
ARTICLE

A solution to the learning dilemma for recurrent
networks of spiking neurons
Guillaume Bellec1,2, Franz Scherr 1,2, Anand Subramoney 1, Elias Hajek1, Darjan Salaj 1,

Robert Legenstein 1 & Wolfgang Maass 1✉

Recurrently connected networks of spiking neurons underlie the astounding information

processing capabilities of the brain. Yet in spite of extensive research, how they can learn

through synaptic plasticity to carry out complex network computations remains unclear. We

argue that two pieces of this puzzle were provided by experimental data from neuroscience.

A mathematical result tells us how these pieces need to be combined to enable biologically

plausible online network learning through gradient descent, in particular deep reinforcement

learning. This learning method–called e-prop–approaches the performance of back-

propagation through time (BPTT), the best-known method for training recurrent neural

networks in machine learning. In addition, it suggests a method for powerful on-chip learning

in energy-efficient spike-based hardware for artificial intelligence.

https://doi.org/10.1038/s41467-020-17236-y OPEN

1 Institute of Theoretical Computer Science, Graz University of Technology, Inffeldgasse 16b, Graz, Austria. 2These authors contributed equally: Guillaume

Bellec, Franz Scherr. ✉email: maass@igi.tugraz.at

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17236-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-17236-y&domain=pdf
http://orcid.org/0000-0002-4278-9527
http://orcid.org/0000-0002-4278-9527
http://orcid.org/0000-0002-4278-9527
http://orcid.org/0000-0002-4278-9527
http://orcid.org/0000-0002-4278-9527
http://orcid.org/0000-0002-7333-9860
http://orcid.org/0000-0002-7333-9860
http://orcid.org/0000-0002-7333-9860
http://orcid.org/0000-0002-7333-9860
http://orcid.org/0000-0002-7333-9860
http://orcid.org/0000-0001-9183-5852
http://orcid.org/0000-0001-9183-5852
http://orcid.org/0000-0001-9183-5852
http://orcid.org/0000-0001-9183-5852
http://orcid.org/0000-0001-9183-5852
http://orcid.org/0000-0002-8724-5507
http://orcid.org/0000-0002-8724-5507
http://orcid.org/0000-0002-8724-5507
http://orcid.org/0000-0002-8724-5507
http://orcid.org/0000-0002-8724-5507
http://orcid.org/0000-0002-1178-087X
http://orcid.org/0000-0002-1178-087X
http://orcid.org/0000-0002-1178-087X
http://orcid.org/0000-0002-1178-087X
http://orcid.org/0000-0002-1178-087X
mailto:maass@igi.tugraz.at
www.nature.com/naturecommunications
www.nature.com/naturecommunications

N
etworks of neurons in the brain differ in at least two
essential aspects from deep neural networks in machine
learning: they are recurrently connected, forming a giant

number of loops, and they communicate via asynchronously
emitted stereotypical electrical pulses, called spikes, rather than
bits or numbers that are produced in a synchronized manner by
each layer of a deep feedforward network. We consider the
arguably most prominent model for spiking neurons in the brain:
leaky integrate-and-fire (LIF) neurons, where spikes that arrive
from other neurons through synaptic connections are multiplied
with the corresponding synaptic weight, and are linearly inte-
grated by a leaky membrane potential. The neuron fires—i.e.,
emits a spike—when the membrane potential reaches a firing
threshold.

But it is an open problem how recurrent networks of spiking
neurons (RSNNs) can learn, i.e., how their synaptic weights can
be modified by local rules for synaptic plasticity so that the
computational performance of the network improves. In deep
learning, this problem is solved for feedforward networks through
gradient descent for a loss function E that measures imperfections
of current network performance1. Gradients of E are propagated
backwards through all layers of the feedforward network to each
synapse through a process called backpropagation. Recurrently
connected networks can compute more efficiently because each
neuron can participate several times in a network computation,
and they are able to solve tasks that require integration of
information over time or a non-trivial timing of network outputs
according to task demands. Therefore, the impact of a synaptic
weight on the loss function (see Fig. 1a) is more indirect, and
learning through gradient descent becomes substantially more
difficult. This problem is aggravated if there are slowly changing
hidden variables in the neuron model, as in neurons with spike-
frequency adaptation (SFA). Neurons with SFA are quite com-
mon in the neocortex2, and it turns out that their inclusion in the
RSNN significantly increases the computational power of the
network3. In fact, RSNNs trained through gradient descent
acquire then similar computing capabilities as networks of LSTM
(long short-term memory) units, the state of the art for recurrent
neural networks in machine learning. Because of this functional
relation to LSTM networks these RSNN models are referred to as
LSNNs3.

In machine learning, one trains recurrent neural networks by
unrolling the network into a virtual feedforward network1, see
Fig. 1b, and applying the backpropagation algorithm to that
(Fig. 1c). This method is called backpropagation through time
(BPTT), as it requires propagation of gradients backwards in
time.

With a careful choice of the pseudo derivative for handling the
discontinuous dynamics of spiking neurons, one can apply BPTT
also to RSNNs, and RSNNs were able to learn in this way to solve
really demanding computational tasks3,4. But the dilemma is that
BPTT requires storing the intermediate states of all neurons
during a network computation, and merging these in a sub-
sequent offline process with gradients that are computed back-
wards in time (see Fig. 1c). This makes it very unlikely that BPTT
is used by the brain5.

The previous lack of powerful online learning methods for
RSNNs also affected the use of neuromorphic computing hard-
ware, which aims at a drastic reduction in the energy consump-
tion of AI implementations. A substantial fraction of this
neuromorphic hardware, such as SpiNNaker6 or Intel’s Loihi
chip7, implements RSNNs. Although it does not matter here
whether the learning algorithm is biologically plausible, the
excessive storage and offline processing demands of BPTT make
this option unappealing. Hence, there also exists a learning
dilemma for RSNNs in neuromorphic hardware.

We are not aware of previous work on online gradient descent
learning methods for RSNNs, neither for supervised learning nor
for reinforcement learning (RL). There exists, however, preceding
work on online approximations of gradient descent for non-
spiking neural networks based on8, which we review in the Dis-
cussion Section.

Two streams of experimental data from neuroscience provide
clues about the organization of online network learning in
the brain:

First, neurons in the brain maintain traces of preceding activity
on the molecular level, for example, in the form of calcium ions
or activated CaMKII enzymes9. In particular, they maintain a
fading memory of events where the presynaptic neuron fired
before the postsynaptic neuron, which is known to induce
synaptic plasticity if followed by a top–down learning signal10–12.
Such traces are often referred to as eligibility traces.

Second, in the brain, there exists an abundance of top–down
signals such as dopamine, acetylcholine, and neural firing13

related to the error-related negativity, that inform local popula-
tions of neurons about behavioral results. Furthermore, dopamine
signals14,15 have been found to be specific for different target
populations of neurons, rather than being global. We refer in our
learning model to such top–down signals as learning signals.

A re-analysis of the mathematical basis of gradient descent
learning in recurrent neural networks tells us how local eligibility
traces and top–down learning signals should be optimally com-
bined—without requiring backprogation of signals through time.
The resulting learning method e-prop is illustrated in Fig. 1d. It
learns slower than BPTT, but tends to approximate the perfor-
mance of BPTT, thereby providing a first solution to the learning
dilemma for RSNNs. Furthermore, e-prop also works for RSNNs
with more complex neuron models, such as LSNNs. This new
learning paradigm elucidates how the brain could learn to
recognize phonemes in spoken language, solve temporal credit
assignment problems, and acquire new behaviors just from
rewards.

Results
Mathematical basis for e-prop. Spikes are modeled as binary
variables ztj that assume value 1 if neuron j fires at time t,

otherwise value 0. It is common in models to let t vary over small
discrete time steps, e.g., of 1 ms length. The goal of network
learning is to find synaptic weights W that minimize a given loss
function E. E may depend on all or a subset of the spikes in the
network. E measures in the case of regression or classification
learning the deviation of the actual output ytk of each output

neuron k at time t from its given target value y�;tk (Fig. 1a). In RL,
the goal is to optimize the behavior of an agent in order to
maximize obtained rewards. In this case, E measures deficiencies
of the current agent policy to collect rewards.

The gradient dE
dW ji

for the weightWji of the synapse from neuron
i to neuron j tells us how this weight should be changed in order
to reduce E. It can in principle be estimated—in spite of the fact
that the implicit discrete variable ztj is non-differentiable—with

the help of a suitable pseudo derivative for spikes as in refs. 3,4.
The key innovation is a rigorous proof (see “Methods”) that the
gradient dE

dW ji
can be represented as a sum of products over the

time steps t of the RSNN computation, where the second factor is
just a local gradient that does not depend on E:

dE

dW ji

¼
X

t

dE

dztj
�

dztj

dW ji

" #

local

: ð1Þ

This local gradient is defined as a sum of products of partial
derivatives concerning the hidden state htj of neuron j at time t

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

2 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

and preceding time steps, which can be updated during the
forward computation of the RNN by a simple recursion (Eq.

(14)). This term
dztj
dW ji

h i
local

is not an approximation. Rather, it

collects the maximal amount of information about the network

gradient dE
dW ji

that can be computed locally in a forward manner.

