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How do people know as much as they do with as little information as they get? The problem takes 

many forms; learning vocabulary from text is an especially dramatic and convenient case for research. 

A new general theory of acquired similarity and knowledge representation, latent semantic analysis 

(LSA), is presented and used to successfully simulate such learning and several other psycholinguistic 

phenomena. By inducing global knowledge indirectly from local co-occurrence data in a large body 

of representative text, LSA acquired knowledge about the full vocabulary of English at a comparable 

rate to schoolchildren. LSA uses no prior linguistic or perceptual similarity knowledge; it is based 

solely on a general mathematical learning method that achieves powerful inductive effects by ex- 

tracting the right number of dimensions (e.g., 300) to represent objects and contexts. Relations to 

other theories, phenomena, and problems are sketched. 

P r o l o g u e  

"How much do we know at any time? Much more, or so I believe, 

than we know we know!" 

--Agatha Christie, The Moving Finger 

A typical American seventh grader knows the meaning of  

10-15  words today that she did not know yesterday. She must 

have acquired most of  them as a result of  reading because (a)  

the majority of  English words are used only in print, (b)  she 

already knew well almost all the words she would have encoun- 

tered in speech, and (c)  she learned less than one word by direct 

instruction. Studies of  children reading grade-school text find 

that about one word in every 20 paragraphs goes from wrong 

to right on a vocabulary test. The typical seventh grader would 

have read less than 50 paragraphs since yesterday, from which 

she should have learned less than three new words. Apparently, 

she mastered the meanings of  many words that she did not 

encounter. Evidence for all these assertions is given in detail 

later. 

This phenomenon offers an ideal case in which to study a 

problem that has plagued philosophy and science since Plato 
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24 centuries ago, the fact that people have much more knowl- 

edge than appears to be present in the information to which 

they have been exposed. Plato's  solution, of  course, was that 

people must come equipped with most of  their knowledge and 

need only hints and contemplation to complete it. 

In this article we suggest a very different hypothesis to explain 

the mystery of  excessive learning. It rests on the simple notion 

that some domains of  knowledge contain vast numbers of  weak 

interrelations that, i f  properly exploited, can greatly amplify 

learning by a process of  inference. We have discovered that a 

very simple mechanism of induction, the choice of the correct 

dimensionality in which to represent similarity between objects 

and events, can sometimes, in particular in learning about the 

similarity of  the meanings of  words, produce sufficient enhance- 

ment of  knowledge to bridge the gap between the information 

available in local contiguity and what people know after large 

amounts of  experience. 

O v e r v i e w  

In this article we report the results of  using latent semantic 

analysis (LSA) ,  a high-dimensional linear associative model 

that embodies no human knowledge beyond its general learning 

mechanism, to analyze a large corpus of  natural text and gener- 

ate a representation that captures the similarity of  words and 

text passages. The model ' s  resulting knowledge was tested with 

a standard multiple-choice synonym test, and its learning power 

compared to the rate at which school-aged children improve 

their performance on similar tests as a result of  reading. The 

model 's  improvement per paragraph of  encountered text approx- 

imated the natural rate for schoolchildren, and most of  its ac- 

quired knowledge was attributable to indirect inference rather 

than direct co-occurrence relations. This result can be interpre- 

ted in at least two ways. The more conservative interpretation 

is that it shows that with the right analysis a substantial portion 

of  the information needed to answer common vocabulary test 

questions can be inferred from the contextual statistics of  usage 

alone. This is not a trivial conclusion. As we alluded to earlier 



212 LANDAUER AND DUMAIS 

and elaborate later, much theory in philosophy, linguistics, arti- 

ficial intelligence research, and psychology has supposed that 

acquiring human knowledge, especially knowledge of language, 

requires more specialized primitive structures and processes, 

ones that presume the prior existence of special foundational 

knowledge rather than just a general purpose analytic device. 

This result questions the scope and necessity of such assump- 

tions. Moreover, no previous model has been applied to simulate 

the acquisition of any large body of knowledge from the same 

kind of experience used by a human learner. 

The other, more radical, interpretation of this result takes the 

mechanism of the model seriously as a possible theory about all 

human knowledge acquisition, as a homologue of an important 

underlying mechanism of human cognition in general. In partic- 

ular, the model employs a means of induction--dimension opti- 

m i za t i on - tha t  greatly amplifies its learning ability, allowing it 

to correctly infer indirect similarity relations only implicit in 

the temporal correlations of experience. The model exhibits 

humanlike generalization that is based on learning and that does 

not rely on primitive perceptual or conceptual relations or repre- 

sentations. Similar induction processes are inherent in the mech- 

anisms of certain other theories (e.g., some associative, seman- 

tic, and neural network models). However, as we show later, 

substantial effects arise only if the body of knowledge to be 

learned contains appropriate structure and only when a suffi- 

c i en t -poss ib ly  quite large--quantity of it has been learned. 

As a result, the posited induction mechanism has not previously 

been credited with the significance it deserves or exploited to 

explain the many poorly understood psychological phenomena 

to which it may be germane. The mechanism lends itself, among 

other things, to a deep reformulation of associational learning 

theory that appears to offer explanations and modeling direc- 

tions for a wide variety of cognitive phenomena. One set of 

phenomena that we discuss later in detail, along with some 

auxiliary data and simulation results, is contextual disambigua- 

tion of words and passages in text comprehension. 

Because readers with different theoretical interests may find 

these two interpretations differentially attractive, we have fol- 

lowed a slightly unorthodox manner of exposition. Although we 

later present a general theory, or at least the outline of one, that 

incorporates and fleshes out the implications of the inductive 

mechanism of the formal model, we have tried to keep this 

development somewhat independent of the report of our simula- 

tion studies. That is, we eschew the conventional stance that the 

theory is primary and the simulation studies are tests of it. 

Indeed, the historical fact is that the mathematical text analysis 

technique came first, as a practical expedient for automatic infor- 

mation retrieval, the vocabulary acquisition simulations came 

next, and the theory arose last, as a result of observed empirical 

successes and discovery of the unsuspectedly important effects 

of the model's implicit inferential operations. 

The Problem of  Induction 

One of the deepest, most persistent mysteries of cognition is 

how people acquire as much knowledge as they do on the basis 

of as little information as they get. Sometimes called "Plato's  

problem" or "the poverty of the stimulus," the question is how 

observing a relatively small set of events results in beliefs that 

are usually correct or behaviors that are usually adaptive in a 

large, potentially infinite variety of situations. Following Plato, 

philosophers (e.g., Goodman, 1972; Quine, 1960), psycholo- 

gists (e.g., Shepard, 1987; Vygotsky, 1968), linguists (e.g., 

Chomsky, 1991; Jackendoff, 1992; Pinker, 1990), computation 

scientists (e.g., Angluin & Smith, 1983; Michaelski, 1983) and 

combinations thereof (Holland, Holyoak, Nisbett, & Thagard, 

1986) have wrestled with the problem in many guises. Quine 

(1960), following a tortured history of philosophical analysis 

of scientific truth, has called the problem "the scandal of induc- 

tion," essentially concluding that purely experience-based ob- 

jective truth cannot exist. Shepard (1987) has placed the prob- 

lem at the heart of psychology, maintaining that a general theory 

of generalization and similarity is as necessary to psychology as 

Newton's laws are to physics. Perhaps the most well-advertised 

examples of the mystery lie in the acquisition of language. 

Chomsky (e.g., Chomsky, 1991) and followers assert that a 

child's exposure to adult language provides inadequate evidence 

from which to learn either grammar or lexicon. Gold, Osherson, 

Feldman, and others (see Osherson, Weinstein, & Stob, 1986) 

have formalized this argument, showing mathematically that 

certain kinds of languages cannot be learned to certain criteria 

on the basis of finite data. The puzzle presents itself with quanti- 

tative clarity in the learning of vocabulary during the school 

years, the particular case that we address most fully in this 

article. Schoolchildren learn to understand words at a rate that 

appears grossly inconsistent with the information about each 

word provided by the individual language samples to which 

they are exposed and much faster than they can be made to by 

explicit tuition. 

Recently Pinker (1994) has summarized the broad spectrum 

of evidence on the origins of language-- in  evolution, history, 

anatomy, physiology, and development. In accord with Chom- 

sky's dictum, he concludes that language learning must be based 

on a very strong and specific innate foundation, a set of general 

rules and predilections that need parameter setting and filling 

in, but not acquisition as such, from experience. Although this 

"language instinct" position is debatable as stated, it rests on 

an idea that is surely correct, that some powerful mechanism 

exists in the minds of children that can use the finite information 

they receive to turn them into competent users of human lan- 

guage. What we want to know, of course, is what this mecha- 

nism is, what it does, how it works. Unfortunately the rest of 

the instinctivist answers are as yet of limited help. The fact 

that the mechanism is given by biology or that it exists as an 

autonomous mental or physical "module" (if  it does), tells us 

next to nothing about how the mind solves the basic inductive 

problem. 

Shepard's (1987) answer to the induction problem in stimulus 

generalization is equally dependent on biological givens, but 

offers a more precise description of some parts of the proposed 

mechanism. He has posited that the nervous system has evolved 

general functional relations between monotone transductions of 

perceptual values and the similarity of central interpretive pro- 

cesses. On average, he has maintained, the similarities generated 

by these functions are adaptive because they predict in what 

situations--consequential regions in his terminology--the 

same behavioral cause-effect relations are likely to hold. Shep- 

ard's mathematical laws for stimulus generalization are empiri- 
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cally correct or nearly so for a considerable range of low-dimen- 

sional perceptual continua and for certain functions computed 

on behaviorally measured relations such as choices between 

stimuli or judgments of similarity or inequality on some experi- 

ential dimension. However, his laws fall short of being able to 

predict whether cheetahs are considered more similar to zebras 

or tigers, whether friendship is thought to be more similar to 

love or hate, and are mute, or at least very incomplete, on the 

similarity of the meanings of the words cheetah, zebra, tiger, 

love, hate, andpode. Indeed, it is the generation of psychological 

similarity relations based solely on experience and the achieve- 

ment of bridging inferences from experience about cheetahs and 

friendship to behavior about tigers and love and from hearing 

conversations about one to knowledge about the other that pose 

the most difficult and tantalizing puzzle. 

Often the cognitive aspect of the induction puzzle is cast as 

the problem of categorization, of finding a mechanism by which 

a set of stimuli, words, or concepts (cheetahs, tigers) come to 

be treated as the same for some purposes (running away from, 

or using metaphorically to describe a friend or enemy). The 

most common attacks on this problem invoke similarity as the 

underlying relation among stimuli, concepts, or features (e.g., 

Rosch, 1978; Smith & Medin, 1981; Vygotsky, 1968). But as 

Goodman (1972) has trenchantly remarked, "similarity is an 

impostor," at least for the solution of the fundamental problem 

of induction. For example, the categorical status of a concept 

is often assumed to be determined by similarity to a prototype, 

or to some set of exemplars (e.g., Rosch, 1978; Smith & Medin, 

1981 ). Similarity is either taken as primitive (e.g., Posner & 

Keele, 1968; Rosch, 1978) or as dependent on shared component 

features (e.g., Smith & Medin, 1981; Tversky, 1977; Tversky & 

Gati, 1978). But this throws us into an unpleasant regress: 

When is a feature a feature? Do bats have wings? When is a 

wing a wing? Apparently, the concept wing is also a category 

dependent on the similarity of features. Presumably, the regress 

ends when it grounds out in the primitive perceptual relations 

assumed, for example, by Shepard's theory. But only some basic 

perceptual similarities are relevant to any feature or category, 

others are not; a wing can be almost any color. The combining 

of disparate things into a common feature identity or into a 

common category must very often depend on experience. How 

does that work? Crisp categories, logically defined on rules 

about feature combinations, such as those often used in category 

learning, probability estimation, choice and judgment experi- 

ments, lend themselves to acquisition by logical rule-induction 

processes, although whether such processes are what humans 

always or usually use is questionable (Holland, Holyoak, Nis- 

bett, & Thagard, 1986; Medin, Goldstone, & Gentner, 1993; 

Murphy & Medin, 1985; Smith & Medin, 1981 ). Surely, the 

natural acquisition of fuzzy or probabilistic features or catego- 

ries relies on some other underlying process, some mechanism 

by which experience with examples can lead to treating new 

instances more or less equivalently, some mechanism by which 

common significance, common fate, or common context of en- 

counter can generate acquired similarity. We seek a mechanism 

by which the experienced and functional similarity of con- 

cepts--especially complex, largely arbitrary ones, such as the 

meaning of concept, component, or feature, or, perhaps, the 

component features of which concepts might consist--are cre- 

ated from an interaction of experience with the logical (or math- 

ematical or neural) machinery of mind. 

In attempting to explain the astonishing rate of vocabulary 

learning--some 7-10  words per da y - - i n  children during the 

early years of preliterate language growth, theorists such as 

Carey (1985), Clark (1987), Keil (1989), and Markman 

(1994) have hypothesized constraints on the assignment of 

meanings to words. For example it has been proposed that early 

learners assume that most words are names for perceptually 

coherent objects, that any two words usually have two distinct 

meanings, that words containing common sounds have related 

meanings, that an unknown speech sound probably refers to 

something for which the child does not yet have a word, and 

that children obey certain strictures on the structure of relations 

among concept classes. Some theorists have supposed that the 

proposed constraints are biological givens, some have supposed 

that they derive from progressive logical derivation during devel- 

opment, some have allowed that constraints may have prior 

bases in experience. Many have hedged on the issue of origins, 

which is probably not a bad thing, given our state of knowledge. 

For the most part, proposed constraints on lexicon learning have 

also been described in qualitative mentalistic terminology that 

fails to provide entirely satisfying causal explanations: Exactly 

how, for example does a child apply the idea that a new word 

has a new meaning? 

What all modern theories of knowledge acquisition (as well 

as Plato's) have in common is the postulation of constraints 

that greatly (in fact, infinitely) narrow the solution space of the 

problem that is to be solved by induction, that is, by learning. 

This is the obvious, indeed the only, escape from the inductive 

paradox. The fundamental notion is to replace an intractably 

large or infinite set of possible solutions with a problem that is 

soluble on the data available. So, for example, if biology speci- 

fies a function on wavelength of light that is assumed to map 

the difference between two objects that differ only in color onto 

the probability that doing the same thing with them will have 

the same consequences, then a bear need sample only one color 

of a certain type of berry before knowing which others to pick. 

There are several problematical aspects to constraint-based 

resolutions of the induction paradox. One is whether a particular 

constraint exists as supposed. For example, is it true that young 

children assume that the same object is given only one name, 

and if so is the assumption correct about the language to which 

they are exposed? (It is not in adult English usage; ask 100 

people what to title a recipe or name a computer command, and 

you will get almost 30 different answers on average--see Fur- 

nas, Landauer, Gomez, & Dumais, 1983, 1987). These are em- 

pirical questions, and ones to which most of the research in 

early lexical acquisition has been addressed. One can also won- 

der about the origin of a particular constraint and whether it is 

plausible to regard it as a primitive process with an evolutionary 

basis. For example, most of the constraints proposed for lan- 

guage learning are very specific and relevant only to human 

language, making their postulation consistent with a very strong 

instinctive and modular view of mental processes. 

The existence and origin of particular constraints is only one 

part of the problem. The existence of some set of constraints is 

a logical necessity, so that showing that some exist is good but 

not nearly enough. We also need to know whether a particular 
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set of constraints is logically and pragmatically sufficient, that 

is, whether the problem space remaining after applying them is 

soluble. For example, suppose that young children do, in fact, 

assume that there are no synonyms. How much could that help 

them in learning the lexicon from the language to which they 

are exposed? Enough? Indeed, that particular constraint leaves 

the mapping problem potentially infinite; it could even exacer- 

bate the problem by tempting the child to assign too much or 

the wrong difference to our dog, the collie, and Fido. Add in 

the rest of the constraints that have been proposed: Enough 

now? 

How can one determine whether a specified combination of 

constraints would solve the problem, or perhaps better, deter- 

mine how much of the problem it would solve? We believe that 

the best available strategy is to specify a concrete computational 

model embodying the proposed constraints and to simulate as 

realistically as possible its application to the acquisition of some 

measurable and interesting properties of human knowledge. In 

particular, with respect to constraints supposed to allow the 

learning of language and other large bodies of complexly struc- 

tured knowledge, domains in which there are very many facts 

each weakly related to very many others, effective simulation 

may require data sets of the same size and content as those 

encountered by human learners. Formally, that is because weak 

local constraints can combine to produce strong inductive effects 

in aggregate. A simple analog is the familiar example of a 

diagonal brace to produce rigidity in a structure made of three 

beams. Each connection between three beams can be a single 

bolt. Two such connections exert no constraint at all on the 

angle between the beams. However, when all three beams are 

so connected, all three angles are completely specified. In struc- 

tures consisting of thousands of elements weakly connected 

(i.e., constrained) in hundreds of different ways (i.e., in hun- 

dreds of dimensions instead of two), the effects of constraints 

may emerge only in very large, naturally generated ensembles. 

In other words, experiments with miniature or concocted subsets 

of language experience may not be sufficient to reveal or assess 

the forces that hold conceptual knowledge together. The relevant 

quantitative effects of such phenomena may only be ascertain- 

able from experiments or simulations based on the same masses 

of input data encountered by people. 

Moreover, even if a model could solve the same difficult 

problem that a human does given the same data it would not 

prove that the model solves the problem in the same way. What 

to do? Apparently, one necessary test is to require a conjunction 

of both kinds of evidence--observational or experimental evi- 

dence, that learners are exposed to and influenced by a certain 

set of constraints, and evidence that the same constraints approx- 

imate natural human learning and performance when embedded 

in a simulation model running over a natural body of data. 

