
tistical dependence between different groups of the partition
{X

(L)
+ = X+ ∩ F(X× L) : L ∈ L+}. Hence, we can assume

that the multi-object likelihood can be well-approximated by the

following separable form

ĝ

⎛

⎝
⊎

L∈L+

Z
(L)
+ |

⊎

L∈L+

X
(L)
+

⎞

⎠ �
∏

L∈L+

g
(

Z
(L)
+ |X

(L)
+

)

(21)

which facilitates a fast parallel evaluation of the label-partitioned
GLMB filtering density, as described in subsection III-C.

A naive approach to partitioningL+, subject to the conditions
above, will have computational complexity O(|L+|

2) since all
possible label pairs must be examined to determine whether their
gating regions intersect. This is clearly infeasible for large-scale
tracking problems. Fortunately, techniques in computational
geometry can be applied to dramatically reduce the computa-
tional complexity of the partitioning, thereby making it feasible
for such problems. A method for efficient implementation is
discussed in Section IV-A.

C. Computing Label-Partitioned GLMB Filtering Density

Suppose the current filtering density is an L-partitioned
GLMB, and that we are given a new partition L+ of L+. The
goal is to approximate the filtering density at the next time as
an L+-partitioned GLMB. To achieve this in a way that is scal-
able to problems involving a very large number of objects, we
consider approximating the current filtering density according
to a modified partition structureS = {L ∩ L : L ∈ L+}, i.e. we
take each element of the new partition L+, and intersect it with
the current label set L. The current filtering density can then be
approximated as an S-partitioned GLMB

πS =
{

π
(S)
S

}

S∈S
(22)

that mimimises DKL(πL;πS). This approximation is given
explicitly in Proposition 1 (see Appendix A for proof).

Proposition 1: Given an L-partitioned GLMB πL =

{π
(L)
L }L∈L on F(X× L), and suppose that S is another

partition of L. Then the S-partitioned labeled RFS density
πS = {π

(S)
S }S∈S that minimises DKL(πL;πS), is an

S-partitioned GLMB, with GLMB factors

π
(S)
S

(

X(S)
)

=
∏

L∈L

π
(L,S)
L,S

(

X(S)
)

where

π
(L,S)
L,S =

{(

w
(H,c)
L,S,L,S , p

(c)
L,S,L,S

)}

(H,c)∈F(L∩S)×C(L)

w
(H,c)
L,S,L,S =

∑

W∈F(L−S)

w
(H∪W,c)
L,L

p
(c)
L,S,L,S(x, ℓ) = 1(ℓ)p

(c)
L,L(x, ℓ)

for each (L, S) ∈ L×S such that L ∩ S 
= ∅.
Given the approximation (22) to the current filtering density,

and the separable multi-object likelihood (21), the joint predic-
tion and update can be applied to all factors of πS+

in parallel,
yielding the new L+-partitioned GLMB filtering density,

πL+,+ =
{

π
(J)
L+,+

}

J∈L+

. (23)

An explicit expression for (23) is given in Proposition 2 (see Ap-
pendix A for proof). Further details for efficient implementation
are discussed in Sections IV-B and IV-C.
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Fig. 1. High-level flow diagram of the large-scale GLMB filter.

Proposition 2: Given a separable multi-object likelihood
(21), where L+ is partition of L+, and suppose that the current
multi-object filtering density is an S -partitioned GLMB of the
form πS = {π

(J∩L)
S }J∈L+

where

π
(J∩L)
S =

{(

w
(I,c)
S,J∩L, p

(c)
S,J∩L

)}

(I,c)∈F(J∩L)×C(J)
.

Then the multi-object filtering density at the next time is the
L+-partitioned GLMB πL+,+ = {π

(J)
L+,+}J∈L+

where

π
(J)
L+,+ = Ω

(

π
(J∩L)
S ;f

(J∩B+)
B , Z

(J)
+

)

and Ω(·;f
(B+)
B , Z+) : GL → GL+

is the joint prediction and
update operator.

IV. IMPLEMENTATION

In this section we describe in more detail our implementation
of a large-scale GLMB filter, based on the concepts introduced
in the previous section. The algorithm is composed of several
modules as shown in Fig. 1. The details of each of these modules
are discussed in the following subsections.

A. Step 1: Label Space Partition Selection

We proceed under the standard assumptions of linear-
Gaussian transition and measurement models

f+ (x+|x, ℓ) = N (x+;Fx,Q),

g (z|x, ℓ) = N (z;Hx,R).

If the prior distribution for track ℓ is a Gaussian mixture

p (x; ℓ) =

U(ℓ)
∑

u=1

w(u) (ℓ)N
(

x,m(u) (ℓ) , P (u) (ℓ)
)

then the distribution of the predicted measurement is also a
Gaussian mixture

p̃+ (z; ℓ) =

U(ℓ)
∑

u=1

w(u) (ℓ)N
(

z, m̃(u) (ℓ) , P̃ (u) (ℓ)
)

, (24)

m̃(u) (ℓ) = HFm(u) (ℓ) , (25)

P̃ (u) (ℓ) = R+H(Q+ FPFT )HT . (26)

For tractability, the distribution of the predicted measurement is
then approximated as a uniform mixture

p̃+ (z, ℓ) ≈

U(ℓ)
∑

u=1

U
(

z;B(u) (ℓ)
)

(27)

where U(·;B(u)(ℓ)) is a uniform distribution on an axis-aligned
hyper-rectangle B(u)(ℓ) that should correspond to the region
where N (·, m̃(u)(ℓ), P̃ (u)(ℓ)) has significant mass. An efficient
method for computing this is to consider the ellipsoidal gate
centered on m̃(u)(ℓ) and shaped according to P̃ (u)(ℓ), which
has probabilityPG of containing the received measurement. The
axis-aligned hyper-rectangle B(u)(ℓ) can be chosen as a tight
bounding box on the ellipsoidal gate, which can be computed in
simple closed form as a function of m̃(u)(ℓ), P̃ (u)(ℓ) and PG.
For any L ⊆ L+, define the prediction gate

B(L) =
⋃

ℓ∈L

⎡

⎣

U(ℓ)
⋃

u=1

B(u) (ℓ)

⎤

⎦ . (28)

We seek a partitionL+ ofL+ which maximises |L+| and satisfies

B(I) ∩B(J) = ∅, ∀I, J ∈ L+, I 
= J. (29)

A solution can always be found via the following procedure
with O(RT logd RT +RI +RL) complexity, where d is the
dimension of the measurement space, RT is the total number
of hyper-rectangles, RI is the number of intersecting hyper-
rectangle pairs, andRL is the total number of labels at the current
time. A segment-tree [44]–[46] is first constructed containing all
hyper-rectangles, which is used to find all intersecting prediction
gates, with complexity O(RT logRT +RI). A graph is then
constructed, consisting of one node for each label at the current
time, and an edge for every pair of labels whose prediction gates
intersect. The connected components of the graph are found
via depth-first search, which has O(RL) complexity, and can
be further accelerated via parallel processing. The connected
components then give the desired partition of L+. However, if
the additional constraint |L| ≤ Lmax, ∀L ∈ L+ is not satisfied, it
is necessary to reduce the value for PG and repeat the procedure
until a feasible solution is found.

