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ABSTRACT

A "majority consensus" algorithm which represents a new
solution to the update synchronization problem for multiple copy
data bases is presented. The algorithm embodies distributed
control and can function effectively in the presence of
communication and data base site outages. The correctness of the
algorithm is demonstrated and the cost of using it is analyzed.
Several examples that illustrate aspects of the algorithm
operation are included in an appendix.
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1. INTRODUCTION

In a computer network environment it is often desirable to
store copies of the same data base at a number of different
network sites. A number of advantages can result from
maintaining such duplicate data bases. Among these advantages
are: 1increased data accessitility - the data may be accessed
even when some of the sites where it is stored havas failed as
long as at least one of the sites is operational; more
responsive data aezes; - data base queries initiated at sites
where the data is stored can be satisfied directly without
incurring network transmission delays and those initiated from
sites "near" the data base sites can be satisfied with less delay
tha:ii those "farther" from the data base sites; 1load sharing -
the computational load of responding to queries can be
distributed among a number of data base sites rather than

centralized at a single site.

These and other benefits of replicating data must be
balanced against the additional cost and complexities introduced |
in doing so. There is, of course, the cost of the extra storage
required for the redundant copies. This paper considers the
problem of maintaining synchronization of multiple copy data
bases in the presence of update activity and presents a solution

to that problem. Other problems (e.g., determining for a given

e

application the number of ccpies to maintain and the sites at

oy
s

which to maintain them; selecting a data base site to satisfy a




query request when it is initiated; etc.) are not considered in

this paper.

The inherent communicatio delay between sites that maintain
coples of a data base makes it impossible to insure that all
copies remain identical at all times when update requests are
being processed. The goal of an update mechanism is to guarantee
that updates get incorporated into the data base copies in a way
that preserves their mutual consistency. By this we mean that
all copies converge to the same state and would be identical

should update activity cease.

Traditional update mechanisms can be characterized as
involving some form of centralized control whereby all update
requests are channeled through a single central point. At that
point the requests can be validated and then distributed to the
various data base sites for entry into the data base copies. A l
second, fundamentally different approach to the update problem,
based on distributed control, is possible. For this approach the
responsibility for validating update requests and entering them

into the data base copies is distributed among the collection of ! o

data base sites.

Mechanisms which use centralized control are attractive
because a central control point makes it relatively easy to
detect and resolve conflicts between update requests whiech, if
left unresolved, might lead to inconsistencies and eventual

divergence of the data base coples. The primary disadvantage of



such mechanisms is that data base update activity must be
suspended whenever the central control point is inaccessible.
Such inaccessiblity could result from outages in the
communcations network or of the network site where the control
point resides. Because a distributed control update mechanism
has no single point of control, it should, in principle at least,
be possible to construct one which is capable of processing data
base updates even when one or more of the component sites are
inaccessible (1). The proublem here is that it is non-trivial to
design a distributed update control mechanism which operates
correctly; that is, which can resolve confliecting updates in a
way that preserves consistency of the data base copies and is
deadlock free. Centralized update control is adequate for many
applications. However, there are data base applications whose
update performance requirements can be satisfied only by a system

which uses distributed update control.

The mechanism for maintaining multiple copy data bases
presented in this paper is one which uses distributed control.
In particular, the update algorithm presented has the following
properties:

Distributed Updating.

Updates to a redundartly maintained data base can be
initiated through any of the data base sites.

1. A "distributed" mechanism that comes quickly to mind is one
which locks all copies of the data base for the duration of
the update activity. Since the operation of such a mechanism
requires every data base site to be accessible to process an
update, it is even more vulnerable to component outages than
one which uses centralized control.
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Update Synchronization.

Races between conflicting, "concurrent" update requests
are resolvea in a manner that maintains both the internal
consistency and the mutual consistency of the data base
copies.

Deadlock Prevention.
The synchronization mechanism that resolves races does not
introduce the possiblity of so called "deadly embrace" or
deadlock situations.

Robustness.

The data base update algorithm can recover from and
function effectively in the presence of communication
system and data base site failures. The algorithm is
robust with respect to lost and duplicate messages, the
(temporary) inability of data base managing processes to
communicate with one another (due to network or host
outages), and the loss of memory (state information) by
one or more of the data base managing processes. In
developing the algorithm, any mechanism that required all
data ~°se managing processes to be up and accessible in
order :~r 1t to function effectively was rejected.

Mech- n1isms were sought that required only pairwise
interactions among the data base managing processes.

Correctness.
It 1s possible to make a strong plausibility argument,

which serves as an informal proof, for the correctness of
the algorithm.

The remainder of this paper describes the update algorithm.
First the algorithm is described in overview and then in detail.
Following that, an informal proof for its correctness is
presented. Next, the cost of using the algorithm is
investigated. Finally, the impact memory loss at data base sites

has on the operation of the algorithm is briefly discussed.
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2. THE UPDATE ALGORITHM IN OVERVIEW

We assume an environment within which copies of a data base
are accessible at a number of data base sites. It 1s further
assumed that the data base copy at each site is acccessible only
through a data base manager process (DBMP) which resides at that
site. Query and update access to the data base is initiated by
application processes (APs). Each access to the data base is

completed by a DBMP acting on behalf of the initiating AP,

To query the data base an AP sends a query request to a
DBMP. The DBMP acts upon the request by querying its copy of the
data base and returning the results to the requesting AP. An
interprocess communication facility to support AP-DBMP and
DBMP-DBMP communication is assumed. It is further assumed that
the facility supports both intra-host (an AP and DBMP may reside

at the same network host) and inter-host communication.

We assume that, in general, APs initiate updates by first
performing a computation based upon data base values obtained by
one or more data base queries, and then submitting an update
request to a DBMP. The manner in which a DBMP acts upon an
update request is somewhat more involved than that for a query
request. As noted earlier, due to the delay inherent in
communication between DBMPs, it is not possible to guarantee that
the data bases are identical at all times. The objective of the
DBMP in processing an update request, therefore, is to maintain
both the mutual consistency of the collection of data base copies

and the internal consistency of each copy.
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By "mutual consistency" we mean that given a cessation of
update activity, and sufficient time for each DBMP to communicate
with every other DBMP, the data base copies will be identical.
The notion of "internal consistency" is somewhat more difficult
to define precisely. It has to do with the preservation of
invariant relations that exist among items within the data base.
As such, internal consistency is related to the interpretation or
semantics of items in the data base. Therefore, most of the
responsibility for the internal consistency of a data base must
rest with the application processes. The DBMPs should be
required to know little, if anything, about the data base
semantics. The DBMPs should, however, make it possible for a set
of well behaved APs to update the data base in a way that

preserves internal data relationships.

After an AP initiates an update request, the collection of
DBMPs act cooperatively to perform the requested update and
notify the AP of its acceptance or rejection. An AP process is
free to resubmit a rejected request for reconsideration by the

DBMPs.

