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A SOLUTION TO THE BAER SPLITTING PROBLEM

LIDIA ANGELERI HÜGEL, SILVANA BAZZONI, AND DOLORS HERBERA

Abstract. Let R be a commutative domain. We prove that an R-module B
is projective if and only if Ext1R(B, T ) = 0 for any torsion module T . This
answers in the affirmative a question raised by Kaplansky in 1962.

A module B over a commutative domain R is called a Baer module when
Ext1R(B, T ) = 0 for every torsion R-module T . This definition goes back to
1936 when R. Baer [3] posed the question of characterizing the class of all abelian
(torsion-free) groups G such that any extension of G with a torsion group splits.
In the language of homological algebra, the problem asks which groups G satisfy
Ext1

Z
(G, T ) = 0 for all torsion groups T . Baer proved that every countably gen-

erated group G with this property must be free [3, Theorem 8.6 and Footnote 11
p. 781].

In 1961 Rotman [19] introduced the terminology of Baer groups or B-groups
and put this problem, together with the Whitehead problem, in the more general
setting of describing, for a given class of abelian groups S, the groups B satisfying
that Ext1

Z
(B, S) = 0 for any abelian group S ∈ S.

In 1962 Kaplansky [16] considered the case of modules over commutative do-
mains. He raised the question of whether Baer modules are projective. Using what
now are well known tools of homological algebra, he proved that Baer modules are
flat, hence torsion-free, modules of projective dimension at most one.

The answer to the original problem raised by Baer was only given in 1969, when
Griffith [10] proved that the only Baer groups are the free groups. Grimaldi [12]
later generalized the result to modules over Dedekind domains proving that the
Baer modules over such domains are projective.

A real breakthrough in the study of the structure of Ext was made by Shelah in
[20], showing that set theoretic methods are essential in this area. Following this
track, in 1988 Eklof and Fuchs [5] used a version of Shelah’s Singular Compactness
Theorem to prove that Baer modules over valuations domains are free. In [8]
Eklof, Fuchs and Shelah, generalized the tools used in [5] to arbitrary domains,
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and they proved a crucial reduction theorem. Namely, they showed that a module
B over an arbitrary domain is a Baer module if and only if it is the union of a
well ordered continuous ascending chain (Bα | α < λ) of submodules such that
the factors Bα+1/Bα are countably generated Baer modules. This reduces the
problem of showing that Baer modules are projective to the countably generated
case. For these results, as well as for a general account on the problem of studying
the structure of Ext, we refer to [9, Chapter XVI §8] and [6, Chapter XII §3].

Since then, to our knowledge, the only substantial progress concerning the Baer
problem was made by Griffith [11], who showed that Baer modules over local noe-
therian regular domains are free.

In the present paper, we show that every countably generated Baer module over
an arbitrary commutative domain is projective. Hence, by the result of Eklof, Fuchs
and Shelah, it follows that all Baer modules are projective. This solves the general
problem raised by Kaplansky; see also [6, Open Problem F.2] and [9, Problem 60].

Let us sketch the idea of the proof. Let B be a countably generated Baer module
over a commutative domain R. Then it is well known that B is countably presented
and flat [16]. So, there is a countable direct system

F1
f1→ F2

f2→ F3 → · · · → Fn
fn→ Fn+1 → . . .

of finitely generated free modules Fn such that B = lim−→Fn; see [14].
As a first step, we use recent work of the second and third authors [4] to translate

the vanishing of Ext into a Mittag-Leffler condition on inverse systems. More
precisely, we show that B is a Baer module iff for any torsion module M the functor
Hom(−, M) maps the direct system F1

f1→ F2
f2→ F3 → . . . into a Mittag-Leffler

tower (HomR(Fn, M), HomR(fn, M))n∈N, that is, an inverse system

. . . → Hom(F3, M)
Hom(f2,M)−→ Hom(F2, M)

Hom(f1,M)−→ Hom(F1, M)

satisfying the Mittag-Leffler condition of [13]. Similarly, we see that B is a projec-
tive module iff the same holds true for the functor Hom(−, R).

Now the core of the proof consists in studying closure properties of the class of
all modules M that turn the direct system F1

f1→ F2
f2→ F3 → . . . into a Mittag-

Leffler tower (HomR(Fn, M), HomR(fn, M))n∈N. This will allow us to deduce that
the regular module R also belongs to this class, which completes the proof.

