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Abstract We noticed that if INS data is used as system equations of a Kalman filter

algorithm for integrated direct geo-referencing, one encounters with a dynamic errors-in-

variables (DEIV) model. Although DEIV model has been already considered for obser-

vation equations of the Kalman filter algorithm and a solution namely total Kalman filter

(TKF) has been given to it, this model has not been considered for system equations

(dynamic model) of the Kalman filter algorithm. Thus, in this contribution, for the first

time we consider DEIV model for both observation equations and system equations of the

Kalman filter algorithm and propose a least square prediction namely integrated total

Kalman filter in contrast to the TKF solution of the previous approach. The variance matrix

of the unknown parameters are obtained. Moreover, the residuals for all variables are

predicted. In a numerical example, integrated direct geo-referencing problem is solved for

a GPS–INS system.

Keywords Dynamic errors-in-variables � System equations � Integrated

total Kalman filter � Direct geo-referencing

1 Introduction

Recently, there has been an explosion in the number, type and diversity of system designs

and application areas of mobile sensors. The geo-referencing of these systems is one of the

main problems. In this problem, one aims to determine the position and attitude of a mobile

sensor in a geo-referenced frame. When this information is attained directly by means of
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measurements from sensors on-board the vehicle the term direct geo-referencing is used

(Skaloud 1999). The integration of these data is done during a Kalman filter algorithm

(Kalman 1960). For more details on Kalman filter one may refer to Sorenson (1966) and

Maybeck (1979). The Kalman filter is essentially a set of mathematical equations that

implement a predictor–corrector type estimator that is optimal in the sense that it mini-

mizes the estimated error covariance, when some presumed conditions are met (Welch and

Bishop 2001). In the literature, the Kalman filter is derived as either a best predictor (BP)

or a best linear predictor (BLP), see e.g. Kalman (1960), Gelb (1974), Sanso (1986). The

minimum mean squared error (MMSE) is the criterion which selects the best predictor or

estimator.

Observation equations and system equations are two main parts of a dynamic problem.

The former is in fact a relation between the observations and time dependent unknown

parameters while the latter relates the unknown parameters at an epoch i to an earlier epoch

i - 1. Due to how these two parts are modeled, several linear and non-linear Kalman filters

have been proposed. For more information see e.g. Yi (2007). Some filters are as follows:

the Sigma Point Kalman Filters (SPKF) (van der Merwe and Wan 2003) or Linear

Regression Kalman Filters (LRKF) (Lefebvre et al. 2002), Extended Kalman Filter (EKF)

(Jazwinski 1970), the Particle Filters (PF) (Liu and Chen 1998), the Ensemble Kalman

Filter (EnKF) (Evensen 1994), Unscented Kalman Filter (UKF) based on unscented

transformation (UT) (Julier and Uhlmann 1997) and etc. However, in all of these algo-

rithms, the coefficient matrix of the system equations does not contain random errors. As

such an assumption cannot always be guaranteed, we allow random observational errors to

enter the respective matrix. In practice, this situation can be seen when we are going to use

INS data as the system equations since in such a case, the random observed angular

increments and velocity increments measured by gyroscope and accelerator of the INS

system, make the coefficient matrix of the system equations noisy.

Note that although Schaffrin and Iz (2008), Schaffrin and Uzun (2011) and Mahboub

et al. (2016) considered the case which only the design matrix of the observation equations

is random, we solve the problem which both of the coefficient matrix of the observation

equations and system equations are corrupted by random noise. Hence in contrast to

Schaffrin and Iz (2008) that named their solution total Kalman filter (TKF), we propose an

integrated total Kalman filter (ITKF) algorithm.

This paper is organized as follows: in Sect. 2, the DEIV model and the TKF solution

proposed by Schaffrin and Iz (2008) are introduced. In Sect. 3, the ITKF algorithm is

developed, then, in a later section, a numerical example gives insight into the efficiency of

the algorithm proposed. Finally we conclude the paper.