The DBMPs determine whether to accept a given update request
by voting on it. A request that recelves a ma jority consensus
from the DBMPs will be accepted. Occassionally a DBMP set must
reject reguests in order tc maintain the consistency of the data
base copies. In such a case, a single dissenting vote is
sufficient to cause a request to be rejected (see Assertion 3 in

Section 4).




As an example, consider a 3 DBMP system for a data base
which includes the variables x and y, and assume that x and y
have the values 1 and 2, respectively, in all three copies.
Suppose that two application processes concurrently request x:=y
and y:=x, respectively, by initiating update requests at
different DBMPs. After the two updates are completed, one would
expect x and ¥ to be equal, although one could not predict
whether their value would be 1 or 2. If both requests were to be
accepted, x and y would not be equal. Hence, one of the requests
must be rejected in order to maintain the (internal) consistency
of the data base. Stated somewhat differently, the update
request that gets rejected must be refused because it is based on
information made obsolete by the request that gets accepted. The
AP whose request is rejected is free to resubmit it. If the
request 1s based on current information when it is resubmitted,

it can be accepted.

3. THE UPDATE ALGORITHM IN DETAIL

The basis of the distributed update algorithm is the voting
procedure used by the DBMPs to determine the acceptability of
data base update requests. This section describes the algorithm
in detail. It begins by specifying the nature of update requests
and the voting rules used by the DBMPs. Next, it discusses the
role of timestamps in the algorithm. Finally, the properties of
the algorithm which make it robust with respect to communication

and data base site outages are described.
-8 -
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3.1 Update Requests an, .oting Rules

When an AP submits an update request to a DBMP it includes

as part of the request:

a list of variables to be updated (called the

"update"
variables) and their new values;

a list of the variables upon which the update is based
(callea the "page" variables);

a list of timestamps for the base variables which indicate

when those variables were last updated.

The algorithm requires that the update variables be a subset of

the base variables. The reason for this requirement is discussed

in section 4.

Typically an AP would accomplish an update by performing the

following sequence:

request base variables and time stamps from a DBMP;
compute new values for the update variables;

submit update variables, bhase variables, and base variable
Limestamps to a DEMP as an update request;

if the request is rejected and the update is still
desired, repeat this sequence,

When 1t 1is requested to vote or an update request, a DBMP
may vote "reject" (REJ), "OK", or "deadlock reject" (DR); or, it
may (temporarily) defer voting on the request. The DBMP voting
rules are:

Vote REJ only if one or more of the base variable
timestamps is obsolete;

Vote OK only if the base variable timestamps are current
and the request is not in conflict with any requests that
Are currently pending at that DBMP. Two requests are said
to confliet if the intersection of the update variables of
one request and the base variables of the other request is

5 9 =




non-2mpty. When a DBMP votes 0K on a request, the request

is said to be pending at that DBMP.

Vote DR only if the base variable timestamps are current

and the request conflicts with a pending request of higher

priority. Each request is assigned a priority which is a
function of the DBMP at which it was initiated. (For
simplicity assume all requests initiated at the same DBMP
have the same priority and that requests initiated at
different DBMPs have different priorities.)

Defer voting ¢nly if (a) the base variable timestamps are

current, the request conflicts with a pending request, and

the priority of the request in question 1s higher than
that of the pending request, or (b) the base variable
timestamps are more current than the corresponding data

base timestamps. Each DBMP maintains requests that it has

deferred in a queue (FIFOQ).

The algorithm insures that requests upon which voting has
been deferred will be automatically reconsidered at a later time
after the conflicting, pending request which caused the deferral
has been resolved. It can be shown that this reconsideration
will occur at an indefinite, but finite future time (see

Assertion 6 in section 4).

The voting rules prevent a DBMP from changing its vote on a
request if it is given an opportunity to vote again on it. (The
mechanisms which insure the algorithm's robustness may cause a
DBMP to be requested to vote more than once on an update

request.)

A DBMP that votes REJ on an update request 1is responsible
for seeing that the request is properly "rejected" by the set of
DBMPs. To do this, it must:

Notify each other DBMP that the request has been rejected;

and

- 10 -
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Inform the requesting AP that the request has been
rejected.

When a DBMP discovers that a request has been rejected, it
should attempt to vote on those requests which were deferred
because they were in conflict with the rejected request. The
voting rules specified above are to be used and deferred requests
are to be reconsidered starting from the beginning of the queue

of deferred requests.

When a DBMP notes that a majority consensus has been reached
on a request (i.e., a majority of DBMPs have voted OK), the DBMP
must "accept" the update. To accept an update, a DBMP must:

Update its local copy of the data hase as specified by the
request update variables;

Notify each other DBMP that the request has been accepted;
and

Notify the requesting AP that the request has been
accepted.

When a DBMP is notified that a request has been accepted it
must update its local copy of the data base as specified by the
request update variables. 1In addition, it should reject any
pending or deferred requests that conflict with the accepted

request since those requests can never gain a majority consensus

(0 D

1. This procedure of rejecting pending requests in conflict may
cause a request to be rejected by more than a single DBMP. As
we shall see, this causes no problems. Alternatively, a DBMP
could reject only deferred requests that are in conflict with
the accepted request. Rejecting pending requests results in
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The reasoning which lead to the intrcJduction of deferred and
DR voting is somew! at involved. The algorithm would be
considerably simpler if a DBMP could vote REJ under the DR and
deferred conditions. There are two reasons why a DBMP should not
vote REJ under these conditions. First, consider a request (U)
tpat would be ar =2pted by the DBMP set in the absence of a
pending conflicting request (C). In the case that C is
eventually rejected by the DBMP set, by voting REJ for U, the
DBMP set would reject U when it need not. The second problem is
a more serious one. It has to do with the manner in which the
veting rules interact with the mechanisms (to be introduced in
Section 3.3) which insure robust behaviour in the presence of
communication and DBMP outages. There are outage patterns which, {
1f a DBMP were to vote REJ under the DR and deferred conditions,
could result in both acceptance and rejection of a given update
request by the DBMP set. Deferring the vote on a request that is
in conflict with another pending one addresses both problems at
the expense of intrnducing a potential for deadlocks. j
introduction of the DR voting rule insures that deadlocks can not

occur (see Assertion 7 in section 4). i

A DBMP votes DR only when the variables in an update request
conflict with those of another pending request. The intent of a
DR vote 1s to inform other DBMPs that a potential deadlock

situation with respect to the request exists. The request in

P

quicker rejection of requests that are destined to be rejected
at the expense of introducing possible multiple rejections of l
the same request.

s
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! question can continue to be considered by other DBMPs until
sufficient DRs accumulate to prevent a majority consensus on the
request. When (if) this condition occurs, the DBMpP that detects
it must reject the request. In effect, this rejection condition
represents a consensus among the DBMPs that the request should be
rejected to prevent a possible deadlock. To see the kind of
situation the DR rejection rule brevents, ccnsider a 2N Dp'p
system for which iwo conflicting update requests are initiated at
different DBMPs. It is possible for each request to progress to
the point where each has N 0K votes. At that point, without a
rule such as the DR rejection rule, neither could achieve a

majority consensus and a deadlock would result.