However, in the case of effective but locally weak constraints, 

the first part of this two-pronged test--experimental or observa- 

tional demonstration of their human use--might  well fail. Such 

constraints might not be detectable b~¢ isolating experiments or 

in small samples of behavior. Thus, although an experiment 

or series of observational studies could prove that a particular 

constraint is used by people, it could not prove that it is not. A 

useful strategy for such a situation is to look for additional 

effects predicted by the postulated constraint system in other 

phenomena exhibited by learners after exposure to large 

amounts of data. 

The Latent Semantic Analysis Model 

The model we have used for simulation is a purely mathemati- 

cal analysis technique. However, we want to interpret the model 

in a broader and more psychological manner. In doing so, we 

hope to show that the fundamental features of the theory that 

we later describe are plausible, to reduce the otherwise magical 

appearance of its performance, and to suggest a variety of rela- 

tions to psychological phenomena other than the ones to which 

we have as yet applied it. 

We explicate all of this in a somewhat spiral fashion. First, 

we try to explain the underlying inductive mechanism of dimen- 

sionality optimization upon which the model's power hinges. 

We then sketch how the model's mathematical machinery oper- 

ates and how it has been applied to data and prediction. Next, 

we offer a psychological process interpretation of the model 

that shows how it maps onto but goes beyond familiar theoretical 

ideas, empirical principles, findings, and conjectures. We finally 

return to a more detailed and rigorous presentation of the model 

and its applications. 

An Informal Explanation of the Inductive Value 

of Dimensionality Optimization 

Suppose that Jack and Jill can only communicate by tele- 

phone. Jack, sitting high on a hill and looking down at the 

terrain below estimates the distances separating three houses: 

A, B, and C. He says that House A is 5 units from both House 

B and House C, and that Houses B and C are separated by 8 

units. Jill uses these estimates to plot the position of the three 

houses, as shown in the top portion of Figure 1. But then Jack 

says, "By the way, they are all on the same straight, flat road." 

Now Jill knows that Jack's estimates must have contained errors 

and revises her own in a way that uses all three together to 

improve each one, to 4.5, 4.5, and 9.0, as shown in the bottom 

portion of Figure 1. 

Three distances among three objects are always consistent in 

Figure 1. An illustration of the advantage of assuming the correct 

dimensionality when estimating a set of interpoint distances. Given noisy 

estimates of AB, AC, and CB, the top portion would be the best guess 

unless the data source was known to be one-dimensional, in which 

case the bottom construction would recover the true line lengths more 

accurately. 
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two dimensions so long as they obey the triangle inequality (the 

longest distance must be less than or equal to the sum of the 

other two). But, knowing that all three distances must be accom- 

modated in one dimension strengthens the constraint (the longest 

must be exactly equal to the sum of the other two). If the 

dimensional constraint is not met, the apparent errors in the 

estimates must be resolved. One compromise is to adjust each 

distance by the same proportion so as to make two of the lengths 

add up to the third. The important point is that knowing the 

dimensionality improves the estimates. Of course, this works 

the other way around as well. Had the distances been generated 

from a two- or three-dimensional array (e.g., the road was 

curved or hilly), accommodating the estimates on a straight line 

would have distorted their original relations and added error 

rather than reducing it. 

Sometimes researchers have considered dimensionality reduc- 

tion as a method to reduce computational complexity or for 

smoothing, that is for simplifying the description of data or 

interpolating intermediate points (e.g., Church & Hanks, 1990; 

Grefenstette, 1994; Schiitze, 1992a, 1992b). However, as we 

will see later, choosing the optimum dimensionality, when appro- 

priate, can have a much more dramatic effect than these interpre- 

tations would seem to suggest. 

Let us now construe the semantic similarity between two 

words in terms of distance in semantic space: The smaller the 

distance, the greater the similarity. Suppose we also assume that 

two words that appear in the same window of discourse--a 

phrase, a sentence, a paragraph, or what have you-- tend to 

come from nearby locations in semantic space.~ We could then 

obtain an initial estimate of the relative similarity of any pair 

of words by observing the relative frequency of their joint occur- 

rence in such windows. 

Given a finite sample of language, such estimates would be 

quite noisy. Moreover, because of the huge number of words 

relative to received discourse, many pairwise frequencies would 

be zero. But two words could also fail to co-occur for a variety 

of reasons other than thin sampling statistics, with different 

implications for their semantic similarity. The words might be 

truly unrelated (e.g., semantic and carburetor). On the other 

hand, they might be near-perfect synonyms of which people 

usually use only one in a given utterance (e.g., overweight or 

corpulent), have somewhat different but systematically related 

meanings (e.g., purple and lavender), or be relevant to different 

aspects of the same object (e.g., gears and brakes) and therefore 

tend not to occur together (just as only one view of the same 

object may be present in a given scene). To estimate similarity 

in this situation, more complex, indirect relations (for example, 

that both gears and brakes co-occur with cars, but semantic 

and carburetor have no common bridge) must somehow be 

used. 

One way of doing this is to take all of the local estimates of 

distance into account at once. This is exactly analogous to our 

houses example, and, as in that example, the choice of dimen- 

sionality in which to accommodate the pairwise estimates deter- 

mines how well their mutual constraints combine to give the 

right results. That is, we suppose that word meanings are repre- 

sented as points (or vectors; later we use angles rather than 

distances) in k dimensional space, and we conjecture that it is 

possible to materially improve estimates of pairwise meaning 

similarities, and to accurately estimate the similarities among 

related pairs never observed together, by fitting them simultane- 

ously into a space of the same (k) dimensionality. 

This idea is closely related to familiar uses of factor analysis 

and multi-dimensional scaling, and to unfolding, (J. D. Car- 

roll & Arabic, in press; Coombs, 1964), but using a particular 

kind of data and writ very large. Charles Osgood (1971) seems 

to have anticipated such a theoretical development when compu- 

tational power eventually rose to the task, as it now has. How 

much improvement results from optimal dimensionality choice 

depends on empirical issues, the distribution of interword dis- 

tances, the frequency and composition of their contexts in natu- 

ral discourse, the detailed structure of distances among words 

estimated with varying precision, and so forth. 

The scheme just outlined would make it possible to build a 

communication system in which two parties could come to agree 

on the usage of elementary components (e.g., words, at least 

up to the relative similarity among pairs of words). The same 

process would presumably be used to reach agreement on simi- 

larities between words and perceptual inputs and between per- 

ceptual inputs and each other, but for clarity and simplicity 

and because the word domain is where we have data and have 

simulated the process, we concentrate here on word-word rela- 

tions. Suppose that a communicator possesses a representation 

of a large number of words as points in a high dimensional 

space. In generating strings of words, the sender tends to choose 

words located near each other. Over short time spans, contigu- 

ities among output words would reflect closeness in the sender's 

semantic space. A receiver could make first-order estimates of 

the distance between pairs by their relative frequency of occur- 

rence in the same temporal contexts (e.g., a paragraph). If the 

receiver then sets out to represent the results of its statistical 

knowledge as points in a space of the same or nearly the same 

dimensionality as that from which it was generated, it may be 

able to do better, especially, perhaps, in estimating the similari- 

ties of words that never or rarely occur together. How much 

better depends, as we have already said, on matters that can 

only be settled by observation. 

Except for some technical matters, our model works exactly 

as if the assumption of such a communicative process character- 

izes natural language (and, possibly, other domains of natural 

knowledge). In essence, and in detail, it assumes that the psy- 

chological similarity between any two words is reflected in the 

way they co-occur in small subsamples of language, that the 

source of language samples produces words in a way that en- 

sures a mostly orderly stochastic mapping between semantic 

similarity and output distance. It then fits all of the pairwise 

similarities into a common space of high but not unlimited 

dimensionality. Because, as we see later, the model predicts 

what words should occur in the same contexts, an organism 

using such a mechanism could, either by evolution or learning, 

For simplicity of exposition, we are intentionally imprecise here in 

the use of the terms distance and similarity. In the actual modeling, 

similarity was measured as the cosine of the angle between two vectors 

in hyperspace. Note that this measure is directly related to the distance 

between two points described by the projection of the vectors onto the 
surface of the hypersphere in which they are contained; thus at a qualita- 

tive level the two vocabularies for describing the relations are equivalent. 
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adaptively adjust the number of dimensions on the basis of trial 

and error. By the same token, not knowing this dimensionality 

a priori, in our studies we have varied the dimensionality of the 

simulation model to determine what produces the best results. 2 

More conceptually or cognitively elaborate mechanisms for 

the representation of meaning also might generate dimensional 

constraints and might correspond more closely to the mentalistic 

hypotheses of current linguistic and psycho-linguistic theories. 

For example, theories that postulate meaningful semantic fea- 

tures could be effectively isomorphic to LSA given the identifi- 

cation of a sufficient number of sufficiently independent features 

and their accurate quantitative assignment to all the words of a 

large vocabulary. But suppose that it is not necessary to add 

such subjective interpretations or elaborations for the model to 

work. Then LSA could be a direct expression of the fundamental 

principles on which semantic similarity (as well as other percep- 

tual and memorial relations) are built rather than being a reflec- 

tion of some other system. It is too early to tell whether the 

model is merely a mathematical convenience that approximates 

the effects of true cognitive features and processes or corre- 

sponds directly to the actual underlying mechanism of which 

more qualitative theories now current are themselves but partial 

approximations. The model we propose is at the computational 

level described by Marr ( 1982; see also Anderson, 1990), that 

is, it specifies the natural problem that mast be solved and an 

abstract computational method for its solution. 

A Psychological Description of LSA as a Theory 

of Learning, Memory, and Knowledge 

We give a more complete description of LSA as a mathemati- 

cal model later when we use it to simulate lexical acquisition. 

However, an overall outline is necessary to understand a roughly 

equivalent psychological theory we wish to present first. The 

input to LSA is a matrix consisting of rows representing unitary 

event types by columns representing contexts in which instances 

of the event types appear. One example is a matrix of unique 

word types by many individual paragraphs in which the words 

are encountered, where a cell contains the number of times 

that a particular word type, say model, appears in a particular 

paragraph, say this one. After an initial transformation of the 

cell entries, this matrix is analyzed by a statistical technique 

called singular value decomposition (SVD) closely akin to fac- 

tor analysis, which allows event types and individual contexts 

to be re-represented as points or vectors in a high dimensional 

abstract space (Golub, Lnk, & Overton, 1981 ). The final output 

is a representation from which one can calculate similarity mea- 

sures between all pairs consisting of either event types or con- 

texts (e.g., word-word, word-paragraph, or paragraph-para- 

graph similarities). 

Psychologically, the data that the model starts with are raw, 

first-order co-occurrence relations between stimuli and the local 

contexts or episodes in which they occur. The stimuli or event 

types may be thought of as unitary chunks of perception or 

memory. The first-order process by which initial pairwise asso- 

ciations are entered and transformed in LSA resembles classical 

conditioning in that it depends on contiguity or co-occurrence, 

but weights the result first nonlinearly with local occurrence 

frequency, then inversely with a function of the number of differ- 

ent contexts in which the particular component is encountered 

overall and the extent to which its occurrences are spread evenly 

over contexts. However, there are possibly important differences 

in the details as currently implemented; in particular, LSA asso- 

ciations are symmetrical; a context is associated with the indi- 

vidual events it contains by the same cell entry as the events 

are associated with the context. This would not be a necessary 

feature of the model; it would be possible to make the initial 

matrix asymmetrical, with a cell indicating the co-occurrence 

relation, for example, between a word and closely following 

words. Indeed, Lund and Burgess (in press; Lund, Burgess, & 

Atchley, 1995), and SchUtze (1992a, 1992b), have explored 

related models in which such data are the input. 

The first step of the LSA analysis is to transform each cell 

entry from the number of times that a word appeared in a 

particular context to the log of that frequency. This approximates 

the standard empirical growth functions of simple learning. The 

fact that this compressive function begins anew with each con- 

text also yields a kind of spacing effect; the association of A 

and B is greater if both appear in two different contexts than if 

they each appear twice in one context. In a second transforma- 

tion, all cell entries for a given word are divided by the entropy 

for that word, - Z  p log p over all its contexts. Roughly speaking, 

this step accomplishes much the same thing as conditioning 

rules such as those described by Rescorla & Wagner (1972), 

in that it makes the primary association better represent the 

informative relation between the entities rather than the mere 

fact that they occurred together. Somewhat more formally, the 

inverse entropy measure estimates the degree to which observing 

the occurrence of a component specifies what context it is in; 

the larger the entropy of, say, a word, the less information its 

observation transmits about the places it has occurred, so the 

less usage-defined meaning it acquires, and conversely, the less 

the meaning of a particular context is determined by containing 

the word. 

It is interesting to note that automatic information retrieval 

methods (including LSA when used for the purpose) are greatly 

improved by transformations of this general form, the present 

one usually appearing to be the best (Harman, 1986). It does 

not seem far-fetched to believe that the necessary transform 

for good information retrieval, retrieval that brings back text 

corresponding to what a person has in mind when the person 

offers one or more query words, corresponds to the functional 

relations in basic associative processes. Anderson (1990) has 

drawn attention to the analogy between information retrieval in 

external systems and those in the human mind. It is not clear 

which way the relationship goes. Does information retrieval in 

automatic systems work best when it mimics the circumstances 

that make people think two things are related, or is there a 

general logic that tends to make them have similar forms? In 

automatic information retrieval the logic is usually assumed to 

be that idealized searchers have in mind exactly the same text 

as they would like the system to find and draw the words in 

2 Although this exploratory process takes some advantage of chance, 

there is no reason why any number of dimensions should be much better 

than any other unless some mechanism like the one proposed is at work. 

In all cases, the model's remaining parameters were fitted only to its 

input (training) data and not to the criterion (generalization) test. 
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their queries from that text (see Bookstein & Swanson, 1974). 

Then the system's challenge is to estimate the probability that 

each text in its store is the one that the searcher was thinking 

about. This characterization, then, comes full circle to the kind 

of communicative agreement model we outlined above: The 

sender issues a word chosen to express a meaning he or she has 

in mind, and the receiver tries to estimate the probability of 

each of the sender's possible messages. 

Gallistel (1990), has argued persuasively for the need to 

separate local conditioning or associative processes from global 

representation of knowledge. The LSA model expresses such a 

separation in a very clear and precise way. The initial matrix 

after transformation to log frequency divided by entropy repre- 

sents the product of the local or pairwise processes? The subse- 

quent analysis and dimensionality reduction takes all of the pre- 

viously acquired local information and turns it into a unified 

representation of knowledge. 

Thus, the first processing step of the model, modulo its associ- 

ational symmetry, is a rough approximation to conditioning or 

associative processes. However, the model's next steps, the sin- 

gular value decomposition and dimensionality optimization, are 

not contained as such in any extant psychological theory of 

learning, although something of the kind may be hinted at in 

some modem discussions of conditioning and, on a smaller scale 

and differently interpreted, is often implicit and sometimes ex- 

plicit in many neural net and spreading-activation architectures. 

This step converts the transformed associative data into a con- 

densed representation. The condensed representation can be seen 

as achieving several things, although they are at heart the result 

of only one mechanism. First, the re-representation captures 

indirect, higher-order associations. That is, jf  a particular stimu- 

lus, X, (e.g., a word) has been associated with some other 

stimulus, Y, by being frequently found in joint context (i.e., 

contiguity), and Y is associated with Z, then the condensation 

can cause X and Z to have similar representations. However, the 

strength of the indirect XZ association depends on much more 

than a combination of the strengths of XY and YZ. This is 

because the relation between X and Z also depends, in a well- 

specified manner, on the relation of each of the stimuli, X, Y, 

and Z, to every other entity in the space. In the past, attempts 

to predict indirect associations by stepwise chaining rules have 

not been notably successful (see, e.g., Pollio, 1968; Young, 

1968). If associations correspond to distances in space, as sup- 

posed by LSA, stepwise chaining rules would not be expected 

to work well; if X is two units from Y and Y is two units from 

Z, all we know about the distance from X to Z is that it must 

be between zero and four. But with data about the distances 

between X, Y, Z, and other points, the estimate of XZ may be 

greatly improved by also knowing XY and YZ. 

An alternative view of LSA's effects is the one given earlier, 

the induction of a latent higher order similarity structure (thus 

its name) among representations of a large collection of events. 

Imagine, for example, that every time a stimulus (e.g., a word) 

is encountered, the distance between its representation and that 

of every other stimulus that occurs in close proximity to it is 

adjusted to be slightly smaller. The adjustment is then allowed 

to percolate through the whole previously constructed structure 

of relations, each point pulling on its neighbors until all settle 

into a compromise configuration (physical objects, weather sys- 

tems, and Hopfield nets do this too; Hopfield, 1982). It is easy 

to see that the resulting relation between any two representations 

depends not only on direct experience with them but with every- 

thing else ever experienced. Although the current mathematical 

implementation of LSA does not work in this incremental way, 

its effects are much the same. The question, then, is whether such 

a mechanism, when combined with the statistics of experience, 

produces a faithful reflection of human knowledge. 

Finally, to anticipate what is developed later, the computa- 

tional scheme used by LSA for combining and condensing local 

information into a common representation captures multivariate 

correlational contingencies among all the events about which it 

has local knowledge. In a mathematically well-defined sense it 

optimizes the prediction of the presence of all other events from 

those currently identified in a given context and does so using 

all relevant information it has experienced. 

Having thus cloaked the model in traditional memory and 

learning vestments, we next reveal it as a bare mathematical 

formalism. 

