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SUMMARY 

A solution procedure for the analysis of planar and axisymmetric contact problems involving sticking, 
frictional sliding and separation under large deformations is presented. The contact conditions are imposed 
using the total potential of the contact forces with the geometric compatibility conditions, which leads to 
contact system matrices and force vectors. Some key aspects of the procedure arc the contact matrices, the use 
of distributed tractions on the contact segments for deciding whether a node is sticking, sliding or releasing 
and the evaluation of the nodal point contact forces. The solutions to various sample problems are presented 
to demonstrate the applicability of the algorithm. 

1 INTRODUCTION 

Much progress has been made during recent years in the development of computational 
capabilities for general analysis of certain nonlinear effects in solids and structures. In each of these 
developments, quite naturally, the first step was the demonstration of some ideas and possibilities 
for the analyses under consideration, and then the research and development for reliable and 
general techniques was undertaken. The second step proved in many cases much more difficult, 
and in the case of capabilities for analysis of contact problems has yielded few general results. 

Although some of the first complex contact problems have been solved using the finite element 
method quite some time ago,'- and much interest exists in the research and solution of contact 
problems (see, for example, References 4-1 5), there is still a great deaiwf effort necessary for the 
development of a reliable, general and cost-effective algorithm for the practical analysis of such 
problems. This is largely due to the fact that the analysis of contact problems is computationally 
extremely difficult, even for the simplest constitutive relations used. Much of the difficulty lies in 
that the boundary conditions of the bodies under consideration are not known prior to the 
analysis, but they depend on the solution variables. 

The aim in our research is the development of a solution algorithm for analysis of general contact 
conditions which shall include the possibilities to analyse: contact between flexible-flexible and 
rigid--flexible bodies; sticking or sliding conditions (with or without friction); large relative motions 
between bodies; repeated contact and separation between the bodies. 

Since the large deformation motion of the individual bodies can in many cases be analysed 
already quite effectively,'6 an algorithm of the above nature will certainly enlarge, very 
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significantly, the currently available computational capabilities for practical nonlinear analyses. 
The objective in this paper is to present our first research results towards the above aim. 

In this paper we consider the large deformation motion of two-dimensional planar or 
axisymmetric bodies in contact, and in static conditions. The algorithm we present contains the 
following major ingredients: 

1. The total potential of the contact forces is included in the variational formulation to enforce the 
geometric compatibilities along the contact surfaces. 
2. In the region of contact, surface tractions are evaluated from the externally applied forces, 
the nodal point forces equivalent (in the virtual work sense) to the current element stresses and 
Coulomb’s law of friction. 
3. The surface tractions between nodal points (on the element segments) are employed to decide 
whether a nodal point is in sticking or sliding contact, or is releasing. 
4. The number of equations due to the contact conditions is dynamically adjusted to solve two 
equations for each node in contact if the node is in sticking condition, and one equation if the node 
is in sliding condition. 

Ilecause of the highly nonlinear contact conditions to be analysed, the success of the algorithm 
largely depends on an effective formulation with special attention to details. 

In the next two sections we present the formulation of the algorithm and the important 
numerical aspects. We have implemented the solution method in the computer program 
ADINA,I7 and in Section 4 we give the solutions to various sample problems. These serve to 
demonstrate the applicability of and also the assumptions used in the algorithm. 

2 FORMULATION OF CONTACT PROBLEM 

Figure 1 shows schematically the problem we consider. This figure shows two generic bodies which 
we arbitrarily denote as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontuctor and target. In the finite element solution, the contactor contains 
the finite element boundary nodes that come into contact with the target segments or nodes. 
Although only two bodies are shown to come into contact, the algorithm can analyse the contact 
conditions between a number of bodies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(b) Condition at contact 

A P P L I E D  E X T E R N A L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(c) Forces acting on contactor and target bodies 

Figure 1. Schematic representation of problem considered 

The basic conditions of contact along the contact surfaces are that no material overlap can 
occur, and as a result, contact forces are developed that act along the region of contact upon the 
target and the contactor. These forces are equal and opposite. The normal tractions can only exert 
compressive action, and the tangential tractions satisfy a law of frictional resistance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 h e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfriction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlaw used. Much research effort is currently focused upon the development of 
appropriate friction laws and the mechanics using these laws to predict motion along slip surfaces 
(c.g. References 11,18 and 19). Considering the development of our contact algorithm, we therefore 
should use a friction model that is physically realistic and that we can exdend in further 
developments, and as more refined models become available. These criteria are fulfilled using 
Coulomb’s law of friction, with p, the static coefficient of friction and pd the dynamic (or kinetic) 
coefficient of friction (Reference 20, pp. 53 64). 

those belonging to the target body and those of the 
contactor. If t, represents the developed tangential tractions along the contact surfaces, we assume 
that there is no relative motion between two adjacent particles on the contactor and the target in 