If, after voting on an update request, the outcome of the
request is still unresolved (1.e., the request base variables are g
current but there are insufficient 0K votes for acceptance or DR 1
votes for rejection), the DBMP should forward the request to some

other DBMP which has not yet voted on the request.

The APPENDIX to this paper presents several examples which
illustrate how update requests submitted to a DBMP set proceed

toward resolution under the voting rules just described.

3.2 Timestamps

Each modifiable data item in the data base has a timestamp
associated with it. The timestamp reflects the time at which the

item was assigned its present value.

= 18-
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Timestamps are used by the DBMPs in two ways. They are used
in the voting procedure. & DBMP can use timestamps to determine
whether the base variables of an update request are current by
comparing th- request base variable timestamps with the
corresponding timestamps in its copy of the data base. If any
data base timestamp is more recent than the ccrresponding base
variable timestamp, the request base variables are obsolete and

the request must be rejected (1).

The second way timestamps are used is to insure that
accepted updates are "properly" sequenced as they are
inccrporated into the data base coples. The manner in which
updates are accepted by and communicated among the DBMP set makes
1t possible for notification of the acceptance of an update (U2)
to a data item to arrive at some DBMP before notification of the

acceptance of a previous update (U1) to the same item.

For example, consider a 3 DBMP system where DBMP 3 1is down
wnen U1 and U2 are accepted. Further, suppose that U1 is
initiated by an AP at DBMP 1 and accepted at DBMP 2, and that U2
is initiated later at DBMpP 2 and accepted at DBMP 1. Now, assume

that when DBMP 3 comes up DBMP 2 is down. DBMP 3 will recelve

1. Alternatively, a DBMP could determine the currency of request
base variables by comparing their values with those in the
data base. However, for items which are complex, such is
lists or other data structures, the comparison (equality
check) could be quite expensive. The cost of the timestamp
check 1is independent of the complexity of the item. We note,
however, that the timestamp check is sometimes too strong a
condition and could result in rejection of a request that need
not be rejected.

- 14 .
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notification of U2's acceptance from DBMP 1; sometime later,
when DBMP 2 comes up, DBMP 3 will receive notification of U1l's

acceptance from DBMP 2.

By associating timestamps with update requests 1t 1s
possihle for a DBMP receiving notification of the acceptance of a
request to determine the currency of the request. In the case of
the example abuve, when DBMP é receives notification of U1's
acceptance, it should compare U1's timestamp with that assoclated
with the data item in its copy of the data base. If U1's
timestandp is more recent, DBMP 3 should perform the accepted

update; otherwise, it should discard U1 as obsolete (1).

The question arises as to wher and by whom an update request
should be timestamped. There seem to be only two logical
cholces:

By the initiating DBMP.

At the time the update is requested it is timestamped by

the DBMP that receives the request from an AP; or

By the accepting DBMP.

At the time the update is accepted it is timestamped by

the accepting DBMP.
The techniques used to insure robust behavior (described in
section 3.3) make it possible for a given update request to be
accepted by more than a single DBMP. Therefore, in order to

insure a single, unique timestamp, requests are timestamped by

the DBMP with which the request is initiated.

1. For a request with more than a single update variable, it may
be the case that some of the updates to individual variables
are performed while others must be rejected as obsolete.

- 18 =




Generating timetamps is a problem. We assume that each DBMP
has access to a local, monotonically increasing clock, but that
there is no common clock accessible to ail DBMPs. Since
timestamps are being used to sequence update gequests, it is
important that no two cenflicting update requests have the same
timestamp. It is not difficult to insure that two timestamps
generated by a given DBMP are unique. To prevent duplication of
timestamps generated by different DBMPs, we assume that the low
order digit (or digits) of the timestamp obtained from a local

clock is unique to each DBMP.

The possibility that the local DBMP clocks are skewed with
respect to one another or run at different rates could lead to
certain anomalous behavior [1]. In terms of the previous
example, anomalous behavior could result if the timestamp
generated by DBMP | for U1 is more recent than that generated for
U2 by DBMP 2; the anomaly here would be that Ul, the earlier
update, would be retained in the data base. We shall call such
an occurrence a "sequencing anomaly". Such behavior appears
anomalous only to an observer (such as a human user or an AP) who
can determine by some means external to the DBMP system that U2
"occurred after" U1, However, since a DBMP system functions for
such external observers, it is important to prevent sequencing
anomalies. Section 4 describes a procedure for choosing

timestamps to prevent them (see Assertion 5).
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3.3 Robustness

Several observations can be made regarding the robustness of

the majority consensus algorithm as it has been described so far.

Only a majority of the DBMPs or fewer (in the case of a
rejection) are necessary for an update request to he resolved.
Therefore, the data base can undergo modification when some DBMPs
are inaccesslble. Furthermore, the majority of DBMPs necessary
for a consensus need not all be available at the same time.

Since the algorithm involves only pairwise interactions among
processes, an update request can advance toward a consensus or

rejectlion when only two DBMPs are up.

It is not necessary for the DBMP at which a request is
initiated to remain up in order for the request to be resolved.
The initiating DBMP need only remain active sufficiently long to
vote on the request and forward it to another DBMP. The
requesting AP is notified by the DBMP that detects resolution of

the request, rather than by the initiating DBMP,

As the mechanism has been described, progress toward the
resolution of an update request can temporarily cease only if:
. a DBMP that is trying to forward an unresolved request s
unable to find another DBMP that is accessible and has
not yet voted on the request.

. a DBMP that is trying to forward an unresolved request
crashes before it is able to forward the request.




In first case there is 1ittle the DBMP can do until a DBMP that
has not already voted becomes accessible. We assume that the
sending DBMP is persistent and will forward the request when a

non-voting DBMP becomes accessible (1).

The use of timeouts can make the data base mechanism robust
with respect to failures of the second type. A DBMp which has
Successfully forwarded an unresolved update request should time
the request out in the following sense. If the DBMP does not
hear that the request has been resolved within a timeout period
it should act to help the request progress further toward

resolution.

A procedure that a DBMP can use when a request is timed out
is to check the Status of the DBMp (call it X) to which it
forwarded the request. If X is not up, then the checking DBMP
should attempt to forward the update request to Some other DBMP
that, to its knowledge, has not yet voted. If ¥ is up and knows
ahout the request, the checking DBMP need only reactivate the
Féquest timeout since it can assume that the same procedure is

used by X to insure that the request proceeds towarc tion

the receiving process is inaccessible when the sending process
initiates the message transmission, We note that the "network
mail" facility of the ARPANET [2] incorporates such a reliable
transmission mechanism to insure that network mail is always
eventually delivered. The details of how such mechanisms can
be implemented, though important, will not be discussed here.

- 18 -
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This procedure is analogous to the "timeout and retransmit"
procedures used in many network communication protocols [3]. The
procedure contributes to the robustness of the data base update
algorithm by insuring that -he system of DBMPs works toward the
resolution of an update request as long as at least one DBMP

which knows about the request is functioning.