A Neural Net Analog of  LSA 

We describe the matrix-mathematics of singular value de- 

composition used in LSA more fully, but still informally, next 

and in somewhat greater detail in the Appendix. But first, for 

those more familiar with neural net models, we offer a rough 

equivalent in that terminology. Conceptually, the LSA model 

can be viewed as a simple but rather large three-layered neural 

net. It has a Layer 1 node for every word type (event type), a 

Layer 3 node for every text window (context or episode) ever 

encountered, several hundred Layer 2 nodes--the choice of 

number is presumed to be important--and complete connectiv- 

ity between Layers 1 and 2 and between Layers 2 and 3. (Obvi- 

ously, one could substitute other identifications of the elements 

and episodes). The network is symmetrical; it can be run in 

either direction. One finds an optimal number of middle-layer 

nodes, then maximizes the accuracy (in a least-squares sense) 

with which activating any Layer 3 node activates the Layer 1 

nodes that are its elementary contents, and, simultaneously, vice 

versa. The conceptual representation of either kind of event, a 

unitary episode or a word, for example, is a pattern of activation 

across Layer 2 nodes. All activations and summations are linear. 

Note that the vector multiplication needed to generate the 

middle-layer activations from Layer 3 values is, in general, dif- 

ferent from that to generate them from Layer 1 values. Thus a 

different computation is required to assess the similarity be- 

tween two episodes, two event types, or an event type and an 

episode, even though both kinds of entities can be represented 

as values in the same middle-layer space. Moreover, an event 

type or a set of event types could also be compared with another 

of the same or with an episode or combination of episodes by 

computing their activations on Layer 3. Thus the network can 

3 Strictly speaking, the entropy operation is global, added up over all 

occurrences of the event type (conditioned stimulus; CS), but it is here 

represented as a local consequence, as might be the case, for example, 

if the presentation of a CS on many occasions in the absence of the 

unconditioned stimulus (US) has its effect by appropriately weakening 
the local representation of the CS-US connection. 
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create artificial or " imaginary"  episodes, and, by the inverse 

operations, episodes can generate "utterances" to represent 

themselves as patterns of event types with appropriately varying 

strengths. The same things are true in the equivalent singular- 

value-decomposition matrix model of LSA. 

The Singular Value Decomposition ( SVD ) 

Realization of  LSA 

The principal virtues of SVD for this research are that it 

embodies the kind of inductive mechanisms that we want to 

explore, that it provides a convenient way to vary dimensional- 

ity, and that it can fairly easily be applied to data of the amount 

and kind that a human learner encounters over many years of 

experience. Realized as a mathematical data-analysis technique, 

however, the particular model studied should be considered only 

one case of a class of potential models that one would eventually 

wish to explore, a case that uses a very simplified parsing and 

representation of input and makes use only of linear relations. 

In possible elaborations one might want to add features that 

make it more closely resemble what we know or think we know 

about the basic processes of perception, learning, and memory. 

It is plausible that complicating the model appropriately might 

allow it to simulate phenomena to which it has not been applied 

and to which it currently seems unlikely to give a good account, 

for example certain aspects of grammar and syntax that involve 

ordered and hierarchical relations rather than unsigned similari- 

ties. However, what is most interesting at this point is how much 

it does in its present form. 

Singular Value Decomposition ( SVD ) 

SVD is the general method for linear decomposition of a 

matrix into independent principal components of which factor 

analysis is the special case for square matrices with the same 

entities as columns and rows. Factor analysis finds a parsimoni- 

ous representation of all the intercorrelations between a set of 

variables in terms of a new set of abstract variables, each of 

which is unrelated to any other but which can be combined to 

regenerate the original data. SVD does the same thing for an 

arbitrarily shaped rectangular matrix in which the columns and 

rows stand for different things, as in the present case one stands 

for words, the other for contexts in which the words appear. (For 

those with yet other vocabularies, SVD is a form of eigenvalue-  

eigenvector analysis or principal components decomposition 

and, in a more general sense, of two-way, two-mode multidimen- 

sional scaling (see J. D. Carroll & Arabic, in press). 

To implement the model concretely and simulate human word 

learning, SVD was used to analyze 4.6 million words of text 

taken from an electronic version of Grolier 's Academic Ameri- 
can Encyclopedia, a work intended for young students. This 

encyclopedia has 30,473 articles. From each article we took a 

sample consisting of (usually) the whole text, or its first 2,000 

characters, whichever was less, for a mean text sample length 

of 151 words, roughly the size of a rather long paragraph. The 

text data were cast into a matrix of 30,473 columns, each column 

representing one text sample, by 60,768 rows, each row repre- 

senting a unique word type that appeared in at least two samples. 

The cells in the matrix contained the frequency with which a 

particular word type appeared in a particular text sample. The 

raw cell entries were first transformed to [In (1 + cell fre- 

quency)/entropy of the word over all contexts]. This matrix 

was then submitted to SVD and t he - - fo r  example - -300  most 

important dimensions were retained (those with the highest sin- 

gular values, i.e., the ones that captured the greatest variance 

in the original matrix). The reduced dimensionality solution 

then generates a vector of 300 real values to represent each 

word and each context. See Figure 2. Similarity was usually 

measured by the cosine between vectors. 4 

We postulate that the power of the model comes from (opti- 

mal) dimensionality reduction. Here is still another, more spe- 

cific, explanation of how this works. The condensed vector for 

a word is computed by SVD as a linear combination of data 

from every cell in the matrix. That is, it is not only the informa- 

tion about the word's  own occurrences across documents, as 

represented in its vector in the original matrix, that determines 

the 300 values of its condensed vector. Rather, SVD uses every- 

thing it c a n - - a l l  linear relations in its assigned dimensional- 

i t y - - t o  induce word vectors that best predict all and only those 

text samples in which the word occurs. This expresses a belief 

that a representation that captures much of how words are used 

in natural context captures much of what we mean by meaning. 

Putting this in yet another way, a change in the value of any 

cell in the original matrix can, and usually does, change every 

coefficient in every condensed word vector. Thus, SVD, when 

the dimensionality is reduced, gives rise to a new representation 

that partakes of indirect inferential information. 

A Brief Note on Neurocognitive and Psychological 

Plausibility 

We, of course, intend no claim that the mind or brain actually 

computes a SVD on a perfectly remembered event-by-context 

matrix of its lifetime experience using the mathematical machin- 

ery of complex sparse-matrix manipulation algorithms. What 

we suppose is merely that the mind-b ra in  stores and reprocesses 

its input in some manner that has approximately the same effect. 

The situation is akin to the modeling of sensory processing with 

Fourier decomposition, where no one assumes that the brain 

uses fast Fourier transform the way a computer does, only that 

the nervous system is sensitive to and produces a result that 

reflects the frequency-spectral composition of the input. For 

4 We initially used cosine similarities because they usually work best 

in the information-retrieval application. Cosines can be interpreted as 

representing the direction or quality of a meaning rather than its magni- 

tude. For a text segment, that is roughly like what its topic is rather than 

how much it says about it. For a single word, the interpretation is less 

obvious. It is worth noting that the cosine measure sums the degree of 

overlap on each of the dimensions of representation of the two entities 

being compared. In LSA, the elements of this summation have been 

assigned equal fixed weights, but it would be a short step to allow 

differential weights for different dimensions in dynamic comparison 

operations, with instantaneous weights influenced by, for example, atten- 

tional, motivational, or contextual factors. This would bring LSA's simi- 

larity computations close to those proposed by Tversky (1977), allowing 
asymmetric judgments, for example, while preserving its dimension- 

matching inductive properties. 
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Figure 2. A schematic illustration of dimension reduction by singular value decomposition (SVD). In 

Figure 2A, rows stand for word types, columns for text contexts in which the words occurred, and cell 

entries (x) are (transformed raw) frequencies with which a given word appeared in a given context. In 

Figures 2B and 2C columns are artificial orthogonal factors extracted from the data, and the cell entries (y 

and z) are derived by linear combination of all the data in the upper matrix in a way that is optimal for 

reconstructing the pattern similarities between words in a smaller number of dimensions. 

LSA, hypotheses concerning how the brain might produce an 

SVD-like result remain to be specified, although it may not be 

totally vacuous to point out certain notable correspondences: 

1. Interneuronal communication processes are effectively 

vector multiplication processes between axons, dendrites, and 

cell bodies; the excitation of one neuron by another is propor- 

tional to the dot product (the numerator of a cosine) of the 

output of one and the sensitivities of the other across the synaptic 

connections that they share. 

2. Single-cell recordings from motor-control neurons show 

that their combined population effects in immediate, delayed, and 

mentally rotated movement control are well described as vector 

averages (cosine weighted sums) of their individual representa- 

tions of direction (Georgopoulos, 1996), just as LSA's context 

vectors are vector averages of their component word vectors. 

3. The neural net models popularly used to simulate brain 

processes can be recast as matrix algebraic operations. 

It is also worth noting that many mathematical models of 

laboratory learning and other psychological phenomena have 

employed vector representations and linear combination opera- 

tions on them to good effect (e.g., Eich, 1982; Estes, 1986; 

Hintzman, 1986; Murdock, 1993), and many semantic network- 

represented theories, such as Kintsch (1988), could easily be 

recast in vector algebra. From this one can conclude that such 

representations and operations do not always distort psychologi- 

cal reality. LSA differs from prior application of vector models 

in psychology primarily in that it derives element values empiri- 

cally from effects of experience rather than either prespecifying 

them by human judgment or experimenter hypothesis or fitting 

them as free parameters to predict behavior, that it operates over 

large bodies of experience and knowledge, and that, in general, 

it uses much longer vectors and more strongly and explicitly 

exploits optimal choice of dimensionality. 

Evaluating the Model 

Four pertinent questions were addressed by simulation. The 

first was whether such a simple linear model could acquire 
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knowledge of humanlike word meaning similarities to a signifi- 

cant extent if given a large amount of natural text. Second, 

supposing it did, would its success depend strongly on the di- 

mensionality of its representation? Third, how would its rate of 

acquisition compare with that of a human reading the same 

amount of text? Fourth, how much of its knowledge would 

come from indirect inferences that combine information across 

samples rather than directly from the local contextual contiguity 

information present in the input data? 

LSA's Acquisition of  Word Knowledge From Text 

In answer to the first question, we begin with results from 

the most successful runs, which used around 300 dimensions, 

a value that we have often found effective in other applications 

to large data sets. After training, the model's word knowledge 

was tested with 80 retired items from the synonym portion of 

the Test of English as a Foreign Language (TOEFL), kindly 

provided, along with normative data, by Educational Testing 

Service (ETS; Landauer & Dumais, 1994, 1996). Each item 

consists of a stem word, the problem word in testing parlance, 

and four alternative words from which the test taker is asked to 

choose that with the most similar meaning to the stem. The 

model's choices were determined by computing cosines be- 

tween the vector for the stem word in each item and each of 

the four alternatives and choosing the word with the largest 

cosine (except in six cases where the encyclopedia text did not 

contain the stem, the correct alternative, or both, for which it 

was given a score of .25 ). The model got 51.5 correct, or 64.4% 

(52.5% corrected for guessing by the standard formula [correct- 

chancel( 1-chance)]. By comparison, a large sample of appli- 

cants to U.S. colleges from non-English-speaking countries who 

took tests containing these items averaged 51.6 items correct, 

or 64.5% (52.7% corrected for guessing). Although we do not 

know how such a performance would compare, for example, 

with U.S. school children of a particular age, we have been 

told that the average score is adequate for admission to many 

universities. For the average item, LSA's pattern of cosines over 

incorrect alternatives correlated .44 with the relative frequency 

of student choices. 

Thus, the model closely mimicked the behavior of a group 

of moderately proficient English readers with respect to judg- 

ments of meaning similarity. We know of no other fully auto- 

matic application of a knowledge acquisition and representation 

model, one that does not depend on knowledge being entered 

by a human but only on its acquisition from the kinds of experi- 

ence on which a human relies, that has been capable of per- 

forming well on a full-scale test used for adults. It is worth 

noting that LSA achieved this performance using text samples 

whose initial representation was simply a "bag of words"; that 

is, all information from word order was ignored, and there was, 

therefore, no explicit use of grammar or syntax. Because the 

model could not see or hear, it could also make no use of 

phonology, morphology, orthography, or real-world perceptual 

knowledge. More about this later. 

The Effect o f  Dimensionality 

The idea underlying our interpretation of the model supposes 

that the correct choice of dimensionality is important to success. 
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Figure 3. The effect of number of dimensions retained in latent-seman- 

tic-analysis (LSA)-singular-value-decomposition (SVD) simulations 

of word-meaning similarities. The dependent measure is the proportion 

of 80 multiple-choice synonym test items for which the model chose 

the correct answer. LSA was trained on text samples from 30,473 articles 

in an electronic file of text for the Groliers Academic American 
Encyclopedia. 

To determine whether it was, the simulation was repeated using 

a wide range of numbers of dimensions. See Figure 3 (note that 

the abscissa is on a log scale with points every 50 dimensions 

in the midregion of special interest). Two or three dimensions, 

as used, for example in many factor analytic and multidimen- 

sional scaling attacks on word meaning (e.g., Deese, 1965; 

Fillenbaum & Rapoport, 1971; Rapoport & Fillenbaum, 1972) 

and in the Osgood semantic differential (Osgood, Suci, & Tan- 

nenbaum, 1957), resulted in only 13% correct answers when 

corrected for guessing. More importantly, using too many fac- 

tors also resulted in very poor performance. With no dimension- 

ality reduction at all, that is, using cosines between rows of the 

original (but still transformed) matrix, only 16% of the items 

were correct. 5 Near maximum performance of 45-53%, cor- 

rected for guessing, was obtained over a fairly broad region 

around 300 dimensions. The irregularities in the results (e.g., 

the dip at 200 dimensions) are unexplained; very small changes 

in computed cosines can tip LSA' s choice of the best test alterna- 

tive in some cases. Thus choosing the optimal dimensionality 

of the reconstructed representation approximately tripled the 

number of words the model learned as compared to using the 

dimensionality of the raw data. 

5 Given the transform used, this result is similar to what would be 

obtained by a mutual informationanalysis, a method for capturing word 

dependencies often used in computational linguistics (e.g., Church and 

Hanks, 1990). Because of the transform, this poor result is still better 

than that obtained by a gross correlation over raw co-occurrence fre- 

quencies, a statistic often assumed to be the way statistical extraction 

of meaning from usage would be accomplished. 
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Computational constraints prevented assessing points above 

1,050 dimensions, except for the full-dimensional case at 30,473 

dimensions that could be computed without performing an SVD. 

However, it is the mid range around the hypothesized optimum 

dimensionality that is of particular interest here, the matter of 

determining whether there is a distinct nonmonotonicity in ac- 

cord with the idea that dimensionality optimization is important. 

To test the statistical significance of the obvious nonmonoton- 

icity in Figure 3, we fitted separate log functions to the points 

below and above the observed maximum at 300 dimensions, not 

including the 300 point itself to avoid the bias of having selected 

the peak, or the extreme 30,473 point. The positive and negative 

slopes, respectively, had r = .98 (df  = 5) and - .86  (df  = 12), 

and associated ps < .0002. Thus, it is clear that there is a strong 

nonmonotonic relation between number of LSA dimensions and 

accuracy of simulation, with several hundred dimensions needed 

for maximum performance, but still a small fraction of the di- 

mensionality of the raw data. 

The Learning Rate of  LSA Versus Humans and Its 

Reliance on Induction 

Next, in order to judge how much of the human learner's 

problem the model is able to solve, we need to know how 

rapidly it gains competence relative to human language learners. 

Even though the model can pass an adult vocabulary test, if it 

were to require much more data than a human to achieve the 

same performance one would have to conclude that its induction 

method was missing something important that humans possess. 

Unfortunately, we cannot use the ETS normative data directly 

for this comparison because we don't know how much English 

their sample of test takers had read, and because, unlike LSA, 

the ETS students were mostly second-language learners. 

For similar reasons, although we have shown that LSA makes 

use of dimensionality reduction, we do not know how much, 

quantitatively, this feature would contribute to the problem given 

the language exposure of a normal human vocabulary learner. 

We report next some attempts to compare LSA with human 

word-knowledge acquisition rates and to assess the utility of its 

inductive powers under normal circumstances. 

The rate and sources of schoolchildren's vocabulary acquisi- 

tion. LSA gains its knowledge of words by exposure to text, 

a process that is at least partially analogous to reading. How 

much vocabulary knowledge do humans learn from reading and 

at what rate? We expand here on the brief summary given earlier. 

The main parameters of human learning in this major expertise 

acquisition task have been determined with reasonable accuracy. 

First note that we are concerned only with knowledge of the 

relative similarity of individual words taken as units, not with 

their production or with knowledge of their syntactical or gram- 

matical function, their component spelling, sounds, or morphol- 

ogy or with their real-world pragmatics or referential semantics. 

That is not to say that these other kinds of word knowledge, 

which have been the focus of most of the work on lexicon 

acquisition in early childhood, are unimportant, only that what 

has been best estimated quantitatively for English vocabulary 

acquisition as a whole and what LSA has so far been used to 

simulate is knowledge of the similarity of word meanings. 

Reasonable bounds for the long-term overall rate of gain of 

human vocabulary comprehension, in terms comparable to our 

LSA results, are fairly well established. The way such numbers 

usually have been estimated is to choose words at random from 

a large dictionary, do some kind of test on a sample of people 

to see what proportion of the words they know, then reinflate. 