B. Step 2: Birth Factorisation and GLMB Repartitioning

Once an appropriate label space partition L+of L+ has been

found, we proceed to factorise the LMB birth density f
(B+)
B as

a product over the partition B+ = {L ∩ B+ : L ∈ L+} of B+,
and to approximate the current filtering density πL as a product
over the partition S = {L ∩ L : L ∈ L+} of L.

The LMB birth is exactly factorised as aB+-partitioned LMB

f
(B+)
B = {f

(B+)
B }B+∈B+

. The minimum KLD approximation
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to πL as an S-partitioned GLMB, πS = {π
(S)
S }S∈S, is ob-

tained via Proposition 1. Consider a given S ∈ S, then for each
L ∈ L, we calculate the GLMBπ

(L,S)
L,S for labels which are com-

mon to both S and L. The expression for π(S)
S =

∏

L∈L π
(L,S)
L,S

is given by expanding the product over L ∈ L. In practice, this
does not necessary require enumerating all pairs (L, S), because
some combinations may satisfy L ∩ S = ∅ resulting in a trivial
expression for π(L,S)

L,S . It is possible to identify pairs for which
L ∩ S 
= ∅ by querying an appropriate map structure used to
represent the GLMB factors with logarithmic complexity. In
addition, the computation of the final product for π

(S)
S can

be efficiently implemented using a k-shortest path algorithm
or stochastic sampling strategy to truncate the result without
explicit expansion. Note that this factorisation and repartitioning
step is trivially parallelisable in each of the factors.

C. Step 3: Parallel Propagation of Label-Partitioned GLMB

Given the new partition L+ of L+, in preparation for the
update, it is necessary to compute for each L ∈ L+, the non
intersecting measurement sets Z(L)

+ = Z+ ∩B(L) that fall in-
side the region B(L) found in Step 1. This will automati-

cally satisfy Z
(I)
+ ∩ Z

(J)
+ = ∅ since B(I) ∩B(J) = ∅ for any

I, J ∈ L+. A K-dimensional (K-D) tree data structure [47], can
be used to find Z

(L)
+ efficiently with O(RU |Z+|

1−1/d +RZ)
complexity, where d is the dimension of the measurement space,
RU =

∑

ℓ∈L U(ℓ) and RZ =
∑

ℓ∈L |Z+ ∩B(ℓ)|.
Since both the likelihood and prediction can be written

as products over the same partition, the factors of the L+-
partitioned GLMB filtering density can be computed in par-
allel independently as shown in Proposition 2. This is a key
feature that allows us to address large-scale multi-target tracking
problems, by utilising modern multi-core architectures. For each
L ∈ L+, computation of the filtering density is given by Proposi-
tion 2, via the GLMB joint prediction and update operatorΩwith
inputsπ(L∩L)

S ,f
(L∩B+)
B ,Z

(L)
+ . Our implementation follows [38],

making use of a Gibbs sampler to efficiently generate GLMB
components with high filtering weights, while also maintaining
diversity across the generated samples.

Finally, an “association probability” is evaluated for each
measurement in Z+, which is used to generate the LMB birth
density for the subsequent iteration of the filter. For a mea-
surement z ∈ Z+ that falls inside the bounding region B(L),
this probability can be computed after the update of the factor
corresponding to L, by summing the weights of all GLMB com-
ponents in which the measurement was assigned to an object.
For measurements that do not fall inside any bounding region,
the corresponding association probability is set to zero.

D. Step 4: Pruning Label-Partitioned GLMB Filtering Density

To improve computational efficiency, for each factor of the
GLMB filtering density we prune its constituent components by
removing those whose contributions are deemed to be insignifi-
cant. In previous implementations of the GLMB filter [36]–[38],
a simple component pruning procedure was used, whereby a
fixed number of highest weighted components were retained
after each iteration, or components with weights below a certain
threshold were deleted.

In addition, pruning is necessary for entire factors of the
GLMB filtering density, also with the aim of improving the
algorithm’s computational efficiency. The idea is to eliminate
entire factors which have negligible contribution to the new
filtering density. A simple criterion is the probability that a factor
has zero cardinality. Factors for which this probability exceeds
a certain threshold are simply deleted. An alternative is to retain
only a fixed number of factors with the highest probability of
having non-zero cardinality.

E. Step 5: Measurement Driven Birth

The association probabilities computed in step 2 capture the
likelihood that the given measurement originated from any one
of the existing objects. These probabilities are now used to
construct a labelled multi-Bernoulli distribution, which will
serve as the birth density for the next iteration of the filter.
Each measurement with association probability below some
pre-defined threshold is used to generate a component of the
LMB distribution. The measurement itself, along with prior
distributions on the unobserved state components, are used to
generate a birth density for each component. This so-called
“measurement-driven” approach requires fewer prior assump-
tions regarding the initial state of newborn objects than static
birth models.

F. Step 6: Estimate Extraction

A parallelisable strategy for extracting labelled estimates of
the current object states is to process each factor independently
using standard approaches. The estimates for a particular factor
can be obtained by first finding the maximum a-posteriori (MAP)
cardinality estimate for the number of objects, then finding the
highest weighted component with the relevant cardinality, and
finally selecting either the MAP/EAP estimates for each label.
The overall multi-object estimate is obtained by taking the union
of the estimates from all factors. These are subsequently used
to update the track estimates, by matching up the estimates with
corresponding labels across different times.

V. MULTI-OBJECT TRACKING PERFORMANCE METRIC

In [41], the optimal sub-pattern assignment (OSPA) metric
was proposed as a mathematically consistent and physically
meaningful distance between two sets of points. This has found
widespread use in the evaluation of multi-object tracking per-
formance, where it has become a common practice to present
a plot of the OSPA distance between the estimated and true
multi-object states versus time. While this can provide an in-
dication of the multi-object tracking performance, it does not
fully account for errors between the estimated and true sets
of tracks. Specifically, the OSPA distance between multi-object
states does not penalise phenomena such as track switching and
fragmentation in a consistent fashion.

In [39], a metric called OSPA for tracks (OSPA-T) was
proposed, along with a method for its approximate computation.
The disadvantage of this approach is that the approximation
no longer satisfies the axioms of a metric, and thus it may
not behave as one would expect. A number of drawbacks of
the approximate OSPA-T were discussed in [40], in which the
authors defined another metric that alleviates these drawbacks.
However, this metric is computationally intractable for most
practical problems. In [48], two metrics inspired by the CLEAR
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MOT heuristics for tracking performance evaluation in computer
vision were proposed. The drawbacks of these metrics were
pointed out in [49], and two other metrics were proposed. How-
ever, these metrics are not suitable for evaluating multi-object
tracking performance in large-scale scenarios.

Since the OSPA distance between two sets is constructed from
the base-distance between the elements of the sets, a simple way
of using it to evaluate multi-object tracking performance is to
choose the base-distance to be a distance between tracks. When
this base-distance is also constructed via OSPA, the result is the
OSPA metric on an OSPA base-distance, which we call OSPA(2)

to distinguish it from the standard use. A meaningful OSPA(2)

depends on a meaningful base-distance between tracks.
This section presents the OSPA(2) metric together with a phys-

ically meaningful base-distance between tracks. We also develop
a scalable algorithm for computing this OSPA(2) distance (ex-
actly), capable of evaluating large-scale tracking performance.
We begin by defining the following notation:
� T = {1, 2, . . . ,K} is a finite space of time indices (rep-

resenting times {t1, t2, . . . , tK}), which includes all time
indices from the beginning to the end of the scenario.