Consider the particles initially in contact 
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contact, as long as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt,I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< pst,,, where t ,  is the compressive normal traction (assumed positive). The 
maximum traction of static friction is the smallest force necessary to start motion. During motion, 
the magnitude of the tangential traction resisted by friction is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPdt,, with pd < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps I’he motion 
continues as long as the frictional traction is developed to equal the dynamic friction pdtn, that can 
actually be resisted. Once the developed tangential traction drops below the dynamic friction, the 
relative motion between the contactor and target particles ceases until such time that again the 

developed tangential traction exceeds the frictional capacity. 
We may note that with this friction law, we neglect any elasticity between the particles in contact 

and assume a rigid plastic contact behaviour. Refinements of this friction law would entail the use 
of rate and state variables, as discussed for example in Reference 19. 

Considering our finite element formulation of the above frictional conditions, we should note the 
following two important points. I;irst, although rigid plastic behaviour is assumed between 
particles in contact, the two-dimensional finite element discretization around the contact region 
can represent nonlinear, e.g. elastic-plastic, material conditions. Secondly, the above friction law 
is, in our finite element formulation, satisfied in a global sense over each individual contact segment 
(as discussed in Section 3)  consistent with the level of finite element discretization used. 

Some preliminaries. For the formulation of our contact solution algorithm we use the 
incremental procedure- including the notation -- presented in Reference 16, Chapter 6, and 
recognize that for each of the bodies the contact conditions can be imposed by adding to the usual 
variational indicator, the total potential of the contact forces with the constraint of compatible 
boundary displacements. Hence, in the formulation we invoke stationarity of the following 
functional: 

rIl=rI-xwk (1) 
k 

where n is the usual (incremental) total potential leading to the incremental equilibrium equations 
without contact conditions, and c k W k  is the incremental potential of the contact forces. This 
term can be interpreted as a Lagrange multiplier contribution to impose the contact conditions. In 
thc following sections we concentrate on the evaluation of wk for a generic node k on the contactor 
surface (and of the corresponding nodes on the target surface) in sticking and sliding conditions. 
‘I’hc values of W k  and the operations with W k  are constructed so as to generate the appropriate 
incremental virtual work equations (hence these could also be derived without reference to a 
potential). 

Assume that, in the incremental solution, the response at time t has been calculated and that 
( i  - 1 )  iterations have been performed to calculate the solution at time t + At. The formulation of 

the governing equations is achieved by establishing W k  for the next iteration ( i ) .  We repeat that 
this contribution is the only change in the incremental equilibrium equations presented in 
Keference 16, Chapter 6. 

Figure 2 shows a generic region of contact considered which satisfies the contact conditions. We 
note that the displacements and co-ordinates are interpolated linearly between adjacent nodes on 
the contact surfaces of the bodies,+ and that some of the nodes can be in contact whereas others are 
still (or again) in separation. Also, based on the assumptions along thekgion of contact, the 
contactor nodes cannot be within the region of the target body, but the target nodes can be inside 
or outside the contactor body. This point requires particular attention when modelling a problem 
for use of the contact algorithm. 

+Actually, as will become apparent, the contact solution algorithm can also he employed when the contactor and/or target 
bodies are discretized using pdrdhdic elements (see Sections 4.1 and 4.4). 
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Figure 2. Finite element discretization in contact region. Nodal point numbers on contactor surface increase in direction 
such that when moving from k to k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ I the contactor body is on the left-hand side zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPotential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof contact forces Jbr sticking contact 

A contactor node k is assumed to be in sticking contact under one of two conditions: (a) the 
contactor node has penetrated the target body in iteration ( i  - 1) whereas it was not in contact after 
iteration ( i  - 2); (b) the frictional resistance during contact is sufficient to prevent sliding. In case (a) 
the contact force at node k at the beginning of iteration (i) is zero and the contact force is generated 
during iteration ( i )  when the overlap is eliminated. 

Figure 3 shows how node k has come into contact with the target segment j formed by nodes A 
and B, where 

[ + A t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i - 1 )  [ + A t  ( i - 1 )  [ + A t  ( i -1)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxk , xA , xB current global co-ordinates of nodes k, A, B, respectively, after 
iteration ( i  - 1 )  for the equilibrium configuration corresponding 
to time t + At.+ 

CONTACTOR 
BODY / 

I - 
(a) Geometric variables 

+Note that, as in Chapter 6 of Reference 16, the left superscript ‘ t  + At’ on a variable denotes the configuration t + At in the 
incremental solution, and does not imply a dynamic analysis (Reference 16, p. 309). 
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/TARGET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 

(b) Contact forces 

Figure 3. Definition of variables for segment j 

t i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  1 )  = current global co-ordinates of the assumed physical point of 

contact of node k.  