A side effect of this retransmission procedure is that a
DBMP may be asked to consider a given update request more than
once. This 1s similar to the receipt of duplicate messages in a
communication system which uses retransmission. Duplicate
requests represent no problem as long as a DBMP can determine
whether it has already voted on a request it is asked to

consider, and, if it has, that it does not change 1its vote.

A second (or third, etc.) request to consider a given update
may traverse a different path through the network of DBMPs than
the first. As a result, such a request may provide the receiving
DBMP with new information regarding the status of the update
request. That 1is, when the votes on the duplicate request are
merged with the votes already known to the DBMP there may be

sufficient OK votes for a consensus or sufficient DR votes for a

1. A DBMP might choose the timeout period to be a function of the
number of voters a request has accumulated to account for the
fact that, in. most cases, it will take a request with few
votes relatively longer to be resolved than one with many
votes.



rejection. Or, the receiving DBMP may detect that, althougn the
request remains unresolved, the number of 0K and/or DR votes has

increased.
3.4 IDs for Update Requests

The data base algorithm requires that update requests be
uniquely identified within the set of DBMPs. This ID is used in
a number of ways. When voting on an update request, a DBMP must
be able to determine whether it has previously voted on the
request. Similarly, in order for DBMPs to be able to "garbage
collect" storage used for maintaining state information fTor
pending requests, when a DBMP is informed of the resolution of a
request, it must be able to determine whether it has any record

of the request.

The initiating DBMP is the process responsible for
generating unique IDs and associating them with updates requested
by APs. We note that the update timestamp generated by the
initiating DBMP for a request 1is unique and, therefore, 1is

adequate to serve as a request ID.

Should an update requested by an AP be rejected, subsequent
requests by the AP to accomplish the "same" update are regarded
by the DBMP set as different requests. That is, each request is
given a unique ID when it is submitted to the DBMP set for

consideration.

- 20 -
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4. ALGORITHM CORRECTNESS

This section presents plausibility arguments which serve to
explain how and why the majority consensus algorithm works.
Taken together, these arguments represent an informal proof for

the correctness of the algorithm.

The important aspects of the algorithm operation are the use
of timestamps in the voting procedure, the relationship between
the base and update variables in update requests, and the assumed
reliable transmission mechanism. The reliable transmission
mechanism guarantees that inter-DBMP messages are always
(eventually) delivered. The comparison of update timestamps with
data base variable timestamps made at each DBMP when an accepted
update is performed, together with the transmission mechanism,
guarantees mutual consistency. 1In effect, for each item in the
data base, each DBMP is able to reconstruct and then act upon the

same sequence of update events as each other DBMP.

The base variables of update requests are intended to be
used by APs and DBMPs as an aid for insuring internal data base
consistency. The intent 1s that an AP specify the base variables
which represent the premises upon which an update request is
based. The timestamp check for the request base variables and
the check for conflicts with pending requests made as a DBMP
votes on an update request insures that the premises upon which
the requesting AP has based the update have not changed.

Including the update variables in the base variable set is, in

- 21 -
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effect, equivalent to the premise that the requesting AP is the

only process updating the variables in question.

Definitions and assertions about the update algorithm

constitute the remainder of this section.

Definition (Cover):

An update request A i1s said to "cover" another update request
B i1f and only if there is at least one variable which is an
update variable of A and a base variable of B. That is, A
covers B if and only if A's update variables and B's base

variables have a non-empty intersection.

The voting rules prevent a DBMP that has voted OK on a request A,

which to 1its knowledge has not yet been resolved, from voting OK

on any request covered by A.

Definition (Concurrent):

Two requests A and B are saild to be "concurrent" if and only
if each variable v in the intersection of their base
variables has the same timestamp in request A and in request

B.

Assertion 1:

An update request that is covered by another, concurrent
request which has been accepted by the set of DBMPs can not

be accepted.
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Plausibility Argument:

Let A be the accepted update and B be the update under

consideration.

Assume that B is accepted by the set of DBMPs. & majority of
DBMPs must have voted 0K on B. Similarly, a majority of
DBMPs must have votecd GK »n A. Therefore, at least 1 DBMP,

call it X, must have voted OK on both A and B.

When X voted OK on B either A was pending at X (because X had
not yet heard of A's acceptance) or A had been performed by X
(1). If A was pending, X could not vote OK on B since A
covers B and the voting rules prevent such a vote. If A had
been performed, X could not vote OK on B because at least one
of B's base variable timestamps would be obsolete since at
least one of B's base variables is an update variable of A (A
covers B). Therefore, X could not have voted OK on B.

This is a contradiction.

Therefore, the assumption that B is accepted is false and the

assertion is true.

Definition (Conflict):

Two update requests A and B are said to "conflict" if A

covers B or if B covers A.

1. The case that X has not yet heard about A need not be

considered since it is assumed that A has been accepted and
that X is one of the DBMPs that voted on A.
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Assertion 2:

When the set of DBMPs considers two conflicting, concurrent

update requests, at most one of the requests will be

accepted.
Plausibility Argument:

The reasoning here is similar to that for Assertion 1.

Let A and B be the two updates.

Assume that both A and B are accepted. Because each must
accumulate a majority consensus, there must be at least 1

DBMP which votes 0K on both A and B. However, there can be

no such DBMP since the voting rules prevent a DBMP from

voting OK on conflieting requests. Therefore both A and B

cannot both be accepted.

Assertion 3;

If a single DBMP rejects an update request, U, it is not
possible for U to achieve a majority consensus.
(That 1is, even if all other DBMPs were to be given an

opportunity to vote on U, U would not receive a majority

consensus. )
Plausibility Argument:.

Let X be a DBMP that rejects U.

The voting rules are such that X will reject U only if:

- 24 o
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a. U has accumulated sufficient DR votes to prevent a
consensus; or

b. U is covered by another request (A) that obsoletes U's
base variables and that has already been accepted by the

set of DBMPs and performed by X.

Consider case (a). Since the DBMPs that have voted DR may

not change their votes U cannot achieve a majority consensus.

Next, consider case (b). Either X voted OK for A or it did

not.

First, assume that X did not vote OK for A. For U to be
accepted there must be a DBMP different from X in the
majority sets of both A and U (since X is not in the majority
set of A4). Such a DBMP can not exist because the voting
rules prevent a DBMP from voting OK for both A and U since A

conflicts with U.

Now, assume that X voted OK for A and further, assume that
the number, n, of DBMPs is odd:

n =2m - 1 ;
a majority of the DBMPs number at least m. In addition to X,
at least m-1 other DBMPs voted OK for A and are prevented by
the voting rules from voting OK for U. U cannot achieve a
majority consensus among the remaining DBMPs that did not
vote for A (and number at most m-1). A similar argument
holds when n 1is even.

Thus, the assertion is true.
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Assertion 4:

It is not possible for the Same request to be both accepted

and rejected by the set of DBMPs.
Plausibility Argument:
This assertion follows from Assertion 3.

Assertion 5:

The following function generates timestamps for update

requests in a way that prevents Sequencing anomalies:

"

ts = max(time, 1 + rax(U.BaseVar.Timestamps))

ﬁ—-—"!