2 Dynamic errors-in-variables (DEIV) model

In this section the concepts of dynamic errors-in-variables (DEIV) model are introduced

and a TKF solution proposed by Schaffrin and Iz (2008) is given. It must be mentioned that

EIV model in its time invariant case i.e. static case has been investigated by several

valuable publications. Therefore, we only give some references e.g. Zeng et al. (2015),

Zhang et al. (2013), Neitzel (2010), Neitzel and Schaffrin (2016), Snow and Schaffrin

(2012), Shen et al. (2011), Schaffrin et al. (2014), Schaffrin and Felus (2008), Mahboub

(2012, 2014, 2016), Mahboub et al. (2012, 2015), Mahboub and Sharifi (2013a, b), Paláncz

and Awange (2012), Amiri-simkooei and Jazaeri (2012), Fang (2011, 2013, a, b c, 2015),
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Fang et al. (2015, 2016), Lu et al. (2014), Zhou and Fang (2015) and Fang and Wu (2015)

etc. In the rest of this paper we define these two parts for a DEIV model. Observation

equations is given as follows:

y
i
¼ Ai � EAi

� �
xi þ ei ð1Þ

In the above equations y
i

is the m � 1 random observation vector, ei is the m � 1 vector

of observational noise, Ai is the m � n coefficient matrix of input variables (observed), EAi

is the corresponding the m � n matrix of random noise, xi is the n � 1 random parameter

vector (time dependent unknowns). The following equation represents system equations

which is also called dynamic model. It relates the unknown parameters at an epoch i to an

earlier epoch i � 1.

xi ¼ Ui � EUi

� �
xi�1 þ fi þ ui ð2Þ

Ui is the transition matrix EUi
is the corresponding the n � n matrix of random noise and

ui is the random system noise, fi is an independent time variable function and underlining

ð Þ indicates random variables. The random noise of the transition matrix is our main

problem in this paper. We also assume that the state vector is observed at an initial

(previous) epoch:

xi�1 ¼ xi�1 þ e0
i�1 ð3Þ

Here, e0
i�1 is the random noise at the first epoch. Equations (1)–(3) represent the

functional model of the DEIV model in this paper. We also define the corresponding

stochastic model as follows:

ei

eAi
¼ vec EAi

� �

ui

eUi
¼ vec EUi

� �

e0
i�1

2

6664

3

7775
�

0

0
0
0

0

2

6664

3

7775
;

Qyi
0 0 0 0

0 QAi
0 0 0

0 0 hi 0 0

0 0 0 QUi
0

0 0 0 0
P0

i�1

2

66664

3

77775

0

BBBB@

1

CCCCA
ð4Þ

where Qyi
, hi,

P0
i�1 , QAi

and QUi
are the corresponding dispersion matrixes of the

observation vector, system equations, the observed unknown parameters at an initial epoch,

the random coefficient matrix EAi
and the random coefficient matrix EUi

. Schaffrin and Iz

(2008) supposed that EUi
¼ 0,fi ¼ 0, QAi

¼ In � Qyi
and set the following target function:

Uðei;eAi
;ki;liÞ :¼ eT

i Q�1
yi

eiþeT
Ai
ðIn�Qyi

� ��1

eAi

þ ui�Uie
0
i�1

� �T
hiþUi

X0

i�1
UT

i

� ��1

ui�Uie
0
i�1

� �

þ2kT
i yi�Ai ui�Uie

0
i�1þ�xi

� �
þ ui�Uie

0
i�1þ�xi

� �T�Im

� �
eAi

�ei

� �
ð5Þ

where ki is a m�1 vector of Lagrange multipliers. They obtained the following least-

squares prediction and named it total Kalman filter (TKF):

~xi ¼ �xi þ hi þ Ui

X0

i�1
UT

i

� �
AT

i k̂i þ ~xi k̂T
i Qyi

k̂i

� �h i
ð6Þ

where �xi and k̂i are given as follows:
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k̂i ¼ Qyi

� ��1
yi � Ai~xið Þ 1 þ ~xT

i ~xi

� ��1 ð7Þ

�xi ¼ Ui~xi�1: ð8Þ

As the assumption EUi
¼ 0 may not be always correct in particular when the system

Eqs. (2) are produced by INS data, in the next section we obtain a new solution to this

problem.