= length of segment j. 
A t  = overlap. 

dy 
r,  s = local isoparametric co-ordinate system along target surface. 

n,., n, = unit vectors along local axes r, s oh target segment, respectively, 
with respect to the global reference frame; updated during each 
iteration (but for ease of notation the superscript (i - 1) is not 
given). 

\ 

i, j = unit vectors along global x, y co-ordinate axes. 
f l ( i -  ') = parameter of location of physical point of contact. 

At node k we have a contact force that we denote here as ' AtAj l i - l ) ,  but whose evaluation we 

discuss in detail in Section 3, where 

k j"kx i + t+At ) tY-11)  j (2) t t A t j l ( i - l ) = t + A t " ( i  1 )  

Note that the components of t + A t j l j l l - l )  appear in the vector t+AtR!'-l) of equation (18). Also, from 
geometry, 

( 3 )  

(4) 

( 5 )  

~ f - l ) = t + A t  ( t - l ) - t t A t  ( i - 1 )  

d(j-l)= T t + A t  ( i - 1 )  - t + A t  ( i - 1 )  
j nrC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX B  x A  1 

p ( i -  1) = -T f + A r  (i-1) -. t + A t  ( i - 1 )  nrC xc x A  1 

xk X C  

= " ; [ ( ' + A t  ( i - l ) - - A ( i - 1 )  t+AZ ( i - 1 )  
x k  k ) -  x A  1 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"r n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdij - 1T = Er,i + Er,j 
J 

And we have for target segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  the forces equivalent to t + A t A f - l ) ,  

t+At;l!,--l) = - ( I  -p(i-l))t+-Araf 1)  

t+Arn$-l) = - p ( i  1 )  f + A f  ( i  1 )  
- 

Let the displacement increments at nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB in iteration ( i )  be Auf), At$), At$), respectively. 
These displacements are such that the overlap Af is eliminated. Also, if contact was already 
present, the point of contact C for node k is the same during each iteration, hence p(') = p(i.-  ' I .  The 
potential " ly.k due to the contact force at node k and the corresponding reactions is in iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 

Also 

where AAf) is the change in the contact force at node k. Using equations (7)--(lo) we obtain 

(9) 

(10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, r(Auf) + A f  1) )  + f + A t  ( i)T Au!,) + f + A f  ( i IT Au$) "ly. - t + At (i). 
L A  k -  

t + A f a f )  = t+At;l(i---l) + Aaf) 
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d.y' - t + A f a f - -  l)'r[(Auf) + A(,- 1) )  - (1 - p(i- l ) )~, ,?)  - p(i - 1111 (0 
k -  U B 1  

+ Aaf)T[(Auf) + ~ f -  1) )  - ( 1  - 1 ) ) ~  U A  (0 - p'i- ~)A,,$)J ( 1  1) 

This potential is considered for all contactor nodes k that are in sticking contact. 

2.2 Potential of contact forces for  sliding contact 

A contactor node k is assumed to be in sliding contact if, according to the criteria given in Section 
3, the tangential force exceeds the frictional capacity. The calculation of total potential for the 
sliding contact condition is more involved than for sticking contact because the parameter of 
location, / ? ( i - l ) ,  changes during iteration ( i )  to a new value p(i). However, the frictional force is 
assumed to remain constant during the iteration. Using equations (7)-(9) with /Yi) we have, 

where 

and from equation ( 5 )  we obtain, by linearization, 

(12) 

(13) 

(14) 

(15) 

ALf) = .-A)$) n, (16) 

a, " [ ( ~ ~ f )  + ~f 1 ) )  - (1 .- f$i))Au(i) - p(ib (i) 
U B  1 

"ly. - f t- At (i)' 
k -  A 

p(i) = p(i - 1 )  + Ap") 

Ap(i) + fif[(Auf) + Af-  1) )  - (1 - [j(i- 1))A ( i)  __ p(i- l)A"g)] 
U A  

Also, for sliding 
t + A t  ( i)  t + A t  ( i  1 )  ilk = A k -  + ALf' 

where AA!) is the change in the magnitude of the normal component oft  'Atat- '). The negative sign 
in equation (1 6) is used because an increase in the normal force is acting into the opposite direction 

Substituting from equations ( 1  5) and (1 6) into equation ( 1  2) and assuming Ap(') to be negligibly 
of n,. c 

small we obtain 

- t +At,( , -  l)'[(Auf) + A t -  1 ) )  .- (1 - p(i- l))Au!,) - ( i -  1 )  dug)] 
k -  P 

+A)$)( - , , : [ (Au f )+Af -1) ) - (1  - f l ( i - -  1))A U A  ( i ) - f l ( i - l )  Au(i)]) B .  1 (1 7) 