Therefore, it is the key-factor of e-prop. As it reduces for simple
neuron models—whose internal state is fully captured by its
membrane potential—to a variation of terms that are commonly
referred to as eligibility traces for synaptic plasticity12, we also
refer to

etji ¼
def dztj

dW ji

" #

local

ð2Þ

as eligibility trace. But most biological neurons have additional
hidden variables that change on a slower time scale, such as the
firing threshold of a neuron with firing threshold adaptation.
Furthermore, these slower processes in neurons are essential for
attaining with spiking neurons similarly powerful computing
capabilities as LSTM networks3. Hence, the form that this
eligibility trace etji takes for adapting neurons (see Eq. (25)) is

essential for understanding e-prop, and it is the main driver
behind the resulting qualitative jump in computing capabilities of
RSNNs, which are attainable through biologically plausible
learning. Eqs. (1) and (2) yield the representation

dE

dW ji

¼
X

t

Ltj e
t
ji ð3Þ

2T–t+1 2T–t

Target y*,t

Inputs

RSNN

Online
error

module

Target
a b

Computation steps

Computation steps

Computation steps

Evaluation
of loss

function E

E fully
evaluated at

step T

y*,t

L j

eji

E in general

depends on

all time steps

t = 1, ..., T

xt–1

dht–1

xt–1

xt–1 xt

xt

xt

t–1

t–1 t

dE

dht

dE

j

i

j

i

j

i

j

i

j

i

t

yt

xt

ht , zt

j

i

j

i

c

d

t–1
eji

t

eij
t–1 eij

t

t

L i
t

Fig. 1 Schemes for BPTT and e-prop. a RSNN with network inputs x, neuron spikes z, hidden neuron states h, and output targets y*, for each time step t of

the RSNN computation. Output neurons y provide a low-pass filter of a weighted sum of network spikes z. b BPTT computes gradients in the unrolled

version of the network. It has a new copy of the neurons of the RSNN for each time step t. A synaptic connection from neuron i to neuron j of the RSNN is

replaced by an array of feedforward connections, one for each time step t, which goes from the copy of neuron i in the layer for time step t to a copy of

neuron j in the layer for time step t + 1. All synapses in this array have the same weight: the weight of this synaptic connection in the RSNN. c Loss

gradients of BPTT are propagated backwards in time and retrograde across synapses in an offline manner, long after the forward computation has passed a

layer. d Online learning dynamics of e-prop. Feedforward computation of eligibility traces is indicated in blue. These are combined with online learning

signals according to Eq. (1).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications

of the loss gradient, where we refer to Ltj ¼
def dE

dztj
as the learning

signal for neuron j. This equation defines a clear program for
approximating the network loss gradient through local rules for
synaptic plasticity: change each weightWji at step t proportionally
to �Ltje

t
ji, or accumulate these so-called tags in a hidden variable

that is translated occasionally into an actual weight change.
Hence, e-prop is an online learning method in a strict sense (see
Fig. 1d). In particular, there is no need to unroll the network as
for BPTT.

As the ideal value dE
dztj

of the learning signal Ltj also captures
influences that the current spike output ztj of neuron j may have

on E via future spikes of other neurons, its precise value is in
general not available at time t. We replace it by an approximation,
such as ∂E

∂zt
j
, which ignores these indirect influences (this partial

derivative ∂E
∂zt

j
is written with a rounded ∂ to signal that it captures

only the direct influence of the spike ztj on the loss function E).

This approximation takes only currently arising losses at the
output neurons k of the RSNN into account, and routes them
with neuron-specific weights Bjk to the network neurons j (see
Fig. 2a):

Ltj ¼
X

k

Bjkðy
t
k � y�;tk Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

deviation of output k
at time t

:
ð4Þ

Although this approximate learning signal Ltj only captures errors

that arise at the current time step t, it is combined in Eq. (3) with
an eligibility trace etji that may reach far back into the past of

neuron j (see Fig. 3b), thereby alleviating the need to solve the
temporal credit assignment problem by propagating signals
backwards in time (like in BPTT).

There are several strategies for choosing the weights Bjk for this
online learning signal. In symmetric e-prop, we set it equal to the
corresponding weight Wout

kj of the synaptic connection from

neuron j to output neuron k, as demanded by ∂E
∂ztj
. Note that this

learning signal would actually implement dE
dztj

exactly in the

absence of recurrent connections in the network. Biologically
more plausible are two variants of e-prop that avoid weight
sharing: in random e-prop, the values of all weights Bjk—even for
neurons j that are not synaptically connected to output neuron k
—are randomly chosen and remain fixed, similar to Broadcast
Alignment for feedforward networks16–18. In adaptive e-prop, in
addition to using random backward weights, we also let Bjk evolve
through a simple local plasticity rule that mirrors the plasticity
rule applied to Wout

kj for neurons j that are synaptically connected

to output neuron k (see Supplementary Note 2).
Resulting synaptic plasticity rules (see Methods) look similar to

previously proposed plasticity rules12 for the special case of LIF
neurons without slowly changing hidden variables. In particular,
they involve postsynaptic depolarization as one of the factors,
similarly as the data-based Clopath-rule in ref. 19, see Supple-
mentary Note 6 for an analysis.

Learning phoneme recognition with e-prop. The phoneme
recognition task TIMIT20 is one of the most commonly used
benchmarks for temporal processing capabilities of different types
of recurrent neural networks and different learning approaches21.
It comes in two versions. Both use, as input, acoustic speech
signals from sentences that are spoken by 630 speakers from eight
dialect regions of the USA (see the top of Fig. 2b for a sample
segment). In the simpler version, used for example in ref. 21, the
goal is to recognize which of 61 phonemes is spoken in each 10
ms time frame (framewise classification). In the more-
sophisticated version from ref. 22, which achieved an essential
step toward human-level performance in speech-to-text tran-
scription, the goal is to recognize the sequence of phonemes in
the entire spoken sentence independently of their timing
(sequence transcription). RSNNs consisting only of LIF neurons
do not even reach good performance on TIMIT with BPTT3.

y*,t

yt

xt

ht , zt

Target

a

0

Audio

Spoken word: “can”

Framewise
targets

Sequence
targets

Online

learning signal

generation

G
lo
ba

l

le
ar

ni
ng

si
gn

al E-p
ro

p

BPTT

G
lo
ba

l

le
ar

ni
ng

si
gn

al E-p
ro

p

BPTT

From output neurons k

Inputs

RSNN

LIF

52

34.6 32.9

60

26.4 24.7

ALIF

j

i

k k k k ih ih ih n

k ih n

n n n n

F
ra

m
e
w

is
e
 e

rr
o
r

(%
)

0

S
e
q
u
e
n
c
e
 e

rr
o
r

(%
)

tL j = Σk Bjk (yk – yk)
t *,t

tL j = Σk Bik (yk – yk)
t *,t

b

c

Fig. 2 Comparison of BPTT and e-prop for learning phoneme recognition. a Network architecture for e-prop, illustrated for an LSNN consisting of LIF and

ALIF neurons. b Input and target output for the two versions of TIMIT. c Performance of BPTT and symmetric e-prop for LSNNs consisting of 800 neurons

for framewise targets and 2400 for sequence targets (random and adaptive e-prop produced similar results, see Supplementary Fig. 2). To obtain the

Global learning signal baselines, the neuron-specific feedbacks are replaced with global ones.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

4 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

Hence, we are considering here LSNNs, where a random subset of
the neurons is a variation of the LIF model with firing rate
adaptation (adaptive LIF (ALIF) neurons), see Methods. The
name LSNN is motivated by the fact that this special case of the

RSNN model can achieve through training with BPTT similar
performance as an LSTM network3.

E-prop approximates the performance of BPTT on LSNNs
for both versions of TIMIT very well, as shown in Fig. 2c.

C
ue

 1

C
ue

 2

C
ue

 3

C
ue

 4

C
ue

 5

C
ue

 6

C
ue

 7 Delay

(500–1500 ms)

Decision

D
e
c
is

io
n
 e

rr
o
r

F
i
,l
e
ft
 –

 F
i
,r

ig
h
t

Bi ,left – Bi ,right

S
o
ft

m
a
x

o
u
tp

u
t

Left

a

Right

Cue

Noise

10

0

0

–2

10

0

0

–2

500

0
10

0

0 500

0.5

BPTT for LSNN

Random e-prop for LSNN

Random e-prop for LSNN

with 10% connectivity

Adaptive e-prop for LSNN

BPTT for LIF network

100

50

0

–50

Training stop

criterion –100

–3 –2 –1 0 1 2 3

0.3

0.1

200 600 1000

Training iterations

1400

In
p

u
t

S
p
ik

e
s

V
o
lt
a
g
eL

IF

S
p
ik

e
s

V
o
lt
a
g
eA
L

IF

1000

Time in ms

1500 2000

1e–4

–1e–4

0

ji ,a
t

L j
t

b

c d

Fig. 3 Solving a task with difficult temporal credit assignment. a Setup of corresponding rodent experiments of ref. 23 and ref. 14, see Supplmentary Movie

1. b Input spikes, spiking activity of 10 out of 50 sample LIF neurons and 10 out of 50 sample ALIF neurons, membrane potentials (more precisely: vtj � At
j)

for two sample neurons j, three samples of slow components of eligibility traces, sample learning signals for 10 neurons and softmax network output.

c Learning curves for BPTT and two e-prop versions applied to LSNNs, and BPTT applied to an RSNN without adapting neurons (red curve). Orange curve

shows learning performance of e-prop for a sparsely connected LSNN, consisting of excitatory and inhibitory neurons (Dale's law obeyed). The shaded

areas are the 95% confidence intervals of the mean accuracy computed with 20 runs. d Correlation between the randomly drawn broadcast weights Bjk for

k= left/right for learning signals in random e-prop and resulting sensitivity to left and right input components after learning. fj,left (fj,right) was the resulting

average firing rate of neuron j during presentation of left (right) cues after learning.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications

Furthermore, LSNNs could solve the framewise classification task
without any neuron firing more frequently than 12 Hz (spike
count taken over 32 spoken sentences), demonstrating that they
operate in an energy-efficient spike-coding—rather than a rate
coding—regime. For the more difficult version of TIMIT, we
trained as in ref. 22, a complex LSNN consisting of a feedforward
sequence of three recurrent networks. Our results show that e-
prop can also handle learning for such more complex network
structures very well. In Supplementary Fig. 4 we show for
comparison also the performance of e-prop and BPTT for LSTM
networks on the same tasks. These data show that for both
versions of TIMIT the performance of e-prop for LSNNs comes
rather close to that of BPTT for LSTM networks. In addition, they
show that e-prop also provides for LSTM networks a functionally
powerful online learning method.

