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Abstract

Erasure codes, such as Reed-Solomon (RS) codes, are

being increasingly employed in data centers to combat

the cost of reliably storing large amounts of data. Al-

though these codes provide optimal storage efficiency,

they require significantly high network and disk usage

during recovery of missing data.

In this paper, we first present a study on the im-

pact of recovery operations of erasure-coded data on the

data-center network, based on measurements from Face-

book’s warehouse cluster in production. To the best of

our knowledge, this is the first study of its kind avail-

able in the literature. Our study reveals that recovery of

RS-coded data results in a significant increase in network

traffic, more than a hundred terabytes per day, in a cluster

storing multiple petabytes of RS-coded data.

To address this issue, we present a new storage code

using our recently proposed Piggybacking framework,

that reduces the network and disk usage during recovery

by 30% in theory, while also being storage optimal and

supporting arbitrary design parameters. The implemen-

tation of the proposed code in the Hadoop Distributed

File System (HDFS) is underway. We use the measure-

ments from the warehouse cluster to show that the pro-

posed code would lead to a reduction of close to fifty

terabytes of cross-rack traffic per day.

1 Introduction

Data centers today typically employ commodity com-

ponents for cost considerations. These individual com-

ponents are unreliable, and as a result, the system must

deal with frequent failures of these components. In addi-

tion, various additional issues such as software glitches,

machine reboots and maintenance operations also con-

tribute to machines being rendered unavailable from time

to time. In order to ensure that the data remains re-

liable and available even in the presence of frequent

machine-unavailability, data is replicated across multiple

machines, typically across multiple racks as well. For

instance, the Google File System [1] and the Hadoop

Distributed File System (HDFS) [2] store three copies of

all data by default. Although disk storage seems cheap
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Figure 1: Increase in network usage during recovery of erasure-

coded data: recovering a single missing unit (a1) requires trans-

fer of two units through the top-of-rack (TOR) switches and the

aggregation switch (AS).

for small amounts of data, the massive scales of opera-

tion of today’s data-centers make storing multiple copies

an expensive option. As a result, several large-scale dis-

tributed storage systems [1,3] now employ erasure codes

that provide significantly higher storage efficiency, with

the most popular choice being the Reed-Solomon (RS)

code [4].

An RS code is associated with two parameters: k and

r. A (k, r) RS code encodes k units of data into r parity

units, in a manner that all the k data units are recoverable

from any k out of these (k+r) units. It thus allows for

tolerating failure of any r of its (k+r) units. The collec-

tion of these (k+r) units together is called a stripe. In

a system employing an RS code, the data and the parity

units belonging to a stripe are stored on different ma-

chines to tolerate maximum unavailability. In addition,

these machines are chosen to be on different racks to tol-

erate rack failures as well. An example of such a setting

is depicted in Fig. 1, with an RS code having parame-

ters (k=2,r=2). Here {a1, a2} are the two data units,

which are encoded to generate two parity units, (a1+a2)
and (a1+2a2). The figure depicts these four units stored

across four nodes (machines) in different racks.

Two primary reasons that make RS codes particularly

attractive for large-scale distributed storage systems are:

(a) they are storage-capacity optimal, i.e., a (k, r) RS

code entails the minimum storage overhead among all



(k, r) erasure codes that tolerate any r failures,1 (b) they

can be constructed for arbitrary values of the parameters

(k, r), thus allowing complete flexibility in the choice

of these parameters. For instance, the warehouse cluster

at Facebook employs an RS code with parameters (k=
10, r=4), thus resulting in a 1.4× storage requirement,

as compared to 3× under conventional replication, for a

similar level of reliability.

While deploying RS codes in data centers improves

storage efficiency, it however results in a significant in-

crease in the disk and network bandwidth usage. This

phenomenon occurs due to the considerably high down-

load requirement during recovery of any missing unit, as

elaborated below. In a system that performs replication,

a missing data unit can be restored simply by copying it

from another existing replica. However, in an RS coded

system, no such replica exists. To see the recovery oper-

ation under an RS code, let us first consider the example

(k=2, r=2) RS code in Fig. 1. The figure illustrates the

recovery of the first data unit a1 (node 1) from nodes 2

and 3. Observe that this recovery operation requires the

transfer of two units across the network. In general, un-

der a (k, r) RS code, recovery of a single unit involves the

download of some k of the remaining units. An amount

equal to the logical size of the data in the stripe is thus

read and downloaded, from which the required missing

unit is recovered.