This potential is considered for all nodes k that are in sliding contact. 
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In using equation ( 1  7) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?!fk the equilibrium and constraint equations derived below are 

referred to the contactor nodal point position with f i ( i -  and correspond to a symmetric coefficient 
matrix. In practice, Ap") is usually very small (since A / P  reflects the amount of sliding per iteration). 
However, considering equation (17), if desired, it is possible to use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi(') instead of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,W1) in the 
coefficient of'+"'A~'-'). Then the contact forces corresponding to iteration ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) are acting at the 
segment position with the value p(i) whereas the displacement constraint is still referred to the 
segment position with the value p C i - l ) .  Using in this case equation (14) to substitute for AB(i), after 
the derivation of the force vector corresponding to " "'Al;'- l ) ,  a nonsymmetric coefficient matrix is 
obtained. The use of this gradient matrix would only be warranted if a much improved convergence 
in the iterations would be achieved. 

2.3 Governing finite element equations 

The incremental finite element equations of motion including contact conditions are generated 
by substituting from equations (1 1) and (1 7) into equation (1) and invoking stationarity, 6I1, = 0. 
Hence, we obtain, using the usual procedures 

where 

AU") 
Aa(i) 
t+AtK(i- 

K, - 

= vector of incremental displacements in iteration (i); of dimension ( N E Q  x 1) .  
= vector of increments in contact forces in iteration (i); (NEQC x 1). 
= usual tangent stiffness matrix including material and geometric nonlinearities after 

- contact stiffness matrix, for the effect of contact conditions after iteration ( i  - 1); 

= vector of nodal point forces equivalent to element stresses after iteration ( i  - 1); 

= vector of total applied external forces at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + At; ( N E Q  x 1 ) .  
- vector of updated contact forces after iteration (i - 1); &EQ x 1 ) .  
- vector of overlaps ( N E Q C  x 1). 
= total number of displacement degrees-of-freedom. 
= total number of incremental contact constraint equations. 
= 2 x (total number of nodes in sticking contact) + (total number of nodes in sliding 

iteration ( i  - 1); (NEQ x NEQ). 

( N E Q T x  N E Q T ) .  

( N E Q  x 1 ) .  

I+ At ( I  1) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t tAtv(ifl - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) 

'+"R 
[ + A t  ( i  1) - 
f + A t  ( i  1 )  - R, - 

Ac - 
N E Q  
NEQC 

contact). 
N E Q T  = NEQ t NEQC.  

Each contactor node k contributes to t+AtKY-l),  tAtRF- l )  and Ac (' - . Consider these terms 
for a single contactor node, since the contributions for a number of nodes are obtained by addition 
of the individual contributions using the direct stiffness method.16 

In the case of sticking contact, the first term in equation ( 1 1 )  results in the vector t+AtR!'-l), 
whereas the second term gives the contact stiffness matrix t + A f K t -  and overlap r+AtA!- l ) ,  
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where the corresponding solution vector is in detail, 

In the case of sliding contact, we proceed in much the same way to obtain, using equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(17), 
resembling the matrix in again the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt+AtR:-l) in equation (19) and a matrix t+AtK: 

equation (21) but with only one constraint equation. Also, 

Although we have simply listed the vector t+A. fRt - l )  as shown in equation (19), an important 
ingredient of our algorithm is that the actual elements of this force vector are derived as explained 
in the next section. 

Note that the above equations (used for the sample solutions in Section 4) correspond to a full 
Newton iteration. Our experiences with the solution ofcontact problems have so far shown that for 
the contact equations full Newton Raphson iteration is usually best. 

3 EVALUATION OF STICKING AND SLIDING CONDITIONS, 
AND FRICTIONAL RESISTANCE 

Much of the difficulty of solving contact problems lies in the design of appropriate procedures for 
numerically updating the contact conditions at a contactor node. In other words, thc algorithm has 
to decide whether a node is not in contact and whether the matrices for sticking contact or the 
matrices for sliding contact shall be included in the system of equations. Appropriate decisions 
during the iteration concerning these conditions are most important for a reliable and effective 
scheme. 

and nodal point forces AR(i- arc 
known where (see Figure 4) 

After iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  - 1) the nodal point displacements t+AtU(l 

(25) 
A R ( I - 1 )  = t + A t ~ ( i - l ) _ t + A t ~  
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CONTACTOR 

SEGMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-1 

(a) Forces acting onto contactor body 

(b) Tractions acting onto contactor body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DlSTRl BUTION 

TRACTION 
DISTRIBUTION 

' n  

(c) Normal and tangential tractions on contactor body. Normal traction is positive when acting onto the body; tangential 
traction is positive when acting from node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk to node (k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) 

Iigure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Calculation of normal and tangential tractions on contactor body for evaluation of contact forces 

We note that at the nodes not belonging to a contact surface the components of AR'"-" are 
(minus) the out-of-balance loads usually encountered in nonlinear analysis,'" but corresponding to 
the boundary nodes affccted by the contact, the contact forces r+ArRY - ') are active. These forces are 
evaluated from the loads AR(i and correspond to tension release, sticking or sliding conditicns. 