3 Integrated total Kalman filter (ITKF)

In this section we solve the DEIV model given by Eqs. (1)–(4). Since we suppose that both

of the coefficient matrixes in the observation equations and system equations are noisy i.e.

EUi
6¼ 0 and EAi

6¼ 0, we call our least-squares prediction ‘‘integrated total Kalman filter

(ITKF)’’. If we want to use condition equations for our optimization, we require combining

Eqs. (1)–(3). For this aim, first we insert Eq. (3) into Eq. (1) as follows:

xi ¼ Ui � EUi

� �
xi�1 � e0

i�1

� �
þ fi þ ui ð9Þ

Then we put Eq. (9) into Eq. (1):

y
i
¼ Ai � EAi

� �
Ui � EUi

� �
xi�1 � e0

i�1

� �
þ fi þ ui

� �
þ ei ð10Þ

Eventually we can set the following least-squares target function:

Uðei; eAi
; ki; eUi

; ui; e0
i�1Þ : ¼ eT

i Q�1
yi

ei þ eT
Ai

Q�1
Ai

eAi
þ uT

i h
�1
i ui þ eT

Ui
Q�1

Ui
þ e0

i�1

X0

i�1

� ��1

e0
i�1

þ 2kT
i yi � ei � Ai � EAi

� �
Ui � EUi

� �
xi�1 � e0

i�1

� �
þ fi þ ui

� �� �

ð11Þ

Note that in contrast to target function of Eq. (5) proposed by Schaffrin and Iz (2008),

the target function given by Eq. (11) can produce the predicted residuals of all random

observed variables. In Schaffrin and Iz (2008) the quantities ~ui an ~e0
i�1 were not predicted.

For optimization, if tildas eð Þ indicate predicted vectors and hats bð Þ denote estimated

ones the following necessary conditions must hold:

oU
o~ei

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ 2 Q�1

yi
~ei � k̂i

� �
¼ 0 ð12Þ

oU
o~eAi

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ 2 Ui � ~EUi

� �
xi�1 � ~e0

i�1

� �
þ fi þ ~ui

� �
� Im

� �
k̂i þ 2Q�1

Ai
~eAi

¼ 0

¼ 0

ð13Þ

oU
o~eUi

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ 2 xi�1 � ~e0

i�1

� �
� Ai � ~EAi

� �T
� �

k̂i þ 2Q�1
Ui

~eUi
¼ 0 ð14Þ

oU
o~ui

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ �2 Ai � ~EAi

� �T
k̂i þ 2h�1

i ~ui ¼ 0 ð15Þ
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oU

o~e0
i�1

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ 2 Ui � ~EUi

� �T
Ai � ~EAi

� �T
k̂i þ 2 R0

i�1

� ��1
~e0

i�1 ¼ 0 ð16Þ

oU

ok̂i

����~ei; ~eAi
; k̂i; ~eUi

; ~ui; ~e
0
i�1 ¼ 2 yi � ~ei � Ai � EAi

� �
Ui � ~EUi

� �
xi�1 � e0

i�1

� �
þ fi þ ~ui

� �� �

¼ 0:

ð17Þ

~ei and ~eAi
can be obtained from Eqs. (12) and (13) as follows

~ei ¼ Qyi
k̂i ð18Þ

~eAi
¼ �QAi

Ui � ~EUi

� �
xi�1 � ~e0

i�1

� �
þ fi þ ~ui

� �
� Im

� �
k̂i ¼ �QAi

Rik̂i ð19Þ

Equations (14) and (15) immediately lead to

~eUi
¼ �QUi

xi�1 � ~e0
i�1

� �
� Ai � ~EAi

� �T
� �

k̂i ¼ �QUi
Sik̂i: ð20Þ

~ui ¼ hi Ai � ~EAi

� �T
k̂i ð21Þ

Equation (16) gives ~e0
i�1 as follows:

~e0
i�1 ¼ �R0

i�1 Ai � ~EAi

� �
Ui � ~EUi

� �� �T
k̂i ð22Þ

Eventually by inserting Eqs. (18)–(22) into Eq. (17), the vector of Lagrange multipliers

k̂i can be estimated as follows:

yi � Qyi
k̂i � Ai � ~EAi

� �
hi Ai � ~EAi

� �T
k̂i � ST

i QUi
Sik̂i

� Ai � ~EAi

� �
R0

i�1 Ai � ~EAi

� �
Ui � ~EUi

� �� �T
k̂i � AiUixi�1

� Uixi�1 þ fið Þ � Imð ÞQAi
Rik̂i � Aifi ¼ 0 !

k̂i ¼ Qyi
þ Ai � ~EAi

� �
hi Ai � ~EAi

� �TþST
i QUi

Si

�

þ Ai � ~EAi

� �
R0

i�1 Ai � ~EAi

� �
Ui � ~EUi

� �� �Tþ Uixi�1 þ fið ÞT�Im

� �
QAi

Ri

��1

yi � Ai Uixi�1 þ fið Þð Þ

ð23Þ

In the above equation, the inverse exists since the matrix Si is full column rank i.e. its

quadratic form is invertible. After prediction of random observed variables ~ei; ~eAi
; ~eUi

; ~ui

and ~e0
i�1 iteratively using Eqs. (18)–(23), we must update the measured unknown param-

eters xi�1 and the corresponding dispersion matrix for the next epoch i. By applying

variance propagation rules to Eq. (9), the updated dispersion matrix for the next epoch is

given by
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D xið Þ ¼ Ki:blkdiag D xi�1ð Þ;D e0
i�1

� �
;D uið Þ;D EUi

ð Þ
� �

:KT
i ð24Þ

With Ki ¼
oxi

oxi�1

oxi

oe0
i�1

oxi

oui

oxi

oEUi

� �
¼ Ui � ~EUi

� �
� Ui � ~EUi

� �
In

	

� xi�1 � ~e0
i�1

� �T�In

� �
�

From Eq. (9) the update of the unknown parameters ~xi is obtained as follows:

~xi ¼ Ui � ~EUi

� �
xi�1 � ~e0

i�1

� �
þ fi þ ~ui ð25Þ

Thus the update part for the next epoch is given by Eqs. (24) and (25). Summarizing, we

propose the ITKF algorithm by the following flowchart:
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4 ITKF algorithm for integrated direct geo-referencing

If we want to produce the system equations by INS data for integrated direct geo-refer-

encing, one has to consider Eq. (2) as the system equations where the coefficient matrix Ui

is noisy i.e. EUi
6¼ 0. In order to sense this condition, we must examine the mathematical

model of an INS system. It is obtained after solving navigation equations. For a back-

ground one may refer to Sheta (2012) or Jekeli (2001). Navigation equations are a set of

differential equations which describe the input gyroscopes and accelerometers measure-

ments input to the local frame mechanization and the output curvilinear coordinates, three

velocity components, and three attitude components. Input gyroscopes are angular incre-

ments which are measured by IMU. Solving these vector differential equations, through

integration, will result in a time variable state vector with kinematic sub-vectors for

position, velocity, and attitude. The input to computation process are the angular incre-

ments measured by gyroscope and the velocity increments measured by accelerometer. The

rotation matrix is updated by following Eq. (26). The Quaternion approach is used in the

update because it deals with the singularity problems of the Euler angles at the 90 degrees

angle. The quaternion is a 4 elements vector represented in space and contains the

amplitude in one element and the direction is described using the three remaining elements.

In general, the system equations can be described by the following equation

Piþ1

qiþ1

� �
¼ I3 0

0 I4 þ Gi

� �
Pi

qi

� �
þ DiViDti

0

� �
ð26Þ

where Gi ¼ 1
2

c d �b a

�d c a b

b �a c d

�a �b �d c

2

664

3

775, Di is a deterministic matrix depends on radius of

curvature, Dti is time increments between two epochs and PT
i ¼ ui ki hi½ � is position

and qT
i ¼ q1 q2 q3 q4½ �i denotes quaternion rotations. The noisy coefficients a, b, c

and d are provided by the observed angular increments and the updated velocity Vi is

produced by the observed velocity increments.