Several researchers have estimated comprehension vocabularies 

of young adults, with totals ranging from 40,000 to 100,000 for 

high school graduates (Nagy & Anderson, 1984; Nagy & Her- 

man, 1987). The variation appears to be largely determined by 

the size of the dictionaries sampled and to some extent by the 

way in which words are defined as being separate from each 

other and by the testing methods employed (see Anglin, 1993; 

Miller, 1991; and Miller and Wakefield' s commentary in Anglin, 

1993, for review and critiques). The most common testing meth- 

ods have been multiple-choice tests much like those of TOEFL, 

but a few other procedures have been employed with comparable 

results. Here is one example of an estimation method. Moyer 

and Landauer (Landauer, 1986 ) sampled 1,000 words from Web- 

ster's Third New International Dictionary (1964) and presented 

them to Stanford University undergraduates along with a list of 

30 common categories. If a student classified a word correctly 

and rated it familiar it was counted as known. Landauer then 

went through the dictionary and guessed how many of the words 

could have been classified correctly by knowing some other 

morphologically related word and adjusted the results accord- 

ingly. The resulting estimate was around 100,000 words. This 

is at the high end of published estimates. The lowest frequently 

cited estimate is around 40,000 by the last year of high school 

(Nagy & Anderson, 1984). It appears, however, that all existing 

estimates are somewhat low because as many as 60% of the 

words found in a daily newspaper do not occur in dictionaries-- 

mostly names, some quite common (Walker & Amsler, 1986) - -  

and most have not adequately counted conventionalized 

multiword idioms and stock phrases whose meanings cannot or 

might not be derived from their components. 

By simple division, knowing 40,000 to 100,000 words by 20 

years of age means adding an average of 7-15 new words a 

day from age 2 onwards. The rate of acquisition during late 

elementary and high school years has been estimated at between 

3,000 and 5,400 words per year (10-15 per day), with some 

years in late elementary school showing more rapid gains than 

the average (Anglin, 1993; Nagy & Herman, 1987; M. Smith, 

1941). In summary, it seems safe to assume that, by the usual 

measures, the total meaning comprehension vocabularies of av- 

erage fifth-to-eighth-grade students increase by somewhere be- 

tween 10 and 15 new words per day. 

In the LSA simulations every orthographically distinct word, 

defined as a letter string surrounded by spaces or punctuation 

marks, is treated as a separate word type. Therefore the most 

appropriate, although not perfect, correspondence in human 

word learning is the number of distinct orthographic forms for 

which the learner must have learned, rather than deduced, the 

meaning tested by TOEFL. Anglin's (1993; Anglin, Alexan- 

der, & Johnson, 1996) recent estimates of schoolchildren's vo- 

cabulary attempted to differentiate words whose meaning was 

stored literally from ones deduced from morphology. This was 

done by noting when the children mentioned or appeared to use 

word components during the vocabulary test and measuring 

their ability to do so when asked. He estimated gains of 9 -12  
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separate learned words per day for first-to-fifth-grade students, 

without including most proper names or words that have entered 

the language since around 1980. In addition to the usual factors 

noted above, there are additional grounds for suspecting that 

Anglin's estimates may be somewhat low; in particular, the 

apparent use of morphological analysis could sometimes instead 

be the result of induced similarity between meanings of indepen- 

dently learned words. For example, LSA computes a relatively 

high cosine between independent and independence (cos = 

.60), perception and perceptual (cos = .84), comprehension 
and incomprehensible (cos = .25; where the average cosine 

between unrelated words is 2.07 + 2.04) .  LSA, of course has 

no knowledge of the internal structure of words. Thus children 

(or adults) asked to tell what independently means might think 

of independent not by breaking down independence into mor- 

phemic components, but because one word reminds them of 

the other (and adult introspection might fool itself similarly). 

However, these quibbles are rather beside the point for present 

purposes. The issue is whether LSA can achieve a rate of learn- 

ing of word-meaning similarity that approaches or exceeds that 

of children, and for that purpose the estimates of Anglin, and 

virtually all others, give an adequate target. To show that its 

mechanism can do a substantial part of what children accom- 

plish, LSA need only learn a substantial fraction of 10 words 

per day. 

However, a further step in interpreting the LSA-chi ld  com- 

parison allows us to more fully resolve the "excess learning" 

paradox. As mentioned earlier, children in late grade school 

must acquire most of their new word meanings from reading. 

The proof is straightforward. The number of different word 

types in spoken vocabulary is less than a quarter that in the 

printed vocabulary that people are able to read by the end of 

high school. 6 Moreover, because the total quantity of heard 

speech is very large and spoken language undoubtedly provides 

superior cues for meaning acquisition, such as perceptual corre- 

lates, pragmatic context, gestures, and the outright feedback of 

disambiguating social and tutorial interactions, almost all of the 

words encountered in spoken language must have been well 

learned by the middle of primary school. Indeed estimates of 

children's word understanding knowledge by first grade range 

upwards toward the tens of thousands used in speech by an 

average adult (Seashore, 1947). Finally, very little vocabulary 

is learned from direct instruction. Most schools devote very 

little time to it, and it produces meager results. Authorities guess 

that at best 100 words a year could come from this source 

(Durkin, 1979). 

It has been estimated that the average fifth-grade child spends 

about 15 min per day reading in school and another 15 min out 

of school reading books, magazines, mall, and comic books 

(Anderson, Wilson, & Fielding, 1988; Taylor, Frye, & Maruy- 

ama, 1990). If we assume 30 rain per day total for 150 school 

days and 15 min per day for the rest of the year, we get an 

average of 21 min per day. At an average reading speed of 165 

words per min (Carver, 1990) and a nominal paragraph length 

of 70 words, they read about 2.5 paragraphs per minute and 

about 50 per day. Thus, while reading, schoolchildren are adding 

about one new word to their comprehension vocabulary every 

2 min or five paragraphs. Combining estimates of reader and 

text vocabularies (Nagy, Herman, & Anderson, 1985) with an 

average reading speed of 165 words per minute (Anderson & 

Freebody, 1983; Carver, 1990; Taylor et al., 1990), one can infer 

that young readers encounter about one not-yet-known word per 

paragraph of reading. Thus the opportunity is there to acquire 

the dally ration. However, this would be an extremely rapid 

rate of learning. Consider the necessary equivalent list-learning 

speed. One would have to give children a list of 50 new words, 

each with one paragraph of exemplary context, and expect them 

to derive and permanently retain 10-15 sufficiently precise 

meanings after a single very rapid study trial. 

Word meanings are acquired by reading, but how? Several 

research groups have tried to mimic or enhance the contextual 

learning of words. The experiments are usually done by select- 

ing nonsense or unknown words at the frontier of grade-level 

vocabulary knowledge and embedding them in sampled or care- 

fully constructed sentences or paragraphs that imply aspects of 

meaning for the words. The results are uniformly discouraging. 

For example, Jenkins, Stein, and Wysocki (1984) constructed 

paragraphs around 18 low-frequency words and had fifth graders 

read them up to 10 times each over several days. The chance 

of learning a new word on one reading, as measured by a forced- 

choice definition test, was between .05 and. 10. More naturalistic 

studies have used paragraphs from school books and measured 

the chance of a word moving from incorrect to correct on a 

later test as a result of one reading or one hearing (Elley, 1989; 

Nagy et al., 1985). About one word in 20 paragraphs makes 

the jump, a rate of 0.05 words per paragraph read. At 50 para- 

graphs read per day, children would acquire only 2.5 words per 

day. (Carver and Leibert, 1995, assert that even these rates are 

high as a result of methodological flaws.) 

Thus, experimental attempts intended to produce accelerated 

vocabulary acquisition have attained less than one half the natu- 

ral rate, and measurements made under more realistic conditions 

6 From his log-normal model of word frequency distribution and the 

observations in J. B. Carroll, Davies, and Richmond, (1971), Carroll 

estimated a total vocabulary of 609,000 words in the universe of text 

to which students through high school might be exposed. Dahl (1979), 

whose distribution function agrees with a different but smaller sample 

of Howes (as cited by Dahl), found 17,871 word types in 1,058,888 

tokens of spoken American English, compared to 50,406 in the compara- 

bly-sized adult sample of Kucera and Francis (1967). By J. B. Carroll's 

( 1971 ) model, Dahl's data imply a total of roughly 150,000 word types 

in spoken English, thus approximately one fourth the total, less to the 

extent that there are spoken words that do not appear in print. Moreover, 

the ratio of spoken to printed words to which a particular individual is 

exposed must be even more lopsided because local, ethnic, favored-TV 

channels, and family usage undoubtedly restrict the variety of vocabulary 

more than published works intended for the general school-age reader- 

ship. If we assume that seventh graders have met a total of 50 million 

word tokens of spoken English ( 140 min a day at 100 words per minute 

for 10 years) then the expected number of occasions on which the they 

would have heard a spoken word of mean frequency would be about 

370. Carroll's estimate for the total vocabulary of seventh-grade texts 

is 280,000, and we estimate later that typical students would have read 

about 3.8 million words of print. Thus, the mean number of times they 

would have seen a printed word to which they might be exposed is only 

about 14. The rest of the frequency distributions for heard and seen 

words, although not proportional, would, at every point, show that spo- 

ken words have already had much greater opportunity to be learned than 

printed words, so profit much less from additional experience. 
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find at best one fourth the normal rate. 7 This leads to the conclu- 

sion that much of  what the children learned about words from 

the texts they read must have gone unmeasured in these 

experiments. 

The rate and sources of LSA's vocabulary acquisition. We 

wish now to make comparisons between the word-knowledge 

acquisition of  LSA and that of children. First, we want to obtain 

a comparable estimate of  LSA's  overall rate of  vocabulary 

growth. Second, to evaluate our hypothesis that the model, and 

by implication, a child, relies strongly on indirect as well as 

direct learning in this task, we wish to estimate the relative 

effects of  experience with a passage of  text on knowledge of  

the particular words contained in it, and its indirect effects on 

knowledge of  all other words in the language, effects that would 

not have been measured in the empirical studies of  children 

acquiring vocabulary from text. If  LSA learns close to I0 words 

from the same amount of  text that students read, assuming that 

children use a similar mechanism would resolve the excess- 

learning paradox. 

Because the indirect effects in LSA depend both on the mod- 

e l ' s  computational procedures and on empirical properties of  

the text it learns from, it is necessary to obtain estimates relevant 

to a body of text equivalent to what school-age children read, 

We currently lack a full corpus of  representative children's read- 

ing on which to perform the SVD. However, we do have access 

to detailed word-distribution statistics from such a corpus, the 

one on which the American Heritage Word Frequency Book 

(J. B. Carroll, Davies, & Richman, 1971 ) was based. By assum- 

ing that learners would acquire knowledge about the words in 

the J. B. Carroll et al. materials in the same way as knowledge 

about words in the encyclopedia, except with regard to the 

different words involved, these statistics can provide the desired 

estimates. 

It is clear enough that, for a human, learning about a word 's  

meaning from a textual encounter depends on knowing the 

meaning of  other words. As described above, in principle this 

dependence is also present in the LSA model. The reduced 

dimensional vector for a word is a linear combination of  infor- 

mation about all other words. Consequently, data solely about 

other words, for example a text sample containing words Y and 

Z, but not word X, can change the representation of X because 

it changes the representations of Y and Z, and all three must be 

accommodated in the same overall structure. However, estimat- 

ing the absolute sizes of such indirect effects in words learned 

per paragraph or per day, and its size relative to the direct effect 

of  including a paragraph actually containing word X calls for 

additional analysis. 

Details of estimating direct and indirect effects. The first 

step in this analysis was to partition the influences on the knowl- 

edge that LSA acquired about a given word into two compo- 

nents, one attributable to the number of passages containing the 

word itself, the other attributable to the number of passages not 

containing it. To accomplish this we performed variants of our 

encyclopedia-TOEFL analysis in which we altered the text data 

submitted to SVD. We independently varied the number of  text 

samples containing stem words and the number of  text samples 

containing no words from the TOEFL test items. For each stem 

word from the TOEFL test we randomly selected various num- 

bers of text samples in which it appeared and replaced all occur- 

rences of  the stem word in those contexts with a corresponding 

nonsense word. After analysis we tested the nonsense words by 

substituting them for the originals in the TOEFL test items. In 

this way we maintained the natural contextual environment of  

words while manipulating their frequency. Ideally, we wanted 

to vary the number of text samples per nonsense word so as to 

have 2, 4, 8, 16, and 32 occurrences in different repetitions of  the 

experiment. However, because not all stem words had appeared 

sufficiently often in the corpus, this goal was not attainable, and 

the actual mean numbers of  text samples in the five conditions 

were 2.0, 3.8, 7.4, 12.8, and 22.2. We also varied the total 

number of  text samples analyzed by the model by taking succes- 

sively smaller nested random subsamples of  the original corpus. 

We examined total corpus sizes of  2,500; 5,000; 10,000; 15,000; 

20,000; 25,000; and 30,473 text samples (the full original cor- 

pus).  In all cases we retained every text sample that contained 

any word from any of the TOEFL items. 8 Thus the stem words 

were always tested by their discriminability from words that 

had appeared the same, relatively large, number of  times in all 

conditions. 

For this analysis we adopted a new, more sensitive outcome 

measure. Our original figure of merit, the number of  TOEFL 

test items in which the correct alternative had the highest cosine 

with the stem, mimics human test scores but contains unneces- 

sary binary quantification noise. We substituted a discrimination 

7 Carver and Leibert (1995) have recently put forward a claim that 

word meanings are not learned from ordinary reading. They report 

studies in which a standardized 100-item vocabulary test was given 

before and after a summer program of nonsehool book reading. By the 

LSA model and simulation results to be presented later in this article, 

one would expect a gain in total vocabulary of about 600 words from 

the estimated 225,000 words of reading reported by their fourth- through 

six~-grade participants. Using J. B. Carroll's ( 1971 ) model, this would 

amount to a 0.1%-0.2% gain in total vocabulary. By direct estimates 

such as Anderson and Freebody (1981), Anglin (1993), Nagy and An- 

derson (1984), Nagy and Herman (1987), or M. Smith ( 1941 ), it would 

equal about ~/~2 to ~/6 of a year's increase. Such an amount could not be 

reliably detected with a 100-item test and 50 students, which would 

have an expected binomial standard error of around 0.7% or more. 

Moreover, Carver and Leibert report that the actual reading involved was 

generally at a relatively easy vocabulary level, which, on a commonsense 

interpretation, would mean that almost all the words were already 

known. In terms of LSA, as described later, it would imply that the 

encountered words were on average at a relatively high point on their 

learning curves and thus the reading would produce relatively small 

gains. 

s Because at least one TOEFL-alternative word occurred in a large 

portion of the samples, we could not retain all the samples containing 

them directly, as it would then have been impossible to get small nested 

samples of the corpus. Instead, we first replaced each TOEFL-alternative 

word with a corresponding nonsense word so that the alternatives them- 

selves would not be differentially learned, then analyzed the subset 

corpora in the usual way to obtain vectors for all words. We then com- 

puted new average vectors for all relevant samples in the full corpus 

and finally computed a value for each TOEFL-alternative word other 

than the stem as the centroid of all the paragraphs in which it appeared 

in the full corpus. The result is that alternatives other than the stem are 

always based on the same large set of samples, and the growth of a 

word's meaning is measured by its progress toward its final meaning, 

that is, its vector value at the maximum learning [~oint simulated. 
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ratio measure, computed by subtracting the average cosine be- 

tween a stem word and the three incorrect alternatives from the 

cosine between the stem word and the correct alternative, then 

dividing the result by the standard deviation of cosines between 

the stem and the incorrectalternatives, that is, (cos stem.correct 

- mean cos stem.incorrectt_3)/(std cos stem.incorrect~_3). This 

yields a z score, which can also be interpreted as a d' measure. 

The z scores also had additive properties needed for the follow- 

ing analyses. 

The results are depicted in Figure 4. Both experimental fac- 

tors had strong influences; on average the difference between 

correct and incorrect alternatives grows with both the number 

of text samples containing the stem word, S, and with additional 

text samples containing no words on the test, T, and there is a 

positive interaction between them. For both overall log functions 

r > .98; F(6)  for T = 26.0, p < <  .001; F(4)  for S = 64.6, p 

< <  .001; the interaction was tested as the linear regression of 

slope on log S as a function of log T, r 2 = .98, F (4)  = 143.7, 

p = .001.) These effects are illustrated in Figure 4 along with 

logarithmic trend lines for T within each level of S. 

Because of the expectable interaction effects--experience 

with a word helps more when there is experience with other 

words--quantitative estimates of the total gain from new read- 

ing and of the relative contributions of the two factors are only 

meaningful for a particular combination of the two factors. In 

other words, to determine how much learning encountering a 

particular word in a new text sample contributes, one must know 

1.4" 

1 . 2  

1.0 

n- 

0.8 

g 
| 

:i 
~ 0.6 

0.40 

12.8 

7.4 

10,'00020,'00030,'000 

Total Contexts 

Figure 4. The combined effect in latent semantic analysis (LSA) simu- 

lations of the average number of contexts in which a test word appeared 

(the parameter), and the total number of other contexts, those containing 

no words from the synonym test items. The dependent measure is the 

normalized difference in LSA similarity (cosine) of the test words to 

their correct and incorrect alternatives. The variables were experimen- 

tally manipulated by randomly replacing test words with nonsense words 

and choosing random nested subsamples of total text. The fitted lines 

are separate empirical log functions for each parameter value. 

how many other text samples with and without that word the 

learner or model has previously met. 