Solving difficult temporal credit assignment. A hallmark of
cognitive computations in the brain is the capability to go beyond
a purely reactive mode: to integrate diverse sensory cues over time,
and to wait until the right moment arrives for an action. A large
number of experiments in neuroscience analyze neural coding
after learning such tasks (see e.g., refs. 14,23). But it had remained
unknown how one can model the learning of such cognitive
computations in RSNNs of the brain. In order to test whether e-
prop can solve this problem, we considered the same task that was
studied in the experiments of ref. 23 and ref. 14. There a rodent
moved along a linear track in a virtual environment, where it
encountered several visual cues on the left and right, see Fig. 3a
and Supplementary Movie 1. Later, when it arrived at a T-junc-
tion, it had to decide whether to turn left or right. It was rewarded
when it turned to that side from which it had previously received
the majority of visual cues. This task is not easy to learn as the
subject needs to find out that it does not matter on which side the
last cue was, or in which order the cues were presented. Instead,
the subject has to learn to count cues separately for each side and
to compare the two resulting numbers. Furthermore, the cues
need to be processed properly long before a reward is given. We
show in Supplementary Fig. 5 that LSNNs can learn this task via e-
prop in exactly the same way just from rewards. But as the way
how e-prop solves the underlying temporal credit assignment
problem is easier to explain for the supervised learning version of
this task, we discuss here the case where a teacher tells the subject
at the end of each trial what would have been the right decision.
This still yields a challenging scenario for any online learning
method since non-zero learning signals Ltj arise only during the

last 150ms of a trial (Fig. 3b). Hence, all synaptic plasticity has to
take place during these last 150ms, long after the input cues have
been processed. Nevertheless, e-prop is able to solve this learning
problem, see Fig. 3c and Supplementary Movie 2. It just needs a
bit more time to reach the same performance level as offline
learning via BPTT (see Supplementary Movie 3). Whereas this
task cannot even be solved by BPTT with a regular RSNN that has
no adapting neurons (red curve in Fig. 3c), all three previously
discussed variations of e-prop can solve it if the RSNN contains
adapting neurons. We explain in Supplementary Note 2 how this
task can also be solved by sparsely connected LSNNs consisting of
excitatory and inhibitory neurons: by integrating stochastic
rewiring24 into e-prop.

But how can the neurons in the LSNN learn to record and
count the input cues if all the learning signals are identically 0
until the last 150 ms of a 2250 ms long trial (see 2nd to last row of
Fig. 3b)?

For answering this question, one should note that firing of a
neuron j at time t can affect the loss function E at a later time

point t0>t in two different ways: via route (i) it affects future
values of slow hidden variables of neuron j (e.g., its firing
threshold), which may then affect the firing of neuron j at t0,
which in turn may directly affect the loss function at time t0. Via
route (ii) it affects the firing of other neurons j0 at t0, which
directly affects the loss function at time t0.

In symmetric and adaptive e-prop, one uses the partial
derivative ∂E

∂ztj
as learning signal Ltj for e-prop—instead of the

total derivative dE
dztj
, which is not available online. This blocks the

flow of gradient information along route (ii). But the eligibility
trace keeps the flow along route (i) open. Therefore, even
symmetric and adaptive e-prop can solve the temporal credit
assignment problem of Fig. 3 through online learning: the
gradient information that flows along route (i) enables neurons to
learn how to process the sensory cues at time points t during the
first 1050 ms, although this can affect the loss only at time points
t0> 2100 ms when the loss becomes non-zero.

This is illustrated in the 3rd last row of Fig. 3b: the slow
component ϵtji;a of the eligibility traces eji of adapting neurons j

decays with the typical long time constant of firing rate adaptation
(see Eq. (24) and Supplementary Movie 2). As these traces stretch
from the beginning of the trial into its last phase, they enable
learning of differential responses to left and right input cues that
arrived over 1050ms before any learning signals become non-zero,
as shown in the 2nd to last row of Fig. 3b. Hence, eligibility traces
provide so-called highways into the future for the propagation of
gradient information. These can be seen as biologically realistic
replacements for the highways into the past that BPTT employs
during its backwards pass (see Supplementary Movie 3).

This analysis also tells us when symmetric e-prop is likely to
fail to approximate the performance of BPTT: if the forward
propagation of gradients along route (i) cannot reach those later
time points t0 at which the value of the loss function becomes
salient. One can artificially induce this in the experiment of Fig. 3
by adding to the LSNN—which has the standard architecture
shown in Fig. 2a—hidden layers of a feedforward SNN through
which the communication between the LSNN and the readout
neurons has to flow. The neurons j0 of these hidden layers block
route (i), whereas leaving route (ii) open. Hence, the task of Fig. 3
can still be learnt with this modified network architecture by
BPTT, but not by symmetric e-prop, see Supplementary Fig. 8.

Identifying tasks where the performance of random e-prop
stays far behind that of BPTT is more difficult, as error signals are
sent there also to neurons that have no direct connections to
readout neurons. For deep feedforward networks it has been
shown in ref. 25 that Broadcast Alignment, as defined in refs. 17,18,
cannot reach the performance of Backprop for difficult image
classification tasks. Hence, we expect that random e-prop will
exhibit similar deficiencies with deep feedforward SNNs on
difficult classification tasks. We are not aware of corresponding
demonstrations of failures of Broadcast Alignment for artificial
RNNs, although they are likely to exist. Once they are found, they
will probably point to tasks where random e-prop fails for
RSNNs. Currently, we are not aware of any.

Figure 3d provides insight into the functional role of the
randomly drawn broadcast weights in random e-prop: the
difference of these weights determines for each neuron j whether
it learns to respond in the first phase of a trial more to cues from
the left or right. This observation suggests that neuron-specific
learning signals for RSNNs have the advantage that they can
create a diversity of feature detectors for task-relevant network
inputs. Hence, a suitable weighted sum of these feature detectors
is later able to cancel remaining errors at the network output,
similarly as in the case of feedforward networks16.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

6 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

We would like to point out that the use of the familiar actor-
critic method in reward-based e-prop, which we will discuss in
the next section, provides an additional channel by which
information about future losses can gate synaptic plasticity of the
e-prop learner at the current time step t: through the estimate V
(t) of the value of the current state, that is simultaneously learnt
via internally generated reward prediction errors.

Reward-based e-prop. Deep RL has significantly advanced the
state of the art in machine learning and AI through clever
applications of BPTT to RL26. We found that one of the arguably
most powerful RL methods within the range of deep RL
approaches that are not directly biologically implausible, policy
gradient in combination with actor-critic, can be implemented
with e-prop. This yields the biologically plausible and hardware
friendly deep RL algorithm reward-based e-prop. The LSNN
learns here both an approximation to the value function (the
critic) and a stochastic policy (the actor). Neuron-specific learn-
ing signals are combined in reward-based e-prop with a global
signal that transmits reward prediction errors (Fig. 4b). In con-
trast to the supervised case, where the learning signals Ltj depend

on the deviation from an external target signal, the learning
signals communicate here how a stochastically chosen action
deviates from the action mean that is currently proposed by the
network.

In such RL tasks, the learner needs to explore its environment,
and find out which action gets rewarded in what state27. There is
no teacher that tells the learner what action would be optimal; in
fact, the learner may never find that out. Nevertheless, learning
methods such as BPTT are essential for a powerful form of RL
that is often referred to as Deep RL26. There, one trains recurrent
artificial neural networks with internally generated teaching
signals. We show here that Deep RL can in principle also be
carried out by neural networks of the brain, as e-prop
approximates the performance of BPTT also in this RL context.
However, another new ingredient is needed to prove that.
Previous work on Deep RL for solving complex tasks, such as
winning Atari games26, required additional mechanisms to avoid
well-known instabilities that arise from using nonlinear function
approximators, such as the use of several interacting learners in
parallel. As this parallel learning scheme does not appear to be
biologically plausible, we introduce here a new method for
avoiding learning instabilities: we show that a suitable schedule
for the lengths of learning episodes and learning rates also
alleviates learning instabilities in Deep RL.

We propose an online synaptic plasticity rule (5) for deep RL,
which is similar to equation (3), except that a fading memory
filter F γ is applied here to the term Ltj�e

t
ji, where γ is the given

discount factor for future rewards and �etji denotes a low-pass

filtered copy of the eligibility trace etji (see Methods). This term is

multiplied in the synaptic plasticity rule with the reward
prediction error δt= rt + γVt+1

− Vt, where rt is the reward
received at time t. This yields an instantaneous weight change of
the form:

ΔW t
ji ¼ �η δtF γ Ltj�e

t
ji

� �
: ð5Þ

Previous three-factor learning rules for RL were usually of the
form ΔW t ¼ ηδt�etji

12,28. Hence, they estimated gradients of the

policy just by correlating the output of network neurons with the
reward prediction error. The learning power of this approach is
known to be quite limited owing to high noise in the resulting
gradient estimates. In contrast, in the plasticity rule (5) for
reward-based e-prop, the eligibility traces are first combined with
a neuron-specific feedback Ltj , before they are multiplied with the

reward prediction error δt. We show in Methods analytically that
this yields estimates of policy- and value gradients similarly as in
deep RL with BPTT. Furthermore, in contrast to previously
proposed three-factor learning rules, this rule (5) is also
applicable to LSNNs.

We tested reward-based e-prop on a classical benchmark task26

for learning intelligent behavior from rewards: winning Atari
video games provided by the Arcade Learning Environment29. To
win such game, the agent needs to learn to extract salient
information from the pixels of the game screen, and to infer the
value of specific actions, even if rewards are obtained in a distant
future. In fact, learning to win Atari games is a serious challenge
for RL even in machine learning26. Besides, artificial neural
networks and BPTT, previous solutions also required experience
replay (with a perfect memory of many frames and action
sequences that occurred much earlier) or an asynchronous
training of numerous parallel agents sharing synaptic weight
updates. We show here that also an LSNN can learn via e-prop to
win Atari games, through online learning of a single agent. This
becomes possible with a single agent and without episode replay if
the agent uses a schedule of increasing episode lengths—with a
learning rate that is inversely related to that length. Using this
scheme, an agent can experience diverse and uncorrelated short
episodes in the first phase of learning, producing useful skills.
Subsequently, the agent can fine-tune its policy using longer
episodes.

First, we considered the well-known Atari game Pong (Fig. 4a).
Here, the agent has to learn to hit a ball in a clever way using up
and down movements of his paddle. A reward is obtained if the
opponent cannot catch the ball. We trained an agent using
reward-based e-prop for this task, and show a sample trial in
Fig. 4c and Supplementary Movie 4. In contrast to common deep
RL solutions, the agent learns here in a strict online manner,
receiving at any time just the current frame of the game screen. In
Fig. 4d, we demonstrate that also this biologically realistic
learning approach leads to a competitive score.