Consequently, the noisy coefficient matrix Ui, the unknown parameters xi and the vector

fi introduced in Eq. (2) are as follows:

Ui ¼
I3 0

0 I4 þ Gi

� �
ð27Þ

fi ¼
DiViDti

0

� �
ð28Þ

xi ¼
Pi

qi

� �
ð29Þ

Now suppose that for an integrated geo-referencing of a mobile sensor, we are going to

determine the position and attitude of a mobile sensor at five epochs. Due to Eqs. (27)–

(29), the components of the DEIV model of the system equations at these epochs are as

follows:
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U1 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1:0413 0:3382 �0:063321 0:10879

0 0 0 �0:33916 1:0707 0:11561 0:061701

0 0 0 0:060071 �0:085862 1:0615 0:33525

0 0 0 0:096412 �0:060515 �0:32074 1:0688

U2 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1:0479 0:31649 �0:037621 0:11486

0 0 0 �0:3207 1:0434 0:1252 0:0826

0 0 0 0:062775 �0:10455 1:0768 0:32767

0 0 0 0:094081 �0:067946 �0:30125 1:0621

U3 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1:0654 0:3171 �0:052309 0:093268

0 0 0 �0:3152 1:0586 0:10666 0:071872

0 0 0 0:079853 �0:10846 1:0636 0:3111

0 0 0 0:10865 �0:07516 �0:30661 1:047

U4 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1:0565 0:32588 �0:095492 0:10737

0 0 0 �0:30382 1:0477 0:090393 0:064299

0 0 0 0:065948 �0:096585 1:0389 0:32894

0 0 0 0:093003 �0:060761 �0:33936 1:0655

U5 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1:0505 0:31213 �0:09079 0:099056

0 0 0 �0:31343 1:0605 0:090093 0:071849

0 0 0 0:061155 �0:11065 1:0377 0:31949

0 0 0 0:091518 �0:081141 �0:33478 1:0527
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f1 ¼

1:9
3:6
2:2
0
0

0

0

2

66666664

3

77777775

; f2 ¼

5:13

8:9
5:5
0
0

0

0

2

66666664

3

77777775

; f3 ¼

2:79

4:9
3:12

0
0

0

0

2

66666664

3

77777775

; f4 ¼

3:9
7:1
4:5
0
0

0

0

2

66666664

3

77777775

; f5 ¼

3:3
5:7
3:4
0
0

0

0

2

66666664

3

77777775

;

For all of the DEIV models of these system equations, the stochastic model is given by

QUi
¼ I7 � qð Þ I7 � qð ÞT ; q ¼ 10�2

0:6 0 0:4 0 0:1 0:2 0:1
0 0:3 1 0:9 0:5 0:7 0

0:6 0 1 1 0:2 1 0

0:6 0:1 1 1 0:6 0:1 1

0:2 0:3 0:4 1 0:6 0:1 0

0:64 0:7 0:1 0:4 0:6 0:1 1

0:1 0:3 0:5 0:4 0:3 0:02 1

2

666666664

3

777777775

;

hi ¼ 10�2

2:96 3:4 1 0 0 0 0

3:4 6 3:2 0 0 0 0

1 3:2 2:44 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2

666666664

3

777777775

Note that for i ¼ 0; 1; 2; . . .6 the 7i þ 1ð Þ to 7i þ 3ð Þth. rows and columns of the matrix

I7 � qð Þ must be replaced by zero.