In the last analysis step, we estimated, for every word in the 

language, how much the z score for that word increased as a 

result of including a text sample that contained it and for includ- 

ing a text sample that did not contain it, given a selected point 

in a simulated schoolchild's vocabulary learning history. We 

then calculated the number of words that would be correct given 

a TOEFL-style synonym test of all English words. To anticipate 

the result, for a simulated seventh grader we concluded that the 

direct effect of reading a sample on knowledge of words in the 

sample was an increase of approximately 0.05 words of total 

vocabulary, and the effect of reading the sample on other words 

(i.e., all those not in the sample) was a total vocabulary gain of 

approximately 0.15 words. Multiplying by a nominal 50 samples 

read, we get a total vocabulary increase of about 10 words per 

day. Details of this analysis are given next. 

Details o f  LSA simulation o f  total vocabulary gain. First, 

we devised an overall empirical model of the joint effects of 

direct and indirect textual experience that could be fit to the full 

set of data of Figure 4: 

z = a(log b T)(log c S) (1) 

where T is the total number of text samples analyzed, S is the 

number of text samples containing the stem word, and a, b, 

and c are fitted constants (a = 0.128, b = 0.076, c = 31.910 

for the present data, least squares fitted by the Microsoft Excel 

Version 5.0 (1993) iterative equation solver.) Its predictions are 

correlated with observed z with r = .98. To convert its predic- 

tions to an estimate of probability correct, we assumed z to be 

a normal deviate and determined the area under the normal 

curve to the right of its value minus that of the expected value 

for the maximum from a sample of three. In other words, we 

assumed that the cosines for the three incorrect alternatives in 

each item were drawn from the same normal distribution and 

that the probability of LSA choosing the right answer is the 

probability that the cosine of the stem to the correct alternative 

is greater than the expected maximum of three incorrect alterna- 

tives. The overall two-step model is correlated r = .89 with 

observed percentage correct. 

Next, we estimated for every word in the language (a) the 

probability that a word of its frequency appears in the next text 

sample that a typical seventh grader encounters and (b) the 

number of times the individual would have encountered that 

word previously. We then calculated, from Equation 1, (c) the 

expected increase in z for a word of that frequency as a result 

of one additional passage containing it and (d) the expected 

increase in z for a word of that frequency as a result of one 

additional passage not containing it. Finally, we converted z to 

probability correct, multiplied by the corresponding frequencies, 

and cumulated gains in number correct over all individual words 

in the language to get the total vocabulary gains from reading 

a single text sample. 

The J. B. Carroll et al. (1971) data give the frequency of 

occurrence of each word type in a representative corpus of text 

read by schoolchildren. Conveniently, this corpus is nearly the 

same in both overall size, five million words, and in number of 

word types, 68,000, as our encyclopedia sample (counting, for 
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the encyclopedia sample, singletons not included in the SVD 

analysis), so that no correction for sample size, which alters 

word frequency distributions, was necessary. 

Simulating a schoolchild's learning. To simulate the rate of  

learning for an older grade school child, we assumed that she 

would have read a total of  3.8 million words, equivalent to 

25,000 of  our encyclopedia text samples, and set T equal to 

25,000 before reading a new paragraph and to 25,001 afterward. 

We divided the word types in J. B. Carroll et al. (1971) into 

37 frequency bands ( < 1, 1, 2 . . . .  20 and roughly logarithmic 

thereafter to > 37,000) and for each band set S equal to an 

interpolated central frequency of words in the band? We then 

calculated the expected number of additional words known in 

each band (the probability correct estimated from the joint- 

effect model times the probability of occurrence of  a token 

belonging to the band, or the total number of  types in the band, 

respectively) to get (a)  the expected direct increase due to one 

encounter with a test word and (b)  the expected increase due 

to the indirect effect of reading a passage on all other words in 

the language? ° 

The result was that the estimated direct effect was 0.0007 

words gained per word encountered, and the .indirect effect was 

a total vocabulary gain of  0.1500 words per text sample read. 

Thus the total increase per paragraph read in the number of  

words the simulated student would get right on a test of  all 

the words in English would be approximately 0.0007 × 70 

(approximate number of  words in an average paragraph) + 0.15 

= 0.20. Because the average student reads about 50 paragraphs 

a day (Taylor et al., 1990), the total amounts to about 10 new 

words per day. 

About the accuracy of  the simulations. Before further inter- 

preting these results, let us consider their likely precision. The 

only obvious factors that might lead to overestimated effects 

are differences between the training samples and text normally 

read by schoolchildren. First, it is possible that the heterogeneity 

of  the text samples, each of  which was drawn from an article 

on a different topic, might cause a sorting of  words by meaning 

that is more beneficial to LSA word learning than is normal 

children's text. Counterpoised against this possibility, however, 

is the reasonable expectation that school reading has been at 

least partially optimized for children's vocabulary acquisition. 

Second, the encyclopedia text samples had a mean of  151 

words, and we have equated them with assumed 70 word para- 

graphs read by schoolchildren. This was done because our hy- 

pothesis is that connected passages of  text on a particular topic 

are the effective units of  context for learning words and that the 

best correspondence was between the encyclopedia initial-text 

samples, usually full short articles, and paragraphs of  text read 

by children. To check the assumption that window-size differ- 

ences would not materially alter conclusions from the present 

analysis, we recomputed the TOEFL discrimination ratio results 

at 300 dimensions for a smaller window size by subdividing the 

original -< 2,000 character samples into exhaustive sequential 

subsets of ----- 500 characters, thus creating a set of  68,527 con- 

texts with a mean of 73 words per sample. The new result was 

virtually identical to the original value, z = 0.93. versus 0.89, 

corresponding by the models above to about 53% versus 52% 

correct on TOEFL, respectively. 

There are a several reasons to suspect that the estimated LSA 

learning rate is biased downward rather than upward relative to 

children's learning. First to continue with the more technical 

aspects of  the analysis, the text samples used were suboptimal 

in several respects. The crude 2,000 character length cutoff was 

used because the available machine-readable text had no consis- 

tent paragraph or sentence indicators. This resulted in the inclu- 

sion of  a large number of  very short samples, things like "Con-  

stantinople: See Istanbul," and of many long segments that con- 

tained topical changes that surely would have been signaled by 

paragraphs in the original. 

Of  course, we do not know how the human mind chooses the 

context window. Several alternatives suggest themselves. And it 

is plausible that the effective contexts are sliding windows rather 

than the independent samples used here and likely that experi- 

enced readers parse text input into phrases, sentences, para- 

graphs, and other coherent segments rather than arbitrary iso- 

lated pieces. Thus, although LSA learning does not appear to 

be very sensitive to moderate differences in the context window 

size, window selection was probably not optimized in the re- 

ported simulations as well as it is in human reading. The more 

general question of  the effect of  window size and manner of 

selection is of  great interest, but requires additional data and 

analysis. 

For the present discussion, more interesting and important 

differences involve a variety of  sources of  evidence about word 

meanings to which human word learners have access but LSA 

did not. First, of course, humans are exposed to vast quantities 

of  spoken language in addition to printed words. Although we 

have noted that almost all words heard in speech would be 

passed on vocabulary tests before seventh grade, the LSA mech- 

anism supposes both that knowledge of  these words is still 

growing slowly in representational quality as a result of new 

9 To estimate the number of words that the learner would see for the 

very first time in a paragraph, we used the lognormal model proposed 

by J. B. Carroll ( 1971 ) in his introduction to the Word Frequency Book. 

We did not attempt to smooth the other probabilities by the same function 

because it would have had too little effect to matter, but used a function 

of the same form to interpolate the center values used to stand for 
frequency bands. 

to For example, there are 11,915 word types that appear twice in the 

corpus. The z for the average word that has appeared twice when 25,000 

total samples have been met, according to Equation 1 is 0.75809. If 

such a word is met in the next sample, which we call a direct effect, it 

has been met three times, there have been 25,001 total samples, and the 

word's z increases to 0.83202. By the maximum of three from a normal 

distribution criterion, its probability of being correct on the TOEFL test 

rises by 0.029461. But the probability of a given word in a sample being 

a word of frequency two in the corpus is (11,915 × 2)/(5 × 10 6) = 

0.0047, so the direct gain in probability correct for a single word actually 

encountered attributable to words of frequency two is just 0.000138. 

However, there is also a very small gain expected for every frequency- 

two word type that was not encountered, which we call an indirect 

effect. Adding an additional paragraph makes these words add no occur- 

rences but go from 25,000 to 25,001 samples. By Equation 1, the z for 

such a word type goes, on average, from 0.75809 to 0.75810, and its 

estimated probability correct goes up by 7.0674 × 10 -6. But, because 

there are 11,195 word types of frequency two, the total indirect vocabu- 

lary gain is .07912. Finally, we cumulated these effects over all 37 word- 

frequency bands. 
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contextual encounters and, more importantly, that new experi- 

ence with any word improves knowledge of all others. 

Second, the LSA analysis treats text segments as mere "bags 

of words," ignoring all information present in the order of the 

words, thus making no use of syntax or of the logical, grammati- 

cal, discursive, or situational relations it caries. Experts on read- 

ing instruction (e.g., Drum & Konopak, 1987; Durkin, 1979) 

mental abilities (e.g., Sternberg, 1987) and psycholinguistics 

(e.g., Kintsch & Vipond, 1979; Miller, 1978) have stressed the 

obvious importance of these factors to the reader's ability to 

infer word meanings from text. Indeed, Durkin (1983, p. 139) 

asserts that scrambled sentences would be worthless context for 

vocabulary instruction (which may well have some validity for 

human students who have learned some gramnuar, but clearly is 

not for LSA). 

In the simulations, words were treated as arbitrary units with 

no internal structure and no perceptual identities; thus LSA 

could also take no advantage of morphological relations or sound 

or spelling similarities. Moreover, the data for the simulations 

was restricted to text, with no evidence provided on which to 

associate either words or text samples with real-world objects 

or events or with its own thoughts, emotions, or intended actions 

as a person might. LSA could make no use of perceptual or 

experiential relations in the externally referenced world of lan- 

guage or of phonological symbolism (onomatopoeia) to infer 

the relation between words. Finally, LSA is neither given nor 

acquires explicitly usable knowledge of grammar (e.g., part-of- 

speech word classes) or of the pragmatic constraints, such as 

one-object-one-word, postulated by students of early language 

acquisition. 

Thus, the LSA simulations must have suffered considerable 

handicaps relative to the modeled seventh-grade student to 

whom it was compared. Suppose that the seventh grader's extra 

abilities are used simply to improve the input data represented 

in Figure 2, for example, by adding an appropriate increment 

to plurals of words whose singulars appear in a text sample, 

parsing the input so that verbs and modifiers were tallied jointly 

only with their objects rather than everything in sight. Such 

additional information and reduced noise in the input data would 

improve direct associational effects and presumably be duly 

amplified by the inductive properties of the dimensionality- 

matching mechanisms. 

Conclusions From the Vocabulary Simulations 

There are three important conclusions to be drawn from the 

results we have described. In descending order of certainty, they 

are 

1. LSA learns a great deal about word meaning similarities 

from text, an amount that equals what is measured by multiple- 

choice tests taken by moderately competent English readers. 

2. About three quarters of LSA's word knowledge is the 

result of indirect induction, the effect of exposure to text not 

containing words used in the tests. 

3. Putting all considerations together, it appears safe to con- 

clude that there is enough information present in the language 

to which human learners are exposed to allow them to acquire 

the knowledge they exhibit on multiple-choice vocabulary tests. 

That is, if the human induction system equals LSA in its effi- 

ciency of extracting word similarity relations from discourse 

and has a moderately better system for input parsing and uses 

some additional evidence from speech and real-world experi- 

ence, it should have no trouble at all doing the relevant learning 

it does without recourse to language-specific innate knowledge. 

Let us expand a bit on the apparent paradox of schoolchildren 

increasing their comprehension vocabularies more rapidly than 

they learn the words in the text they read. This observation 

could result from either a measurement failure or from induced 

learning of words not present. The LSA simulation results actu- 

ally account for the paradox in both ways. First, of course, 

we have demonstrated very strong inductive learning. But, the 

descriptive model fitted to the simulation data was also continu- 

ous, that is, it assumed that knowledge, in the form of correct 

placement in the high-dimensional semantic space, is always 

partial and grows on the basis of small increments distributed 

over many words. Measurements of children's vocabulary 

growth from reading have usually looked only at words gotten 

wrong before reading to see how many of them are gotten 

right afterwards. In contrast, the LSA simulations computed an 

increment in probability, correct for every word in the potential 

vocabulary. Thus, it implicitly expresses the hypothesis that 

word meanings grow continuously and that correct performance 

on a multiple choice vocabulary test is a stochastic event gov- 

erned by individual differences in experience, by sampling of 

alternatives in the test items and by fluctuations, perhaps contex- 

tually determined, in momentary knowledge states. As a result, 

word meanings are constantly in flux, and no word is ever 

perfectly known. So, for the most extreme example, the simula- 

tion computed a probability of one in 500,000 that even the 

word the would be incorrectly answered by some seventh grader 

on some test at some time. 

It is obvious, then, that LSA provides a solution to Plato's 

problem for at least one case, that of learning word similarities 

from text. Of course, human knowledge of word meaning is 

evinced in many other ways, supports many other kinds of per- 

formance, and almost certainly reflects knowledge not captured 

by judgments of similarity. However, it is an open question to 

what extent LSA, given the right input, can mimic other aspects 

of lexical knowledge as well. 

Generalizing the Domain of LSA 

There is no reason to suppose that the mind uses dimensional- 

ity optimization only to induce similarities involving words. 

Many other aspects of cognition would also profit from a means 

to extract more knowledge from a multitude of local co-occur- 

rence data. Although the full range and details of LSA' s implica- 

tions and applicability await much more research, we give some 

examples of promising directions, phenomena for which it pro- 

vides new explanations, interpretations, and predictions. In what 

follows there are reports of new data, new accounts of estab- 

lished experimental facts, reinterpretation of common observa- 

tions, and some speculative discussion of how old problems 

might look less opaque in this new light. 

Other Aspects of Lexical Knowledge 

By now many readers may wonder how the word similarities 

learned by LSA relate to meaning. Whereas it is probably impos- 
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sible to say what word meaning is in a way that satisfies all 

students of the subject, it is clear that two of its most important 

aspects are usage and reference. Obviously, the similarity rela- 

tions between words that are extracted by LSA are based on 

usage. Indeed, the underlying mathematics can be described as 

a way to predict the use of words in context, and the only 

reference of a word that LSA can be considered to have learned 

in our simulations is reference to other words and to sets of 

words (although the latter, the contexts of the analysis, may be 

considered to be coded descriptions of nonlinguistic events). It 

might be tempting to dismiss LSA's achievements as a sort of 

statistical mirage, a reflection of the conditions that generate 

meaning, but not a representation that actually embodies it. We 

believe that this would be a mistake. Certainly words are most 

often used to convey information grounded in nonlinguistic 

events. But to do so, only a small portion of them, and few of 

the encounters from which the meanings even of those are de- 

rived, need ever have been directly experienced in contextual 

association with the perception of objects, events, or nonlinguis- 

tic internal states. Given the strong inductive possibilities inher- 

ent in the system of words itself, as the LSA results have shown, 

the vast majority of referential meaning may well be inferred 

from experience with words alone. Note that the inductive leaps 

made by LSA in the simulations were all from purely abstract 

symbols to other purely abstract symbols. Consider how much 

more powerful word-based learning would be with the addition 

of machinery to represent other relations. But for such more 

elaborate mechanisms to work, language users must agree to 

use words in the same way, a job much aided by the LSA 

mechanism. 

Even without such extension, however, the LSA model sug- 

gests new ways of understanding many familiar properties of 

language other than word similarity. Here is one homely exam- 

ple. Because, in LSA, word meaning is generated by a statistical 

process operating over samples of data, it is no surprise that 

meaning is fluid, that one person's usage and referent for a 

word is slightly different from the next person's, that one's 

understanding of a word changes with time, that words drift in 

both usage and reference over time for the whole community. 

Indeed, LSA provides a potential technique for measuring the 

drift in an individual or group's understanding of words as a 

function of language exposure or interactive history. 

Real-World Reference 

But still, to be more than an abstract system like mathematics 

words must touch reality at least occasionally. LSA's inductive 

mechanism would be valuable here as well. Although not so 

easily quantified, Plato's problem surely frustrates identification 

of the perceptual or pragmatic referent of words like mommy, 

rabbit, cow, girl, good-bye, chair, run, cry, and eat in the infinite 

number of real-world situations in which they can potentially 

appear. What LSA adds to this part of lexicon learning is again 

its demonstration of the possibility of stronger indirect associa- 

tion than has usually been credited. Because, purely at the word- 

word level, rabbit has been indirectly preestablished to be some- 

thing like dog, animal, object, furry, cute, fast, ears, etc., it is 

much less mysterious that a few contiguous pairings of the 

word with scenes including the thing itself can teach the proper 

correspondences. Indeed, if one judiciously added numerous 

pictures of scenes with and without rabbits to the context col- 

umns in the encyclopedia corpus matrix, and filled in a handful 

of appropriate cells in the rabbit and hare word rows, LSA 

could easily learn that the words rabbit and hare go with pic- 

tures containing rabbits and not to ones without, and so forth. 

Of course, LSA alone does not solve the visual figure-ground, 

object parsing, binding, and recognition parts of the problem, 

but even here it may eventually help by providing a powerful 

way to generate and represent learned and indirect similarity 

relations among perceptual features. In any event, the mecha- 

nisms of LSA would allow a word to become similar to a 

perceptual or imaginal experience, thus, perhaps, coming to 

"stand for" it in thought, to be evoked by it, or to evoke similar 

images. 