If one does not insist on an online setting where the agent
receives just the current frame of the video screen but the last four
frames, winning strategies for about half of the Atari games can
already be learnt by feedforward neural networks (see Supple-
mentary Table 3 of ref. 26). However, for other Atari games, such
as Fishing Derby (Fig. 5a), it was even shown in ref. 26 that deep
RL applied to LSTM networks achieves a substantially higher
score than any deep RL method for feedforward networks, which
was considered there. Hence, in order to test the power of online
reward-based e-prop also for those Atari games that require
enhanced temporal processing, we tested it on the Fishing Derby
game. In this game, the agent has to catch as many fish as possible
while avoiding that the shark touches the fish with any part of its
body, and that the opponent catches the fish first. We show in
Fig. 5c that online reward-based e-prop applied to an LSNN does
in fact reach the same performance as reference offline algorithms
applied to LSTM networks. We show a random trial after learning
in Fig. 5d, where we can identify two different learnt behaviors:
first, by evading the shark, and a second by collecting fish. The
agent has learnt to switch between these two behaviors as
required by the situation.

In general, we conjecture that variants of reward-based e-prop
will be able to solve most deep RL tasks that can be solved by
online actor-critic methods in machine learning.

Discussion
We propose that in order to understand the computational
function and neural coding of neural networks in the brain,
one needs to understand the organization of the plasticity

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications

mechanisms that install and maintain these. So far, BPTT was the
only candidate for that, as no other learning method provided
sufficiently powerful computational function to RSNN models.
But as BPTT is not viewed to be biologically realistic5, it does not
help us to understand learning in the brain. E-prop offers a
solution to this dilemma, as it does not require biologically
unrealistic mechanisms, but still enables RSNNs to learn difficult

computational tasks, in fact almost as well as BPTT. Furthermore,
it enables RSNNs to solve these tasks in an energy-efficient sparse
firing regime, rather than resorting to rate coding.

E-prop relies on two types of signals that are abundantly
available in the brain, but whose precise role for learning have not
yet been understood: eligibility traces and learning signals. As e-
prop is based on a transparent mathematical principle (see Eq.

Video frame
1

0

Target

Up Down Stay

Prediction

2

1

0

10

0

0

–2

10

0

0

–2

10

A3C LSTM

Mnih et al. (2016)

5

0

–5

0 8
10

8

5000 6000

O
p
p
o
n
e
n
t

P
la

y
e
r

Reward

r t

Action

generation

Value

prediction

Spiking

CNN

LSNN

V t

Reward-based

symmetric e-prop

y t

V
t

xt

j

Lt
j

�
t

�
t

at

S
p
ik

e
s

V
o
lt
a
g
e

S
p
ik

e
s

V
o
lt
a
g
e

L
IF

A
L
IF

E
p
is

o
d
e
 r

e
tu

rn

A
c
ti
o
n

p
ro

b
a
b
ili

ti
e
s

L
e
a
rn

in
g

d
y
n
a
m

ic
s

Time in ms

F
r
(L

j
e

ji
)

t –t W
ji
t

a c

b

d

Fig. 4 Application of e-prop to the Atari game Pong. a Here, the player (green paddle) has to outplay the opponent (light brown). A reward is acquired

when the opponent cannot bounce back the ball (a small white square). To achieve this, the agent has to learn to hit the ball also with the edges of his

paddle, which causes a less predictable trajectory. b The agent is realized by an LSNN. The pixels of the current video frame of the game are provided as

input. During processing of the stream of video frames by the LSNN, actions are generated by the stochastic policy in an online manner. At the same time,

future rewards are predicted. The current error in prediction is fed back both to the LSNN and the spiking CNN that preprocesses the frames. c Sample trial

of the LSNN after learning with reward-based e-prop. From top to bottom: probabilities of stochastic actions, prediction of future rewards, learning

dynamics of a random synapse (arbitrary units), spiking activity of 10 out of 240 sample LIF neurons and 10 out of 160 sample ALIF neurons, and

membrane potentials (more precisely: vtj � At
j) for the two sample neurons j at the bottom of the spike raster above. d Learning progress of the LSNN

trained with reward-based e-prop, reported as the sum of collected rewards during an episode. The learning curve is averaged over five different runs

and the shaded area represents the standard deviation. More information about the comparison between our results and A3C are given in Supplementary

Note 5.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

8 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

(3)), it provides a normative model for both types of signals, as
well as for synaptic plasticity rules. Interestingly, the resulting
learning model suggests that a characteristic aspect of many
biological neurons—the presence of slowly changing hidden
variables—provides a possible solution to the problem how a
RSNN can learn without error signals that propagate backwards
in time: slowly changing hidden variables of neurons cause elig-
ibility traces that propagate forward over longer time spans, and
are therefore able to coincide with later arising instantaneous
error signals (see Fig. 3b).

The theory of e-prop makes a concrete experimentally testable
prediction: that the time constant of the eligibility trace for a
synapse is correlated with the time constant for the history-
dependence of the firing activity of the postsynaptic neuron. It also
suggests that the experimentally found diverse time constants of
the firing activity of populations of neurons in different brain
areas30 are correlated with their capability to handle corresponding
ranges of delays in temporal credit assignment for learning.

Finally, e-prop theory provides a hypothesis for the functional
role of the experimentally found diversity of dopamine signals to
different populations of neurons14. Whereas previous theories of
reward-based learning required that the same learning signal is

sent to all neurons, the basic Eq. (1) for e-prop postulates that
ideal top–down learning signals to a population of neurons
depend on its impact on the network performance (loss function),
and should therefore be target-specific (see Fig. 2c and Supple-
mentary Note 6). In fact, the learning-to-learn result for e-prop in
ref. 31 suggests that prior knowledge about the possible range of
learning tasks for a brain area could optimize top–down learning
signals even further on an evolutionary time scale, thereby
enabling for example learning from few or even a single trial.

Previous methods for training RSNNs did not aim at approx-
imating BPTT. Instead, some of them were relying on control
theory to train a chaotic reservoir of spiking neurons32–34. Others
used the FORCE algorithm35,36 or variants of it35,37–39. However,
the FORCE algorithm was not argued to be biologically realistic,
as the plasticity rule for each synaptic weight requires knowledge
of the current values of all other synaptic weights. The generic
task considered in ref. 35 was to learn with supervision how to
generate patterns. We show in Supplementary Figs. 1 and 7 that
RSNNs can learn such tasks also with a biologically plausible
learning method e-prop.

Several methods for approximating stochastic gradient descent
in feedforward networks of spiking neurons have been proposed,

Video frame

Opponent

Shark

Shark evade Fishing

Player

Fish

E
p
is

o
d
e
 r

e
tu

rn

30

20

10

0

–10

–20
0

Frames in environment

7
108

A3C LSTM
A3C FF

Mnih et al. (2016)

Reward-based

symmetric e-prop

V
t

L
IF

A
L
IF

A
c
ti
o
n

p
ro

b
a
b
ili

ti
e
s

L
e
a
rn

in
g

d
y
n
a
m

ic
s

0

10

0

10

0

5

0

1

No op

Up

Up-right Up-left

Down-right Down-left

Right

500 1500

Time in ms

Target

Prediction

�
t

F
r
(L

j
e

ji
)

t –t W
ji
t

Left

Down

Fire

a b

c

d

Fig. 5 Application of e-prop to learning to win the Atari game Fishing Derby. a Here the player has to compete against an opponent, and try to catch

more fish from the sea. b Once a fish has bit, the agent has to avoid that the fish gets touched by a shark. c Sample trial of the trained network. From top to

bottom: probabilities of stochastic actions, prediction of future rewards, learning dynamics of a random synapse (arbitrary units), spiking activity of 20 out

of 180 sample LIF neurons and 20 out of 120 sample ALIF neurons. d Learning curves of an LSNN trained with reward-based e-prop as in Fig. 4d.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications

see e.g., refs. 40–44. These employ—like e-prop—a pseudo-
gradient to overcome the non-differentiability of a spiking neu-
ron, as proposed previously in refs. 45,46. References 40,42,43 arrive
at a synaptic plasticity rule for feedforward networks that consists
—like e-prop—of the product of a learning signal and a derivative
(eligibility trace) that describes the dependence of a spike of a
neuron j on the weight of an afferent synapse Wji. But in a
recurrent network, the spike output of j depends on Wji also
indirectly, via loops in the network that allow that a spike of
neuron j contributes to the firing of other neurons, which in turn
affect the firing of the presynaptic neuron i. Hence, the corre-
sponding eligibility trace can no longer be locally computed if one
transfers these methods for feedforward networks to recurrently
connected networks. Therefore, ref. 40 suggests the need to
investigate extensions of their approach to RSNNs.

Previous work on the design of online gradient descent
learning algorithms for non-spiking RNNs was based on real-
time recurrent learning (RTRL)8. RTRL itself has rarely been used
as its computational complexity per time step is Oðn4Þ, if n is the
number of neurons. But interesting approximations to RTRL
have subsequently been proposed (see ref. 47 for a review): some
stochastic approximations48, which are Oðn3Þ or only applicable
for small networks49, and also recently two deterministic Oðn2Þ
approximations50,51. The latter were in fact written at the same
time as the first publication of e-prop31. A structural difference
between this paper and50 is that their approach requires that
learning signals are transmitted between the neurons in the RNN,
with separately learnt weights.51 derived for rate based neurons a
learning rule similar to random e-prop. But this work did not
address other forms of learning than supervised regression, such
as RL, nor learning in networks of spiking neurons, or in more
powerful types of RNNs with slow hidden variables such as LSTM
networks or LSNNs.