The procedure of calculating the contact forces from the vector AR(i- ') is effective because an 
incrementation of the Lagrange multipliers used in equation ( 1  8) can-- in other than geometrically 
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and materially linear analyses of sticking contact conditions-lead to serious errors of 
linearization. 

In the following we consider the contactor segments and contactor nodes, and we discuss how 
the conditions of node sticking and sliding can be reached, and how the contact forces t+AtR!-l) are 
evaluated. 

When a contactor node penetrates the target body in an iteration, which is decided kinematically 
by the displacements of the contactor and target bodies leading to a geometric overlap (see 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3),  the matrices in equations (19) (22) are included in the solution for the next incremental 
displacements. Hence, in the first iteration from no contact to a contact condition, sticking is 
assumed.+ This is the mechanism used to evaluate the nodal point forces and enable a decision on 
whether sticking or sliding conditions are really applicable. 

3.1 Contuctor segment distributed tractions and resultant ,forces 

The decision on whether a contactor node is releasing or is in sticking or sliding conditions is 
perhaps most quickly based on considering the total and relative magnitudes of the calculated 
nodal point forces. However, this can lead to some numerical difficulties, and it is deemed more 
effective to establish the condition at a contactor node from the accumulated effects and conditions 
of the contactor segments adjacent to the node. 

The first step in our procedure is to calculate the distribution of the tractions along the contactor 
boundary given the nodal point forces AR(i- '). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt t  and t ;  be the magnitudes of the distributed 
tractions (forcc/unit area) at the nodal point k (see Figure4), then we have with a linear 
displacement interpolation in a 'consistent' approach to calculate the tractions from the nodal 
point forces, in plane stress and plane strain analyses, with uniform thickness h,: 

6 

and in axisymmetric analysis (assuming the y-axis to be the axis of revolution) 

d!' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- 1 I 

12 
J - 1  ( t t A f  (i l ) + t t A t  ( i -1)  

xh 1 x k  ) .. .. 

($.i -- 1 )  

12 
.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ( t  t .At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i -  1 )  + f I-Af ( i -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  

x k  X k + l  

' We may note that for the special case of frictionless contact, i.c. p,$ = pd = 0.0, we can directly assume perfect sliding 
conditions. 

1 Instcad of using the consistent traction recovery given hcrc, it would also be possible to employ a lumped approach. 
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where t + A r ~ f - t )  is the x-co-ordinate of nodal point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk at the end of iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1). Using equations 
(26) and (27) a tridiagonal coefficient matrix is established that relates the unknown tractions to the 
known values of AR'' - I ) ,  and the equations can be solved to calculate, in each iteration, the nodal 
values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt k  and t: for all nodes in contact. These values are then employed to evaluate the tangential 
and normal segment tractions, t: and t f ,  at the nodes. Note that to evaluate these tractions for 
segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  the values tk, t; and ti", t;+' are simply transformed to the tangential and normal 
directions defined by the angle O j  of the segment. This results in general into a discontinuity of the 
normal and tangential segment tractions at the nodal points, see Figure 4. 

For the definition of the state of a segment, we need the total normal and tangential forces 
applied to the segmcnt. In the case of plane stress and plane strain analyses, the total resultant 
normal force, Ti, acting on segment j is 

and the total resultant tangential force, Ti, acting on segment j is 

where dy- ' )  is the length of the contactor segment j in iteration (i). Similarly, for axisymmetric 
analysis we have 

t + A t  ( i - 1 )  f + A t  ( i - 1 )  +(  x k + l  t f +  xk tk,")> 
and 

With the above calculations completed the algorithm decides on the state of the segment using 
the segment resultant forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi, Tf and Coulomb's law of friction globally applied over the 
segment. 

3.2 Segment release 

contactor segment normal and tangential tractions arc set to zero. 
The segment is assumed to have experienced tension release if Ti  is negative, and in this case the 

3.3 Assume segment was in previous iteration in sticking contact 

Using the total normal force on the segmcnt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7'; the frictional capacity of the segment 7$ is 
calculated using Coulomb's law of friction, Tjf = pJTL, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,us for the segment is set equal to p d  if 
the segment was ever in sliding (see Section 4.2). The following two situatims can now arise. 

Case 1. The frictional capacity of the segment is larger than the applied total tangential force, i.e. 
T;. 3 1 Tfl. The segment continues to stick. 