Finally, merely using the right word in the right place is, in 

and of itself, an adaptive ability. A child can usefully learn that 

the place she lives is Colorado, a college student that operant 

conditioning is related to learning, a businessperson that TQM 

is the rage, before needing any clear idea of what these terms 

stand for. Many well-read adults know that Buddha sat long 

under a banyan tree (whatever that is) and Tahitian natives lived 

idyllically on breadfruit and poi (whatever those are). More or 

less correct usage often precedes referential knowledge (Levy & 

Nelson, 1994), which itself can remain vague but connotatively 

useful. Moreover, knowing in what contexts to use a word can 

function to amplify learning more about it by a bootstrapping 

operation in which what happens in response provides new 

context if not explicit verbal correction. 

Nonetheless, the implications of LSA for learning pragmatic 

reference seem most interesting. To take this one step deeper, 

consider Quine's famous gavagai problem. He asks us to imag- 

ine a child who sees a scene in which an animal runs by. An 

adult says "gavagai." What is the child to think gavagai means: 

ears, white, running, or something else in the scene? There are 

infinite possibilities. In LSA, if two words appear in the same 

context and every other word in that context appears in many 

other contexts without them, the two can acquire similarity to 

each other but not to the rest. This is illustrated in Figures A2 

and A4 in the Appendix, which we urge the reader to examine. 

This solves the part of the problem that is based on Quine's 

erroneous implicit belief that experiential knowledge must di- 

rectly reflect first-order contextual associations. What about legs 

and ears and running versus the whole gavagai? Well, of course, 

these might actually be what is meant. But by LSA's inductive 

process, component features of legs, tail, ears, fur, and so forth 

either before or later are all related to each other, not only 

because of the occasions on which they occur together, but by 

indirect result of occasions when they occur with other things 

and more important, by occasions in which they do not occur 

at all. Thus the new object in view is not just a collection of 

unrelated features, each in a slightly different orientation than 

ever seen before, but a conglomerate of weakly glued features 

all of which are changed and made yet more similar to each 

other and to any word selectively used in their presence. 

Now consider the peculiar fact that people seem to agree on 

words for totally private experiences, words like ache and love. 

How can someone know that his experience of an ache or of 

love is like that of his sister? Recognizing that we are having 
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the same private experience as someone else is an indirect infer- 

ence, an inference that is often mediated by agreeing on a com- 

mon name for the experience. We have seen how LSA can lead 

to agreement on the usage of a word in the absence of any 

external referent and how it can make a word highly similar to 

a context even if it never occurs in that context. It does both by 

resolving the mutual entailments of a multitude of other word-  

word, word-context, and context-context similarities, in the 

end defining the word as a point in meaning space that is much 

the same--but  never identical--for different speakers and, per- 

force, is related to other words and other contextual experiences 

in much the same way for all. If many times when a mother has 

a dull pain in her knee, she says "nache," the child may find 

himself thinking "nache" when having the same experience, 

even though the mother has never overtly explained herself and 

never said "nache" when the child's knee hurt. But the verbal 

and situational contexts of knee pains jointly point to the same 

place in the child's LSA space as in hers and so does her novel 

name for the child's similar private experiences. Note, also, 

how experiences with verbal discourse alone could indirectly 

influence similarity among perceptual concepts as such, and 

vice versa, another way to make ears and tails, aches and pains, 

run together. Thus, language does not just reflect perception; 

the two are reciprocally helpful to each other (see D'Andrade, 

1993; Lucy & Shweder, 1979, for cogent anthropological evi- 

dence on this point). 

Conditioning, Perceptual Learning, and Chunking 

In this section we take the notion of the model as a homologue 

of associative learning a few tentative steps further. At this point 

in the development of the theory, this part must remain conjec- 

tural and only roughly specified. The inductive processes of 

LSA depend on and accrue only to large bodies of naturally 

interrelated data; thus testing more elaborate and complex mod- 

els demands more data, computational resources, and time than 

has been available. Nevertheless, a sketch of some possible im- 

plications and extensions shows how the dimensionality-opti- 

mizing inductive process might help to explain a variety of 

important phenomena that appear more puzzling without it and 

suggests new lines of theory and investigation. 

After the dimensionality reduction of LSA every component 

event is represented as a vector, and so is each context. There 

is, then, no fundamental difference between components and 

contexts, except in regard to temporal scale and repeatability; 

words, for example, are shorter events that happen more than 

once, and paragraphs are longer events that are almost never 

met again. Thus, in a larger theoretical framework, or in a real 

brain, any mental event might serve in either or both roles. For 

mostly computational reasons, we have so far been able to deal 

only with two temporal granularities, one nested relation in 

which repeatability was a property of one type of event and 

not the other. But there is no reason why much more complex 

structures, with mental (or neural) events at varying temporal 

scales and various degrees of repeatability could not exploit the 

same dimensionality-matching mechanism to produce similari- 

ties and generalization among and between psychological enti- 

ties of many kinds, such as stimuli, responses, percepts, con- 

cepts, memories, ideas, images, and thoughts. Because of the 

mathematical manner in which the model creates representa- 

tions, a condensed vector representing a context is the same as 

an appropriately weighted vector average of the condensed vec- 

tors of all the events whose local temporal associations consti- 

tuted it. This has the important property that a new context 

composed of old units also has a vector representation in (tech- 

nically, a linear transform of) the space, which in turn gives 

rise to similarity and generalization effects among new event 

complexes in an essentially identical fashion to those for two 

old units or two old contexts. In some examples we give later, 

the consequences of representing larger segments of experience 

as a weighted vector sum of the smaller components of which 

they are built are illustrated. For example, we show how the 

vector-average representation of a sentence or a paragraph pre- 

dicts comprehension of a following paragraph, whereas its shar- 

ing of explicit words, even when appropriately weighted, does 

not, and we give examples in which the condensed-vector repre- 

sentation for a whole paragraph determines which of two words 

it is most similar to, whereas any one word in it may not. 

A New Light on Classical Association Theory 

Since at least the English associationists, the question of 

whether association happens by contiguity, similarity, or both 

has been much argued. LSA provides an interesting answer. In 

the first instance, similarity is acquired by a process that begins, 

but only begins, with contiguity. The high-dimensional combi- 

nation of contiguity data finishes the construction of similarity. 

But the relations expressed by the high-dimensional representa- 

tion into which contiguity data are fit are themselves ones of 

similarity. Thus similarity itself is built of both contiguity and 

still more similarity. This might explain why an introspectionist, 

or an experimentalist, could be puzzled about which does what. 

Even though they are different, the two keep close company, and 

after sufficient experience, there is a chicken-and-egg relation 

between their causative effects on representation. 

Analogy to Episodic and Semantic Memories 

Another interesting aspect of this notion is the light in which 

it places the distinction between episodic and semantic memory. 

In our simulations, the model represents knowledge gained from 

reading as vectors standing for unique paragraph-like samples 

of text and as vectors standing for individual word types. The 

word representations are thus semantic, meanings abstracted 

and averaged from many experiences, while the context repre- 

sentations are episodic, unique combinations of events that oc- 

curred only once ever. The retained information about the con- 

text paragraph as a single average vector is a representation of 

gist rather than surface detail. (And, as mentioned earlier, al- 

though text passages do not contain all the juice of real biologi- 

cal experience, they are often reasonably good surrogates of 

nonverbal experience.) Yet both words and episodes are repre- 

sented by the same defining dimensions, and the relation of each 

to the other has been retained, if only in the condensed, less 

detailed form of induced similarity rather than perfect knowl- 

edge of history. 
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Analogy to Explicit and Implicit Memories 

In a similar way, the word-versus-context difference might 

be related to difference between implicit and explicit memories. 

Retrieving a context vector brings a particular past happening 

to mind, whereas retrieving a word vector instantiates an ab- 

straction of many happenings irreversibly melded. Thus, for 

example, recognition that a word came from a particular pre- 

viously presented list might occur by having the word retrieve 

one or more context vectors--perhaps experienced as conscious 

recollections--and evaluating their relation to the word. On the 

other hand, changes in a word's ability to prime other words 

occur continuously, and the individual identity of the many occa- 

sions that caused the changes, either directly or indirectly, are 

irretrievable. Although such speculations obviously go far be- 

yond supporting evidence at this point, there is no reason to 

believe that the processes that rekindle context and word vectors 

could not be different (indeed, different mathematical operations 

are required in the SVD model), or even differentially supported 

by different brain structures. We go no further down this path 

now than to drop this crumb for future explorations to follow. 

Expertise 

The theory and simulation results bear interestingly on exper- 

tise. Compare the rate of learning a new word, one never encoun- 

tered before, for a simulated rank novice and an expert reader. 

Take the rank novice to correspond to the model meeting its 

second text sample (so as to avoid log 1 in the descriptive 

model). Assume the expert to have spent 10 years acquiring 

domain knowledge. Reading 3 hr per day, at 240 words per 

minute, the expert is now reading his 2,000,001st 70-word para- 

graph. Extrapolating the model of Equation 1 predicts that the 

novice gains .14 in probability correct for the new word, the 

expert .56. Although these extrapolations should not be taken 

seriously as estimates for human learners because they go out- 

side the range of the empirical data to which the model is known 

to conform, they nevertheless illustrate the large effects on the 

ability to acquire new knowledge that can arise from the induc- 

tive power inherent in the possession of large bodies of old 

knowledge. In this case the learning rate, the amount learned 

about a particular item per exposure to it, is approximately four 

times as great for the simulated expert as for the simulated 

novice. 

The LSA account of knowledge growth casts a new light on 

expertise by suggesting that great masses of knowledge contrib- 

ute to superior performance not only by direct application of 

the stored knowledge to problem solving, but also by greater 

ability to add new knowledge to long-term memory, to infer 

indirect relations among bits of knowledge and to generalize 

from instances of experience. 

Contextual Disambiguation 

LSA simulations to date have represented a word as a kind 

of frequency-weighted average of all its predicted usages. For 

words that convey only one meaning, this is fine. For words 

that generate a few closely related meanings, it is a good com- 

promise. This is the case for the vast majority of word types 

but, unfortunately, not necessarily for a significant proportion 

of word tokens, because relatively frequent words like line, fly, 

and bear often have many senses, as this phenomenon is tradi- 

tionally described. 1~ For words that are seriously ambiguous 

when standing alone, such as line, ones that might be involved 

in two or more very different meanings with nearly equal fre- 

quency, this would appear to be a serious flaw. The average 

LSA vector for balanced homographs like bear can bear little 

similarity to any of their major meanings. However, we see later 

that although this raises an issue in need of resolution, it does not 

prevent LSA from simulating contextual meaning, a potentially 

important clue in itself. 

It seems manifest that skilled readers disambiguate words as 

they go. The introspective experience resembles that of perceiv- 

ing an ambiguous figure; only one or another interpretation 

usually reaches awareness. Lexical priming studies beginning 

with Ratcliff & McKoon (1978) and Swinney (1979) as well 

as eye movement studies (Rayner, Pacht, & Duffy, 1994), sug- 

gest that ambiguous words first activate multiple interpretations, 

but very soon settle to that sense most appropriate to their 

discourse contexts. A contextual disambiguation process can be 

mimicked using LSA in its current form, but the acquisition 

and representation of multiple separate meanings of a single 

word cannot. 

Consider the sentence, "The player caught the high fly to left 

field." On the basis of the encyclopedia-based word space, the 

vector average of the words in this sentence has a cosine of .37 

with ball, .31 with baseball, and .27 with hit, all of which are 

related to the contextual meaning of fly, but none of which is 

in the sentence. In contrast, the sentence vector has cosines of 

.17, .18, and .13 with insect, airplane, and bird. Clearly, if LSA 

had appropriate separate entries forfly that included its baseball 

sense, distance from the sentence average would choose the 

right one. However, LSA has only a single vector to represent 

fly, and (as trained on the encyclopedia) it is unlike any of the 

right words. It has cosines of only .02, .01, and - .02  respectively 

with ball, baseball, and hit (compared to .69, .53 and .24, 

respectively with insect, airplane, and bird). The sentence repre- 

sentation has correctly caught the drift, but the single averaged- 

vector representation for the word fly, which falls close to mid- 

way between airplane and insect, is nearly orthogonal to any 

of the other words. More extensive simulations of LSA-based 

contextual disambiguation and their correlations with empirical 

data on text comprehension are described later. Meanwhile, we 

sketch several ways in which LSA might account for multiple 

meanings of the same word: first a way in which it might be 

extended to induce more than one vector for a word, then ways 

in which a single vector as currently computed might give rise 

to multiple meanings. 

It is well-known that, for a human reader, word senses are 

almost always reliably disambiguated by local context. Usually 

one or two words to either side of an ambiguous word are 

enough to settle the overall meaning of a phrase (Choueka & 

Lusignan, 1985). Context-based techniques for lexical disam- 

H For example, among the most frequent 400 words in the Kucera 

and Francis (1967) count, at least 60 have two or more common mean- 

ings, whereas in a sample of 400 that appeared only once in the corpus 
there were no more than 10. 
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biguation have been tried in computational linguistic experi- 

ments with reasonably good results (e.g., Grefenstette, 1994; 

Schtitze, 1992a; Schtitze & Pedersen, 1995; Walker & Amsler, 

1986). However, no practical means for automatically extracting 

and representing all the different senses of all the words in a 

language from language experience alone has emerged. 

How might separate senses be captured by an LSA-like 

model? Suppose that the input for LSA were a three-way rather 

than a two-way matrix, with columns of paragraphs, ranks of 

all the phrases that make up all the paragraphs, and rows of all 

the word types that make up all the phrases. Partway between 

paragraphs and words, phrases would seldom, but sometimes, 

repeat. Cells would contain the number of times that a word 

type appeared in a particular phrase in a particular paragraph. 

(A neural network equivalent might have an additional layer of 

nodes. Note that in either case, the number of such intermediate 

vectors would be enormous, a presently insurmountable compu- 

tational barrier.) 

The reduced-dimensionality representation would constitute 

a predictive device that would estimate the likelihood of any 

word occurring in any phrase context or any paragraph, or any 

phrase occurring in any paragraph, whether they had occurred 

there in the first place or not. The idea is that the phrase-level 

vectors would carry distinctions corresponding approximately 

to differential word senses. In simalating text comprehension, 

a dynamic performance model might start with the average of 

the words in a paragraph and, using some constraint satisfaction 

method, arrive at a representation of the paragraph as a set of 

imputed phrase vectors and their average. 

A very different, much simpler, possibility is that each word 

has but a single representation, but because LSA representations 

have very high dimensionality, the combination of a word with 

a context can have very different effects on the meaning of 

different passages. Consider the sentences, "The mitochondria 

are in the cells," versus "The monks are in the cells," in which 

abstract semantic dimensions of the context determine the sense 

of cells as biological or artificial objects. In one case the overall 

passage-meaning vector has a direction intermediate between 

that of mitochondria and that of cells, in the other case between 

monks and cells. If mitochondria and monks are in orthogonal 

planes in semantic space, the resultant vectors are quite different. 

Now suppose that the current context-specific meaning of 

cells--and perhaps its conscious expression--is represented 

by the projection of its vector onto the vector for the whole 

passage; that is, only components of meaning that it shares 

with the context, after averaging, comprise its disambiguated 

meaning. In this way, two or more distinct senses could arise 

from a single representation, the number and distinctions among 

senses depending only on the variety and distinctiveness of dif- 

ferent contexts in which the word is found. In this interpretation, 

the multiple senses described by lexicographers are categoriza- 

tions imposed on the contextual environments in which a word 

is found. 

Put another way, a 300-dimensional vector has plenty of room 

to represent a single orthographic string in more than one way 

so long as context is sufficient to select the relevant portion of 

the vector to be expressed. In addition, it might be supposed 

that the relations among the words in a current topical context 

would be subjected to a local re-representation process, a sec- 

ondary SVD-like condensation, or some other mutual constraint 

satisfaction process using the global cosines as input that would 

have more profound meaning-revision effects than simple 

projection. 

Finally, the contextual environment of a word might serve to 

retrieve related episode representations that would, by the same 

kinds of processes, cause the resultant meaning, and perhaps 

the resultant experience, to express the essence of a particular 

subset of past experiences. Given an isolated word, the system 

might settle competitively on a retrieved vector for just one or 

the average of a concentrated cluster of related episodes, thus 

giving rise to the same phenomenology, perhaps by the same 

mechanism, as the capture quality of ambiguous visual figures. 

Thus the word cell might give rise to an image of either a 

microscopic capsule or a room. 

A resolution of which, if any, of these hypothetical mecha- 

nisms accounts for multiple word-meaning phenomena is be- 

yond the cut'rent state of LSA theory and data; the moral of the 

discussion is just that LSA's single-vector representation of a 

word is not necessarily a fatal or permanent flaw. Whereas some 

of the evidence to follow inclines us to the single-representation 

view, we consider the issue as distinctly open. 

Text Comprehension: An LSA Interpretation o f  

Construction-Integration Theory 

Some research has been done using LSA to represent the 

meaning of segments of text larger than words and to simulate 

behaviors that might otherwise fall prey to the ambiguity prob- 

lem. In this work, individual word senses are not separately 

identified or represented, but the overall meaning of phrases, 

sentences, or paragraphs is constructed from a linear combina- 

tion of their words. By hypothesis, the various unintended-mean- 

ing components of the many different words in a passage tend 

to be unrelated and point in many directions in meaning hypers- 

pace, whereas their vector average reflects the overall topic or 

meaning of the passage. We recount two studies illustrating this 

strategy. Both involve phenomena that have previously been 

addressed by the construction-integration (C1) model (Kintsch, 

1988). In both, the current version of LSA, absent any mecha- 

nism for multiple-word-senSe representation, is used in place of 

the intellectually coded propositional analyses of CI. 