"time" is the time obtaied by a DBMP from its local

clock; and

L

1

U.BaseVar.Timestamps is the set of timestamps for request

4

U's base variables.

Plausibility Argument:

Let A and B be two update requests. Asiume that first A is

{ 4 "

requested and accepted by the DBMP set and then B is
requested and accepted. We wish to show that the value of
any data base variable which is both in A's and B's update
variables will be specified by B. Since we assume that A and {
B have update variables 1in common, A covers B. We wish to
show that if the function above 1is used to generate the
timestamps, Ta and Tb, for A and B, then a sequencing anomaly [
can not occur. That is, we wish to show that:
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Tb > Ta.

Since B is covered by A and we have assumed that B is
accepted after A, it must be the case that B is initiated at
a DBMP that has performed A; otherwise, the timestamps of at
least one of B's base variables would be obsolete, leading to
B's eventual rejection. Because A covers B, there is at
least 1 variable, v, that is a base variable of B and an
update variable of 4. The timestamp of v is Ta. The
function guarantees that Tb is at least Ta + 1, Therefore,

Tb > Ta, under the stated assumptiins.

Assertion 5 means that it is possible for a DBMP set to
properly sequence 2onflicting update events without requiring
that the local DBMP clocks used in the generation of update
timestamps be Synchronized. A local DBMP clock can run at a
different rate than other DBMP clocks; it can even run at a
variable rate, or not run at all. The only requirement is that
local DBMP time never back up. Assertion 5 is an important
result because it is very difficult to synchronize clocks in a

distributed environment.

We rote that it does not follow from this assertion that any
two events initiated at different DBMPs in a system with
asynchronous DBMP clocks can be properly sequenced. It only
insures that events with something in common (i.e., those that
conflict with one another) can be : quenced. The ability of the

algorithm to properly sequence updates that modify the same
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that the update Variables be g Subset of the base variables. 1Ip

intuitive terms, the variables in common between conflicting

updates are the handles which enable the voting DBMpPs to properly

Sequence Seemingly asynchronous events. The reader interested in

more on the Subject of event ordering is referred to [4].

! Assertion 6:

i Plausibility Argument :

to U:

1. it can reject U;

Let U pe initiated at DBFIR &,

| 2. it can vote OK on U,

3. it can vote DR on U; or
4. it can defer voting on Uy,
If DBMP T rejects U (case 1),

Consider cases (2) and (3).

U is resolved (in finite time).

After voting, I can forward U to

I has 4 options with respect

j—l—-—.-‘“&-ﬂm

another DBMp J that has not voted on U. Our bremise assures

that this is done in finite time. |

DBMP J has the same 4 options witp respect to U. 1If it [

rejects U, U is resolved in finite time. 1If it votes 0K op
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enough OKs for a consensus nor DRs to prevent a consensus), J , i
will forward U to another DBMP K that has not yet voted on U,
, thereby, in finite time, advancing U one step closer toward
resolution. Since there are at most n (= number of DBMPs)
such steps required for U's resolution, it suffices to show

that each step requires only finite time.

The only case that 1s potentially troublesome is when a DBMP
defers voting on U. A DBMP K will defer voting on U only 1if
U conflicts with a pending request (L1) of lower priority.

The voting rules then prevent K from considering U until L1

i is resolved. If L1 is resolved, then K will learn of the

resolution in finite time. 1If L1 1s accepted, K will reject
3 U; 1f L1 1s rejected then K may vote on U, K's vote will L
i result either in U's resolution or the advancement of U one

step further toward resolution. Therefore, if the request L1

that caused U to be deferred 1s resolved within finite time,

then U willl either be resolved or advanced one step further Y

“oward resolution by DBMP K in finite time.

We turn our attention now to L1. L1 will be handled by the

UBMP set similarly to U. That is, it will proceed toward !
l resolution at a finite rate unless (and until) it is deferred i
|

l by some DBMP because it conflicts with a pending request of

lower priority.

Hence, progress toward U's resolution may be blocked by a

finite chain of requests L1,L2, ..., Lr; where U i1s deferred
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at some DBMP K because it con’licts with the lower priority

request L1; L1 is deferred at some nther DBMP because it

conflicts with lower priority request L2; etec,

The lowest priority request Lr will be resolved in finite
time because the voting rules prevent it from being deferred
by any DBMP. The voting rules require that the chain of
deferred requests be reconsidered in a FIFO manner,
Therefore, when Lr is resolved, either Lr-1 will be rejected
or it will be advanced one step further toward resolution.
Hence, Lr-1 will proceed toward resolution at a finite rate
and therefore will be resolved in finite time, enabll.g Lr-2
to be resolved in finite time, ... enabling L1 to be resolved
in finite time. Therefore, U will be resolved in finite

time.

Assertion 6 is an important result. From it, it follows

that:

Assertion 7:

The DBMP set is deadlock free.

A guaranteed finite time for pairwise DBMP communicatiorn is
a necessary condition of Assertion 6 because at any glven time
communication between a given pair of DBMPs may not be possible
due to network or host failure or outage. It is possible that

the outages and recoveries occur in such a way as to prevent a
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request from ever being resolved. For example, consider a two

DBMP system in which the DBMPs are never up at the same time;

e.g., DBMP 1 is up from time 0 to T-e, 2T+e to 3T-e, ..., 2mT+e
to (2m+1)T-e, ... and DBMP 2 is up from T+e to 2t-e, ...,
(2m=1)T+e to 2mT-e, ... . Clearly, no request can ever be

accepted by such a system because DBMPs 1 and 2 can never
interact. In practice, such failure and recovery patterns are
extremely unlikely. Therefore, the finite time condition for
pairwise DBMP communication is a reasonable assumption for a real

set of DBMPs.

\n

C0ST OF THE ALGORITHM

It is possible to identify the following costs which are

incurred as a result of using the majority consensus update

algorithm:
. Communication. A number of interprocess messages must be i
exchanged to accomplish an update; :

Computation. The update must be computed. This requires

one or more queries to obtain the base variables and I
computation of the values for the update variables. The |
race resolution mechanism occassionly requires that an

update request be rejected. If the requesting AP wishes to .
acctmplish an update that has been rejected, the AP must,

in general, first recompute it and then resubmit it as

another request.

Delay. It takes some time for the DBMP sec to resolve an
update request.

This section examines the communication and computation costs l

imposed by the algorithm.




Consider an n DBMP system.

The number of messages required

to accomplish an update under best case conditions (i.e., no

conflicts with other update requests, no DBMpP failures) is:
3 For AP to initiate the update

(AP->DBMP messages to request variables,
transmit variables, request update)

+ n/2 To achieve 3 consensus
(inter-DBMpP messages) ;

+ n-1 To notify the DBMpP set of acceptance
(inter-DBMP messages) ;

+ 1 To notify AP of acceptance

(DBMP->AP message )
or n + (n/2) + 3

messages.