� X is the single-object state space, and F(X) is the space of
finite subsets of X.

� U is the space of all functions mapping time indices in T to
state vectors in X, i.e. U = {f : T �→ X}. We refer to each
element of U as a track.

� For any f ∈ U, its domain, denoted by Df ⊆ T, is the set
of time instants at which the object exists.

Also, recall that for a function d(·, ·) to be called a “metric,”
it must satisfy the following four properties:

P1. d(x, y) ≥ 0 (non-negativity),
P2. d(x, y) = 0 ⇐⇒ x = y (identity),
P3. d(x, y) = d(y, x) (symmetry),
P4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The OSPA distance d
(c)
p (φ, ψ) between φ, ψ ∈ F(X) with

order p and cutoff c is defined as follows [41]. For φ =
{φ(1), φ(2), . . . , φ(m)} and ψ = {ψ(1), ψ(2), . . . , ψ(n)}, m ≤ n

d(c)p (φ, ψ) �

(

1

n

(

min
π∈Πn

m∑

i=1

d̄(c)
(

φ(i), ψ(π(i))
)p

+ cp (n−m)

))1/p

(30)

where d̄(c)(φ(i), ψ(i)) � min(c, d(φ(i), ψ(i))), in whichd(·, ·) is

a metric on the spaceX. Ifm > n, then d(c)p (φ, ψ) � d
(c)
p (ψ, φ).

Additionally, d(c)p (∅, φ) � c, and d
(c)
p (∅, ∅) � 0.

Note that in (30), the factor of 1/n, which normalises the
distance by the number of objects, is crucial for the OSPA to
have the intuitive interpretation as a per-object error.

A. Base-Distance Between Tracks

We now use the OSPA distance (30) to construct a base-
distance as a metric on the space U of tracks. One simple
base-distance is [42]:

d̃(c)(x, y) =
1

T

T∑

t=1

d(c) ({x(t)} , {y(t)}) (31)

Fig. 2. Hypothetical scenario with two well-separated tracks inside a relatively
long time window.

where

d(c) (φ, ψ) =

⎧

⎨

⎩

0, |φ| = |ψ| = 0

c, |φ| 
= |ψ|

min
(
c, d

(
φ(1), ψ(1)

))
, |φ| = |ψ| = 1

.

(32)

Note that in (31) {x(t)} is a singleton if t ∈ Dx, or {x(t)}
is empty if t /∈ Dx (and likewise for {y(t)}). In this case, the
OSPA distance defined in (30) reduces to (32). Hence, the order
parameter p becomes redundant, and is omitted.

The base-distance (31) exhibits counter-intuitive be-
haviour [43], wherein a pair of well-separated tracks may have
a smaller distance than expected. If there are two short tracks
inside a much longer window, then averaging over this window
may result in a relatively small distance, even if the tracks are
separated by a distance of c. For example, consider the scenario
illustrated in Fig. 2. Inside the window of length T = 100, there
are exactly two tracks, x with domain Dx = {91 : 95}, and y
with domainDy = {96 : 100}. If the base-distance is calculated
according to (31), i.e. as an average over t ∈ {1, . . ., T} then
d̃(c)(x, y) = c/10. Furthermore, as the length of the window
increases, the value of this base-distance decreases, which is
counter intuitive, as the two tracks do not overlap in time, and
are indeed very far apart. Thus it would actually be expected that
the base-distance assign the maximum penalty c.

This issue can be resolved by constructing the distance
d̃(c)(x, y) between two tracks x, y ∈ U as the mean OSPA
distance between the set of states defined by x and y, over all
times t ∈ Dx ∪ Dy , i.e.

d̃(c)(x, y) =

{∑

t∈Dx∪Dy

d(c)({x(t)},{y(t)})
|Dx∪Dy |

, Dx ∪ Dy 
= ∅

0, Dx ∪ Dy = ∅
.

(33)

Averaging over Dx ∪ Dy , instead of {1, . . ., T} as per (31),
results a base-distance with intuitively consistent behaviour.
For the example in Fig. 2, this choice of base-distance gives
d̃(c)(x, y) = c. Notice that even if the window is expanded, the
distance still evaluates to the cutoff value c, as we would expect.
In order to use (33) as a base-distance between tracks, we need
to establish that it defines a metric on U. That is, it must satisfy
the properties P1-P4 as previously mentioned.

Proposition 3: Let d(c)(·, ·) be a metric on the finite subsets
of X, such that the distance between a singleton and an empty
set assumes the maximum attainable value c. Then the distance
between two tracks as defined by (33) is also a metric.
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The proof of this proposition involves some rather lengthy
algebraic manipulations, and as such, it has been relegated to
Appendix B. This result establishes that (33) is indeed a metric
on the space U, when d(c)(·, ·) is defined according to (32).

Before proceeding to define OSPA(2), we make two important
observations regarding the properties of this base-distance.
� Since d(c)(·, ·) ≤ c, the distance between tracks saturates

at the value c, i.e. d̃(c)(·, ·) ≤ c.
� For two tracks x and y such that Dx = Dy , (33) can be

interpreted as a mean square error (MSE) between x and
y. Hence, this base-distance can be regarded as a general-
isation of the MSE for tracks of different domains.

B. OSPA(2) for Tracks

The distance between two tracks as defined in Section V-
A is both a metric on the space U, and bounded by
the value c. It is therefore suitable to serve as a base-
distance for the OSPA metric on the space of finite sets of
tracksF(U). LetX = {x(1), x(2), . . . , x(m)} ⊆ F(U) andY =
{y(1), y(2), . . . , y(n)} ⊆ F(U) be two sets of tracks, wherem ≤

n. We define the distance ď
(c)
p (X,Y ) between X and Y as the

OSPA with base-distance d̃(c)(·, ·) (the time averaged OSPA
given by equation (33)). That is,

ď(c)p (X,Y )

�

(

1

n

(

min
π∈Πn

m∑

i=1

d̃(c)
(

x(i), y(π(i))
)p

+cp (n−m)

))1/p

,

(34)

where c is the cutoff and p is the order parameter. If m > n,
then ď

(c)
p (X,Y ) � ď

(c)
p (Y,X). Note also that ď(c)p (∅, X) � c,

and ď
(c)
p (∅, ∅) � 0. We call this distance OSPA-on-OSPA or

OSPA(2), which can be interpreted as the time-averaged per-track
error.

1) Efficient Evaluation of OSPA(2): Evaluating (34) involves
the following three steps:

1) Compute an m× n cost matrix C, with entries Ci,j =

d̃(c)(x(i), y(j)), according to (33).
2) Solve a 2-D assignment problem with cost matrix C, to

find the minimum cost 1-1 assignment of columns to rows.
3) Use the result of step 2 to evaluate ď

(c)
p (X,Y ) via (34).