Case 2. The frictional capacity of the segment is smaller than the applied total tangential force, 
i.e. Tjf < 1 Tfl. The state of the segment is now updated to sliding, with Tjf = PdLd?':. 
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The results on whether the segment continues to stick or is now sliding are later used in deciding 
whether the contactor nodes are sticking or sliding (see Section 3.5). 

Aside from deciding on the sticking and sliding conditions of the segments, the contributions to 
the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt+AtR!-l) must also be evaluated. This is done differently in the above two situations. 

In Case 1 the distributed tangential and normal tractions on the segment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj are employed to 
calculate the nodal point consistent loads, see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. We note that if also the conditions of the 
adjacent segments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) and ( j  + 1) correspond to Case 1, these nodal point consistent loads are at 
the nodes k and k + 1 simply the values in AR(i). 

In Case 2 the segment is sliding, and Figure 5(b) summarizes the tractions t ,  used in the 
calculation of*+A'R!- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl). Note that a uniform traction is assigned such that in sliding conditions the 
total tangential force is scaled down to equal the frictional capacity. Using a uniform frictional 
traction represents perhaps the simplest way of globally satisfying Coulomb's law of friction over 
the segment.+ Figure 5 shows the tractions used in plane stress and plane strain analyses; in 
axisymmetric solution the value (t: + t:+')/2 of Figure 5 is replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,, 

2T:' 
f -  
f - d(j -. l)(t+Atx(i- 1 )  + , +A t  ( i - 1 )  

J k x k + l  

In summary, unless there is tension release (see Section 3.2) the contact forces t+A'Rf'-') are 
calculated as the consistent nodal point loads corresponding to the tangential tractions t,, shown in 
Figure 5, and the unaltered normal tractions shown in Figure 4. In tension release, both the normal 
and tangential tractions on the segment are set to zero. 

3.4 Assume segment was in previous iteration in sliding contact 

If the segment was in sliding contact, analogous calculations to those described in Section 3.3 are 
performed, but the friction coefficient used is pd. Hence, in Case 1 the segment changes to sticking, 
whereas in Case 2 the segment continues to slide. 

(a) Case 1 

(b) Case 2 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Tangential tractions used in calculation of contact force vector rfA'RY- '); in axisymmetric analysis replace 
(t: -k t :+ ' ) /2 by 2, of equation (32) 

IJpdating the tangential tractions in this way raises questions on the convergence of the iterative solution, as studied in a 
forthcoming communication. 
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Table I. State of contactor node as decided by states of adjoining segments 

State o f  adjoining segments 
One adjoining segment Other adjoining segment State of node 

Sticking 

Sliding 

Tension release 

Sticking 
Sliding 
Tension release 
Sliding 
Tension release 
Tension release 

Sticking 

Sliding 

Tension release zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5 Conditions of contactor nodes 

Once the conditions of the contactor segments have been decided as discussed above, the 
algorithm determines the conditions of the nodes on the contactor surface. Table I summarizes 
how the various conditions (release, sticking and sliding) of a contactor node are reached. We may 
note that these conditions decide on whether zero (corresponding to no contact or contact 
release), one (corresponding to sliding) or two (corresponding to sticking) contact equations are to 
be included in the incremental equations for each contactor node. 

The decision on whether a contactor node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is not in contact, or is in sliding or sticking contact, 
and the evaluation of the contact matrices and the contact forces to be used in equation (1 8)  gives 
all the ingredients to proceed with the iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i). 

4 SOME SAMPLE SOLUTIONS 

‘The algorithm presented in the previous sections was implemented in ADINA and in the following 
we present the results of some sample analyses. In these analyses, the primary objective was to 
study the performance of the algorithm in order to identify where impr&vements are needed rather 
than to solve actual practical problems. 

It is our experience that rcgarding the solution of contact problems some ‘very simple looking’ 
problems, including frictional conditions and the elasticity of the structure, may provide quite 
severe tests on the performance of an algorithm, and in fact may be more difficult to solve than 
actual practical engineering problems. 

4.1 Analyses of Hertz contact problems 

Figure 6 shows the contact problem considered and the finite element idealization used. In this 
problem a long cylinder with radius R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10 was analysed; hence, in the model, plane strain 
conditions were assumed. The rigid target surface was modelled by specifying nodes with no 
degrees-of-freedom. In the region of anticipated contact, 8-node elements were used to model the 
contactor with one contactor segment always spanning over one 8-node element side, and these 
elements were modelled as materially-nonlinear-only or using the total Lagrangian formulation.Ih 
To simulate the load application, the vertical displacements were prescribed along the top surface 
of the model and the total load P for a prescribed displacement was calculated by integrating the 
contact pressures. Figure 7 gives the calculated contact pressures and a comparison with the Hertz 
analytical solution.21 
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(b) Finite element mesh used; long cylinder is modelled 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Analysis of Hertz plane strain contact problem (M.N.O. and T.L. formulations denote materially-nonlinear-only 
and total 1,agrangian formulations, rcspectivcly16) 
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Figure 7. Solution to the plane strain Hertz problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L X 

Figure 8. Analysis of Hertz axisymmetric contact problem 

We may note that only a few solution points are given in Figure 7, because the program outputs 
the mean traction over a segment and at the maximum applied load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P  = 6600) only three segments 
were in contact. In order to obtain more finite element solution points and a higher solution 
accuracy, a finer finite element discretization on the contactor surface is required. 