The observation equations which can be produced by GPS and remote sensed data are

given by 5 DEIV models at 5 epochs i = 1, 2, 3, 4, 5 as

y1= y2= y3= y4= y5=

117.34 113.16 110.37 105.07 102.81

158.14 151.1 145.48 136.77 132.9

181.34 176.91 173.77 168.25 165.95

604.6 462.26 332.86 206.12 93.749

18.52 23.689 29.178 35.876 42.525

-26.431 -5.5668 18.249 40.574 68.688

88.136 84.662 82.124 79.716 78.546

681.14 520.54 373.63 229.62 101.29

2466.6 1914 1409 911.46 470.96
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A1 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1:0094 �0:08032 �0:27102 1:3907 0:59041 0:16948 0:18762

�1:1564 �0:039561 0:9704 5:1452 2:3269 0:39127 0:0010988

�2:334 1:4488 0:48338 �2:6668 0:25197 0:075307 0:099471

1:4511 �0:66802 �0:011386 �0:22686 2:2459 1:2784 �0:2805

0:63161 0:11008 �0:28957 2:4732 0:40092 0:18709 �0:52125

3:7491 0:36467 �0:23158 �2:8492 2:2569 0:80019 �0:19393

A2 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

2:4707 �0:099481 �0:35429 1:5192 0:7432 0:11466 0:019044

�1:0753 �0:075316 0:99939 5:1984 4:5722 0:38824 0:032692

�4:1786 2:7395 0:50222 �4:6932 �0:021168 �0:02341 �0:027835

1:636 �0:73114 0:016827 �0:0075877 2:0563 2:458 �0:34538

2:6925 0:25707 �0:044085 2:7252 �0:005275 0:010675 0:02576

8:3343 0:53808 0:044516 �2:284 1:7764 1:8865 0:12706

A3 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

3:6732 �0:10997 �0:39623 1:615 0:9301 0:027076 �0:025282

�1:1203 �0:17519 1:0344 5:2334 6:9007 0:39659 0:040885

�6:2941 3:9875 0:72843 �6:8312 0:022204 �0:012321 0:27109

1:6144 �0:81103 0:21158 0:038123 2:1286 3:8728 �0:28363

3:2513 �0:11541 0:098239 3:4351 0:083798 �0:066311 �0:045156

12:181 0:015706 0:37409 �2:3089 2:1878 3:0923 0:33023

A4 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

4:7735 0:061363 �0:46255 1:5062 1:334 �0:11011 0:34735

�1:1271 �0:19774 1:0138 5:1957 9:2138 0:36953 0:056945

�8:5569 5:5994 0:64438 �9:2217 0:2091 0:14771 0:35888

1:4718 �0:67564 0:0097173 �0:1208 2:1343 5:1686 �0:19908

4:7702 �0:0086341 0:097021 2:6353 0:35812 �0:309 0:046051

16:055 0:28166 0:13936 �2:2967 2:1511 3:7861 0:51141

A5 ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

5:9639 0:03191 �0:60776 1:4211 1:5153 �0:04741 0:23179

�1:1027 �0:24537 0:97207 5:165 11:511 0:41599 0:043181

�10:4 7:0747 0:61147 �11:546 0:27357 0:15443 0:045528

1:6455 �0:6405 0:033169 �0:023809 2:2963 6:5331 �0:31565

5:7747 �0:059541 �0:44762 2:462 �0:14936 0:082947 0:14955

20:582 0:32071 �0:12439 �2:6433 2:4281 5:2551 0:43379

For all of the DEIV models of the observation equations, the stochastic model is given by
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Qx ¼ I7 � qð Þ I7 � qð ÞT ; q

¼ 10�1

1 0 0 1 0:1 0 0:4 0:6 0:2
0:6 1 0 0 0:4 0 0:1 0:2 0:1
1 0:3 1 0:9 0:5 0:7 0:1 0:2 0

0:6 0 1 1 0:02 0:1 0 0:3 0

0:6 0:01 0:1 0:02 0:1 0:1 0:06 0:1 0:1
0:2 0:03 0:4 0:06 0:1 1 0:6 0:1 0

0:4 0:07 0:1 0:04 0:2 0:4 0:6 0:1 0:1
0:1 0:03 0:5 0:06 0:6 0:4 0:3 2 1

0:6 0:01 1 0:06 1 1 0:6 0:1 1

2

6666666666664

3

7777777777775

;

For i ¼ 0; 1; 2; . . .6 the 9i þ 1ð Þ to 9i þ 3ð Þth rows and columns of the matrix I6 � qð Þ must

be replaced by zero.