If there are conflicts, the votes of more than ny/2 DBMPs may

be required to resolve 3 request. Each additional DBMP vote

requires an additional message. In the worst case, every DBMP

would have to vote before 3 request could be accepted. This

would require n-1 inter-DBMpP messages, Therefore, in the worst

|-
case, a request would require

i
2n + 2

messages to pe accepted.

forward the request, additional messages may be generated by the }

i
request timeout mechanisnm.

The best case figure of n + (n/2) + 3 compares favorably

with other techniques one might consider for managing l

distributed, redundant datg bases., |
< 89 4
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An update algorithm is described in [1] which guarantees
mutual consistency but can not insure internal consistency of
data base coples. The number of messages required by that

mechanism to accomplish an update is:

3 For an AP to initiate an update;
+ 1 For the initiatng DBMP to acknowledge
the update;
+ n-=1 To communicate the update to the other DBMPs
or
n + 3

messages. The difference of (n/2) is exactly the number of
messages required to reach a majority consensus and can be

regarded as the cost of insuring internal consistency.

It is interesting to note that update algorithms which use
centralized control also require n + 3 interprocess messages. To
see this assume that the central control point resides in one of
the DBMPs. As in the distributed control algorithm, an AF and
tke central DBMP must exchange 3 messages to intitiate the
ur-date; n-1 messages are required to distribute the update to
the other DBMPs; and 1 message 1s required to inferm the AP that

the update has occurred.

It 1s possible to imagine algorithms that involve lockilng
each copy of the data base for the duratlon of the activity
required to process an update. We consider such a mechanlsm only
for purposes of comparison: it is clearly less robust with

respect to component failures and outages than the majority
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consensus mechanism; furthermore, it may be very difficult to
specify such a locking algorithm that is deadlock free. The
number of messages required by a locking algorithm to accomplish

an update would be:

n To lock each copy of the data base;
+ 1 To obtain the base variables;
+ n To perform the update and unlock

the data base coples

or

2n + 1

messages. Thus, even in the worst case (2n + 2) the majority
consensus algorithm compares well with a simple

lock-compute/update-unlock scheme.

The cost of accomplishing an update includes both
computation and communication costs. Let C be the cost of
computing an update. Let M be the cost of transmitting a single
message; for simpliclity, we shall assume that all messages cost

the same.

Using the results from above, the cost, C0, of an update

that is accomplished without rejection 1s
C + (n+n/2+3)M < CO < C + 2(n+1)M.
If we define

C + (n+n/243)M
C + 2(n+1)M

COmin
COmax
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then the bounds on the cost, C1, of an update that is
accomplished with a single rejection and resubmission can be

shown to be:

COmin + C + 2M < C1 < COmax + C + 2nM

Intuitively, these bounds can be explained as follows. In the
best case, the first update request will be rejected by the
initiating DBMP; the 2M accounts for the messages from the DBMP
to the AP to reject the request and the message from the AP to
the DBMP to resubmit the update (1); C represencs the cost of
recomputing the update. 1In the wcrst case, all DBMPs must vote
before the first update request is rejected, requiring n-1
inter-DBMP messages and an additional n-1 inter-DBMP messages by
the rejecting DBMP to communicate the rejection to the other

DBMPs.

In general, it can be shown that the cost, Ck, of an update
that 1s rejected and resubmitted to the DBMP set k times before

it 1s accomplished is:

COmin + k(C + 2M) < Ck < COmax + k(C + 2nM)

1. This assumes that the message to notify the AP that the
request has been rejected includes the current values and
timestamps for the base variables; this enables the AP to
resubmit the update without re-requesting the base variables.
If the rejection 1is to prevent a possible deadlock, the values
and timestamps returned may not be current.
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6. THE PROBLEM OF MEMORY LOSS

Correct operation of the update algorithm requires that
information regarding the state of the data base system is never
lost by any DBMP. We¢ assume that anything worth remembering by a
DBMP, such as the data base itself and uuresolved update
requests, is maintained by the DBMP on a non-volatile storage
medium, such as disk, which normally survivcs host system
fallures. We further assume that the DBMP can determine when
data tiut is being moved from volatile (e.g., core) to
non-vo! tile storage has been competely copled to the

non-v~ tile medium.

A DBMP is said to have "lost memory" if it has forgotten
updates which have been accepted or if it has forgotten how it
has voted on currently unresolved update requests. A DBMP meuory
loss would occur if the information or the non-volatile storage

medium used by the DBMP is destroyed.

If a DBMP that has lost memory is permitted to vote on
update requests, that DBMP can cause the majority consensus
algorithm to malfunction. This can happen if: (1) the DBMP
votes OK for a request which conflicts with accepted updates it
has forgotten, thereby possibly enabling the request, which it
should reject, to achieve a majority consensus; or, (2) when
asked to vote on an unresolved request it has previously voted on
and forgotten, the DBMP votes differently (e.g., votes OK rather
than DR), thereby possibly causing the request to be both

accepted and rejected.
- 36 -
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By itself, a DBMP has no way of determining whether it has
lost memory. We assume that memory loss occurs as the result of
some catastropic event at the data base site and that in such a
case the informaticn critical to DBMP operation is restored by a
human operator from a backup copy which is presumably out of
date. The backup copy would typically be archived on magnetic
tape. We assume that whenever the information is backed up in
this way, the DBMP is restarted and signalled in some way that a
memory loss has occurred. In addition, we assume the DBMP can
determine the point of memory loss. That is, we assume that the
DBMP keeps a record of timestamps for recent significant ~:vents,
such as the last update accepted at each other DBMP, on the
non-volatile storage medium and that this record is archived
along with the data base and also restored whenever a memory loss

occurs.

When a DBMP restarts after a nemory loss, it must follow a
memory recovery procedure before it can safely vote on requests
it receives from other DBMPs. In order to become a voting member
of the DBMP set, a DBMP that has lost memory must:

Recover all updates which the set of DBMPs has accepted
since the point of its memory loss (and which have not
been forgotten by the entire set of DBMPs);

Recover all unresolved update requests which it has voted
on since the point of its memory loss.

It can be shown that, in general, a DBMP with memory loss
must interact with every other DBMP in order to guarantee

recovery of all the information it has lost. Furthermore, it can
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be shown that a recovery scheme which involves only a simple
interaction with each other DBMP, in which such information 1is

requeated and transmitted, 1is insufficient to recover all the

lost information (1).

Below we present a two pass memory recovery procedure which
involves only pairwise interactions among DBMPs. We assert that
this memory recovery procedure works correctly when ore, several
or all DBMPs have lost memory. However, it is teyond the scope

of this paper to prove its correctness.

Let M be the DBMP with memory loss. On the first pass M
informs each other DBMP that it is trying to recover from a
memory loss. When a DBMP 1is so informed, it must acknowledge,
and in addition, temporarily stop forwarding to other DBMPs

unresolved requests that have been voted orn by M (2).

On the second pass, M requests from each other DBMP, in
turn, information concerning updates accepted since the point of
M's memory loss and unresolved_update requests voted on by M.
After it supplies M such information, a DBMF may resume

forwarding unresolved requests that M has voted on.