The paper is organized as follows. Section 1 is devoted to the general notion
of a Mittag-Leffler tower. In Section 2, we consider a countable direct system of
the form C1

f1→ C2
f2→ C3 → . . . together with a module M over an arbitrary ring,

and we give criteria for (HomR(Cn, M), HomR(fn, M))n∈N being a Mittag-Leffler
tower. Finally, in Section 3, we apply our investigations to countably generated
Baer modules over commutative domains and prove our main result.

Our rings are associative, have an identity, and they are not necessarily commu-
tative unless stated otherwise. Modules are unital.

We wish to thank the referee for suggesting the use of Lemma 2.7 in order to
simplify the proof of Lemma 2.8.

1. Mittag-Leffler towers

For a given set I, let {Mi}i∈I and {Ni}i∈I be two families of right modules over
a ring R, and let {γi : Mi → Ni}i∈I be a family of module homomorphisms. Then
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there is a module homomorphisms Γ:
∏

i∈I Mi →
∏

i∈I Ni defined by Γ((mi)i∈I) =
(γi(mi))i∈I for any (mi)i∈I ∈

∏
i∈I Mi. Moreover, Γ induces by restriction a ho-

momorphism Γ′ :
⊕

i∈I Mi →
⊕

i∈I Ni. We will call Γ and Γ′ the diagonal maps
induced by {γi}i∈I , or simply diagonal maps.

It is immediate to check that the composition of diagonal maps is a diagonal
map. More precisely,

Lemma 1.1. Let R be a ring and I a set. Let {Ki}i∈I , {Mi}i∈I and {Ni}i∈I be
families of right R-modules, and let {λi : Ki → Mi}i∈I and {γi : Mi → Ni}i∈I be
families of maps. Denote by Λ:

∏
i∈I Ki →

∏
i∈I Mi, Λ′ :

⊕
i∈I Ki →

⊕
i∈I Mi,

Γ:
∏

i∈I Mi →
∏

i∈I Ni and Γ′ :
⊕

i∈I Mi →
⊕

i∈I Ni the induced diagonal maps.
Then ΓΛ:

∏
i∈I Ki →

∏
i∈I Ni and Γ′Λ′ :

⊕
i∈I Ki →

⊕
i∈I Ni are the diagonal

maps induced by {γiλi}i∈I .
Moreover, the following statements are equivalent:
(1) ΓΛ(

∏
i∈I Ki) = Γ(

∏
i∈I Mi),

(2) for any i ∈ I, γiλi(Ki) = γi(Mi),
(3) Γ′Λ′(

⊕
i∈I Ki) = Γ′(

⊕
i∈I Mi).

Proof. All the statements follow easily from the fact that Λ, Γ and their restrictions,
Λ′ and Γ′, respectively, are defined componentwise. �

A (countable) tower T of right R-modules consists of a sequence of modules
(Hn)n∈N and a sequence of morphisms

· · · → Hn+1
λn→ Hn → · · · → H3

λ2→ H2
λ1→ H1.

We will use the notation T = (Hn, λn)n∈N. Note that a tower of right R-modules
is a representation in Mod-R of the quiver

A∞ : · · · → • → • · · · → • → •
If Ti = (Hi

n, λi
n)n∈N, i = 1, 2, are towers, then by a morphism of towers f : T1 → T2

we mean a sequence of module homomorphisms (fn : H1
n → H2

n)n∈N satisfying
fnλ1

n = λ2
nfn+1, for any n ∈ N. If each fn is an isomorphism, then we say that T1

and T2 are isomorphic towers.
The notions of direct sum and product of towers are crucial for our investigations.

For a given set I, let {Ti = (Hi
n, λi

n)n∈N}i∈I be a family of towers. Then the product
and the direct sum of {Ti}i∈I are∏

i∈I

Ti = (
∏
i∈I

Hi
n, Λn)n∈N and

⊕
i∈I

Ti = (
⊕
i∈I

Hi
n, Λ′

n)n∈N,

where, for each n ∈ N,

Λn :
∏
i∈I

Hi
n+1 →

∏
i∈I

Hi
n and Λ′

n :
⊕
i∈I

Hi
n+1 →

⊕
i∈I

Hi
n

are the diagonal maps induced by {λi
n}i∈I , respectively.