A basic implementation of this procedure would require
computing the base-distance between all pairs of tracks in X
and Y , which has complexity O(|wk|mn). Step 2 then requires
solving a dense optimal assignment problem with complexity
O((m+ n)3). This would preclude its use in large-scale track-
ing scenarios involving millions of objects, as the cost matrix
would consume too much memory, and the assignment problem
would be infeasible.

Fortunately, in many practical applications, the base-distance
between most pairs of tracks will saturate at the cutoff value c.
This can be exploited to dramatically reduce the computational
complexity, making it feasible for large-scale problems. Firstly,
recall that the time averaging in the base-distance (33) is carried
out only over the union of the track domains. Consequently,
the base-distance between any pair of tracks that have no cor-
responding states closer than a distance of c, must saturate
at c. Such pairs can be considered unassignable, and efficient
spatial searching algorithms can be applied to extract only the

assignable pairs of tracks in O(|wk|m log n) time. Once these
have been found, a sparse optimal assignment algorithm can
be used to obtain the lowest-cost matching between the ground
truth and estimated tracks. Such algorithms can solve sparse
assignment problems with a much lower average complexity
than is possible under the dense optimal assignment formulation.

2) Visualisation of OSPA(2): In practice, it is desirable to
examine the tracking performance as a function of time, so that
trends in algorithm behaviour can be analysed in response to
changing scenario conditions. This can be achieved by plotting

αk (X,Y ;wk) = ď(c)p (Xwk
, Ywk

) (35)

as a function of k, where wk is a set of time indices that varies
with k, and

Xwk
= {x|wk

: x ∈ X and Dx ∩ wk 
= ∅} , (36)

Ywk
= {y|wk

: y ∈ Y and Dy ∩ wk 
= ∅} , (37)

where f |w denotes the restriction of f to domain w.
Note that the sets Xwk

and Ywk
only contain those tracks

whose domain overlaps with wk, i.e. any tracks whose domain
lies completely outside the set wk are disregarded. Choosing
different values for the set wk allows us to examine the per-
formance of tracking algorithms over different time scales. For
example, a straightforward approach is to set wk = {k −N +
1, k −N + 2, . . . , k}, so that at time k, the set wk consists of
only the latest N time steps. In this case, choosing a small
value for N will indicate the tracking performance over shorter
time periods, while larger values will reveal the longer-term
tracking performance. This choice is highly dependent on the
application at hand. For example, in real-time surveillance, we
may only be interested in tracking objects over a period of a
few minutes, as older information may be considered irrelevant.
In this case, a small value for N would suffice to capture the
important aspects of the tracking performance. However, in an
off-line scenario analysis application, we might require accurate
trajectory estimates over much longer time periods, in which
case a larger value for N would be more appropriate.

Furthermore, examining the same scenario using OSPA(2)

with different window lengths could reveal important insights
into the relationship between long-term and short-term per-
formance. For example, the design of a multi-object tracking
system often involves trade-offs between estimation accuracy
and response time, and comparing OSPA(2) with long and short
windows could help to characterise the nature of this trade-off.

Note that computing the OSPA(2) on a sliding window as
described above, converges to the traditional OSPA (for sets of
points) as N becomes smaller. For N = 1 the OSPA(2) becomes
identical to the traditional OSPA.

It is important to understand that the OSPA(2) distance has a
different interpretation to that of the traditional OSPA distance.
Whereas the traditional OSPA distance captures the error be-
tween the true and estimated multi-target states at a single instant
in time, the OSPA(2) distance captures the error between the true
and estimated sets of tracks over a range of time instants, as
determined by the choice ofwk. Therefore, careful consideration
must be given to the design of wk, and the user must be mindful
of this when interpreting the results.

3) Behavior of the OSPA(2): The OSPA(2) metric exhibits
intuitively consistent behavior when faced with various types
of common tracking errors. For example, errors in localisation,
cardinality, track fragmentation and track label switching, all
yield expected increases in the OSPA(2) distance (illustrations
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are shown in [42], [43]). Some of the key points that distinguish
the OSPA(2) from the traditional OSPA distance are as follows:
� A track that is dropped and later regained with the same

identity, yields a smaller increase in the OSPA(2) than a
track that it dropped and regained with a different identity.

� When visualised according to the method described in the
previous section, a longer window effectively sustains the
influence of cardinality and track labelling errors for a
longer duration, i.e. the metric “remembers” mistakes that
were committed by the tracker further into the past.

� A greater frequency of track fragmentation and labelling
errors results in a higher OSPA(2) distance.

Illustrations of how the OSPA(2) metric respond to specific
scenario events can be found in [42], [43]. Also included is
a larger synthetic example, in which the frequency of track
fragmentation and label switching is varied in order to observe
its influence on the OSPA(2) distance.

VI. NUMERICAL RESULTS

In this section, we demonstrate the proposed GLMB filter
implementation on a simulated large-scale multi-object track-
ing scenario in which the peak number of objects appearing
simultaneously exceeds one million. The scenario runs for 1000
time steps, on a rectangular 64 km by 36 km surveillance region.
The single-object state consists of 2D position and velocity, i.e.
state vectors have the form [x ẋ y ẏ ]T , with units of metres and
metres per second.

New objects are generated throughout the scenario by sam-
pling from an LMB distribution at each time step. This dis-
tribution consists of 20,000 components, where the density of
the i-th component is a Gaussian N (·;m(i), P ) with m(i) =
[x(i) 0 y(i) 0 ]T and P = diag[50, 5]⊗ I2, where the positional
elements of m(i) are sampled according to x(i) ∼ U(0, 64000)
and y(i) ∼ U(0, 36000). At a given time step k, the existence
probabilities of all components in the birth model are set to
a common value rB,+, but different values for rB,+ are used
within different time intervals according to

rB,+ =

{
0.15, k ∈ [1, 400] ∪ [501, 700]

0.01, k ∈ [401, 500] ∪ [701, 1000]
,

which simulates a variable rate of object birth. With 20,000 birth
components, the value rB,+ = 0.15 equates to an average birth
rate of 3000 objects per time step, and rB,+ = 0.01 gives an
average birth rate of 200 objects per time step. It is imperative to
note that the filter is not provided with any information about the
locations of the birth components nor their probabilities. Instead,
it uses a measurement-based approach to adaptively construct
an LMB birth distribution after each iteration.

At each time step, objects that existed at the previous time
survive with probability PS = 0.999, i.e. one out of every 1000
objects spontaneously dies on average. This survival probability
is known by the filter. An object that has state xk at time k and
survives to time k + 1, takes on a new state according to the
discrete white noise acceleration model

xk+1 = Fxk +Gwk,

F =

[
1 T
0 1

]

⊗ I2, G =

[

T 2/2
T

]

⊗ I2,

Fig. 3. True and estimated cardinality for large-scale tracking scenario.

Fig. 4. OSPA and OSPA(2) distance for large-scale tracking scenario.

where ⊗ denotes the Kronecker product, and wk ∼ N (0, σ2
wI2)

is a 2× 1 independent and identically distributed (i.i.d.) Gaus-
sian process noise vector. In the current scenario, the sampling
interval is T = 1s, and the process noise standard deviation
is σw = 0.2m/s2. The peak cardinality of approximately 1.2
million objects occurs at time 700, when the mean object density
is around 520 per km2.