1. While one DBMP is attempting to recover memory, it is possible
for the other DBMPs to experience memory loss and engage in
memory recovery in pathological patterns which would enable
unresolved update requests voted on by the original DBMP to
remain active in the DBMP set but unrecoverable by any simple
one pass procedure.

2. This temporary freezing of ‘data base activity with respect to
these unresolved requests prevents the pathulogical behavoir
mentioned in the previous footnote.
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If on the second pass M encounters a DBMP that is unaware
that M is engaged in the memory recovery procedure, that DBMP has
also lost memory (since M's first pass). Should M encounter such
a DBMP, it must abort the second pass of the procedure. In such
a case, to proceed with its memory recovery M must repeat the
first pass of the procedure, after which it may restart the
second pass. When M successfully completes the second pass, it

can participate as a voting member of the DBMP set.

7. CONCLUDING REMARKS

This paper has presentecd a "majority consensus" algorithm
which represents a new solution to the update synchronization
problem for multiple copy data bases. Because the responsibility
for performing an update is distributed among the collection of
processes that manage data base copies rather than centralized in
a single process, the algorithm can function effectively (i.e.,
process updates) in the presence of communication and data base

site outages.

Analysis of the communication and computation costs ircurred
by the majority consensus algorithm to accomplish an update (when
it 1is unnecessary to reject and resubmit it) shows these costs
are not significantly greater than for other more traditional
approaches. When the pattern of update activity is such that

conflicting update requests ~~cur, these costs increase because
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more votes are rcquired to resolve requests and because rejected

update requests must be resubmitted.

In addition to communication and computation costs, the
algorithm imposes a significant short term storage requirement
upon the data base sites since each site must remember the state
of a pending update request until the request is resolved. The
short term storage required for any application will depend upon
the expected patterns of update activity. 1In practice, the
domiriant cost associated with use of the algorithm is likely to

be that incurred to satisfy this short term memory requirement.

A multiple copy data base is one particular iLype of
distributed data base. Another type is one which consists of
distributed, non-overlapping segments; that i1s, a data base
which 1s a collectior of smaller data base segments each of which
is singly maintained at a (possibly) different site (1).

Although the data itself is not redundantly stored for this type
of distributed data base, in some applications it may be
desirable to maintain multiple :opies of the cataloguez for such
A Segmented data base. For these applications the majority
consensus algorithm could be used to handle updates to the data

base catalogue.

1. These two types represent extremes., Some applications may
call for "intermediate" types; for example, a data base
comprised of a collection of smaller segments some, but not
all, of whick are redundantly maintained.
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A number of interesting questions regarding the use of
multiple copy data bases, in general, and the use of the majority
consensus algorithm, in particular, remain to be answerei. These
guestions include:

. How should application processes be programmed to deal
with the fact that data found in any given data base copy
may not be the most current? 1In some cases it may not be
critical that the data is not current. If it is critieal,
how can a process locate the most current data?

How will the algorithm perform under various patterns of
update activity and various patterns of communication
system and site outages? For example, given particular
activity and outage patterns, what is the probability that
an update will be accepted the first time it 1s submitted;
what 1is the expected number of DBMPs that must vote for an
update request to be resolved?

In practice, use of the memory recovery procedure sketched
in section 6 could be expensive in terms of the storage
required to maintain update history information at each
DBMP site. What strategies can be used to minimize the
extent of the history information that is maintained at
each site? The memory recovery procecure that was
presented is interesting in that, like the majority
consensus algorithm, it can be made extremely robust
because i1t incorporates distributed control. However,
since memory loss by a DBMP is likely to be a rare
occurrence (relative to communication system and site
outages), a simpler, centralized recovery procedure may be
adequate in most situations.

1
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APPENDIX

This appendix includes a number of examples chosen to

illustrate various aspects of the update algorithm.

Before presenting the examples it “s necessary to specify in
some detail the messages exchanged among APs and DBMPs. The

following messages are used in the examples:

DBMP <-> AP messages:

RV - Request Variable values and timestamps (AP to DBMP).

VAR - VARiables and timestamps (DBMP to AP).

RU - Request Update (AP to DBMEF).

UA - Update Accepted (DBMP to AP).

UR - Update Rejected (DBMP to AP). ]

Inter-DBMP messages:

RC - Request Consensus on specified update request.

DO - The specified update request has been accepted; enter g
it into your copy of the data base,

REJ - Tre specified update request has been REJected. 1

For each of the exampl 5 that follow a number of different
sequences of events are possible; only one sequence is presented
for each example. The followirg notation is used in the
examples:

X->Y:Z represents transmission of message Z to process Y

by process X. |
(A / B/ C] indicates the event sequence in which event A

is followed by event B which is followed by event C.

[ A & B ] indicates that events A and B occur

concurrently.

The update request status "--n indicates that the update

request 1is currently unknown at the DBMP in question. The

status "XX" indicates that the DBMP in question is down.

- ok€12 means that DBMPs 1 and 2 have voted OK on the
request. Similarly do€2 (rej€2) means that DBMP 2
accepted (rejected) the update request.

DONE means that the DBMP has performed the update.
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REJD means that the DBMP considers the request as
rejected.

n#n yndicates that the DBMP is actively trying to forward
information regarding the request; %ok means that it 1is
trying to forward an RC message; ¥*DONE means that it is
trying to complete sending DO messages; ¥*REJD means that
it is trying to complete sending REJ messages.

Example # 1: Normal update with no conflict.

Consider 3 DBMPs which manage a data base which includes a

variable x. Assume that an AP wishes to do the update:

Further, suppcse that x is current in all coples of the data
base, and that its value is 3. Let the update requested be
called A. A has a single base variable, x, and a single update

variable, x. If accepted, A will change the value of x to 4.

The table belouw illustrates the sequence of events that
occur and how the status of the request A as seen by each DBMP

evolves as the DBMPs work to accomplish the update.

DBMP-1 DBMP-2 DBMP-3
Status
of:
A == -— =

[ AP->1:RV(x) / 1->AP:VAR(x) / AP->1:RU(A) / 1 votes OK ]
A %oké€1 -- --

[ 1->2:RC(A) / 2 votes OK ]
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A ok 1 ®okb12 -
[ 2 accepts A / 2->1:D0(A) / 2->AP:UA(A) ]

A DONE ®*DONE -
do@2 do€2

[ 2->3:D0(4A) ]

A DONE DONE DONE
do@? dof?2 doé?2

[ 1,2,3 discard (1) request A )

Example # 2: Concurrent Conflicting Updates.

This 1s the example from section 2. There are 3 DBMPs
which manage a data base that includes variables x and y. Assume
all data bases are current and x=1 and y=2 in all copies of the
data base. Assume that AP1 initiates update A and that AP2
initiates update B:

A:

X Y
B: y :

X.

The base variables of A are X,y and the update variable is X3
B's base variables are X,y also, and its update variable is y. A

and B conflict.