E-prop also has complexity Oðn2Þ, in fact OðSÞ if S is the
number of synaptic connections. This bound is optimal—except
for the constant factor—since this is the asymptotic complexity of
just simulating the RNN. The key point of e-prop is that the
general form (13) of its eligibility trace collects all contributions to
the loss gradient that can be locally computed in a feedforward
manner. This general form enables applications to spiking neu-
rons with slowly varying hidden variables, such as neurons with
firing rate adaptation, which are essential ingredients of RSNNs to
reach the computational power of LSTM networks3. We believe
that this approach can be extended in future work with a suitable
choice of pseudo derivatives to a wide range of biologically more
realistic neuron models. It also enables the combination of these
rigorously derived eligibility traces with—semantically identical
but algorithmically very different—eligibility traces from RL for
reward-based e-prop (Eq. (5)), thereby bringing the power of
deep RL to RSNNs. As a result, we were able to show in Figs. 2–5
that RSNNs can learn with the biologically plausible rules for
synaptic plasticity that arise from the e-prop theory to solve tasks
such as phoneme recognition, integrating evidence over time and
waiting for the right moment to act, and winning Atari games.
These are tasks that are fundamental for modern learning-based
AI, but have so far not been solved with RSNNs. Hence, e-prop
provides a new perspective of the major open question how
intelligent behavior can be learnt and controlled by neural net-
works of the brain.

Apart from obvious consequences of e-prop for research in
neuroscience and cognitive science, e-prop also provides an
interesting new tool for approaches in machine learning where
BPTT is replaced by approximations in order to improve com-
putational efficiency. We have already shown in Supplementary
Fig. 4 that e-prop provides a powerful online learning method for
LSTM networks. Furthermore, the combination of eligibility

traces from e-prop with synthetic gradients from ref. 52 even
improves performance of LSTM networks for difficult machine
learning problems such as the copy-repeat task and the Penn
Treebank word prediction task31. Other future extensions of e-
prop could explore a combination with attention-based models in
order to cover multiple timescales.

Finally, e-prop suggests a promising new approach for realizing
powerful on-chip learning of RSNNs on neuromorphic chips.
Whereas, BPTT is not within reach of current neuromorphic
hardware, an implementation of e-prop appears to offer no ser-
ious hurdle. Our results show that an implementation of e-prop
will provide a qualitative jump in on-chip learning capabilities of
neuromorphic hardware.

Methods
Network models. To exhibit the generality of the e-prop approach, we define the
dynamics of recurrent neural networks using a general formalism that is applicable
to many recurrent neural network models, not only to RSNNs and LSNNs. Also
non-spiking models such as LSTM networks fit under this formalism (see Sup-
plementary Note 4). The network dynamics is summarized by the computational
graph in Fig. 6. Denoting the observable states (e.g., spikes) as zt, the hidden states
as ht, the inputs as xt and using Wj to gather all weights of synapses arriving at
neuron j, the function M defines the update of the hidden state of a neuron j:

htj ¼ Mðht�1
j ; zt�1; xt ;WjÞ and the function f defines the update of the observable

state of a neuron j: ztj ¼ f ðhtj ; z
t�1; xt ;WjÞ (f simplifies to ztj ¼ f ðhtj Þ for LIF and

ALIF neurons). We chose a discrete time step of δt= 1 ms for all our simulations.
Control experiments with smaller time steps for the task of Fig. 3, reported in
Supplementary Fig. 6, suggest that the size of the time step has no significant
impact on the performance of e-prop.

LIF neurons. Each LIF neuron has a one-dimensional internal state—or hidden

variable—htj that consists only of the membrane potential vtj . The observable state

ztj 2 f0; 1g is binary, indicating a spike (ztj ¼ 1) or no spike (ztj ¼ 0) at time t. The

dynamics of the LIF model is defined by the equations:

vtþ1
j ¼ αvtj þ

X

i≠j

Wrec
ji zti þ

X

i

W in
ji x

tþ1
i � ztjvth ð6Þ

ztj ¼ H vtj � vth

� �
: ð7Þ

Wrec
ji (W in

ji) is the synaptic weight from network (input) neuron i to neuron j. The

decay factor α in (6) is given by e�δt=τm , where τm (typically 20 ms) is the mem-
brane time constant. δt denotes the discrete time step size, which is set to 1 ms in
our simulations. H denotes the Heaviside step function. Note that we deleted in Eq.
(6) the factor 1− α that occurred in the corresponding equation (4) in the sup-
plement of ref. 3. This simplifies the notation in our derivations, and has no impact
on the model if parameters like the threshold voltage are scaled accordingly.

Owing to the term �ztjvth in Eq. (6), the neurons membrane potential is

reduced by a constant value after an output spike, which relates our model to the
spike response model53. To introduce a simple model of neuronal refractoriness,
we further assume that ztj is fixed to 0 after each spike of neuron j for a short

refractory period of 2–5 ms depending on the simulation.

LSNNs. According to the database of the Allen Institute2, a fraction of neurons
between ~20% (in mouse visual cortex) and 40% (in the human frontal lobe)
exhibit SFA. It had been shown in ref. 3 that the inclusion of neuron models with
SFA—via a time-varying firing threshold as slow hidden variable—drastically
enhances computing capabilities of RSNN models. Hence, we consider here the
same simple model for neurons with SFA as in ref. 3, to which we refer as ALIF
neuron. This model is basically the same as the GLIF2 model in the Technical
White Paper on generalized LIF (GLIF) models from ref. 2. LSNNs are recurrently
connected networks that consist of LIF and ALIF neurons. ALIF neurons j have a
second hidden variable atj , which denotes the variable component of its firing

threshold. As a result, their internal state is a two-dimensional vector htj ¼
def
½vtj ; a

t
j �.

Their threshold potential At
j increases with every output spike and decreases

exponentially back to the baseline threshold vth. This can be described by

At
j ¼ vth þ βatj ; ð8Þ

ztj ¼ Hðvtj � At
j Þ ; ð9Þ

with a threshold adaptation according to

atþ1
j ¼ ρatj þ ztj ; ð10Þ

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

10 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

where the decay factor ρ is given by e�δt=τa , and τa is the adaptation time constant
that is typically chosen to be on the same time scale as the length of the working
memory that is a relevant for a given task. The effects of SFA can last for several
seconds in neocortical neurons, in factor up to 20 s according to experimental
data54. We refer to a RSNN as LSNN if some of its neurons are adaptive. We chose
a fraction between 25 and 40% of the neurons to be adapting.

In relation to the more general formalism represented in the computational

graph in Fig. 6, Eqs. (6) and (10) define Mðht�1
j ; zt�1; xt ;WjÞ, and Eqs. (7) and (9)

define f ðhtj Þ.

Gradient descent for RSNNs. Gradient descent is problematic for spiking neurons
because of the step function H in Eq. (7). We overcome this issue as in refs. 3,55: the

non-existing derivative
∂ztj
∂vt

j
is replaced in simulations by a simple nonlinear function

of the membrane potential that is called the pseudo derivative. Outside of the

refractory period, we choose a pseudo derivative of the form ψt
j ¼

1
vth
γpd max 0; 1�

vtj�At
j

vth

���
���

� �
where γpd= 0.3 for ALIF neurons, and for LIF neurons

At
j is replaced by vth. During the refractory period the pseudo derivative is set to 0.

Network output and loss functions. We assume that network outputs ytk are real-
valued and produced by leaky output neurons (readouts) k, which are not

recurrently connected:

ytk ¼ κyt�1
k þ

X

j

Wout
kj z

t
j þ boutk ; ð11Þ

where κ ∈ [0, 1] defines the leak and boutk denotes the output bias. The leak factor κ

is given for spiking neurons by e�δt=τout , where τout is the membrane time constant.
Note that for non-spiking neural networks (such as for LSTM networks), temporal
smoothing of the network observable state is not necessary. In this case, one can
use κ= 0.

The loss function E(z1, …, zT) quantifies the network performance. We assume
that it depends only on the observable states z1, …, zT of the network neurons. For

instance, for a regression problem we define E as the mean square error E ¼
1
2

P
t;kðy

t
k � y�;tk Þ

2
between the network outputs ytk and target values y�;tk . For

classification or RL tasks the loss function, E has to be re-defined accordingly.

Notation for derivatives. We distinguish the total derivative dE
dzt

ðz1; ¼ ; zT Þ,
which takes into account how E depends on zt also indirectly through influence of

zt on the other variables zt+1, …, zT, and the partial derivative ∂E
∂zt

ðz1; ¼ ; zT Þ,
which quantifies only the direct dependence of E on zt.

Analogously for the hidden state htj ¼ Mðht�1
j ; zt�1; xt ;WjÞ, the partial

derivative ∂M
∂ht�1

j

denotes the partial derivative of M with respect to ht�1
j . It only

z
t–1

h
t–1

z
t+1

h
t+1

z
t

E

E E

E

h
t

x
t–1

x
t+1

x
t

z
t–1

h
t–1

z
t+1

h
t+1

z
t

h
t

x
t–1

x
t+1

x
t

z
t–1

h
t–1

z
t+1

h
t+1

z
t

h
t

x
t–1

x
t+1

x
t

z
t–1

h
t–1

z
t+1

h
t+1

z
t

h
t

x
t–1

x
t+1

x
t

Definition of the computational graph Flow of computation for et

Loss function E (.)

Function M (.)

computing the

hidden state

Function f (.) computing

the visible states for LIF

and ALIF neurons

Additional dependencies

in f (.) for LSTMs

a b

c d
Flow of computation for Lt = dE

dzt
Flow of computational for Lt = E

zt

Fig. 6 Computational graph and gradient propagations. a Assumed mathematical dependencies between hidden neuron states htj , neuron outputs zt,

network inputs xt, and the loss function E through the mathematical functions E(⋅), M(⋅), f(⋅) are represented by colored arrows. b–d The flow of

computation for the two components et and Lt that merge into the loss gradients of Eq. (3) can be represented in similar graphs. b Following Eq. (14), the

flow of the computation of the eligibility traces etji is going forward in time. c Instead, the ideal learning signals Ltj ¼
dE
dzt

j

requires to propagate gradients

backward in time. d Hence, while etji is computed exactly, Ltj is approximated in e-prop applications to yield an online learning algorithm.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications

quantifies the direct influence of ht�1
j on htj and it does not take into account how

ht�1
j indirectly influences htj via the observable states z

t−1. To improve readability,

we also use the following abbreviations:
∂htj

∂ht�1
j

¼
def ∂M

∂ht�1
j

ðht�1
j ; zt�1; xt ;WjÞ,

∂htj
∂W ji

¼
def ∂M

∂W ji
ðht�1

j ; zt�1; xt ;WjÞ, and
∂ztj
∂htj

¼
def ∂f

∂ht
ðhtj ; z

t�1; xt ;WjÞ.