We simulate data from a position sensor, corrupted by noise,
missed detections and false alarms. An object that exists at time
k with state xk is detected with probabilityPD = 0.88, in which
case the object generates a measurement

z =

[
1 0 0 0
0 0 1 0

]

xk + vk,

and vk ∼ N (0, σ2
vI2) is a 2× 1 i.i.d. Gaussian measurement

noise vector, with σv = 5m. Each set of measurements also
contains false alarms, the number of which is Poisson dis-
tributed with a mean of 200 per km2 (i.e. an overall mean of
200× 64× 36 = 460, 800 per scan), and a spatial distribution
that is uniform across the surveillance region.

For the filter, the number of GLMB components gener-
ated during the update of the i-th factor in the filtering den-
sity is max(min(|L(i)|3, 5000), 500), i.e. the size of the fac-
tor’s label space cubed, lower bounded at 500 and upper
bounded at 5000. In the pruning step, this is reduced to
max(min( 15 |L

(i)|3, 1000), 100). In the label partitioning step,
the probability threshold for computing the size of the hyper-
rectangles representing the bounding regions for each track is
PG = 0.99. The maximum size of the label space of any single
factor is set to Lmax = 20. If the constraint imposed by Lmax

cannot be satisfied with the chosen value forPG, the partitioning
routine is repeated by progressively reducing PG by 20% until
the constraint can be satisfied.
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Fig. 5. Estimated tracks at time step 700 when there is a peak cardinality of 1.2 million objects. The inset is a magnified view of a 2 km by 1 km region.

The tracking algorithm was coded in C++, making use of
OpenMP to implement parallel processing wherever possible.
We executed the algorithm on a machine with four 16-core AMD
Opteron 6376 processors (for a total of 64 physical processor
cores), and 256 GB of memory. On this hardware configuration,
the peak time taken to process a frame of measurements was
approximately 5 minutes when the cardinality was highest, but
the algorithm ran considerably faster than this at times when
there were fewer objects in the scene. The peak memory us-
age of the algorithm was approximately 50 GB. To evaluate
tracking performance, the OSPA(2) metric was coded in Matlab,
using the “parfor” construct to parallelise some aspects of the
computation. The average time taken to evaluate each point in
the OSPA(2) curve was approximately 1 minute.

The true and estimated cardinality is shown in Fig. 3, and
Fig. 4 shows OSPA(2) distance, as well as the traditional OSPA
distance. For the OSPA calculations, the cutoff was set to
c = 50m, the order was p = 1, and for the OSPA(2), a sliding
window over the latest 50 time steps was used to evaluate each
point in the curve. From the cardinality plot, it can be seen
that the estimated cardinality lags behind the true cardinality
during the times when new targets are being born. This is to
be expected, as the measurement-driven birth model needs to
consider a very large number of potential birth tracks at each
scan. To avoid initiating too many false tracks, the filter delays
the initiation of tracks until there is more data to confirm the
presence of an object. The OSPA(2) plot shows increased error
during the periods in which new targets are appearing, due to the
delay in initiating new tracks. At other times, the error stabilises
to approximately 2.5m per object per unit time. As we would
expect, the OSPA(2) error is consistently higher than the OSPA
error, since it penalises incorrect labelling behaviour which is
not captured by the OSPA distance. Notably, the difference
between the two curves is greatest during the times when the
true cardinality is increasing. This is to be expected, since track
initiation is arguably one of the most challenging aspects of
multi-object tracking, and we can thus expect the tracker to

commit more labelling errors at times when there are many
new objects appearing. Fig. 5 show a snapshot of the estimated
tracks produced by the proposed large-scale GLMB tracker at
time 700 when the peak cardinality of approximately 1.2 million
objects is reached. Two illustrative videos are also provided in
supplementary materials, one showing only the measurements
in time, and the other showing the estimates in time.

VII. CONCLUSION

We have presented an efficient and scalable implementation
of the generalised labeled multi-Bernoulli filter, that is capable
of estimating the trajectories of a very large number of objects
simultaneously, in the order of millions per frame. The pro-
posed method makes efficient use of the available computational
resources, by decomposing large-scale tracking problems into
smaller independent sub-problems. The decomposition is car-
ried out via marginalisation of high-dimensional multi-object
densities, using a technique that is shown to be optimal in the
sense that it minimises the Kullback-Leibler divergence for a
given partition of the object label space. This allows the algo-
rithm to fully exploit the potential of highly parallel processing,
as afforded by modern multi-core computing architectures. Due
to its relatively low processing time and memory requirements,
simulations show that the proposed technique is capable of
tracking in excess of a million objects simultaneously, running
on standard off-the-shelf computing equipment. Additionally,
we have introduced a new way of using the OSPA metric to
capture multi-object tracking error (rather than filtering error),
and applied it to evaluate the performance of our large-scale
multi-object tracker.

APPENDIX

A. GLMB Approximation and Factorisation

The proofs of Propositions 1 and 2, draw on the preliminary
results Lemma 4, Lemma 5 and Corollary 6 below.
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Lemma 4: Consider a labeled RFS density π on F(X× L),
and a partition L of L. The L-partition labeled RFS density πL

that minimises the Kullback-Leibler divergenceDKL(π;πL) is

given by πL = {π
(L)
L }L∈L, where

π
(L)
L (X(L)) =

∫

π (X) δ(X −X(L)).

Proof: The proof follows that for the vector case [50],
except that set integrals replace standard integrals. Since
L is a partition of L, {X(L) = X ∩ (X× L)}L∈L is a
partition of X , and δ(X −X(L)) can be replaced with
∏

ℓ∈L−L δX({ℓ}). Expanding the Kullback-Leibler divergence
between π and an arbitrary L-partitioned labeled RFS den-
sity π̃L and regrouping yields DKL(π; π̃L) = DKL(π;πL) +
∑

L∈L DKL(π
(L)
L ; π̃

(L)
L ). The result follows by noting that the

marginals π̃(L)
L = π

(L)
L result in the minimum divergence.

Lemma 5: Consider a GLMB π =
{(w(I,c), p(c))}(I,c)∈F(L)×C on F(X× L), and a partition L of

L. The L-partitioned labeled RFS density πL = {π
(L)
L }L∈L

that minimises DKL(π;πL), is an L-partitioned GLMB, with
GLMB factors

π
(L)
L =

{(

w
(J,c)
L,L , p

(c)
L,L

)}

(J,c)∈F(L)×C

w
(J,c)
L,L =

∑

U∈F(L−L)

w(J∪U,c)

p
(c)
L,L(x, ℓ) = 1L(ℓ)p

(c) (x, ℓ) .