In the following, A is accepted causing x to be set to

2 and B to be rejected. AP?2 then chooses to re-initiate its

1. A DBMP may "discard" an accepted update request after it has
entered the update into its data base copy. DBMPs also
"discard" rejected requests. This paper does not discuss how
a DBMP can tell when it is safe to discard a request;
however, it 1is not difficult to devise methcds for doing so.

o I




update (called B' to distinguish 1t from the AP2's original
request) which updates y Lo 2. We assume that the priority of a
request initiated at DBMP 1 is greater than that of one initlated

al DBMP 2 or 3, etlc.

DBMP =1 DBMP=2 DBMP-3
Status
of :
A - — =
B o= - _—
[ AP1->1:RV(xy) & AP2->3:RV(xy) / 1->AP1:VAR(xy) & 3->AP2:VAR(xy) / T
AP1->1:RU(A) & AP2->3:RU(B) / 1 votes A-OK & 3 votes B-OK ]
*ok6 1 == =a -

- - *¥ok@3

o >

1->2:RC(A) & 3->1:RC(B) / 2 voles A-OK & 1 votes B-DR ]

—

A ok@1 ¥ok@12 -
B *ok@3dreé1 - ok83
[ 2 accepts A & 1->2:RC(B) / 5_>AP1:UA(A) & 2->1:D0O(A) & 2 rejects B ]
A DONE #DONE -
do@?2 do@?2 -
B ok@3dré1 #REJD ok@3
rej@2

e

[ 2->3:DO(A) & 2->1,3:REJ(B) & 2->AP2:UR(B,x,y) ]

A DONE DONE DONE f
do€2 do@2 do@2 !
B REJD REJD REJD
rejé2 re j@2 rejé2 i

()

1,2,3 discard A and B ]

A

B = S == !
[ AP2-»>2:RU(B') / 2 votes B'-0K ]

B -- ®ok€2 --

[ 2->3:RC(B') / 3 votes B'-0K / 3 accepts B' J ee @bes

- 46 -

]




Example # 3: Deadlock Avoidance.

Ansume 3 DBMPs which manage a data base which includes
the variables x, y, and z. Assume that all copiles of the data
bzase are current and that x=1, y=2, and z=3. Assume that 3
application programs attempt the updates:

x (by APZ)

yz (by AP1)
z +
x -y (by AP3)

A:
B:
C.

N <
[T T ]

Update A would change x to 6; B would change y to 4; C would

change Z to -1. The base variables of all 3 requests are Xx,Y,z;

the update variables are such that each request conflicts with
each of the others. 1In the following scenario the DBMPs act
first to reject C 1n order to prevent a possible deadlock, next

to accept B, and finally, to reject A because it conflicts with

e

B.
DBMP -1 DBMP-2 DBMP-3
Status
of:
A T - =
B i == ==
C = == P
[ ... AP1=>1:RU(A) & AP2->2:RU(B) & AP3->3:RU(C) /
1,2,3 vote OK on A,B,C ]
A #ok61 - -
B - *#okb2 -
C -- - #0ké3
[ 1->2:RC(A) & 2->3:RC(B) & 3->1:RC(C) /

2 defers A & 3 defers B & 1 votes C-DR ]

= 4 =




A ok@1 DEFR, ok@1 -

B - ok@2 DEFR, oké?2

G %okf3dre1 - ok@3

[ 1->2:RC(C) / 2 votes C-DR / 2 rejects C ]

A ok@1 DEFR, ok€1 -

B - ok€2 DEFR, ok@2

C ok@3dré1 ®REJD ok€3

rejé@2

[ 2->1,3:REJ(C) & 2->AP3:UR(C,x,y,z) / 3 votes B-0K / 3 accepts B ]

A ok@1 DEFR, ok@1 -

B - ok@2 *DONE

do€3

C REJD *REJD REJD

rej@?2 rej@?z rej@?2

[ 3->1,2:D0(B) & 3->AP2:UA(B) / 1,2,3 discard C & 1,2 reject A ]

A ®REJD #REJD -—

rejé1 rejéz
B DONE DONE ®DONE

do€3 do@3 doé3 ,
C = s A

[ 1,2,3 discard B / 1->2,3:REJ(A) & 1->AP1:UR(A,x,y,z) &
2->1,3:REJ(A) & 2->AP1:UR(A,xyz) ]

A REJD REJD REJD
rej@12 rejé12 rejé12
B - == 2
C == i —
[ 1,2,3 discard A ] |

Example # 4: Updating in the Presence of DBMP Crashes.

For this example assume a 5 DBMP system and that all

data base coples are current. Further assume that DBMPs 4 and 5 i

N

are initially down and that when DBMPs crash and later come up
they do so without loss of memory. Suppose that conflicting
updates A and B are initiated at DBMPs 1 and 3 respzctively. The
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following illustrates g3 Scenario in which various DBMPs crash and

return as the set of DBMPs act to accept B and reject 4.

DBMP-1 DBMP-2 DBMP-3 DBMP-4 DBMP-5
Status
of:
A . == - XX XX
B - - - XX XX

[ AP1->1:RU(A) & AP2->3:RU(B) / 1,3 vote OK on A,B ]

A ®oke 1 - - XX XX

B - - *0ké3 XX XX

[ 3->1:RC(B) / 1 votes B-DR / 1->2:RC(B) / 2 vot:s B-0K /
1->2:RC(A) / 2 defers A ]

A okf1 DEFR, oké1 - XX XX

B ok€@3dré #0kB23dr6e1 ok#3 XX XX

—

2 crashes / 1 times out A4 ]

A *ok6 1 XX -—- XX XX
B ok@3dré1 XX ok@3 XX XX
[ 1->3:Rc(a) / 3 defers A / 4,5 up / 3 times out B ]

A oké1 XX DEFR, ok? 1 -- -
B okf3dre1 XX *0ké3 - -
[ 3->4:RC(B) / 4 votes B-0K ]

A ok81 XX DEFR,ok€1  -- --
B ok€3dre1 XX ok€3 *ok€3Y -

~—

3,4 crash / 1 times out A4 ] |
®ok61 XX XX XX - !

i

i

A
B ok@3dré1 XX XX XX --

[ 1->5:RC(A) / 5 votes A-OK / 2,3,4 up ]

A ok@1 DEFR,0k81  DEFR,okf1 -- *ok@15
B ok€3dré1 *ok€23dré1 ok63 ®ok63y --

~—

Note that B has been resolved but that no single DBMP is

aware of that yet.
5<>4:RC(A) & 4~>5:RC(B) / 4 defers A & 5 votes B-DR ]
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A oké€1 DEFR, oké€1 DEFR, oké€1 DEFR,ok€15

ok@15 i -
B ok@3dre1 ¥ok623dre1 oke3 ok@3Yy *ok@34DRES

[ 2->5:RC(B) / 5 accepts B / 5-)1,2,3,U:DO(B) & 5->AP2:UA(B) /
5 rejects A & 1,2,3,4 reject 4 ]

A *REJD *REJD *REJD *REJD *REJD
rejé1 rejé?2 rejés rejély rcjés

B DONE DONE CONE DCNE *DONE
do@5 do@5s do€5 do €5 do@5

[ 1,2,3,4,5 exchange REJs for 4 / 1,2,3,4,5 discard A,B ]
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