Predicting coherence and comprehensibility. Foltz, Kintsch, 

and Landauer, in an unpublished study (1993), reanalyzed data 

from experiments on text comprehension as a function of dis- 

course coherence. As part of earlier studies (McNamara, 

Kintsch, Butler-Songer, & Kintsch, 1996), a single short text 

about heart function had been reconstructed in four versions 

that differed greatly in coherence according to the propositional 

analysis measures developed by Van Dijk and Kintsch (1983). 

In coherent passages, succeeding sentences used concepts intro- 

duced in preceding sentences so that the understanding of each 

sentence and of the overall text--the building of the text base 

and situation model in CI terms--could proceed in a gradual, 

stepwise fashion. In less coherent passages, more new concepts 

were introduced without precedent in the propositions of preced- 

ing sentences. The degree of coherence was assessed by the 

number of overlapping concepts in propositions of successive 

sentences. Empirical comprehension tests with college student 
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readers established that the relative cofiaprehensibility of the 

four passages was correctly ordered by their propositionally 

estimated coherence. 

In the reanalysis, sentences from a subcorpus of 27 encyclope- 

dia articles related to the heart were first subjected to SVD 

and a 100-dimensional solution used to represent the contained 

words. Then each sentence in the four experimental paragraphs 

was represented as the average of the vectors of the words it 

contained. Finally, the coherence of each paragraph was re- 

estimated as the average cosine between its successive sentences. 

Figure 5 shows the relation of this new measure of coherence 

to the average empirical comprehension scores for the para- 

graphs. The LSA coherence measure corresponds well to mea- 

sured comprehensibility. In contrast, an attempt to predict com- 

prehensibility by correlating surface-structure word types in 

common between successive sentences (i.e., computing cosines 

between vectors in the full-dimension transformed matrix), also 

shown in Figure 5, fails, largely because there is little overlap 

at the word level. LSA, by capturing the central meaning of 

the passages appears to reflect the differential relations among 

sentences that led to comprehension differences. 

Simulating contextual word disambiguation and sentential 

meaning inference. Another reanalysis illustrates this reinter- 

pretation of CI in LSA terms more directly with a different 

data set. Till, Mross, and Kintsch (1988) performed semantic 

priming experiments in which readers were presented word by 

word with short paragraphs and interrupted at strategically 

placed points to make lexical decisions about words related 

either to one or another of two senses of a just-presented homo- 

graphic word or to words not contained in the passages but 
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Figure 5. Prediction of measured text comprehensibility of a set of 

experimentally altered text passages taken from McNamara et al. 

(1996). Predictions were based on the similarity of each sentence to 

that of the succeeding sentence, putative measures of conceptual coher- 

ence. For latent semantic analysis (LSA), sentences were represented 

by the average of the LSA-derived vectors of the words they contained. 

The control condition (word level) used the same analysis but without 

dimension reduction. 

related inferentially to the story situation that a reader would 

presumably assemble in comprehending the discourse up to that 

point. They also varied the interval between the last text word 

shown and the target for lexical decision. Here is an example 

of two matched text paragraphs and the four target words for 

lexical decisions used in conjunction with them. 

1. The gardener pulled the hose around to the holes in the 

yard. Perhaps the water would solve his problem with the mole. 

2. The patient sensed that this was not a routine visit. The 

doctor hinted that there was serious reason to remove the mole. 

Targets for lexical decision: ground, face; drown, cancer 

Across materials, Till et al. (1988) balanced the materials by 

switching words and paragraphs with different meanings and 

included equal numbers of nonwords. In three experiments of 

this kind, the principal findings were (a) in agreement with 

Ratcliff and McKoon (1978) and Swinney (1979), words re- 

lated to both senses of an ambiguous word were primed immedi- 

ately after presentation, (b) after about 300 ms only the context 

appropriate associates remained significantly primed, and (c) 

words related to inferred situational themes were not primed at 

short intervals, but were at delays of 1 s. 

The standard CI interpretation of these results is that in the 

first stage of comprehending a passage--construction--multi- 

ple nodes representing all senses of each word are activated in 

long-term memory, and in the next stage--integration--itera- 

tive excitation and inhibition among the nodes leads to domi- 

nance of appropriate word meanings and finally to creation of 

a propositional structure representing the situation described by 

the passage. 

LSA as currently developed is, of course, mute on the tempo- 

ral dynamics of comprehension, but it does provide an objective 

way to represent, simulate, and assess the degree of semantic 

similarity between words and between words and longer pas- 

sages. To illustrate, an LSA version of the CI account for the 

Till et al. (1988) experiment might go like this: 

1. First, a central meaning for each graphemic word type is 

retrieved: the customary vector for each word. Following this, 

there are two possibilities, depending on whether one assumes 

single or multiple representations for words. 

2. Assuming only a single, average representation for each 

word, the next step is computation of the vector average for all 

words in the passage. As this happens, words related to the 

average meanings being generated, including both appropriate 

relatives of the homograph and overall "inference" words, be- 

come activated, while unrelated meanings, including unrelated 

associates of the homograph, decline. 

On the other interpretation, an additional stage is inserted 

between these two in which the average meaning for some or 

all of the words in the passage disambiguates the separate words 

individually, choosing a set of senses that are then combined. 

The stimulus asynchrony data of Till et al. (1988) seems to 

suggest the latter interpretation in that inappropriate homograph 

relatives lose priming faster than inference words acquire it, but 

there are other possible explanations for this result, in particular 

that the overall passage meaning simply evolves slowly with the 

most holistic interpretations emerging last. In any event, the 

current LSA representation can only simulate the meaning rela- 

tions between the words and passages and is indifferent to which 
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of these alternatives, or some other, is involved in the dynamics 

of  comprehension. 

In either case, LSA predicts that (a)  there should be larger 

cosines between the homographic word and both of  its related 

words than between it and control words, (b) the vector average 

of  the passage words coming before the homographic word 

should have a higher cosine with the context-relevant word re- 

lated to it than to the context-irrelevant word, and (c)  the vector 

average of  the words in a passage should have a higher cosine 

with the word related to the passage' s inferred situational mean- 

ing than to control words. 

These predictions were tested by computing cosines based 

on word vectors derived from the encyclopedia analysis and 

comparing the differences in mean similarities corresponding 

to the w o r d - w o r d  and passage-word  conditions in Till et al. 

(1988, Experiment 1 ). There were 28 pairs of passages and 112 

target words. For the reported analyses, noncontent words such 

as it, of, and, to, is, him, and had were first removed from the 

passages, then vectors for the full passages up to or through the 

critical homograph were Computed as the vector average of  the 

words. The results are shown in Table 1. Here is a summary. 

1. Average cosines between ambiguous homographs and the 

two words related to them were significantly higher than be- 

tween the homographs and unrelated words (target words for 

other sentence pairs). The effect size for this comparison was 

at least as large as that for priming in the Till et al. (1988) 

experiment. 

2. Homograph-related words that were also related to the 

meaning of the paragraph had significantly higher cosines with 

the vector average of  the passage than did paired words related 

to a different sense of  the homograph. For 37 of the 56 passages 

the context-appropriate sense related word had a higher cosine 

with the passage preceding the homograph than did the inappro- 

priate sense-related word (p = .01 ). (Note that these are rela- 

tions to particular words, such as face, that are used to s t and - -  

imperfectly at b e s t - - f o r  the correct meaning of  mole, rather 

than the hypothetical correct meaning itself. Thus, for all we 

know, the true correct disambiguation, as a point in LSA mean- 

ing space, was always computed).  

3. To assess the relation between the passages and the words 

ostensibly related to them by situational inference, we computed 

cosines between passage vector averages and the respective ap- 

propriate and inappropriate inference target words and between 

the passages and unrelated control words from passages dis- 

placed by two in the Till et al. (1988) list. On average, the 

passages were significantly closer to the appropriate than to 

either the inappropriate inferentially related words or unrelated 

control words (earlier comment relevant here as well) .  

These word and passage relations are fully consistent with 

either LSA counterpart of  the construction-integration theory as 

outlined above. In particular, they show that an LSA based on 

(only) 4.6 million words of text produced representations of 

word meanings that would allow the model to mimic human 

performance in the Till et al. (1988) experiment given the right 

activation and interaction dynamics. Because homographs are 

similar to both tested words presumably related to different 

meanings, they presumably could activate both senses. Because 

the differential senses of  the homographs represented by their 

related wortis are more closely related to the average of  words 

in the passage from which they came, the LSA representation 

of  the passages would provide the information needed to select 

the homograph's  contextually appropriate associate. Finally, the 

LSA representations of the average meaning of  the passages are 

similar to words related to meanings thought to be inferred from 

mental processing of  the textual discourse. Therefore, the LSA 

representation of  the passages must also be related to the overall 

inferred meaning. 

Some additional support is lent to these interpretations by 

findings of  Lund, Burgess, and colleagues ( L u n d &  Burgess, in 

press; Lund et al., 1995) who have mimicked other priming 

Table 1 

LSA Simulation of  Till et al. (1988) Sentence and Homograph Priming Experiment 

Sense targets Inference targets 

Right Wrong Right Wrong Unrelated 
Prime (A) (B) (C) (D) (control) 

Homograph alone .20 .21 .09 .05 .07 

p vs. A or B < .00001 
z = .89 

Full passage with 
homograph .24 .21 .21 .14 .15 

p vs. C = .0008 p vs. C = .0005 
z =  1.59 z = . 5 5  

Full passage without 
homograph .21 .15 .21 .14 .16 

p vs. A = .006 p vs. C = .0002 p vs. C = .002 
z =.48 z =.69 z =.46 

Note. Simulated discourse was from Till, Kintsch, and Mross (1988). Cell entries are latent semantic 
analysis (LSA) cosines between words, or words and sentences, based on a large text-corpus analysis. 
Targets in Colunms A and B were common associates of the homographic word ending the sentence, either 
related or not to the sense of the passage. Targets in Columns C and D were words not in a sentence but 
intuitively related, or not, to its overall inferred meaning. Probabilities are based on individual two-sample, 
one-tailed t-tests, dfs > 54. Differences < .05 and without stated p values had p > .09. 
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data using a high-dimensional semantic model, HAL, that is 

related to LSA) 2 Lund et al. derived 200 element vectors to 

represent words from analysis of 160 million words from Usenet 

newsgroups. They first formed a word-word matrix from a 10- 

word sliding window in which the co-occurrence of each pair 

of words was weighted inversely with the number of intervening 

words. They reduced the resulting 70,000-by-70,000 matrix to 

one of 70,000 by 200 simply by selecting only the 200 columns 

(following words) with the highest variance. In a series of 

simulations and experiments, they have been able to mimic se- 

mantic priming results that contrast pairs derived from free- 

association norms and pairs with intuitively similar meanings, 

interpreting their high-dimensional word vectors as representing 

primarily (judged) semantic relatedness. 

At least two readings of the successful mimicking of lexical 

priming relations by high-dimensional, semantic-space similari- 

ties are possible. One is that some previous findings on textual 

word and discourse processing may have been a result of word- 

to-word and word-set-to-word similarities rather than the more 

elaborate cognitive-linguistic processes of syntactic parsing and 

sentential semantic meaning construction that have usually been 

invoked to explain them. Word and, especially, word-set seman- 

tic relations were not conveniently measurable prior to LSA and 

could easily have been overlooked. However, we believe it would 

be incorrect to suggest that previous text-processing results are 

in any important sense artifactual. For one thing, even the more 

cognitively elaborate theories, such as CI, depend on semantic 

relations among words, which are customarily introduced into 

the models on the basis of expert subjective judgments or human 

association norms. LSA might be viewed as providing such 

models with a new tool for more objective simulation, for acquir- 

ing word-word relations from input data like that used by hu- 

mans rather than "black-box" outputs of some of the processes 

we wish to understand. For another, we have no intention of 

denying an important role to syntax-using, meaning-construc- 

tion processes. We are far from ready to conclude that LSA's 

representation of a passage as a weighted vector average of the 

words in it is a complete model of a human's representation of 

the same passage. 

On the other hand, we think it would be prudent for research- 

ers to attempt to assess the degree to which language-processing 

results can be attributed to word and word-set meaning relations 

and to integrate these relations into accounts of psycholinguistic 

phenomena. We also believe that extensions of LSA, including 

extensions involving iterative construction of context-dependent 

superstructures, and dynamic processes for comprehension, 

might in many cases present a viable alternative to psycholin- 

guistic models based on more traditional linguistic processes 

and representations. 

Mimicking the representation of single-digit Arabic numerals. 

The results described up to here have assessed the LSA repre- 

sentation of words primarily with respect to the similarity be- 

tween two words or between a word and the combination of a 

set of words. But a question still needs asking as to the extent 

to which an LSA representation corresponds to all or which 

aspects of what is commonly understood as a word's meaning. 

The initial performance of the LSA simulation on TOEFL ques- 

tions was as good as that of students who were asked to judge 

similarity of meaning. This suggests that the students did not 

possess more or better representations of meaning for the words 

involved, that the LSA representation exhausted the usable 

meaning for the judgment. However, the students had limited 

abilities and the tests had limited resolution and scope; thus 

much of each word's meaning may have gone undetected on 

both sides. The rest of the simulations, for example the predic- 

tions of paragraph comprehension and sentence-inference prim- 

ing, because they also closely mimic human performances usu- 

ally thought to engage and use meaning, add weight to the 

hypothesis that LSA's representation captures a large component 

of human meaning. Nevertheless, it is obvious that the issue is 

far from resolved. 

At this point, we do no more than to add one more intriguing 

finding that demonstrates LSA's representation of humanlike 

meaning in a rather different manner. Moyer & Landauer (1967) 

reported experiments in which participants were timed as they 

made button presses to indicate which of two single-digit numer- 

als was the larger. The greater the numerical difference between 

the two, the faster was the average response. An overall function 

that assumed that single-digit numerals are mentally represented 

as the log of their arithmetic values and judged as if they were 

line lengths fit the data nicely. But why should people represent 

digits as the logs of their numerical value? It makes no apparent 

sense either in terms of the formal properties of mathematics, 

of what people have learned about these symbols for doing 

arithmetic, or for their day-to-day role in counting or communi- 

cation of magnitudes. 

A model of meaning acquisition and generation should be 

able to account for nonobvious and apparently maladaptive cases 

as well as those that are intuitively expectable. What relations 

among the single-digit number symbols does LSA extract from 

text? To find out, we performed a multidimensional scaling on 

a matrix of all 36 dissimilarities (defined as 1-LSA cosine) 

between the digits 1 through 9 as encountered as single isolated 

characters in the encyclopedia text sample. A three-dimensional 

solution accounted for almost all the interdigit dissimilarities 

(i.e., their local structure, not the location or orientation of that 

structure in the overall space). Projections of the nine digit 

representations onto the first (strongest) dimension of the local 

structure are shown in Figure 6. 

Note first that the digits are aligned in numerical order on 

this dimension, second that their magnitudes on the dimension 

are nearly proportional to the log of their numerical values. 

Clearly, the LSA representation captures the connotative mean- 

ing reflected in inequality judgment times. The implication is 

that the reason that people treat these abstract symbols as having 

continuous analog values on a log scale is simply that the statisti- 

cal properties of their contextual occurrences implies these rela- 

tions. Of course, this raises new questions, in particular, where 

or how generated is the memory representation that allows peo- 

ple to use numerals to add and subtract with digital accuracy: 

J2 There is a direct line of descent between LSA and the HAL model 

of Burgess and colleagues (Lund & Burgess, in press; Lund et al., 1995). 
They credit an unpublished article of H. SchUtze as the inspiration for 

their method of deriving semantic distance from large corpora, and 

Schiltze, in the same and other articles (e.g., 1992a), cites Deerwester 

et al. (1990), the initial presentation of the LSA method for information 

retrieval. 



234 LANDAUER AND DUMAIS 

1.0- 

i 0.8 

0.6 

c 
~. 0.4 

iT. 
0.2 

0.0 

/ Y 

. /  
1 2 3 4 5 6 7 8 9  

Digit 

Figure 6. The dissimilarities (1-cosine) between all pairs of latent 

semantic analysis (LSA) vectors representing the single-digit numerals 

1-9, as derived from large text-corpus training, were subjected to multi- 

dimensional scaling. The projection of the point for each numeral onto 

the first principal component of this LSA subspace is shown. (The scale 

of the dimension has been linearly adjusted to an arbitrary 0-1 range.) 

The numeral representations align in numerical order and scale as their 

logs, reflecting, it is proposed, the dimension of meaning tapped by 

inequality judgment times as observed by Moyer and Landauer (1967). 

in another projection, in the representation of number-fact 

phrases, or somewhere or somehow else? 

It must be noted that the frequency of occurrence in English 

of the Arabic numerals 1 -9  is also related to the log of their 

numerical value, larger numbers having smaller frequencies (Da- 

vies, 1971 ), in which case it might appear that people's judg- 

ment of numeral differences are in reality judgments that the 

one with the smaller frequency is the larger. However, this possi- 

bility does not greatly affect the point being made here, which 

is that a particular context-conditioned projection of the LSA 

representations revealed a component dimension related to a 

meaning-based performance, judgment of relative size, that goes 

beyond judgment of the pairwise similarities of the objects. 

A hint for future research that we take from this result is that 

there may often be projections of word meanings onto locally 

defined dimensions that create what from other perspectives may 

be puzzling combinations of meaning. For example, the reading 

of a lexically ambiguous word in a sentence or the effect of an 

otherwise anomalous word in a metaphorical expression might 

depend, not on the position of the word in all 300 dimensions, 

but on its position in a perhaps temporary local subspace that 

best describes the current context. This conjecture awaits further 

pursuit. 