Next, the Hertz contact problem of a sphere of radius R = 100 was analysed. Hence, Figure 6(a) 
still shows the contact problem, but now R -2 100.0 and axisymmetric conditions are considered. 
Figure 8 gives the finite element mesh used in this analysis and Figure 9 shows the calculated 
contact pressures and a comparison with the Hertz solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 Motion of a rubber sheet in a converging channel 

A sheet of rubber in plane stress was confined to move in a rigid horizontal channel. Figure 10 
shows the sheet and the finite element idealization used.+ The right face of the sheet was subjected to 

'Note that the rigid target surface was modelled using 12 segments for the sole purpose of demonstrating that contactor 
nodes can slide over target nodes. 

_____ - - 
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Figure 10. Analysis of motion of a rubber sheet in a converging channel 
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T I M E  

Figure 11. Prescribed displacements in analysis of rubber sheet, time step A1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 

the displacement history given in Figure 11, making this a large deformation problem. Note that 
the displacements were assumed to vary slowly so that inertia effects could be neglected. 

Although the solution obtained could not be cornpared with an available solution, this is an 
interesting problem to study the performance of the contact algorithm. Also, the essential features 
and solution difficulties of this problem are frequently encountered in actual practical problems; 
e.g. analysis of metal forming processes. 

Figurc 12 shows the distribution of normal and tangential tractions for different load steps in the 
solution. The tractions close to the face at which the displacements are imposed are not shown, 
because a fine finite element idealization would be required to obtain good stress predictions near 
the face. Note that the magnitudes of the tangential tractions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt , ,  for times 8, 14 and 24 are 
essentially equal to yd times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,, -- because practically the entire rubber sheet is sliding through the 
channel -and that the tangential tractions at time 24 are acting in the opposite direction to the 
tractions at times 8 and 14. However, at time 18 the tangential tractions have only partially 
reversed and some segments are still in sticking conditions. It is this change in tangential tractions, 
resulting from the reversal in motion, that is quite difficult to analyse. 

Figure 12 also shows the results obtained when assuming a frictionless motion. As expected, for 
the frictionless case the normal tractions are significantly larger at3imes 8 and 14 (the imposed 
displacements increase) and smaller at times 18 and 24 (the imposed displacements decrease), when 
compared with the results including friction. 

Finally, the motion of the rubber sheet for > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApd was also analyscd (ps = 0.20, / id = 0.15). For 
this case, two different solution algorithms were employed. In the first solution our usual algorithm 
was used, in which the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/is for a segment was set equal to pd as soon as, and for all times 
thereafter, the static frictional resistance was exceedcd for the segment. Since the effect of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, > pd is 
then a transient phenomenon, the solution results for the times considered in Figure 12 are (very 

closely) the same as the results obtained for the case y\ = pd. In the second analysis, as an 
experiment, the value of y, = 0.20 was kept throughout the solution and the results marked J L ~  = 

0.20, !id =0.15 in Figure 12 were obtained. It should be noted that in this analysis the time step 
used (At = 0.5) is an important (physical) variable of the problem-- because the solution procedure 
simulates the frictional motion of the sheet for each solution step separately and it is 
questionable whether the assumptions used in this numerical solution appropriately simulate the 
actual physical process of motion. However, it is interesting to note that for the chosen values of /iC 
and /id relatively small differences in the tractions were calculated when compared with the solution 
for p, = pd (except for the tangential tractions at time 18 which more drastically changed sign when 
p, > p 3 .  It should be emphasized that these solutions of the rubber sheet when p ,  > pd should only 
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Figure 12. Distributed tractions in analysis of rubber sheet moving through rigid,channel (solid line refers to the solution 
for pa = and the solution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApd using our usual algorithm; dashed line refers to ‘experiment’ when p ,  > pd) 

be regarded as a rather brief numerical experiment, because there are many difficult questions 
related to the physics, and to our numerical analysis procedure, for this problem that need much 
further study.” 

4.3 Analysis of a snapped wire in continuous wiring 

The practical application of this problem lies in the analysis of the conditions that arise when a 
wire of a continuous wiring around a cylinder snaps. 

Figure 13 shows the model considered. Note that the snapped wire is free of constraints at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0 
(for y 3 0). The objective was to calculate the stress distribution in the continuous wiring (modelled 
here as a continuum) at the maximum load application, cyy = 300 MPa and cxr = 750 MPa. 