Qy ¼ 10�4

69:06 9:78 33:69

9:78 80:44 �9:24

33:69 �9:24 57:78

16:73 9:15 5:58

5:57 8:97 5:08

2:28 23:12 5:43

29:6 5:53 9:11

24:29 2:14 0:48

33:16 18:54 12:08
16:73 5:57 2:28

9:15 8:97 23:12

5:58 5:08 5:43

49:13 1:45 1:58

1:45 37:34 1:172

1:58 1:172 2:31

1:03 1:42 0:97

2:07 4:68 5:32

7:34 2:82 1:76
29:6 24:29 33:162

5:53 2:14 18:54

9:11 0:48 12:08

1:03 2:07 7:34

1:42 4:68 2:82

0:97 5:32 1:76

117:3 43:52 6:88

43:52 26:11 4:64

6:88 4:64 3:91

2

666666666664

3

777777777775

;

Also the observed state vector xi at an initial epoch with its corresponding dispersion

matrix is given by:

P0
0 ¼ 10�4

4:01 0:4 0:1
0:4 5 3

0:1 3 2

0

0

0

0:0 0:0 0:0
0:0 0:0 0:0
0:0 0:0 0:0

0:0 0:0 0:0 0:01 0:0 0:0 0 :0
0:0 0:0 0:0
0:0 0:0 0:0
0:0 0:0 0:0

0

0

0

0:01 0:0 0:0
0:0 0:01 0:0
0:0 0:0 0:01

2

66666664

3

77777775

; x1 ¼

103:01

132:9
166

�0:57
�0:16

�0=57

0:56

2

66666664

3

77777775

;

In this problem both of the observation equations and system equations are in fact DEIV

models. Three algorithms KF, TKF and ITKF are applied to this problem. We compare the

result with true solution which are illustrated by Figs. 1 and 2 for 3-D position and attitude

of the mobile sensor in a local frame respectively. The results demonstrated that the

proposed ITKF approach can significantly improve the solution of the predicted position

and attitude in contrast to other algorithms. Note that after computing the attitudes in

quaternion representation, we converted them into three rotations about three axis in

degrees. The improvement of the predicted position is more considerable than the pre-

dicted attitude. However, the TKF solution has larger difference with respect to true

solution than the ITKF solution since it does not consider the random property of the

random design matrix Ui. This situation gets worse for the KF solution in which not only

we neglect the random property of the noisy design matrix Ui but also the random design

matrix Ai is considered deterministic i.e. with no noise. Moreover, the general treatment of
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the TKF and ITKF approach are similar, however, we can see a significant bias in the TKF

solution respect to the ITKF solution which is because of inappropriate modeling of the

system equations made by the TKF approach, particularly when the magnitude of the

weights of the elements in the random design matrixes Ai and Ui cannot be neglected.

Fig. 1 solutions of different algorithms for 3-D position of the mobile sensor in a local frame

Fig. 2 solutions of different algorithms for 3-D attitude of the mobile sensor in a local frame
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5 Conclusions and outlook

In this paper, we developed a new Kalman filter algorithm. Its main assumption is that the

system equations of a dynamic problem can itself be a DEIV model i.e. the design matrix

Ui of the system equations is also noisy. In practice one can see this situation when the

system equations are provided by INS data. In such a case, the random noises are produced

by observed angular increments and velocity increments. The predicted residuals for all

variables besides the variance matrix of the unknown parameters were obtained by the

proposed ITKF algorithm. In a numerical example, it was shown that the proposed ITKF

approach can make the best improvement in solution in contrast to other algorithms, if both

of the coefficient matrixes in the observation equations and the system equations are noisy.

The prediction part is done by Eqs. (18)–(23) and the update part for the next epoch is

given by Eqs. (24) and (25). In the forthcoming publication, we try to improve the pre-

diction part due to several practical vulnerabilities of direct geo-referencing problem.
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