If Ti = Tj , for any i, j ∈ I, we write
∏

i∈I Ti = T I and
⊕

i∈I Ti = T (I).
We recall the definition of a Mittag-Leffler tower ; see [13] or [21, Definition 3.5.6].

Definition. A tower of right R-modules, T = (Hn, λn)n∈N, satisfies the Mittag-
Leffler condition if, for every m ∈ N, the chain of submodules of Hm

Hm ⊇ λm(Hm+1) ⊇ · · · ⊇ λmλm+1 · · ·λm+n−1(Hm+n) ⊇ . . .
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is stationary, that is, if for each m ∈ N, there exists l(m) > m such that

λm · · ·λk(Hk+1) = λm · · ·λl(m)−1(Hl(m))

for any k ≥ l(m). If we are interested in recording the values l(m), we say
that the tower T satisfies the Mittag-Leffler condition with respect to the sequence
(l(m))m∈N.

Proposition 1.2. Let R be a ring and I a set. Let {Ti = (Hi
n, λi

n)n∈N}i∈I be a
family of towers. Let (l(m))m∈N be a sequence of integers such that l(m) > m.

Then the following statements are equivalent:
(1)

∏
i∈I Ti satisfies the Mittag-Leffler condition with respect to the sequence

(l(m))m∈N,
(2) every Ti satisfies the Mittag-Leffler condition with respect to the sequence

(l(m))m∈N,
(3)

⊕
i∈I Ti satisfies the Mittag-Leffler condition with respect to the sequence

(l(m))m∈N.

Proof. Set
∏

i∈I Ti = (
∏

i∈I Hi
n, Λn)n∈N and

⊕
i∈I Ti = (

⊕
i∈I Hi

n, Λ′
n)n∈N. Then∏

i∈I Ti satisfies the Mittag-Leffler condition with respect to the sequence (l(m))m∈N

if and only if

(∗) Λm · · ·Λk(Hk+1) = Λm · · ·Λl(m)−1(Hl(m))

for any k ≥ l(m). By Lemma 1.1, the composition of diagonal maps is a diagonal
map, and we can conclude that the equality (∗) is equivalent to

λi
m · · ·λi

k(Hk+1) = λi
m · · ·λi

l(m)−1(Hl(m)) for each i ∈ I.

That is, for each i ∈ I, Ti satisfies the Mittag-Leffler condition with respect to the
sequence (l(m))m∈N.

Again Lemma 1.1 allows us to conclude that the equality (∗) is equivalent to

Λ′
m · · ·Λ′

k(Hk+1) = Λ′
m · · ·Λ′

l(m)−1(Hl(m)).

That is, the tower
⊕

i∈I Ti satisfies the Mittag-Leffler condition with respect to the
sequence (l(m))m∈N. �

In [13], [17] and [7], the Mittag-Leffler condition for a tower of right R-modules
T = (Hn, λn)n∈N is interpreted in terms of the vanishing of lim←−

1, the first derived
functor of the inverse limit lim←−. Recall that lim←−

1 is defined by the exact sequence

(�) 0 → lim←−Hn →
∏
n∈N

Hn
∆T→

∏
n∈N

Hn → lim←−
1Hn → 0

where ∆T (an)n∈N = (an −λn(an+1))n∈N for any (an)n∈N ∈
∏

n∈N
Hn; see [21, 3.5].

Thus, lim←−
1Hn = 0 if and only if ∆T is surjective.

It has been known for a long time that the Mittag-Leffler condition is a sufficient
condition for the vanishing of lim←−

1 [21, Proposition 3.5.7]. In [7], Emmanouil gave
a necessary condition for a tower to be Mittag-Leffler in terms of the vanishing
of lim←−

1. Our next result follows from [7, Corollary 6]; however we present an
alternative proof, more direct than Emmanouil’s.

Theorem 1.3. Let T = (Hn, λn)n∈N be a tower of right R-modules. Then the
following statements are equivalent:

(1) lim←−
1 H

(I)
n = 0 for any set I,
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(2) lim←−
1 H

(N)
n = 0,

(3) T = (Hn, λn)n∈N satisfies the Mittag-Leffler condition.

Proof. Clearly (1) implies (2). Assume (3). Since T satisfies the Mittag-Leffler
condition, so does T (I) for any set I. Then, by [21, Proposition 3.5.7], it follows
that lim←−

1 H
(I)
n = 0 for any set I as claimed in (1).

Now we prove that (2) implies (3). We identify ∆T and ∆T (N) with the matrices

∆T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −λ1 0 . . . 0 . . .
0 1 −λ2

...
. . . . . .