The contributions of this paper are divided into two

parts. The first part of the paper presents measurements

from Facebook’s warehouse cluster in production that

stores hundreds of petabytes of data across a few thou-

sand machines, studying the impact of recovery oper-

ations of RS-coded data on the network infrastructure.

The study reveals that there is a significant increase in

the cross-rack traffic due to the recovery operations of

RS-coded data, thus significantly increasing the burden

on the already oversubscribed TOR switches. To the

best of our knowledge, this is the first study available

in the literature which looks at the effect of recovery op-

erations of erasure codes on the network usage in data

centers. The second part of the paper describes the de-

sign of a new code that reduces the disk and network

bandwidth consumption by approximately 30% (in the-

ory), and also retains the two appealing properties of RS

codes, namely storage optimality and flexibility in the

choice of code parameters. As a proof-of-concept, we

use measurements from the cluster in production to show

that employing the proposed new code can indeed lead to

a significant reduction in cross-rack network traffic.

The rest of the paper is organized as follows. Sec-

tion 2 presents measurements from the Facebook ware-

house cluster, and an analysis of the impact of recov-
1In the parlance of coding theory, an RS code has the property of

being ‘Maximum Distance Separable (MDS)’.
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Figure 2: Erasure coding across blocks: 10 data blocks encoded

using (10, 4) RS code to generate 4 parity blocks.

ery of RS-coded data on the network infrastructure. Sec-

tion 3 presents the design of the new ‘Piggybacked-RS’

code, along with a discussion on its expected perfor-

mance. Section 4 describes the current state and future

plans for this project. Section 5 discusses related works.

2 Measurements from Facebook’s ware-

house cluster
2.1 Brief description of the system

The warehouse cluster comprises of two HDFS clus-

ters, which we shall refer to as clusters A and B. In terms

of physical size, these clusters together store hundreds

of petabytes of data, and the storage capacity used in

each cluster is growing at a rate of a few petabytes ev-

ery week. These clusters store data across a few thou-

sand machines, each of which has a storage capacity of

24-36T B. The data stored in these clusters is immutable

until it is deleted, and is compressed prior to being stored

in the cluster. Map-reduce jobs are the predominant con-

sumers of the data stored in the cluster.

Since the amount of data stored is very large, the cost

of operating the cluster is dominated by the cost of the

storage capacity. The most frequently accessed data is

stored as 3 replicas, to allow for efficient scheduling of

the map-reduce jobs. In order to save on the storage

costs, the data which has not been accessed for more than

three months is stored as a (10,4) RS code. The two clus-

ters together store more than ten petabytes of RS-coded

data. Since the employed RS code has a redundancy of

only 1.4, this results in huge savings in storage capacity

as compared to 3-way replication.

We shall now delve deeper into details of the RS-

coded system and the recovery process. A file or a direc-

tory is first partitioned into blocks of size 256MB. These

blocks are grouped into sets of 10 blocks each; every set

is then encoded with a (10, 4) RS code to obtain 4 parity

blocks. As illustrated in Fig. 2, one byte each at corre-

sponding locations in the 10 data blocks are encoded to

generate the corresponding bytes in the 4 parity blocks.

The set of these 14 blocks constitutes a stripe of blocks.

The 14 blocks belonging to a particular stripe are placed
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Figure 3: Measurements from Facebook’s warehouse cluster: (a) the number of machines unavailable for more than 15 minutes

in a day, over a duration of 3 months, and (b) RS-coded HDFS blocks reconstructed and cross-rack bytes transferred for recovery

operations per day, over a duration of around a month. The dotted lines in each plot represent the median values.

on 14 different (randomly chosen) machines. In order

to secure the data against rack-failures, these machines

are chosen from different racks. To recover a missing

block, any 10 of the remaining 13 blocks of its stripe

are downloaded. Since each block is placed on a dif-

ferent rack, these transfers take place through the TOR

switches. This consumes precious cross-rack bandwidth

that is heavily oversubscribed in most data centers in-

cluding the one studied here.

As discussed above, the data to be encoded is cho-

sen based on its access pattern. We have observed that

there exists a large portion of data in the cluster which is

not RS-encoded at present, but has access patterns that

permit erasure coding. The increase in the load on the

already oversubscribed network infrastructure, resulting

from the recovery operations, is the primary deterrent to

the erasure coding of this data.