Notation for temporal filters. For ease of notation, we use the operator F α to
denote the low-pass filter such that, for any time series xt:

F αðx
tÞ ¼ αF αðx

t�1Þ þ xt ; ð12Þ

and F αðx
0Þ ¼ x0 . In the specific case of the time series ztj and etji, we simplify

notation further and write �ztj and �etji for F αðzjÞ
t and F κðejiÞ

t .

Mathematical basis for e-prop. We provide here the proof of the fundamental Eq.

(1) for e-prop (for the case where the learning signal Ltj has its ideal value
dE
dztj
)

dE

dW ji

¼
X

t

dE

dztj
�

dztj

dW ji

" #

local

;

with the eligibility trace

etji ¼
def dztj

dW ji

" #

local

¼
def ∂ztj

∂htj

X

t0 ≤ t

∂htj

∂ht�1
j

� � �
∂ht

0þ1
j

∂ht
0

j

�
∂ht

0

j

∂W ji|ffl{zffl}
¼
def

ϵ
t
ji

:
ð13Þ

The second factor ϵtji , which we call eligibility vector, obviously satisfies the

recursive equation

ϵ
t
ji ¼

∂htj

∂ht�1
j

� ϵt�1
ji þ

∂htj

∂W ji

; ð14Þ

where ⋅ denotes the dot product. This provides the rule for the online compu-

tation of ϵtji , and hence of etji ¼
∂ztj
∂htj

� ϵtji .

We start from a classical factorization of the loss gradients in recurrent neural
networks that arises for instance in equation (12) of ref. 56 to describe BPTT. This
classical factorization can be justified by unrolling an RNN into a large feedforward
network, where each layer (l) represents one time step. In a feedforward network,

the loss gradients with respect to the weights W
ðlÞ
ji of layer (l) are given by

dE

dW
ðlÞ
ji

¼ dE

dh
ðlÞ
j

∂h
ðlÞ
j

∂W
ðlÞ
ji

. But as the weights are shared across the layers when representing a

recurrent network, the summation of these gradients over the layers l of the
unrolled RNN yields this classical factorization of the loss gradients:

dE

dW ji

¼
X

t0

dE

dht
0

j

�
∂ht

0

j

∂W ji

: ð15Þ

Note that the first factor dE

dht
0

j

in these products also needs to take into account how

the internal state hj of neuron j evolves during subsequent time steps, and whether
it influences firing of j at later time steps. This is especially relevant for ALIF
neurons and other biologically realistic neuron models with slowly changing
internal states. Note that this first factor of (15) is replaced in the e-prop equation

(13) by the derivative dE
dzt

0

j

of E with regard to the observable variable zt
0

j . There, the

evolution of the internal state of neuron j is pushed into the second factor, the
eligibility trace eji, which collects in e-prop all online computable factors of the loss
gradient that just involve neurons j and i.

Now we show that one can re-factorize the expression (15) and prove that the
loss gradients can also be computed using the new factorization (13) that underlies
e-prop. In the steps of the subsequent proof until Eq. (19), we decompose the term

dE

dht
0

j

into a series of learning signals Ltj ¼
dE
dzt

j
and local factors

∂htþ1
j

∂htj
for t ≥ t0 . Those

local factors will later be used to transform the partial derivative
∂ht

0

j

∂W ji
from Eq. (15)

into the eligibility vector ϵtji that integrates the whole history of the synapse up to

time t, not just a single time step. To do so, we express dE

dht
0

j

recursively as a function

of the same derivative at the next time step dE

dht
0þ1
j

by applying the chain rule at the

node htj for t ¼ t0 of the computational graph shown in Fig. 6c:

dE

dht
0

j

¼
dE

dzt
0

j

∂zt
0

j

∂ht
0

j

þ
dE

dht
0þ1
j

∂ht
0þ1
j

∂ht
0

j

ð16Þ

¼ Lt
0

j

∂zt
0

j

∂ht
0

j

þ
dE

dht
0þ1
j

∂ht
0þ1
j

∂ht
0

j

; ð17Þ

where we defined the learning signal Lt
0

j as dE
dzt

0

j

. The resulting recursive expansion

ends at the last time step T of the computation of the RNN, i.e., dE
dhTþ1

j

¼ 0. If one

repeatedly substitutes the recursive formula (17) into the classical factorization (15)
of the loss gradients, one gets:

dE

dW ji

¼
X

t0

Lt
0

j

∂zt
0

j

∂ht
0

j

þ
dE

dht
0þ1
j

∂ht
0þ1
j

∂ht
0

j

 !
�
∂ht

0

j

∂W ji

ð18Þ

¼
X

t0

Lt
0

j

∂zt
0

j

∂ht
0

j

þ Lt
0þ1
j

∂zt
0þ1
j

∂ht
0þ1
j

þ ð� � � Þ
∂ht

0þ2
j

∂ht
0þ1
j

 !
∂ht

0þ1
j

∂ht
0

j

 !
�
∂ht

0

j

∂W ji

: ð19Þ

The following equation is the main equation for understanding the transformation

from BPTT into e-prop. The key idea is to collect all terms
∂ht

0þ1
j

∂ht
0

j

, which are

multiplied with the learning signal Ltj at a given time t. These are only terms that

concern events in the computation of neuron j up to time t, and they do not
depend on other future losses or variable values. To this end, we write the term in
parentheses in Eq. (19) into a second sum indexed by t and exchange the
summation indices to pull out the learning signal Ltj . This expresses the loss

gradient of E as a sum of learning signals Ltj multiplied by some factor indexed by

ji, which we define as the eligibility trace etji 2 R. The main factor of it is the

eligibility vector ϵtji 2 R
d , which has the same dimension as the hidden state htj :

dE

dW ji

¼
X

t0

X

t ≥ t0

Ltj
∂ztj

∂htj

∂htj

∂ht�1
j

� � �
∂ht

0þ1
j

∂ht
0

j

�
∂ht

0

j

∂W ji

ð20Þ

¼
X

t

Ltj
∂ztj

∂htj

X

t0 ≤ t

∂htj

∂ht�1
j

� � �
∂ht

0þ1
j

∂ht
0

j

�
∂ht

0

j

∂W ji|ffl{zffl}
¼
def

ϵ
t
ji

:
ð21Þ

This completes the proof of Eqs. (1), (3), (13).

Derivation of eligibility traces LIF neurons. The eligibility traces for LSTMs are
derived in the supplementary materials. Below we provide the derivation of elig-
ibility traces for spiking neurons.

We compute the eligibility trace of a synapse of a LIF neuron without adaptive

threshold (Eq. (6)). Here, the hidden state htj of a neuron consists just of the

membrane potential vtj and we have
∂htþ1

j

∂htj
¼

∂vtþ1
j

∂vt
j
¼ α and

∂vtj
∂W ji

¼ zt�1
i (for a

derivation of the eligibility traces taking the reset into account we refer to
Supplementary Note 1). Using these derivatives and Eq. (14), one obtains that the
eligibility vector is the low-pass filtered presynaptic spike-train,

ϵ
tþ1
ji ¼ F αðz

t
iÞ ¼

def
�zti ; ð22Þ

and following Eq. (13), the eligibility trace is:

etþ1
ji ¼ ψtþ1

j �zti : ð23Þ

For all neurons, j the derivations in the next sections also hold for synaptic
connections from input neurons i, but one needs to replace the network spikes zt�1

i

by the input spikes xti (the time index switches from t− 1 to t because the hidden

state htj ¼ Mðht�1
j ; zt�1; xt ;WjÞ is defined as a function of the input at time t but

the preceding recurrent activity). For simplicity, we have focused on the case where
transmission delays between neurons in the RSNN are just 1 ms. If one uses more
realistic length of delays d, this d appears in Eqs. (23)–(25) instead of −1 as the
most relevant time point for presynaptic firing (see Supplementary Note 1). This
moves resulting synaptic plasticity rules closer to experimentally observed forms
of STDP.

Eligibility traces for ALIF neurons. The hidden state of an ALIF neuron is a two

dimensional vector htj ¼ ½vtj ; a
t
j �. Hence, a two-dimensional eligibility vector

ϵ
t
ji ¼

def
½ϵtji;v ; ϵ

t
ji;a� is associated with the synapse from neuron i to neuron j, and the

matrix
∂htþ1

j

∂htj
is a 2 × 2 matrix. The derivatives

∂atþ1
j

∂at
j
and

∂atþ1
j

∂vt
j
capture the dynamics of

the adaptive threshold. Hence, to derive the computation of eligibility traces, we
substitute the spike zj in Eq. (10) by its definition given in Eq. (9). With this

convention, one finds that the diagonal of the matrix
∂htþ1

j

∂htj
is formed by the terms

∂vtþ1
j

∂vt
j
¼ α and

∂atþ1
j

∂at
j
¼ ρ� ψt

jβ. Above and below the diagonal, one finds, respec-

tively,
∂vtþ1

j

∂at
j
¼ 0,

∂atþ1
j

∂vt
j
¼ ψt

j . Seeing that
∂htj
∂W ji

¼
∂vtj
∂W ji

;
∂atj
∂W ji

h i
¼ zt�1

i ; 0
� �

, one can

finally compute the eligibility traces using Eq. (13). The component of the eligibility
vector associated with the membrane potential remains the same as in the LIF case
and only depends on the presynaptic neuron: ϵtji;v ¼ �zt�1

i . For the component

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

12 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications

associated with the adaptive threshold we find the following recursive update:

ϵ
tþ1
ji;a ¼ ψt

j�z
t�1
i þ ðρ� ψt

jβÞϵ
t
ji;a ; ð24Þ

and, since
∂ztj
∂htj

¼
∂ztj
∂vt

j
;
∂ztj
∂at

j

� 	
¼ ψt

j ;�βψt
j

h i
, this results in an eligibility trace of the

form:

etji ¼ ψt
j �zt�1

i � βϵtji;a

� �
: ð25Þ

Recall that the constant ρ ¼ expð� δt
τa
Þ arises from the adaptation time constant τa,

which typically lies in the range of hundreds of milliseconds to a few seconds in our
experiments, yielding values of ρ between 0.995 and 0.9995. The constant β is
typically of the order of 0.07 in our experiments.