...
0 1 −λn

...
. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

∆T (N) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −Λ′
1 0 . . . 0 . . .

0 1 −Λ′
2

...
. . . . . .

...
0 1 −Λ′

n
...

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

where, for each n ∈ N, Λ′
n : H

(N)
n → H

(N)
n is the diagonal map relative to the

sequence constantly equal to λn. That is, if (ai)i∈N ∈ H
(N)
n+1, then Λ′

n((ai)i∈N) =
(λn(ai))i∈N.

Step 1. Let B = (bij)i j∈N be a row finite matrix, with bij ∈ Hi, for any i, j ∈ N.
Then (2) implies that there exists a row finite matrix A = (aij)i j∈N, with aij ∈ Hi,
for any i, j ∈ N, such that ∆T A = B.

To prove Step 1, let Bi ∈ H
(N)
i be the i-th row of B, for each i ∈ N.

Since lim←−
1 H

(N)
n = 0 if and only if ∆T (N) is onto, there exists a sequence (Ai)i∈N,

Ai = (aij)j∈N ∈ H
(N)
i for each i ∈ N, such that

∆T (N)

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

A2

...
An

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −Λ′
1 0 . . . 0 . . .

0 1 −Λ′
2

...
. . . . . .

...
0 1 −Λ′

n
...

. . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

A2

...
An

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

B1

B2

...
Bn

...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Equivalently, ∆T A = B where A = (aij)i j∈N. This shows our claim.

Step 2. Let A and B be matrices as in Step 1 such that ∆T A = B. Assume
bij = 0 for i �= j. Then there exists a sequence of natural numbers (l(m))m∈N, with
l(m) > m for every m ∈ N, satisfying the fact that

λm · · ·λk−1(bk k) ∈ λm · · ·λk(Hk+1)

for all k ≥ l(m).
The proof follows from an argument that goes back to Bass [2]; see also the paper

by Azumaya [1]. For the computation in this type of situation see, for example, the
proof of [4, Lemma 3.3].
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Step 3. T = (Hn, λn)n∈N satisfies the Mittag-Leffler condition.

Assume by way of contradiction that there exists an integer m for which the
chain

Hm ⊇ λm(Hm+1) ⊇ · · · ⊇ λmλm+1 · · ·λn−1(Hn) ⊇ . . .

is not stationary. This means that there exists an infinite set N ⊆ N such that, for
any n ∈ N , there is an element bn∈Hn such that λm · · ·λn−1(bn) /∈λm · · ·λn(Hn+1).
Consider the matrix B = (bij)i j∈N such that bnn = bn, for n ∈ N , and bij = 0
otherwise. By Step 1 there exists A such that ∆T A = B. By Step 2, there exists an
integer l(m) > m such that for all k ≥ l(m), λm · · ·λk−1(bk k) ∈ λm · · ·λk(Hk+1)
which contradicts the choice of the infinite family (bn)n∈N . �

Examples 1.4. Let T = (Hn, λn)n∈N be a tower of right modules over a ring R. If
either the homomorphisms λn are onto or Hn are artinian modules, then T satisfies
the Mittag-Leffler condition.

Another trivial example of a Mittag-Leffler tower is given by a T -nilpotent se-
quence of maps (λn)n∈N. In this case ∆T is an isomorphism.

2. Countable direct limits of modules

Let R be a ring. We fix the following notation.

Notation 2.1. Given a countable direct system

C1
f1→ C2

f2→ C3 → · · · → Cn
fn→ Cn+1 → . . .

of right R-modules, we consider the pure exact sequence

0 →
⊕
n∈N

Cn
φ→

⊕
n∈N

Cn → lim
−→

Cn → 0

where φεn = εn −εn+1fn and εn : Cn →
⊕

n∈N
Cn denotes the canonical morphism

for every n ∈ N.

Let M be a right R-module. Applying the functor HomR(−, M) to the setting
of Notation 2.1 we obtain a tower of modules over EndR(M).