Figure 13(b) shows the finite element idealization used for the analysis and Figure 14 gives some 
ca lda ted  stresses and a comparison with the results obtained by Boman.22 The solution with our 
contact algorithm was obtained using one load step to apply the initial stress oYy and then two load 
steps with At = 1.0, as shown in Figure 13(a), to reach the final stress conditisn. 

4.4 Analysis of a buried pipe 

Frictional conditions must frequently be modelled in the analysis of soil--structure inter- 
actions.’ 5,23 
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P‘igure 13. Analysis of wiring around cylinder 
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Figure 14. Stresses just below contact surfaces in analysis of wiring around cylinder 
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Figure 15. Pipe buried in soil subjected to overburden pressure P o  = 100 kPd, p -2 ps = /id 
* 

Figure 15 shows a pipe buried in soil subjected to the overburden pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo = 100 kPa. The 
objective of the analysis was to predict the tractions along the pipe-soil interface. In this analysis, 
both the pipe and the soil were considered linear elastic media, although in practice the soil may 
need to be Considered nonlinear. 

Figure 16 shows the finite element idealization used for the analysis, and Figure 17 gives the 
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(3.5m .O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( 3.5.3.5) 

P'igure 16. Finite element idealization used for analysis of buried pipe 
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w 

v) 
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ANGLE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

1;igure 17. Predicted tractions on pipe soil interface; solution obtained using four load increments of equal size 
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predicted tractions along the contact surface.+ Also shown in Figure 17 are the tractions along the 
interface for the friction coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.0 and p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 calculated without the %se of the contact 
algorithm. These results have been obtained by simply using constraint equations so that the pipe 
and soil nodal displacements are the same perpendicular to the pipe surface, and free tangentially 
when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0 0  and the same tangentially when p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco. 

Figure 17 shows that the results using the contact algorithm are slightly different from those 
obtained without the contact algorithm. These differences arise mainly because of the traction 
recovery used in the contact algorithm, and because the contact algorithm always uses the updated 
nodal point positions (including the displacements) for the contact force calculations, whereas 
these deformations were neglected when using the constraint equations. 

5 CONC1,USIONS 

An algorithm for the solution of two-dimensional contact problems, including large deformation 
and frictional conditions, has been presented. The solution procedure uses a Lagrange multiplier 
technique to incrementally impose the deformation constraints along the contact surfaces. The 
contact forces are evaluated from distributed tractions that act on the contactors. The tractions are 
calculated from the nodal point forces (which correspond to the internal element stresses and the 
externally applied loading) and the frictional conditions based on Coulomb’s law. The solution 
results obtained using the algorithm in some contact problems have been presented to demonstrate 
some of the features of the solution procedure. 

Considering the way frictional conditions are accounted for in the algorithm, some important 
assumptions arc used. First, the frictional forces in sliding are assumed to act in the same directions 
as the contact tangential forces prior to sliding. This assumption may require relatively small load 
increments in the solution. Second, the frictional calculations make only use of the total tangential 
and normal forces acting on the segments, and do not account for the variation of the tractions over 
the segmcnts. And third, the relatively simple friction law of Coulomb is employed. A more refined 
friction law would include rate and state-dependent factors. Using Coulomb’s friction law with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,us = 

pd already a large number of contact problems can be modelled using our algorithm, but various 
questions relating to the physics of motion, and to our numerical solution pocedure, must still be 
addressed when ps > pctd.I9 

In this first paper, we have concentrated on presenting the theory used and on indicating some 

applications. Our experiences with the algorithm have been most encouraging, but the field of 
analysis of contact problems is very large, and many most interesting aspects relating to our 
algorithm deserve further studies, such as: 

1. The effect of the finite element mesh used for a problem on the performance of the solution 
procedure. 
2. Effective modelling of the target and contactor bodies, with respect to selection of an 
appropriate number of contactor and target segments for determination of contact. 
3. The use of appropriate load incrementation for solution of specific problems, and the effect of 
different sequences of load application, in particular when ps > p,,. 
4. The choice of iteration procedure and convergence criteria (for example, perhaps more effective 
methods than full Newton iteration can be identified). 
5. The use of different coefficient matrices that include non-symmetric parts in the gradient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. The use of a lumped approach for the traction recovery instead of the consistent approach, and 
the use of higher order contact segments. 
- __.__ 

‘As seen in the figure, the case p = m can be modelled with the contact algorithm using any large value of p. 
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7. Rigorous mathematical analyses and convergence studies of the algorithm for frictional 
conditions. 

These studies would be very valuable because they will yield further insight into the solution 
procedure and provide the basis for improvements of the solution method. We are currently 
pursuing such studies and plan to report upon them in future communications. 
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