To provide a more interpretable form of eligibility trace that fits into the
standard form of local terms considered in three-factor learning rules12, one may

drop the term �ψt
jβ in Eq. (24). This approximation bϵtji;a of Eq. (24) becomes an

exponential trace of the post-pre pairings accumulated within a time window as
large as the adaptation time constant:

bϵtþ1
ji;a ¼ F ρ ψt

j�z
t�1
i

� �
: ð26Þ

The eligibility traces are computed with Eq. (24) in most experiments, but the
performances obtained with symmetric e-prop and this simplification were
indistinguishable in the task where temporal credit assignment is difficult of Fig. 3.

Synaptic plasticity rules resulting from e-prop. An exact computation of the

ideal learning signal dE
dzt

j
in Eq. (1) requires to back-propagate gradients through

time (see Fig. 6c). For online e-prop, we replace it with the partial derivative ∂E
∂ztj
,

which can be computed online. Implementing the weight updates with gradient
descent and learning rate η, all the following plasticity rules are derived from the
formula

ΔWrec
ji ¼ �η

X

t

∂E

∂ztj
etji : ð27Þ

Note that in the absence of the superscript t, ΔWji denotes the cumulated weight
change over one trial or batch of consecutive trials but not the instantaneous
weight update. This can be implemented online by accumulating weight updates in
a hidden synaptic variable. Note also that the weight updates derived in the fol-
lowing for the recurrent weights Wrec

ji also apply to the inputs weights W in
ji . For the

output weights and biases, the derivation does not require the theory of e-prop, and
the weight updates can be found in Supplementary Note 3.

In the case of a regression problem with targets y�;tk and outputs ytk defined in

Eq. (11), we define the loss function E ¼ 1
2

P
t;kðy

t
k � y�;tk Þ

2
. This results in a partial

derivative of the form ∂E
∂zt

j
¼
P

kW
out
kj

P
t0 ≥ tðy

t0

k � y�;t
0

k Þκt
0�t . This seemingly

provides an obstacle for online learning, because the partial derivative is a weighted
sum over future errors. But this problem can be resolved as one can interchange the
two summation indices in the expression for the weight updates (see
Supplementary Note 3). In this way, the sum over future events transforms into a
low-pass filtering of the eligibility traces �etji ¼ F κðe

t
jiÞ, and the resulting weight

update can be written as

ΔWrec
ji ¼ �η

X

t

X
k
Bjkðy

t
k � y�;tk Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ltj

�etji:
ð28Þ

For classification tasks, we assume that K target categories are provided in the
form of a one-hot encoded vector π*,t with K dimensions. We define the
probability for class k predicted by the network as
πtk ¼ softmaxkðy

t
1; ¼ ; ytK Þ¼ expðytkÞ=

P
k0 expðy

t
k0 Þ, and the loss function for

classification tasks as the cross-entropy error E ¼ �
P

t;kπ
�;t
k log πtk . The plasticity

rule resulting from e-prop reads (see derivation in Supplementary Note 3):

ΔWrec
ji ¼ �η

X

t

X
k
Bjkðπ

t
k � π�;tk Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ltj

�etji:
ð29Þ

Reward-based e-prop: application of e-prop to deep RL. For RL, the network
interacts with an external environment. At any time, t the environment can provide a
positive or negative reward rt. Based on the observations xt that are perceived, the
network has to commit to actions at0 ; � � � ; atn ; � � � at certain decision times
t0, ⋯ , tn, ⋯ . Each action at is sampled from a probability distribution π(⋅ ∣yt),
which is also referred to as the policy of the RL agent. The policy is defined as
function of the network outputs yt, and is chosen here to be a categorical distribution
of K discrete action choices. We assume that the agent chooses action k with
probability πtk ¼ πðat ¼ kjytÞ ¼ softmaxkðy

t
1; ¼ ; ytK Þ ¼ expðytkÞ=

P
k0 expðy

t
k0 Þ.

The goal of RL is to maximize the expected sum of discounted rewards. That is,
we want to maximize the expected return at time t= 0, E½R0�, where the return at

time t is defined as Rt ¼
P

t0 ≥ tγ
t0�trt

0
with a discount factor γ ≤ 1. The expectation

is taken over the agent actions at, the rewards rt and the observations from the
environment xt. We approach this optimization problem by using the actor-critic
variant of the policy gradient algorithm, which applies gradient ascent to maximize
E½R0�. The basis of the estimated gradient relies on an estimation of the policy
gradient, as shown in Section 13.3 in ref. 27. There, the resulting weight update is
given in equation (13.8) where Gt refers to the return Rt. Similarly, the gradient
dE R0½ �
dW ji

is proportional to E
P

tn
Rtn d log πðatn jytn Þ

dW ji

h i
, which is easier to compute because

the expectation can be estimated by an average over one or many trials. Following
this strategy, we define the per-trial loss function Eπ as a function of the sequence
of actions at0 ; � � � ; atn ; � � � and rewards r0, ⋯ , rT sampled during this trial:

Eπðz
0; � � � ; zT ; at0 ; � � � atn ; � � � ; r0; � � � ; rT Þ ¼

def
�
X

n

Rtn log πðatn jytn Þ : ð30Þ

And thus:

dE R0½ �

dW ji

/ E

X

tn

Rtn
d log πðatn jytn Þ

dW ji

" #
¼ �E

dEπ

dW ji

" #
: ð31Þ

Intuitively, given a trial with high rewards, policy gradient changes the network
output y to increase the probability of the actions atn that occurred during this trial.

In practice, the gradient
dEπ

dW ji
is known to have high variance and the efficiency of

the learning algorithm can be improved using the actor-critic variant of the policy
gradient algorithm. It involves the policy π (the actor) and an additional output
neuron Vt,which predicts the value function E½Rt � (the critic). The actor and the
critic are learnt simultaneously by defining the loss function as

E ¼ Eπ þ cVEV ; ð32Þ

where Eπ ¼ �
P

nR
tn log πðatn jytn Þ measures the performance of the stochastic

policy π, and EV ¼
P

t
1
2
ðRt � V tÞ

2
measures the accuracy of the value estimate Vt.

As Vt is independent of the action at one can show that 0 ¼ E V tn d log πðatn jytn Þ
dW ji

h i
.

We can use that to define an estimator cdE
dW ji

of the loss gradient with reduced

variance:

E
dE

dW ji

" #
¼ E

dEπ
dW ji

" #
þ cVE

dEV

dW ji

" #
ð33Þ

¼ E �
X

tn

ðRtn � V tn Þ
d log πðatn jytn Þ

dW ji

þ cV
dEV

dW ji

" #

|ffl{zffl}
¼
defcdE

dWji

;

ð34Þ

similarly as in equation (13.11) of Section 13.4 in ref. 27. A difference in notation is
that b(St) refers to our value estimation Vt. In addition, Eq. (34) already includes

the gradient
dEV

dW ji
that is responsible for learning the value prediction. Until now,

this derivation follows the classical definition of the actor-critic variant of policy

gradient, and the gradient cdE
dW ji

can be computed with BPTT. To derive reward-

based e-prop, we follow instead the generic online approximation of e-prop as in

Eq. (27) and approximate cdE
dW ji

by a sum of terms of the form b∂E
∂zt

j
etji with

c∂E
∂ztj

¼ �
X

n

ðRtn � V tn Þ
∂log πðatn jytn Þ

∂ztj
þ cV

∂EV

∂ztj
: ð35Þ

We choose this estimator b∂E
∂zt

j
of the loss derivative because it is unbiased and has a

low variance, more details are given in Supplementary Note 5. We derive below the
resulting synaptic plasticity rule as needed to solve the task of Fig. 4, 5. For the
case of a single action as used in Supplementary Fig. 5 we refer to Supplementary
Note 5.

When there is a delay between the action and the reward or, even harder, when
a sequence of many actions lead together to a delayed reward, the loss function E
cannot be computed online because the evaluation of Rtn requires knowledge of
future rewards. To overcome this, we introduce temporal difference errors δt= rt

+ γVt+1
− Vt (see Fig. 4), and use the equivalence between the forward and

backward view in RL27. Using the one-hot encoded action 1at¼k at time t, which
assumes the value 1 if and only if at= k (else it has value 0), we arrive at the
following synaptic plasticity rules for a general actor-critic algorithm with e-prop
(see Supplementary Note 5):

ΔWrec
ji ¼ �η

X

t

δtF γ Ltj �e
t
ji

� �
for ð36Þ

Ltj ¼ �cVB
V
j þ

X

k

Bπ
jkðπ

t
k � 1at¼kÞ ; ð37Þ

where we define the term πtk � 1at¼k to have value zero when no action is taken at

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications

time t. BV
j is here the weight from the output neuron for the value function to

neuron j, and the weights Bπ
jk denote the weights from the outputs for the policy.

A combination of reward prediction error and neuron-specific learning signal
was previously used in a plasticity rule for feedforward networks inspired by
neuroscience57,58. Here, it arises from the approximation of BPTT by e-prop in
RSNNs solving RL problems. Note that the filtering F γ requires an additional

eligibility trace per synapse. This arises from the temporal difference learning in
RL27. It depends on the learning signal and does not have the same function as the
eligibility trace etji.

Data availability
The data that support the findings of this study are available from the authors upon

reasonable request. Data for the TIMIT and ATARI benchmark tasks were published in

previous works29 with DOI [https://doi.org/10.1613/jair.3912] and ref. 20 with DOI

[https://doi.org/10.6028/nist.ir.4930]. Data for the temporal credit assignment task are

generated by a custom code provided in the abovementioned code repository.

Code availability
An implementation of e-prop solving the tasks of Figs. 2–5 is made public together with

the publication of this paper https://github.com/IGITUGraz/eligibility_propagation.

Received: 9 December 2019; Accepted: 16 June 2020;

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444

(2015).
2. Allen Institute: Cell Types Database. © 2018 Allen Institute for Brain Science.

Allen Cell Types Database, cell feature search. Available from: celltypes.brain-
map.org/data (2018).

3. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long short-
term memory and learning-to-learn in networks of spiking neurons. 32nd
Conference on Neural Information Processing Systems (2018).

4. Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks. 32nd
Conference on Neural Information Processing Systems (2018).

5. Lillicrap, T. P. & Santoro, A. Backpropagation through time and the brain.
Curr. Opin. Neurobiol. 55, 82–89 (2019).

6. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project.
Proc. IEEE 102, 652–665 (2014).

7. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip
learning. IEEE Micro PP, 1–1 (2018).

8. Williams, R. J. & Zipser, D. A learning algorithm for continually running fully
recurrent neural networks. Neural Comput. 1, 270–280 (1989).

9. Sanhueza, M. & Lisman, J. The CAMKII/NMDAR complex as a molecular
memory. Mol. Brain 6, 10 (2013).

10. Cassenaer, S. & Laurent, G. Conditional modulation of spike-timing-
dependent plasticity for olfactory learning. Nature 482, 47–52 (2012).

11. Yagishita, S. et al. A critical time window for dopamine actions on the
structural plasticity of dendritic spines. Science 345, 1616–1620(2014).

12. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces
and plasticity on behavioral time scales: experimental support of neohebbian
three-factor learning rules. Front. Neural Circuits 12, 53 (2018).

13. Sajad, A., Godlove, D. C. & Schall, J. D. Cortical microcircuitry of performance
monitoring. Nat. Neuro. 22, 265–274 (2019).

14. Engelhard, B. et al. Specialized coding of sensory, motor and cognitive
variables in VTA dopamine neurons. Nature 570, 509–513 (2019).

15. Roeper, J. Dissecting the diversity of midbrain dopamine neurons. Trends
Neurosci. 36, 336–42 (2013).

16. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic
feedback weights support error backpropagation for deep learning. Nat.
Comm. 7, 13276 (2016).

17. Nøkland, A. Direct feedback alignment provides learning in deep neural
networks. 30th Conference on Neural Information Processing Systems (NIPS
2016).

18. Samadi, A., Lillicrap, T. P. & Tweed, D. B. Deep learning with dynamic
spiking neurons and fixed feedback weights. Neural Comput. 29, 578–602
(2017).

19. Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects
coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13,
344–352 (2010).

20. Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G. & Pallett, D. S. DARPA
TIMIT acoustic-phonetic continous speech corpus CD-ROM. NASA STI/

Recon Technical Report, available at: https://doi.org/10.6028/nist.ir.4930
(1993).

21. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. & Schmidhuber, J.
LSTM: a search space odyssey. IEEE TNNLS arXiv:1503.04069v2 [cs.NE]
(2017).

22. Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep
recurrent neural networks. ICASSP pp. 6645–6649 (2013).

23. Morcos, A. S. & Harvey, C. D. History-dependent variability in population
dynamics during evidence accumulation in cortex. Nat. Neurosci. 19,
1672–1681 (2016).

24. Kappel, D., Legenstein, R., Habenschuss, S., Hsieh, M. & Maass, W. A
dynamic connectome supports the emergence of stable computational
function of neural circuits through reward-based learning. eNeuro 5,
ENEURO.0301-17(2018).

25. Bartunov, S. et al. Assessing the scalability of biologically-motivated deep
learning algorithms and architectures. In Advances in Neural Information
Processing Systems. arXiv:1807.04587 [cs.LG] (2018).

26. Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In
ICML, 1928–1937 (2016).

27. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT
press, 2018).

28. Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Front. Neural circuits 9, 85
(2016).

29. Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The arcade learning
environment: an evaluation platform for general agents. JAIR 47, 253–279
(2013).

30. Runyan, C. A., Piasini, E., Panzeri, S. & Harvey, C. D. Distinct timescales of
population coding across cortex. Nature 548, 92–96 (2017).

31. Bellec, G. et al. Biologically inspired alternatives to backpropagation through
time for learning in recurrent neural nets. Preprint at http://arxiv.org/abs/
1901.09049 (2019).

32. Gilra, A. & Gerstner, W. Predicting non-linear dynamics by stable local
learning in a recurrent spiking neural network. Elife 6, e28295 (2017).

33. Thalmeier, D., Uhlmann, M., Kappen, H. J. & Memmesheimer, R.-M.
Learning universal computations with spikes. PLoS Comput. Biol. 12,
e1004895 (2016).

34. Alemi, A., Machens, C. K., Deneve, S. & Slotine, J.-J. Learning nonlinear
dynamics in efficient, balanced spiking networks using local plasticity rules. In
32 AAAI Conference on Artificial Intelligence (2018).

35. Nicola, W. & Clopath, C. Supervised learning in spiking neural networks with
force training. Nat. Commun. 8, 2208 (2017).

36. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from
chaotic neural networks. Neuron 63, 544–557 (2009).

37. Abbott, L. F., DePasquale, B. & Memmesheimer, R.-M. Building functional
networks of spiking model neurons. Nat. Neurosci. 19, 350 (2016).

38. Ingrosso, A. & Abbott, L. Training dynamically balanced excitatory-inhibitory
networks. PloS ONE 14, e0220547 (2019).

39. Kim, C. M. & Chow, C. C. Learning recurrent dynamics in spiking networks.
eLife 7, e37124 (2018).

40. Zenke, F. & Ganguli, S. Superspike: Supervised learning in multilayer spiking
neural networks. Neural Comput. 30 (2018).

41. Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassignment in time.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018).

42. Neftci, E. O., Augustine, C., Paul, S. & Detorakis, G. Event-driven random
back-propagation: enabling neuromorphic deep learning machines. Front.
Neurosci. 11, 324 (2017).

43. Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep
continuous local learning. Front. Neurosci. 14, 424 (2020).

44. Emre O. Neftci, F. Z., Hesham Mostafa. Surrogate gradient learning in spiking
neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine 36, 51–63 (2019).

45. Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating gradients
through stochastic neurons for conditional computation. Preprint at https://
arxiv.org/abs/1308.3432 (2013).

46. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R. & Bengio, Y.Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. Preprint at https://arxiv.org/abs/1602.02830 (2016).

47. Marschall, O., Cho, K. & Savin, C.A unified framework of online learning
algorithms for training recurrent neural networks. Prerint at https://arxiv.org/
abs/1907.02649 (2019).

48. Mujika, A., Meier, F. & Steger, A. Approximating real-time recurrent learning
with random kronecker factors. Machine Learning arXiv:1805.10842 [cs.LG]
(2018).

49. Tallec, C. & Ollivier, Y. Unbiased online recurrent optimization. ICLR (2018).
50. Roth, C., Kanitscheider, I. & Fiete, I. Kernel rnn learning (kernl). ICLR (2019).
51. Murray, J. M. Local online learning in recurrent networks with random

feedback. eLife 8, pii: e43299 (2019).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y

14 NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications

https://doi.org/10.1613/jair.3912
https://doi.org/10.6028/nist.ir.4930
https://github.com/IGITUGraz/eligibility_propagation
https://doi.org/10.6028/nist.ir.4930
http://arxiv.org/abs/1901.09049
http://arxiv.org/abs/1901.09049
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1907.02649
https://arxiv.org/abs/1907.02649
www.nature.com/naturecommunications

52. Jaderberg, M.et al.Decoupled neural interfaces using synthetic gradients.
Preprint at https://arxiv.org/abs/1608.05343 (2016).

53. Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal dynamics:
from single neurons to networks and models of cognition (Cambridge
University Press, 2014).

54. Pozzorini, C., Naud, R., Mensi, S. & Gerstner, W. Temporal whitening by
power-law adaptation in neocortical neurons. Nat. Neurosci. 16, 942–8 (2013).

55. Esser, S. K. et al. Convolutional networks for fast, energy-efficient
neuromorphic computing. PNAS 113, 11441–11446 (2016).

56. Werbos, P. J. Backpropagation through time: what it does and how to do it.
Proceed. IEEE 78, 1550–1560 (1990).

57. Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical
networks. Nat. Rev. Neurosci. 19, 166–180 (2018).

58. Pozzi, I., Bohté, S. & Roelfsema, P. A biologically plausible learning rule for
deep learning in the brain. Preprint at https://arxiv.org/abs/1811.01768 (2018).

Acknowledgements
This research/project was supported by the Human Brain Project (grant agreement

number 785907), the SYNCH project (grant agreement number 824162) of the European

Union and a grant from Intel. We gratefully acknowledge the support of NVIDIA

Corporation with the donation of the Quadro P6000 GPU used for this research.

Computations were carried out on the Human Brain Project PCP Pilot Systems at the

Juelich Supercomputing Centre, which received co-funding from the European Union

(grant agreement number 604102) and on the Vienna Scientific Cluster (VSC). We thank

Thomas Bohnstingl, Wulfram Gerstner, Christopher Harvey, Martin Vinck, Jason

MacLean, Adam Santoro, Christopher Summerfield, and Yuqing Zhu for helpful com-

ments on an earlier version of the manuscript. Special thanks go to Arjun Rao for letting

us use his code for the regularization of membrane voltages.

Author contributions
G.B., F.S., A.S., and W.M. conceived the work, G.B., F.S., A.S., E.H., and D.S. carried out

experiments, G.B., F.S., A.S., E.H., D.S., R.L., and W.M. contributed to the writing of

the paper.

Competing interests
The authors declare no conflict of interest.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

020-17236-y.

Correspondence and requests for materials should be addressed to W.M.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17236-y ARTICLE

NATURE COMMUNICATIONS | (2020) 11:3625 | https://doi.org/10.1038/s41467-020-17236-y | www.nature.com/naturecommunications 15

https://arxiv.org/abs/1608.05343
https://arxiv.org/abs/1811.01768
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	A solution to the learning dilemma for recurrent networks of spiking neurons
	Results
	Mathematical basis for e-prop
	Learning phoneme recognition with e-prop
	Solving difficult temporal credit assignment
	Reward-based e-prop

	Discussion
	Methods
	Network models
	LIF neurons
	LSNNs
	Gradient descent for RSNNs
	Network output and loss functions
	Notation for derivatives
	Notation for temporal filters
	Mathematical basis for e-prop
	Derivation of eligibility traces LIF neurons
	Eligibility traces for ALIF neurons
	Synaptic plasticity rules resulting from e-prop
	Reward-based e-prop: application of e-prop to deep RL

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