Lemma 2.2. Consider the setting of Notation 2.1, and let M be a right R-module
with S = EndR(M). Then

T = (HomR(Cn, M), HomR(fn, M))n∈N

is a tower of left S-modules. Moreover, the following diagram is commutative:

HomR(
⊕

n∈N
Cn, M)

HomR(φ,M)−→ HomR(
⊕

n∈N
Cn, M)⏐� ∼= ∼=

⏐�∏
n∈N

HomR(Cn, M) ∆T−→
∏

n∈N
HomR(Cn, M)

where ∆T is the homomorphism in the sequence (�).

We now translate the results of § 1 to this particular kind of towers. Recall that
a right R-module C is said to be small if HomR(C,

⊕
i∈I Mi) ∼=

⊕
i∈I HomR(C, Mi)

for every family of right R-modules {Mi | i ∈ I}. Finitely generated modules are
examples of small modules.
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Corollary 2.3. Let R be a ring and M a right R-module with EndR(M) = S.
Assume that the modules in Notation 2.1 are small. Then the following statements
are equivalent:

(1) HomR(φ, M (I)) is surjective for any set I,
(2) HomR(φ, M (N)) is surjective,
(3) lim←−

1 HomR(Cn, M)(N) = 0,
(4) The tower (HomR(Cn, M), HomR(fn, M))n∈N satisfies the Mittag-Leffler

condition,
(5) For every diagonal map γ :

⊕
n∈N

Cn → M (N) there is a homomorphism
ψ :

⊕
n∈N

Cn → M (N) such that ψ φ = γ.

Proof. Let I be a set, and let T = (HomR(Cn, M), HomR(fn, M))n∈N. Since
all modules Cn are small, the tower (HomR(Cn, M (I)), HomR(fn, M (I)))n∈N is
naturally isomorphic to the tower T (I). Then we know from Lemma 2.2 that
HomR(φ, M (I)) coincides up to a natural isomorphism with ∆T (I) . So the equiva-
lence of (1), (2), (3), (4) follows from Theorem 1.3. Clearly, condition (2) implies
(5); the implication (5) ⇒ (4) is exactly the implication (i) ⇒ (iii) in [4, Theorem
3.7] . �

Examples 2.4. We assume the setting of Notation 2.1 where the modules (Cn)n∈N

are small.
(1) If the sequence

(∗) 0 →
⊕
n∈N

Cn
φ→

⊕
n∈N

Cn → lim
−→

Cn → 0

splits, then HomR(φ, M (I)) is surjective for any module M . Hence, by Corollary 2.3,
the tower (HomR(Cn, M), HomR(fn, M))n∈N satisfies the Mittag-Leffler condition
for any module M .

The converse is also true. Assume the tower (HomR(Cn, M), HomR(fn, M))n∈N

satisfies the Mittag-Leffler condition for any module M . Taking M =
⊕

n∈N
Cn, we

deduce from Corollary 2.3 that HomR(φ, (
⊕

n∈N
Cn)(N)) is surjective and, hence,

HomR(φ,
⊕

n∈N
Cn) is surjective. Thus, there exists ψ :

⊕
n∈N

Cn →
⊕

n∈N
Cn

such that ψ ◦ φ = Id. This shows that (∗) splits.
(2) If M is a Σ-pure-injective module, then HomR(φ, M (I)) is surjective for any

set I. By Corollary 2.3, the tower (HomR(Cn, M), HomR(fn, M))n∈N satisfies the
Mittag-Leffler condition.

(3) If M is injective and the maps fn are monomorphisms, then HomR(fn, M) is
surjective for any n ∈ N, hence (HomR(Cn, M), HomR(fn, M))n∈N clearly satisfies
the Mittag-Leffler condition.

(4) If M is a module such that

Ext1R(lim−→Cn, M (N)) = 0,

then note that HomR(φ, M (N)) is surjective. Hence, by Corollary 2.3,
(HomR(Cn, M), HomR(fn, M))n∈N satisfies the Mittag-Leffler condition. If, more-
over, Ext1R(Cn, M (N)) = 0 for any n ∈ N, then the converse is also true (cf. [4,
Theorem 5.1]).

We are interested in further developing Example 2.4(4) in the case where each
Cn is a finitely generated free module.
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Proposition 2.5. Assume that the modules in Notation 2.1 are finitely generated
and free. Then

Ext1R(lim−→Cn, M (N)) = 0

if and only if (HomR(Cn, M), HomR(fn, M))n∈N satisfies the Mittag-Leffler condi-
tion.