2.2 Data-recovery in erasure-coded sys-

tems: Impact on the network

We have performed measurements on Facebook’s

warehouse cluster to study the impact of the recovery op-

erations of the erasure-coded data. An analysis of these

measurements reveals that the large downloads for recov-

ery required under the existing codes is indeed an issue.

We present some of our findings below.

1. Unavailability Statistics: We begin with some

statistics on machine unavailability. Fig. 3a plots

the number of machines unavailable for more than

15 minutes in a day, over the period 22nd Jan. to 24th

Feb. 2013 (15 minutes is the default wait-time of the

cluster to flag a machine as unavailable). The me-

dian is more than 50 machine-unavailability events

per day. This reasserts the necessity of redundancy

in the data for both reliability and availability. A

subset of these events ultimately trigger recovery

operations.

2. Number of missing blocks in a stripe: Of all the

stripes that have one or more blocks missing, on an

average, 98.08% have exactly one block missing.

The percentage of stripes with two blocks missing

is 1.87%, and with three or more blocks missing is

0.05%. Thus recovering from single failures is by-

far the most common scenario. This is based on data

collected over a period of 6 months.

We now move on to measurements pertaining to recovery

operations for RS-coded data. The analysis is based on

the data collected from Cluster A for the first 24 days of

Feb. 2013.

3. Number of block-recoveries: Fig. 3b shows the

number of block recoveries triggered each day. A

median of 95,500 blocks of RS-coded data are re-

quired to be recovered each day.

4. Cross-rack bandwidth consumed: We measured the

number of bytes transferred across racks for the re-

covery of RS-coded blocks. The measurements,

aggregated per day, are depicted in Fig. 3b. As

shown in the figure, a median of more than 180T B

of data is transferred through the TOR switches ev-

ery day for RS-coded data recovery. Thus the re-

covery operations consume a large amount of cross-

rack bandwidth, thereby rendering the bandwidth

unavailable for the foreground map-reduce jobs.

This study shows that employing traditional erasure-

codes such as RS codes puts a massive strain on the net-

work infrastructure due to their inefficient recovery oper-

ations. This is the primary impediment towards a wider

deployment of erasure codes in the clusters. We address

this concern in the next section by designing codes that

support recovery with a smaller download.
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Figure 4: An illustration of the idea of piggybacking: a toy

example of piggybacking a (k=2, r=2) RS code.

3 Piggybacked-RS codes & system design

In this section, we present the design of a new family

of codes that address the issues related to RS codes dis-

cussed in the previous section, while retaining the stor-

age optimality and flexibility in the choice of parameters.

These codes, which we term the Piggybacked-RS codes,

are based on our recently proposed Piggybacking frame-

work [5].

3.1 Code design

A Piggybacked-RS code is constructed by taking an

existing RS code and adding carefully designed func-

tions of one byte-level stripe onto the parities of other

byte-level stripes (recall Fig. 2 for the definition of byte-

level stripes). The functions are designed in a manner

that reduces the amount of read and download required

during recovery of individual units, while retaining the

storage optimality. We illustrate this idea through a toy

example which is depicted in Fig. 4.

Example 1 Let k=2 and r=2. Consider two sets of

data units {a1,a2} and {b1,b2} corresponding to two

byte-level stripes. We first encode the two data units in

each of the two stripes using a (k=2, r=2) RS code, and

then add a1 from the first stripe to the second parity of the

second stripe as shown in Fig. 4. Now, recovery of node

1 can be carried out by downloading b2, (b1+b2) and

(b1+2b2+a1) from nodes 2, 3 and 4 respectively. The

amount of download is thus 3 bytes, instead of 4 as pre-

viously under the RS code. Thus adding the piggyback,

a1, aided in reducing the amount of data read and down-

loaded for the recovery of node 1. One can easily verify

that this code can tolerate the failure of any 2 of the 4

nodes, and hence retains the fault tolerance and storage

efficiency of the RS code. Finally, we note that the down-

load during recovery is reduced without requiring any

additional storage.

We propose a (10, 4) piggybacked-RS code as an al-

ternative to the (10, 4) RS code employed in HDFS. The

construction of this code generalizes the idea presented

in Example 1: two byte-level stripes are encoded to-

gether and specific functions of the first stripe are added

to the parities of the second stripe. This code, in the-

ory, saves around 30% on average in the amount of read

and download for recovery of single block failures. Fur-

thermore, like the RS code, this code is storage optimal

and can tolerate any 4 failures in a stripe. Due to lack

of space, details on the code construction are omitted,

and the reader is referred to [5] for a description of the

general Piggybacking framework.