Proof: Using the delta form for GLMB [36],

π (X) = ∆ (X)
∑

(I,c)∈F(L)×C

w(I,c)δI (L (X))
[

p(c)
]X

it follows from Lemma 4 that for any X(L) ∈ F(X× L),

π
(L)
L (X(L)) =

∫

π (X) δ
(

X −X(L)
)

=

∫

π(X(L) ⊎X(L̄))δX(L̄)

where L̄ = L− L, and X(L̄) = X −X(L) = X ∩ (X× L̄).
Substituting for π(X(L) ⊎X(L̄)) gives

π
(L)
L (X(L))

=

∫

∆
(

X(L) ⊎X(L̄)
) ∑

(I,c)∈F(L)×C

w(I,c)

× δI

(

L
(

X(L) ⊎X(L̄)
))

[p(c)]X
(L)⊎X(L̄)

δX(L̄)

=

∫

∆(X(L))∆
(

X(L̄)
) ∑

(I,c)∈F(L)×C

w(I,c)

× δI

(

L
(

X(L) ⊎X(L̄)
))

[p(c)]X
(L)

[p(c)]X
(L̄)

δX(L̄)

= ∆(X(L))
∑

(I,c)∈F(L)×C

w(I,c)[p(c)]X
(L)

×

∫

∆
(

X(L̄)
)

δI

(

L
(

X(L) ⊎X(L̄)
))

[p(c)]X
(L̄)

δX(L̄)

= ∆(X(L))
∑

J∈F(L)

∑

U∈F(L̄)

∑

c∈C

w(J∪U,c)δJ(L(X
(L)))[p(c)]X

(L)

×

∫

∆(X(L̄))δU

(

L
(

X(L̄)
))

[p(c)]X
(L̄)

δX(L̄)

where the last line follows from decomposing the sum over
F(L), into sums over F(L) and its complement F(L̄).

Using Lemma 3 of [36],
∫

∆(X(L̄))δU (L(X(L̄)))[p(c)]X
(L̄)

δX(L̄)

=
∑

H∈F(L̄)

δU (H)

[∫

p(c)(x, ·)dx

]H

=
∑

H∈F(L̄)

δU (H) = 1.

Moreover, noting that the argument of p(c) in [p(c)]X
(L)

is

restricted toX× L, we have [p(c)]X
(L)

= [p
(c)
L,L]

X
(L)

, and hence
the desired result.

Treating L as L, and C(L) as C in Lemma 5 yields:
Corollary 6: Given L ∈ F(L), a GLMB in GL of the form

π(L) =
{

(w
(I,c)
L , p

(c)
L )

}

(I,c)∈F(L)×C(L)
,

and any S ∈ F(L) such that L ∩ S 
= ∅. The marginal

π(L,S)(X(L∩S)) =

∫

π(L)(X(L))δ(X(L) −X(S))

is a GLMB in GL∩S given by

π(L,S) =
{(

w
(H,c)
L,S , p

(c)
L,S

)}

(H,c)∈F(L∩S)×C(L)

w
(H,c)
L,S =

∑

W∈F(L−S)

w
(H∪W,c)
L

p
(c)
L,S(x, ℓ) = 1L∩S(ℓ)p

(c)
L (x, ℓ).

Proof of Proposition 1: Applying Lemma 4, the optimal
approximation is given by the product of its marginals

πS (X) =
∏

S∈S

π
(S)
S (X(S)),

π
(S)
S (X(S)) =

∫

πL (X) δ(X −X(S)).

Since {X(L)}L∈L is a partition of X , observe that {(X(L) −
X(S))}L∈L is a partition of X −X(S), hence the integration
can be performed over

δ(X −X(S)) =
∏

L∈L

δ(X(L) −X(S)).

Substituting for πL and regrouping yields

π
(S)
S (X(S)) =

∏

L∈L

π
(L,S)
L,S (X(S)),

π
(L,S)
L,S (X(L∩S)) =

∫

π
(L)
L (X(L))δ(X(L) −X(S)).
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Applying Corollary 6 to evaluate the marginal π(L,S)
L,S yields the

desired result.
Proof of Proposition 2: Given a partition L+ of L+, define

the corresponding partition S of L and B+ of B+

S = {J ∩ L : J ∈ L+} ,

B+ = {J ∩ B+ : J ∈ L+} .

LetZ+ �
⊎

J∈L+
Z

(J)
+ , andX+ �

⊎

J∈L+
X

(J)
+ . Then the next

posterior is given by

πL+,+ (X+|Z+) ∝ g (Z+|X+)fB (XB,+)

×

∫

fS (XS,+|XS)πS (XS) δXS ,

XS,+ = X+ ∩ (X× L) ,

XB,+ = X+ ∩ (X× B+) .

Noting that S is a partition of L, it follows that the transition
factors into

fS (XS,+|XS) =
∏

J∈L+

fS(X
(J∩L)
S,+ |X

(J∩L)
S ).

Similarly, noting that B+ is a partition of B+, it follows that the
birth factors into

f
(B+)
B (XB,+) =

∏

J∈L+

f
(J∩B+)
B (X

(J∩B+)
B,+ ).

Substituting

πS (XS) =
∏

J∈L+

π
(J∩L)
S (X

(J∩L)
S ),

g (Z+|X+) =
∏

J∈L+

g(Z
(J)
+ |X

(J)
+ ),

yields

πL+,+ (X+|Z+) =
∏

J∈L+

π
(J)
L+,+(Z

(J)
+ |X

(J)
+ ),

π
(J)
L+,+(Z

(J)
+ |X

(J)
+ ) = g(Z

(J)
+ |X

(J)
+ )f

(J∩B+)
B (X

(J∩B+)
B,+ )

×

∫

fS(X
(J∩L)
S,+ |X

(J∩L)
S )πS(X

(J∩L)
S )δX

(J∩L)
S .

Applying Proposition 1 in [38], for each J ∈ L+ gives the final
result.

B. Proof of Proposition 3 (Metric for Tracks)

Firstly, sinced(c)(·, ·) ≥ 0 and |Dx ∪ Dy| ≥ 0, all terms in the
summation over t ∈ Dx ∪ Dy are clearly non-negative. Hence
d̃(c)(·, ·) satisfies metric property P1.

Second, d̃(c)(x, y) = 0 if and only if x = y = ∅, or
d(c)({x(t)}, {y(t)}) = 0 for all t ∈ Dx ∪ Dy . Since d(c)(·, ·) is
a metric, d(c)({x(t)}, {y(t)}) = 0 ⇔ {x(t)} = {y(t)}. Hence
d̃(c)(x, y) = 0 ⇔ x = y, satisfying metric property P2.

Third, sinced(c)(·, ·) is a metric, andDx ∪ Dy = Dy ∪ Dx, all
terms in (35) are symmetric in their arguments. Hence d̃(c)(·, ·)
satisfies metric property P3.

It remains to verify metric property P4 (the triangle inequal-
ity), which is accomplished via induction. Since d(c)(·, ·) is a
metric, it is clear that the distance between the tracks at a single
time index 1 (representing time t1), satisfies the triangle inequal-
ity. Let us assume that the distance between the tracks over time
indices {1, 2, . . . , k} (representing {t1, t2, . . . , tk}), satisfies the
triangle inequality. We now proceed to show that the distance
between the tracks over time indices {1, 2, . . . , k, k + 1} also
satisfies the triangle inequality.

When at least one of the sets Dx ∪ Dy, Dy ∪ Dz , Dz ∪ Dx

is empty, the triangle inequality for tracks over time indices
1, 2, . . . , k, k + 1 can be easily verified, since d(c)(·, ·) is a
metric. Hence, we consider the case where Dx ∪ Dy , Dy ∪ Dz ,
Dz ∪ Dx are all non-empty.