In particular, lim−→Cn is projective if and only if (HomR(Cn, R), HomR(fn, R))n∈N

satisfies the Mittag-Leffler condition.

Proof. As
⊕

n∈N
Cn = F is a free module, applying the functor HomR(−, M (N)) to

the exact sequence

(∗) 0 →
⊕
n∈N

Cn = F
φ→

⊕
n∈N

Cn = F → lim
−→

Cn → 0

we obtain the exact sequence

0 → HomR(lim
−→

Cn, M (N))

→ HomR(F, M (N))
HomR(φ,M(N))→ HomR(F, M (N)) → Ext1R(lim

−→
Cn, M (N)) → 0.

This shows that
Ext1R(lim−→Cn, M (N)) = 0

if and only if HomR(φ, M (N)) is surjective. By Corollary 2.3, this is equivalent to the
fact that (HomR(Cn, M), HomR(fn, M))n∈N satisfies the Mittag-Leffler condition.

Assume now that (HomR(Cn, R), HomR(fn, R))n∈N satisfies the Mittag-Leffler
condition. Then, by Corollary 2.3, HomR(φ, F ) is surjective. Hence, there exists
ψ : F → F such that ψ ◦ φ = Id. This implies that the sequence (∗) splits, and we
conclude that lim−→Cn is projective. �

We now collect some closure properties of the class of all modules M that
turn the direct system of Notation 2.1 into a Mittag-Leffler tower of the form
(HomR(Cn, M), HomR(fn, M))n∈N.

Corollary 2.6. Assume that the modules in Notation 2.1 are small. For a given
set I, let {Mi}i∈I be a family of right R modules. Then the tower(

HomR(Cn,
⊕
i∈I

Mi), HomR(fn,
⊕
i∈I

Mi)

)
n∈N

satisfies the Mittag-Leffler condition if and only if so does the tower(
HomR(Cn,

∏
i∈I

Mi), HomR(fn,
∏
i∈I

Mi)

)
n∈N

.

Proof. The claim follows from Proposition 1.2 since there are isomorphisms of tow-
ers (

HomR(Cn,
∏
i∈I

Mi), HomR(fn,
∏
i∈I

Mi)

)
n∈N

∼=
∏
i∈I

(HomR(Cn, Mi), HomR(fn, Mi))n∈N
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and (
HomR(Cn,

⊕
i∈I

Mi), HomR(fn,
⊕
i∈I

Mi)

)
n∈N

∼=
⊕
i∈I

(HomR(Cn, Mi), HomR(fn, Mi))n∈N
. �

The next closure property relies on [4, Lemma 4.1], a result which we recall in
Lemma 2.8. Hereby, we present a more elegant proof which was suggested to us by
the referee and which uses the following “homotopy lemma”; cf. [15, Lemma B1,
Appendix B].

Lemma 2.7. Consider the commutative diagram of right modules and module ho-
momorphisms

C
f−−−−→ C ′ π−−−−→ C ′′ −−−−→ 0

h

⏐⏐� k

⏐⏐� �

⏐⏐�
0 −−−−→ N

ε−−−−→ M
g−−−−→ L

and assume it has exact rows.
Then there exists q : C′′ → M such that gq = � if and only if there exists p : C ′ →

N such that pf = h.

Proof. Let q : C′′ → M be such that gq = �. As �π = gk, g(k − qπ) = 0. Since
ε : N → M is the kernel of g, there exists p : C ′ → N such that εp = k − qπ. Then
εpf = (k − qπ)f = kf = εh. As ε is a monomorphism, we deduce that pf = h.

The converse follows by a dual argument. �

Lemma 2.8 ([4, Lemma 4.1]). Let C and C ′ be finitely generated right R-modules
such that C ′ is finitely presented, and let f : C → C ′ be a module homomorphism.
If M is a right R-module with a pure submodule N , then

HomR(C ′, M)f ∩ HomR(C, N) = HomR(C ′, N)f.

Proof. Denote by ε : N → M the inclusion. Let π : C ′ → Coker f and g : M →
Coker ε denote the cokernel of f and the cokernel of ε, respectively.