3.2 Estimated performance

We are currently in the process of implementing the

proposed code in HDFS. The expected performance of

this code in terms of the key metrics of amount of down-

load, time for recovery, and reliability is discussed below.

Amount of download: As discussed in Section 2.2,

98% of the block recovery operations correspond to the

case of single block recovery in a stripe. For this case,

the proposed Piggybacked-RS code reduces the disk and

network bandwidth requirement by 30%. Thus from the

measurements presented in Section 2.2, we estimate that

replacing the RS code with the Piggybacked-RS code

would result in a reduction of more than 50T B of cross-

rack traffic per day. This is a significant reduction which

would allow for storing a greater fraction of data using

erasure codes, thereby saving storage capacity.

Time taken for recovery: Recovering a missing block

in a system employing a (k, r) RS code requires con-

necting to only k other nodes. On the other hand, ef-

ficient recovery under Piggybacked-RS codes necessi-

tate connecting to more nodes, but requires the down-

load of a smaller amount of data in total. We have con-

ducted preliminary experiments in the cluster which in-

dicate that connecting to more nodes does not affect the

recovery time in the cluster. At the scale of multiple

megabytes, the system is limited by the network and disk

bandwidths, making the recovery time dependent only

on the total amount of data read and transferred. The

Piggybacked-RS code reduces the total amount of data

read and downloaded, and thus is expected to lower the

recovery times.

Storage efficiency and reliability: The Piggybacked-

RS code retains the storage efficiency and failure han-

dling capability of the RS code: it does not require any

additional storage and can tolerate any r failures in a

stripe. Moreover, as discussed above, we believe that the

time taken for recovery of a failed block will be lesser

than that in RS codes. Consequently, we believe that the

mean time to data loss (MTTDL) of the resulting system

will be higher than that under RS codes.

4 Current state of the project

We are currently implementing Piggybacked-RS

codes in HDFS, and upon completion, we plan to evalu-



ate its performance on a production-scale cluster. More-

over, we are continuing to collect measurements, includ-

ing metrics in addition to those presented in this paper.

5 Related work

There have been several studies on failure statistics

in storage systems, e.g., see [6, 7] and the references

therein. In [8], the authors perform a theoretical com-

parison of replication and erasure-codes for peer-to-peer

storage systems. However, the setting considered therein

does not take into account the fact that recovering a sin-

gle block in a (k, r) RS code requires k times more data to

be read and downloaded. On the other hand, the primary

focus of the present paper is on analysing the impact of

this excess bandwidth consumption. To the best of our

knowledge, this is the first work to study the impact of

recovery operations of erasure codes on the network us-

age in data centers.

The problem of designing codes to reduce the amount

of download for recovery has received quite some theo-

retical interest in the recent past. The idea of connect-

ing to more nodes and downloading smaller amounts of

data from each node was proposed in [9] as a part of

the ‘regenerating codes model’, along with the lower

bounds on the amount of download. However, existing

constructions of regenerating codes either require a high

redundancy [10] or support at most 3 parities [11–13].

Rotated-RS [14] is another class of codes proposed for

the same purpose. However, it supports at most 3 pari-

ties, and furthermore its fault tolerance is established via

a computer search. Recently, optimized recovery algo-

rithms [15, 16] have been proposed for EVENODD and

RDP codes, but they support only 2 parities. For the pa-

rameters where [14, 16, 17] exist, we have shown in [5]

that the Piggybacked-RS codes perform at least as well.

Moreover, the Piggybacked-RS codes support an arbi-

trary number of parities.

In [18, 19], a new class of codes called LRCs are pro-

posed that reduce the disk and network bandwidth re-

quirement during recovery. In [18], the authors also pro-

vide measurements from Windows Azure Storage show-

ing the reduction in read latency for missing blocks when

LRCs are employed; however, no system measurements

regarding bandwidth are provided. In [19], the authors

perform simulations with LRCs on Amazon EC2, where

they show reduction in latency and recovery bandwidth.

Although LRCs reduce the bandwidth consumed during

recovery, they are not storage efficient: LRCs reduce the

amount of download by storing additional parity blocks,

whereas Piggybacked-RS do not require any additional

storage. In the parlance of coding theory, Piggybacked-

RS codes (like RS codes) are MDS and are hence storage

optimal, whereas LRCs are not.
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