Some notations are needed for compactness. Let us denote
the cardinalities of the basic sets in Dx ∪ Dy ∪ Dz by

N � |Dx ∩ Dy ∩ Dz| , (38)

Nx̆ � |Dx −Dy −Dz| , Np � |Dx ∩ Dy −Dz| , (39)

Ny̆ � |Dy −Dz −Dx| , Nq � |Dy ∩ Dz −Dx| , (40)

Nz̆ � |Dz −Dx −Dy| , Nr � |Dz ∩ Dx −Dy| , (41)

as illustrated in the diagram below.

Furthermore, we adopt the following abbreviations:

S � N +Np +Nq +Nr, (42)

T � S + |Dx ∪ Dy ∪ Dz| = 2S +Nx̆ +Ny̆ +Nz̆, (43)

P � |Dx ∪ Dy| = S +Nx̆ +Ny̆, (44)

Q � |Dy ∪ Dz| = S +Ny̆ +Nz̆, (45)

R � |Dz ∪ Dx| = S +Nx̆ +Nz̆, (46)

p �
∑

t∈Dx∪Dy

d(c) ({x(t)} , {y(t)}) , (47)

p′ � d(c) ({x (k + 1)} , {y (k + 1)}) , (48)

q �
∑

t∈Dy∪Dz

d(c) ({y(t)} , {z(t)}) , (49)

q′ � d(c) ({y (k + 1)} , {z (k + 1)}) (50)
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r �
∑

t∈Dz∪Dx

d(c) ({z(t)} , {x(t)}) , (51)

r′ � d(c) ({z (k + 1)} , {x (k + 1)}) . (52)

The sum p over (non-empty) Dx ∪ Dy is decomposed into:
� p̂N consisting of N terms on (Dx ∩ Dy ∩ Dz);
� p̂Np

consisting of Np terms on (Dx ∩ Dy −Dz); and
� (Nq +Nr +Nx̆ +Ny̆)c, since d({x(k)}, {y(k)}) = c on
(Dx ∪ Dy)− (Dx ∩ Dy).

Similar decompositions also apply to q, and r. Hence,

p � p̂N + p̂Np
+ (Nq +Nr +Nx̆ +Ny̆) c,

q � q̂N + q̂Nq
+ (Nr +Np +Ny̆ +Nz̆) c,

r � r̂N + r̂Nr
+ (Np +Nq +Nz̆ +Nx̆) c.

The following bounds are required for the proof

p̂N ≤ q̂N + r̂N , (53)

p ≤ p̂N + (P −N) c ≤ Pc, (54)

q ≥ q̂N + (Nr +Np +Ny̆ +Nz̆) c � q̂N +Q⊚c, (55)

r ≥ r̂N + (Np +Nq +Nz̆ +Nx̆) c � r̂N +R⊚c, (56)

Note that: the triangle inequality (53) holds because p̂N , q̂N ,
r̂N are, respectively, sums of distances between x and y, y and
z, z and x, over all time indices in Dx ∩ Dy ∩ Dz; (54) holds
because p̂Np

≤ Npc, Np + Nq + Nr + Nx̆ + Ny̆= P −N , and
p̂N ≤ Nc; and (55), (56) hold because q̂Nq

, r̂Nr
≥ 0.

The following identities (follows directly from the definitions)

P +Q = T +Ny̆, (57)

= R+ S + 2Ny̆, (58)

Q+R = T +Nz̆, (59)

R+ P = T +Nx̆, (60)

N +Q⊚ +R⊚ −Q = Np +Nx̆ +Nz̆, (61)

N +Q⊚ +R⊚ − P = Np + 2Nz̆, (62)

are also required for the proof. Note that so far, all of the variables
we have defined are non-negative.

Adopting the above notation, the properties of d(c)(·, ·) and
the triangle inequality for d̃(·, ·) can be expressed as

c ≥ p′, q′, r′, (63)

r′ + q′ − p′ ≥ 0, (64)

r

R
+

q

Q
≥

p

P
or equivalently PQr +RPq −QRp ≥ 0.

(65)

We need to prove that the triangle inequality holds for the
following three cases (note that the result holds trivially when
{x(k + 1)} = {y(k + 1)} = {z(k + 1)} = ∅):

(i) {x(k + 1)} = {y(k + 1)} = ∅, and {z(k + 1)} 
= ∅, i.e.

r + c

R+ 1
+

q + c

Q+ 1
≥

p

P
.

(ii) {z(k + 1)} = ∅, and {x(k + 1)} 
= ∅ or {y(k + 1)} 
= ∅,
i.e.

r

R
+

q + c

Q+ 1
≥

p+ c

P + 1
or

r + c

R+ 1
+

q

Q
≥

p+ c

P + 1
.

(iii) At least two of {x(k + 1)}, {y(k + 1)} and {z(k + 1)}
are non-empty, i.e.

r + r′

R+ 1
+

q + q′

Q+ 1
≥

p+ p′

P + 1
.

For case (i)

r + c

R+ 1
+

q + c

Q+ 1
−

p

P

=
P (Q+ 1) r + P (Q+ 1) c

P (Q+ 1) (R+ 1)
+

(R+ 1)Pq + (R+ 1)Pc

P (Q+ 1) (R+ 1)

−
(Q+ 1) (R+ 1) p

P (Q+ 1) (R+ 1)

=
P (Q+ 1) r + (R+ 1)Pc

P (Q+ 1) (R+ 1)
+

Pc+ (Q+R+ 1)Pc

P (Q+ 1) (R+ 1)

−
(QR+Q+R+ 1) p

P (Q+ 1) (R+ 1)

=
PQr +RPq −QRp+ Pr + Pq + Pc

P (Q+ 1) (R+ 1)

+
(Q+R+ 1)Pc− (Q+R+ 1) p

P (Q+ 1) (R+ 1)

≥
P (r + q + c) + (Q+R+ 1) (Pc− p)

P (Q+ 1) (R+ 1)
≥ 0,

where we used the triangle inequality (65) and the boundPc ≥ p
from (54).

For case (ii )

r

R
+

q + c

Q+ 1
−

p+ c

P + 1

=
(P + 1) (Q+ 1) r

(P + 1) (Q+ 1)R

+
R (P + 1) q +R (P + 1) c− (Q+ 1)Rp− (Q+ 1)Rc

(P + 1) (Q+ 1)R

=
(PQ+ P +Q+ 1) r

(P + 1) (Q+ 1)R

+
R (P + 1) q − (Q+ 1)Rp+R (P + 1) c− (Q+ 1)Rc

(P + 1) (Q+ 1)R

=
(PQ+ P +Q+ 1) r +RPq +Rq −QRpc

(P + 1) (Q+ 1)R

+
(P −Q)Rc−Rp

(P + 1) (Q+ 1)R

=
PQr +RPq −QRp+ (P +Q+ 1) r +Rq

(P + 1) (Q+ 1)R

+
(P −Q)Rc−Rp

(P + 1) (Q+ 1)R

≥
(P +Q+ 1) r +Rq −Rp+ (P −Q)Rc

(P + 1) (Q+ 1)R
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where the last line follows from the triangle inequality (65).
Using the bounds (54), (55), (56) for p, q, and r, and the identity
P +Q = R+ S + 2Ny̆ from (58), we have

(P +Q+ 1) r +Rq −Rp+ (P −Q)Rc

≥ (R+ S + 2Ny̆ + 1)
[
r̂N +R⊚c

]
+R

[
q̂N +Q⊚c

]

−R [p̂N + (P −N) c] + (P −Q)Rc

= +Rr̂N +(S + 2Ny̆ + 1) r̂N +R⊚(R+ S + 2Ny̆ + 1) c
+Rq̂N +Q⊚Rc
−Rp̂N
︸ ︷︷ ︸ ︸ ︷︷ ︸

−(P−N)Rc+(P −Q)Rc
︸ ︷︷ ︸

≥ 0 +0 +R⊚Rc+Q⊚Rc+(N−Q)Rc

=
[
R⊚ +Q⊚ +N −Q

]
Rc

= [Np +Nx̆ +Nz̆]Rc ≥ 0,

where we used r̂N + q̂N − p̂N ≥ 0 from (53) and R⊚ +Q⊚ +
N −Q = Np +Nx̆ +Nz̆ from (61).