It is clear that HomR(C ′, N)f ⊆ HomR(C ′, M)f ∩ HomR(C, N). Assume k ∈
HomR(C ′, M) is such that kf(C) ⊆ N , and set h = kf : C → N . As gkf = gεh = 0,
there exists � : Coker f → Coker ε such that �π = gk. Therefore we have the
commutative diagram with exact rows

C
f−−−−→ C ′ π−−−−→ Coker f −−−−→ 0

h

⏐⏐� k

⏐⏐� �

⏐⏐�
0 −−−−→ N

ε−−−−→ M
g−−−−→ Coker ε −−−−→ 0

As C is finitely generated and C ′ is finitely presented, Cokerf is a finitely pre-
sented module. Then, since the sequence

0 → N
ε→ M

g→ Coker ε → 0

is pure-exact, the sequence

HomR(Coker f, M)
HomR(Coker f,g)−→ HomR(Coker f, Coker ε) → 0
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is exact. In particular, there exists q ∈ HomR(Coker f, M) such that gq = �. By
Lemma 2.7, there exists p : C ′ → N such that h = pf . This finishes the proof of
the statement. �

Proposition 2.9. Assume that the modules Cn in the Notation 2.1 are finitely
presented. Let M be a right R-module such that (HomR(Cn, M), HomR(fn, M))n∈N

satisfies the Mittag-Leffler condition. Then, for every pure submodule N of M the
tower (HomR(Cn, N), HomR(fn, N))n∈N satisfies the Mittag-Leffler condition.

Proof. Let N be a pure submodule of M . By Lemma 2.8, for m, n ∈ N and any
map f ∈ HomR(Cm, Cm+n)

HomR(Cm+n, M)f ∩ HomR(Cm, N) = HomR(Cm+n, N)f.

So, if the chain of subgroups of HomR(Cm, M)

HomR(Cm+1, M)fm ⊇ HomR(Cm+2, M)fm+1fm ⊇
⊇ · · · ⊇ HomR(Cm+n, M)fm+n−1fm+n−2 · · · fm ⊇ . . .

is stationary, the corresponding chain of subgroups of HomR(Cm, N) is also sta-
tionary. This proves the claim. �

3. Baer modules are projective

We will now apply the previous results to the Baer splitting problem. As ob-
served in the introduction, we will only have to consider Baer modules that are
countably presented and flat. For such modules we have the following result which
is essentially well known; the idea goes back to Jensen’s proof of the fact that count-
ably presented flat modules have projective dimension at most one [14, Lemma 2].
We sketch the argument for sake of completeness.

Proposition 3.1. Let B be a countably presented flat right module over a ring R.
Then there is a countable direct system

F1
f1→ F2

f2→ F3 → · · · → Fn
fn→ Fn+1 → . . .

where Fn are finitely generated free modules such that, following Notation 2.1, B
fits in the exact sequence

(∗) 0 →
⊕
n∈N

Fn
φ→

⊕
n∈N

Fn → lim
−→

Fn = B → 0.

Proof. By hypothesis, the module B has a presentation of the form

0 → G
f→ F → B → 0,

where F is a countably generated free right module and G is a countably generated
right module. Let {gn}n∈N be a set of generators of G, and let {en}n∈N be a basis
of F . For a set A ⊆ N we set FA =

∑
n∈A enR.

Following Jensen [14, proof of Lemma 2], we can find an ascending chain (An)n∈N

of finite subsets of N such that
(1)

⋃
n∈N

An = N,
(2) for any i ≤ n, f(gi) ∈ FAn

, and, as f is a pure monomorphism, also
(3) the induced map f :

∑
i≤n giR → FAn

splits.
Condition (3) implies that Pn = FAn

/
∑

i≤n f(gi)R is finitely generated and
projective.
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For each n ∈ N, let f ′
n : Pn → Pn+1 be the map induced by f and choose a finitely

generated projective module Qn such that Pn ⊕ Qn = Fn is finitely generated and
free. Finally, for each n ∈ N, let fn : Fn → Fn+1 be the homomorphism defined by
fn(p, q) = (f ′

n(p), 0), for (p, q) ∈ Pn ⊕ Qn = Fn.
Then we obtain a direct system

F1
f1→ F2

f2→ F3 → · · · → Fn
fn→ Fn+1 → . . .

and it is easy to check that its direct limit is B. �

We finally specialize to commutative domains. We start with some preliminary
results.

Lemma 3.2. Let R be a commutative domain that is not a field. Let G be a finitely
generated R-module. Then

⋂
0�=r∈R

rG = 0.