Summary 

We began by describing the problem of induction in knowl- 

edge acquisition, the fact that people appear to know much more 

than they could have learned from temporally local experiences. 

We posed the problem concretely with respect to the learning 

of vocabulary by school-age children, a domain in which the 

excess of knowledge over apparent opportunity to learn is quan- 

tifiable and for which a good approximation to the total relevant 

experience available to the learner is also available to the re- 

searcher. We then proposed a new basis for long-range induction 

over large knowledge sets containing only weak and local con- 

straints at input. The proposed induction method depends on 

reconstruction of a system of multiple similarity relations in a 

high dimensional space. It is supposed that the co-occurrence 

of events, words in particular, in local contexts is generated by 

and reflects their similarity in some high-dimensional source 

space. By reconciling all the available data from local co-occur- 

rence as similarities in a space of nearly the same dimensionality 

as the source, a receiver can, we propose, greatly improve its 

estimation of the source similarities over their first-order estima- 

tion from local co-occurrence. The actual value of such an in- 

duction and representational scheme is an empirical question 

and depends on the statistical structure of large natural bodies 

of information. We hypothesized that the similarity of topical 

or referential meaning ( "aboutness" ) of words is a domain of 

knowledge in which there are very many indirect relations 

among a very large number of elements and, therefore, one in 

which such an induction method might play an important role. 

We implemented the dimensionality-optimizing induction 

method as a mathematical matrix-decomposition method called 

singular value decomposition (SVD) and tested it by simulating 

the acquisition of vocabulary knowledge from a large body of 

text. After analyzing and re-representing the local associations 

between some 60,000 words and some 30,000 text passages 

containing them, the model's knowledge was assessed by a 

standardized synonym test. The model scored as well as the 

average of a large sample of foreign students who had taken 

this test for admission to U.S. colleges. The model's synonym 

test performance depended strongly on the dimensionality of 

the representational space into which it fit the words. It did very 

poorly when it relied only on local co-occurrence (too many 

dimensions), well when it assumed around 300 dimensions, and 

very poorly again :when it tried to represent all its word knowl- 

edge in much less than 100 dimensions. From this, we concluded 

that dimensionality-optimization can greatly improve the extrac- 

tion and representation of knowledge in at least one domain of 

human learning. 

To further quantify the model's (and thus the induction meth- 

od's) performance, we simulated the acquisition of vocabulary 

knowledge by school-children. The model simulations learned at 

a ra te - - in  total vocabulary words added per paragraph read- -  

approximating that of children and considerably exceeding 

learning rates that have been attained in laboratory attempts to 

teach children word meanings by context. Additional simula- 

tions showed that the model, when emulating a late-grade school 

child, acquired most of its knowledge about the average word 

in its lexicon through induction from data about other words. 

One evidence of this was an experiment in which we varied the 

number of text passages either containing or not containing 

tested words and estimated that three fourths of total vocabulary 

gain from reading a passage was in words not in the paragraph 

at all. 

Given that the input to the model was data only on occurrence 
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of words in passages, so that LSA had no access to word- 

similarity information based on spoken language, morphology, 

syntax, logic, or perceptual world knowledge, all of which can 

reasonably be assumed to be additional evidence that a dimen- 

sionality-optimizing system could use, we conclude that this 

induction method is sufficiently strong to account for Plato's 

paradox--the deficiency of local experience--at least in the 

domain of knowledge measured by synonym tests. 

Based on this conclusion, we suggested an underlying asso- 

ciative learning theory of a more traditional psychological sort 

that might correspond to the mathematical model and offered a 

sample of conjectures as to how the theory would generate novel 

accounts for aspects of interesting psychological problems, in 

particular for language phenomena, expertise, and text compre- 

hension. Then, we reported some reanalyses of human text pro- 

cessing data in which we illustrated how the word and passage 

representations of meaning derived by LSA can be used to 

predict such phenomena as textual coherence and comprehensi- 

bility and to simulate the contextual disambiguation of homo- 

graphs and generation of the inferred central meaning of a para- 

graph. Finally, we showed how the LSA representation of digits 

can explain why people apparently respond to the log of digit 

values when making inequality judgments. 

At this juncture, we believe the dimensionality-optimizing 

method offers a promising solution to the ancient puzzle of 

human knowledge induction. It still remains to determine how 

wide its scope is among human learning and cognition phenom- 

ena: Is it just applicable to vocabulary, or to much more, or, 

perhaps, to all knowledge acquisition and representation? We 

would suggest that applications to problems in conditioning, 

association, pattern and object recognition, contextual disambig- 

uation, metaphor, concepts and categorization, reminding, case- 

based reasoning, probability and similarity judgment, and com- 

plex stimulus generalization are among the set where this kind 

of induction might provide new solutions. It still remains to 

understand how a mind or brain could or would perform opera- 

tions equivalent in effect to the linear matrix decomposition of 

SVD and how it would choose the optimal dimensionality for 

its representations, whether by biology or an adaptive computa- 

tional process. And it remains to explore whether there are better 

modeling approaches and input representations than the linear 

decomposition methods we applied to unordered bag-of-words 

inputs. Conceivably, for example, different input and different 

analyses might allow a model based on the same underlying 

induction method to derive aspects of grammar and syntactically 

based knowledge. Moreover, the model's objective technique 

for deriving representations of words (and perhaps other ob- 

jects) offers attractive avenues for developing new versions and 

implementations of dynamic models of comprehension, learn- 

ing, and performance. On the basis of the empirical results and 

conceptual insights that the theory has already provided, we 

believe that such explorations are worth pursuing. 
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Appendix 

An Introduction to Singular Value Decomposition and an LSA Example 

Singu la r  Value D e c o m p o s i t i o n  ( S V D )  

A well-known proof in matrix algebra asserts that any rectangular 

matrix (X) is equal to the product of  three other matrices (W, S, and 

C) of a particular form (see Berry, 1992, and Golub et al., 1981, for 

the basic math and computer algorithms of SVD).  The first of  these 

(W)  has rows corresponding to the rows of the original, but has m 

columns corresponding to new, specially derived variables such that 

there is no correlation between any two columns; that is, each is linearly 

independent of  the others, which means that no one can be constructed 

as a linear combination of others. Such derived variables are often called 

principal components, basis vectors, factors, or dimensions. The third 

matrix (C)  has columns corresponding to the original columns, but m 

rows composed of derived singular vectors. The second matrix (S)  is a 

diagonal matrix; that is, it is a square m × m matrix with nonzero entries 

only along one central diagonal. These are derived constants called 

singular values. Their role is to relate the scale of  the factors in the first 

two matrices to each other. This relation is shown schematically in Figure 

A1. To keep the connection to the concrete applications of SVD in the 

main text clear, we have labeled the rows and columns words (w)  and 

contexts (c) .  The figure caption defines SVD more formally. 

The fundamental proof of SVD shows that there always exists a 

decomposition of this form such that matrix mu!tiplication of the three 

derived matrices reproduces the original matrix exactly so long as there 

are enough factors, where enough is always less than or equal to the 

smaller of  the number of  rows or columns of the original matrix. The 

number actually needed, referred to as the rank of the matrix, depends 

on (or expresses) the intrinsic dimensionality of  the data contained in 

the cells of the original matrix. Of critical importance for latent semantic 

analysis (LSA),  if one or more factor is omitted (that is, if one or more 

singular values in the diagonal matrix along with the corresponding 

singular vectors of  the other two matrices are deleted), the reconstruction 

is a least-squares best approximation to the original given the remaining 

dimensions. Thus, for example, after constructing an SVD, one can 

reduce the number of dimensions systematically by, for example, remov- 

ing those with the smallest effect on the sum-squared error of the approx- 

imation simply by deleting those with the smallest singular values. 

The actual algorithms used to compute SVDs for large sparse matrices 

of  the sort involved in LSA are rather sophisticated and are not described 

here. Suffice it to say that cookbook versions of SVD adequate for 

small (e.g., 100 × 100) matrices are available in several places (e.g., 

Mathematica, 1991 ), and a free software version (Berry, 1992) suitable 

Contexts 

3= 

m x m  m x c  

w x c  w x m  

Figure A1. Schematic diagram of the singular value decomposition 

(SVD) of a rectangular word (w) by context (c)  matrix (X).  The 

original matrix is decomposed into three matrices: W and C, which are 

orthonormal, and S, a diagonal matrix. The m columns of W and the m 

rows of C ' are linearly independent. 

for very large matrices such as the one used here to analyze an encyclope- 

dia can currently be obtained from the WorldWideWeb (http://www.net- 

l ib.org/svdpack/index.html).  University-affiliated researchers may be 

able to obtain a research-only license and complete software package 

for doing LSA by contacting Susan Dumais. A~ With Berry 's  software 

and a high-end Unix work-station with approximately 100 megabytes 

of  RAM, matrices on the order of  50,000 × 50,000 (e.g., 50,000 words 

and 50,000 contexts) can currently be decomposed into representations 

in 300 dimensions with about 2 - 4  hr of  computation. The computational 

complexity is O(3Dz) ,  where z is the number of  nonzero elements in 

the Word (w) × Context (c) matrix and D is the number of  dimensions 

returned. The maximum matrix size one can compute is usually limited 

by the memory (RAM) requirement, which for the fastest of  the methods 

in the Berry package is (10 + D + q ) N  + (4 + q)q ,  where N = w + 

c and q = min (N, 600),  plus space for the W × C matrix. Thus, 

whereas the computational difficulty of methods such as this once made 

modeling and simulation of data equivalent in quantity to human experi- 

ence unthinkable, it is now quite feasible in many cases. 

Note, however, that the simulations of adult psycholinguistic data 

reported here were still limited to corpora much smaller than the total 

text to which an educated adult has been exposed. 

An LSA Example 

Here is a small example that gives the flavor of the analysis and 

demonstrates what the technique can accomplish. A2 This example uses 

as text passages the titles of  nine technical memoranda, five about human 

computer interaction (HCI) ,  and four about mathematical graph theory, 

topics that are conceptually rather disjoint. The titles are shown below. 

cl :  Human machine interface for ABC computer applications 

c2: A survey of user opinion of computer system response time 

c3: The EPS user interface management system 

c4: System and human system engineering testing of EPS 

c5: Relation of user perceived response time to error measurement 

ml :  The generation of random, binary, ordered trees 

m2: The intersection graph of paths in trees 

m3: Graph minors IV: Widths of trees and well-quasi-ordering 

m4: Graph minors: A survey 

The matrix formed to represent this text is shown in Figure A2. (We 

discuss the highlighted parts of  the tables in due course.) The initial 

matrix has nine columns, one for each title, and we have given it 12 

rows, each corresponding to a content word that occurs in at least two 

contexts. These are the words in italics. In LSA analyses of  text, includ- 

ing some of those reported above, words that appear in only one context 

are often omitted in doing the SVD. These contribute little to derivation 

of the space, their vectors can be constructed after the SVD with little 

loss as a weighted average of words in the sample in which they oc- 

curred, and their omission sometimes greatly reduces the computation. 

See Deerwester, Dumais, Furnas, Landauer, and Harshman (1990) and 

Dumais (1994) for more on such details. For simplicity of  presentation, 

A~ Inquiries about LSA computer programs should be addressed to 

Susan T. Dumais, Bellcore, 600 South Street, Morristown, New Jersey 

07960. Electronic mail may be sent via Intemet to std@bellcore.com. 

A2 This example has been used in several previous publications (e.g., 

Deerwester et al., 1990; Landauer & Dumais, 1996). 
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Figure A2. A miniature dataset of  titles described by means of a word- 

by-context matrix (X) in which cell entries indicate the frequency with 

which a given word occurs in a given context. (The usual preliminary 

transformation is omitted here for simplicity.) There are five titles ( c l -  

c5) about human computer interaction and four titles ( m l - m 4 )  about 

mathematical graph theory. Highlighted portions are used to indicate 

modifications in pattern similarities by dimension reduction between 

this figure and its dimension-reduced version shown in Figure A4. Here 

r(human.user)  = - . 38 ;  r (human.minors)  = - .29 .  

Figure A4. A least squares best approximation (i~) to the word-by- 

context matrix in Figure A2 obtained by retaining only the two largest 

columns and rows from the matrices in Figure A3. Highlighted portions 

illustrate modifications in pattern similarities by dimension reduction 

between Figures A2 and A4. In Figure A2 the cell entries indicate the 

frequency with which a given word occurs in a given context. There are 

nine titles about human computer interaction (c 1 - c5 )  and mathematical 

graph theory ( m 1 - m 4 ) .  Figure A3 shows the singular value decomposi- 

tion (SVD) of the matrix of  Figure A2. In this reconstruction, r (huma-  

n.user) = .94; r (human.minors)  = - .83 .  

Figure A3. The singular value decomposition of the word-by-context ma- 

trix (X) of Figure A2, in which cell entries indicate the frequency with 

which a given word occurs in a given context. Highlighted portions are the 

values on the first and second dimensions of the component malrices. 

the customary preliminary transformation of cell entries is omitted in 

this example. 

The complete SVD of this matrix in nine dimensions is shown in 

Figure A3. Its cross-multiplication would perfectly (ignoring rounding 

errors) reconstruct the original. 

Next we show a reconstruction based on just two dimensions (Figure 

A4) that approximates the original matrix. This uses vector elements 

only from the first two shaded columns of the three matrices shown in 

Figure A3 (which is equivalent to setting all but the highest two values 

in S to zero). 

Each value in this new representation has been computed as a linear 

combination of values on the two retained dimensions, which in turn 

were computed as linear combinations of the original cell values. Very 

roughly and anthropomorphically, SVD, with only values along two 

orthogonal dimensions to go on, has to guess what words actually appear 

in each cell. It does that by saying, "This  text segment is best described 

as having so much of  abstract concept one and so much of abstract 

concept two, and this word has so much of concept one and so much 

of concept two, and combining those two pieces of  information (by 

linear vector arithmetic), my best guess is that word X actually appeared 

0.66 times in context Y." 

The dimension reduction step has collapsed the component matrices 

in such a way that words that occurred in some contexts now appear 

with greater (or  lesser) estimated frequency, and some that did not 

appear originally now do appear, at least fractionally. Look at the two 

shaded cells for survey and trees in column m4. The word tree did not 

appear in this graph theory title. But because text m4 did contain graph 

and minors, the zero entry for tree has been replaced with 0.66. By 

contrast, the value 1.00 for survey, which appeared once in text m4, has 

been replaced by 0.42, reflecting the fact that it is undifferentiating in 

this context and should be counted as unimportant in characterizing the 

passage. 

Consider now what such changes may do to the imputed relations 

between words and between multiword textual passages. For two exam- 

pies of word-word  relations, compare the shaded and/or boxed rows 

for the words human, user, and minors (in this context, minor is a 

technical term from graph theory) in the original and in the two-dimen- 

(Appendix continues on next page) 
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Figure A5. Intercorrelations ( rs)  among vectors standing for titles in 

the raw data (A)  and the dimension-reduced reconstruction (B) .  The 

nine titles are about human computer interaction (c 1 - c 5  ) and mathemat- 

ical graph theory ( m l - m 4 ) .  Note how the two conceptually distinct 

groups have been separated. LSA = latent semantic analysis. 

tween human and minors is - .29 .  However, in the reconstructed two- 

dimensional (2-D) approximation, because of their indirect relations, 

both have been greatly altered, and in opposite directions: the h u m a n -  

user correlation has gone up to .94, the h u m a n - m i n o r s  correlation down 

to - .83 .  

To examine what the dimension reduction has done to relations be- 

tween titles, we computed the intercorrelations between each title and 

all the others, first based on the raw co-occurrence data, then on the 

corresponding vectors representing titles in the 2-D reconstruction. See 

Figure A5. In the raw co-occurrence data, correlations among the five 

human-computer  interaction titles were generally low, even though all 

the articles- were ostensibly about quite similar topics; half the rs  were 

zero, three were negative, two were moderately positive, and the average 

was only .02. Correlations among the four graph theory articles were 

mixed, and those between the HCI and graph theory articles averaged 

only a modest - . 3 0  despite the minimal conceptual overlap of the two 

topics. 

In the 2-D reconstruction, the topical groupings are much clearer. 

Most dramatically, the average r between HCI titles increases from .02 

to .92. This happened, not because the HCI titles were generally similar 

to each other in the raw data, which they were not, but because they 

contrasted with the non-HCI titles in the same ways. Similarly, the 

correlations among the graph theory titles were reestimated to be all 

1.00, and those between the two contrasting classes of topic were now 

strongly negative, mean r = - .72 .  

Thus, SVD has performed a number of  reasonable inductions; it has 

inferred what the true pattern of occurrences and relations must be for 

the words in titles if all the original data are to be accommodated in 

two dimensions. Of course, this is just a tiny selected example. Why 

and under what circumstances should reducing the dimensionality of  

representation be beneficial? When, in general, are such inferences better 

than the original first-order data? We hypothesize that one important 

case, represented by human word meanings, is when the original data 

are generated from a source of the same dimensionality and general 

structure as the reconstruction. 

sionally reconstructed matrices (Figures A2 and A4).  In the original, 

human never appears in the same context with either user  or minors: 

they have no co-occurrences, contiguities, or associations as usually 

construed. The correlation between human and user is - .38 ;  that be- 

Rece ived  D e c e m b e r  31, 1995 

Rev i s ion  rece ived  July  8, 1996 

Accep t ed  A u g u s t  1, 1996 • 