For case (iii)

r + r′

R+ 1
+

q + q′

Q+ 1
−

p+ p′

P + 1

=
(P + 1) (Q+ 1) (r + r′)

(P + 1) (Q+ 1) (R+ 1)
+

(R+ 1) (P + 1) (q + q′)

(P + 1) (Q+ 1) (R+ 1)

−
(Q+ 1) (R+ 1) (p+ p′)

(P + 1) (Q+ 1) (R+ 1)

=
(PQ+ P +Q+ 1) r

(P + 1) (Q+ 1) (R+ 1)
+

(RP +R+ P + 1) q

(P + 1) (Q+ 1) (R+ 1)

−
(QR+Q+R+ 1) p

(P + 1) (Q+ 1) (R+ 1)
+

(PQ+ P +Q+ 1) r′

(P + 1) (Q+ 1) (R+ 1)

+
(RP +R+ P + 1) q′

(P + 1) (Q+ 1) (R+ 1)
−

(QR+Q+R+ 1) p′

(P + 1) (Q+ 1) (R+ 1)

=
(PQr +RPq −QRp) + (r′ + q′ − p′)

(P + 1) (Q+ 1) (R+ 1)
(66)

+
(P +Q+ 1) r + (R+ P + 1) q − (Q+R+ 1) p

(P + 1) (Q+ 1) (R+ 1)
(67)

+
(PQ+ P +Q) r′+(RP +R+ P ) q′−(QR+Q+R) p′

(P + 1) (Q+ 1)(R+ 1)
.

(68)

Note that (66) ≥ 0 from the triangle inequalities (65) and (64).
It remains to be shown that (67) + (68) ≥ 0.

Into (67), we substitute the three identitiesP +Q = T +Ny̆ ,
Q+R = T +Nz̆ and R+ P = T +Nx̆, from (57), (59) and
(60) respectively. We also use the upper/lower bounds on p, q,
and r, from (54), (55) and (56) respectively. This yields the
following expression

(P +Q+ 1) r + (R+ P + 1) q − (Q+R+ 1) p

≥ (T +Ny̆ + 1)
[
r̂N +R⊚c

]
+ (T +Nx̆ + 1)

[
q̂N +Q⊚c

]

− (T +Nz̆ + 1) [p̂N + (P −N) c]

=+ (T + 1) r̂N +Ny̆ r̂N +(T + 1)R⊚c +Ny̆R
⊚c

+(T+1) q̂N +Nx̆q̂N +(T + 1)Q⊚c +Nx̆Q
⊚c

−(T+1) p̂N
︸ ︷︷ ︸

−Nz̆ p̂N
︸ ︷︷ ︸

−(T + 1) (P−N) c
︸ ︷︷ ︸

−Nz̆ (P−N) c
︸ ︷︷ ︸

≥ 0 −Nz̆Nc+(T+1)(Np+2Nz̆) c−Nz̆Pc+Nz̆Nc

= [(T + 1) (Np + 2Nz̆)−Nz̆P ] c

≥ [(T + 1)Nz̆ −Nz̆P ] c

= (S +Nz̆ + 1)Nz̆c,

where we used r̂N + q̂N − p̂N ≥ 0 from (53), Ny̆ r̂N ≥ 0,
Nx̆q̂N ≥ 0, −p̂N ≥ −Nc from (54), Q⊚ +R⊚ − P +N =
Np + 2Nz̆ from (62), Ny̆R

⊚c ≥ 0, Nx̆Q
⊚c ≥ 0, Np + 2Nz̆ ≥

Nz̆ , and T − P = S +Nz̆ from (43) and (44).
For (68), note from (57), (59) and (60), that P +Q = T +

Ny̆ , Q+R = T +Nz̆ and R+ P = T +Nx̆. Additionally,

PQ = (S +Nx̆ +Ny̆) (S +Ny̆ +Nz̆)

= SS + SNx̆ + 2SNy̆ + SNz̆

+Nx̆Ny̆ +Ny̆Nz̆ +Nz̆Nx̆ +Ny̆Ny̆,

QR = (S +Ny̆ +Nz̆) (S +Nx̆ +Nz̆)

= SS + SNx̆ + SNy̆ + 2SNz̆

+Nx̆Ny̆ +Ny̆Nz̆ +Nz̆Nx̆ +Nz̆Nz̆,

RP = (S +Nx̆ +Nz̆) (S +Nx̆ +Ny̆)

= SS + 2SNx̆ + SNy̆ + SNz̆

+Nx̆Ny̆ +Ny̆Nz̆ +Nz̆Nx̆ +Nx̆Nx̆.

Hence, expanding (68) results in (69) shown at the bottom of
this page, where we used the triangle inequality (64) for p′,
q′, r′.

Finally, since c ≥ p′, it follows that (67) + (68) ≥ 0.

(PQ+ P +Q) r′ + (RP +R+ P ) q′ − (QR+Q+R) p′

= + SSr′ + SNx̆r
′ +2SNy̆r

′ + SNz̆r
′ +Nx̆Ny̆r

′ +Ny̆Nz̆r
′ +Nz̆Nx̆r

′ +Ny̆Ny̆r
′ +Tr′ +Ny̆r

′

+SSq′ +2SNx̆q
′ + SNy̆q

′ + SNz̆q
′ +Nx̆Ny̆q

′ +Ny̆Nz̆q
′ +Nz̆Nx̆q

′ +Nx̆Nx̆q
′ +Tq′ +Nx̆q

′

−SSp′
︸ ︷︷ ︸

− SNx̆p
′

︸ ︷︷ ︸
− SNy̆p

′

︸ ︷︷ ︸
− 2SNz̆p

′

︸ ︷︷ ︸
−Nx̆Ny̆p

′

︸ ︷︷ ︸
−Ny̆Nz̆p

′

︸ ︷︷ ︸
−Nz̆Nx̆p

′

︸ ︷︷ ︸
−Nz̆Nz̆p

′

︸ ︷︷ ︸
−Tp′
︸ ︷︷ ︸

−Nz̆p
′

︸ ︷︷ ︸

≥ 0 +0 +0 −SNz̆p
′ +0 +0 +0 −Nz̆Nz̆p

′ +0 −Nz̆p
′

= − (S +Nz̆ + 1)Nz̆p
′, (69)
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It is possible to extend the base-distance (33) to the case where
the terms of the sum in (33) are raised to the power of q, and
take the qth root of the resulting sum.
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