Proof. We first assume that G is finitely generated and torsion-free. In this case⋂
0�=r∈R

rG coincides with the divisible submodule d(G) of G which is torsion-free

and divisible, hence isomorphic to a direct sum of copies of Q the field of fractions
of R. If d(G) �= 0, G contains a summand isomorphic to Q which is impossible
since G is finitely generated.

If G is not torsion-free, consider the exact sequence:

0 → t(G) → G → G/t(G) → 0

where t(G) denotes the torsion submodule of G. Let x ∈
⋂

0�=r∈R

rG; then x+ t(G) ∈⋂
0�=r∈R

(rG + t(G))/t(G) =
⋂

0�=r∈R

r(G/t(G)) which is zero by the first part of the

proof. So x ∈ t(G). Moreover, since rG ∩ t(G) = rt(G) for every r ∈ R, we have
that x ∈

⋂
0�=r∈R

rt(G). By induction on the number of generators, it is not difficult

to show that the torsion submodule of a finitely generated module has nonzero
annihilator (cf. [18, Lemma 7.1]). Thus

⋂
0�=r∈R

rt(G) = 0; hence x = 0. �

Lemma 3.3. Let R be a commutative domain that is not a field. Then the map

µ : R →
∏

0�=r∈R

R/rR

defined by µ(x) = (x + rR), for any x ∈ R, is a pure embedding.

Proof. By Lemma 3.2, µ is a monomorphism. We show that µ is a pure monomor-
phism. We prove that for every finitely presented R-module G, the homomorphism

µ ⊗R 1G : R ⊗R G →
∏

0�=r∈R

R/rR ⊗R G

is a monomorphism. Since G is finitely presented, − ⊗R G commutes with direct
products, so we are lead to show that the homomorphism

ν : G →
∏

0�=r∈R

G/rG

is a monomorphism. As Ker ν =
⋂

0�=r∈R

rG, we conclude by Lemma 3.2. �
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We are now in a position to prove our main result.

Theorem 3.4. Let B be a Baer module over a commutative domain R. Then B
is projective.

Proof. As proved in [8] a module B is a Baer module if and only if there exists
a well ordered continuous ascending chain (Bα | α < λ) of submodules such that
all the factors Bα+1/Bα are countably generated Baer modules. Thus, by [6, XII
Lemma 1.5], to decide whether Baer modules are projective is enough to consider
countably generated Baer modules.

Let B be a countably generated Baer module. By Kaplansky’s results [16], B
is flat and of projective dimension at most one. Recall that over a commutative
domain, countably generated flat modules have projective dimension at most one
if and only if they are countably presented. Hence B is a flat countably presented
module, and we can fix a direct system of finitely generated free modules

F1
f1→ F2

f2→ F3 → · · · → Fn
fn→ Fn+1 → . . .

as given by Proposition 3.1 such that lim−→Fn
∼= B.

Let M =
⊕

0�=r∈R R/rR. As M and hence M (N) are torsion modules,

Ext1R(B, M (N)) = 0.

By Proposition 2.5, the tower

(HomR(Fn, M), HomR(fn, M))n∈N

satisfies the Mittag-Leffler condition. By Corollary 2.6, the tower⎛
⎝HomR(Fn,

∏
0�=r∈R

R/rR), HomR(fn,
∏

0�=r∈R

R/rR)

⎞
⎠

n∈N

also satisfies the Mittag-Leffler condition.
By Lemma 3.3, R is a pure submodule of

∏
0�=r∈R

R/rR. Applying Proposition 2.9,

we infer that the tower (HomR(Fn, R), HomR(fn, R))n∈N satisfies the Mittag-Leffler
condition. Hence, by Proposition 2.5, we conclude that B is projective. �

To prove that a countably generated Baer module B is projective we have only
used that Ext1R(B, (

⊕
0�=r∈R R/rR)(N)) = 0, but we note that this is in fact equiv-

alent to the statement that B is a Baer module (cf. [9, Proposition 8.14] or [5]). In
general, we obtain as a consequence

Corollary 3.5. Let R be a commutative domain, and let κ be an infinite cardinal.
Let B be an R-module that can be generated by a set of cardinality at most κ. Then
B is projective if and only if

Ext1R(B, (
⊕

0�=r∈R

R/rR)(κ)) = 0.

Proof. By [9, Proposition 8.14], the statement is equivalent to saying that B is a
Baer module. The conclusion follows from Theorem 3.4. �
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