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A "majority consensus" algorithm which represents a new 
solution to the update synchronization problem for multiple copy 
data bases is presented.  The algorithm embodies distributed 
control and can function effectively in the presence of 
communication and data base site outages.  The correctness of the 
algorithm is demonstrated and the cost of using it is analyzed. 
Several examples that illustrate aspects of the algorithm 
operation are included in an appendix. 
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1.  INTRODUCTION 

In a computer network environment it is often desirable to 

store copies of the same data base at a number of different 

network sites.  A number of advantages can result from 

maintaining such duplicate data bases.  Among these advantages 

are:  increased data accessibUity - the data may be accessed 

even when some of the sites where it is stored hava failed as 

long as at least one of the sites is operational;  more 

responsive data aooe* ) - data base queries initiated at sites 

where the data is stored can be satisfied directly without 

incurring network transmission delays and those initiated from 

sites "near" the data base sites can be satisfied with less delay 

than those "farther" from the data base sites;  load sharing - 

the computational load of responding to queries can be 

distributed among a number of data base sites rather than 

centralized at a single site. 

These and other benefits of replicating data must be 

balanced against the additional cost and complexities introduced 

in doing so.  There is, of course, the cost of the extra storage 

required for the redundant copies.  This paper considers the 

problem of maintaining synchronization of multiple copy data 

bases in the presence of update activity and presents a solution 

to that problem.  Other problems (e.g., determining for a given 

application the number of copies to maintain and the sites at 

which to maintain them;  selecting a data base site to satisfy a 
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query request when it is initiated; etc.) are not considered in 

this paper. 

The inherent communicatio  delay between sites that maintain 

copies of a data base makes it impossible to insure that all 

copies remain identical at all times when update requests are 

being processed.  The goal of an update mechanism is to guarantee 

that updates get incorporated into the data base copies in a way 

that preserves their mutual consistency.  By this we mean that 

all copies converge to the same state and would be identical 

should update activity cease. 

Traditional update mechanisms can be characterized as 

involving some form of centralized control whereby all update 

requests are channeled through a single central point.  At that 

point the requests can be validated and then distributed to the 

various data base sites for entry into the data base copies.  A 

second, fundamentally different approach to the update problem, 

based on distributed control, is possible.  For this approach the 

responsibility for validating update requests and entering them 

into the data base copies is distributed among the collection of 

data base sites. 

Mechanisms which use centralized control are attractive 

because a central control point makes it relatively easy to 

detect and resolve conflicts between update requests which, if 

left unresolved, might lead to inconsistencies and eventual 

divergence of the data base copies.  The primary disadvantage of 
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such mechanisms is that data base update activity must be 

suspended whenever the central control point is inaccessible. 

Such inaccessiblity could result from outages in the 

communcations network or of the network site where the control 

point resides.  Because a distributed control update mechanism 

has no single point of control, it should, in principle at least, 

be possible to construct one which is capable of processing data 

base updates even when one or more of the component sites are 

inaccessible (1).  The problem here is that it is non-trivial to 

design a distributed update control mechanism which operates 

correctly;  that is, which can resolve conflicting updates in a 

way that preserves consistency of the data base copies and is 

deadlock free.  Centralized update control is adequate for many 

applications.  However, there are data base applications whose 

update performance requirements can be satisfied only by a system 

which uses distributed update control. 

The mechanism for maintaining multiple copy data bases 

presented in this paper is one which uses distributed control. 

In particular, the update algorithm presented has the following 

properties: 

. Distributed Updating. 
Updates to a redundantly maintained data base can be 
initiated through any of the data base sites. 

1. A "distributed" mechanism that comes quickly to mind is one 
which locks all copies of the data base for the duration of 
the update activity.  Since the operation of such a mechanism 
requires every data base site to be accessible to process an 
update, it is even more vulnerable to component outages than 
one which uses centralized control. 
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Update Synchronization. 
Races between conflicting, "concurrent" update requests 
are resolved in a manner that maintains both the internal 
consistency and the mutual consistency of the data base 
copies. 

Deadlock Prevention. 
The synchronization mechanism that resolves races does not 
introduce the possiblity of so called "deadly embrace" or 
deadlock situations. 

Robustness . 
The data base update 
function effectively 
system and data base 
robust with respect t 
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communicate with one 
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ng processes.  In 
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Correctness. 
It is possible to make a strong plausibility argument, 
which serves as an informal proof, for the correctness of 
the algorithm. 

I 

i 

The remainder of this paper describes the update algorithm. 

First the algorithm is described in overview and then in detail. 

Following that, an informal proof for its correctness is 

presented.  Next, the cost of using the algorithm is 

investigated.  Finally, the impact memory loss at data base sites 

has on the operation of the algorithm is briefly discussed. 
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2.  THE UPDATE ALGORITHM IN OVERVIEW 

We assume an environment within which copies of a data base 

are accessible at a number of data base sites.  It is further 

assumed that the data base copy at each site is acccessible only 

through a data base manager process (DBMP) which resides at that 

site.  Query and update access to the data base is initiated by 

application processes (APs).  Each access to the data base is 

completed by a DBMP acting on behalf of the initiating AP. 

To query the data base an AP sends a query request to a 

DBMP.  The DBMP acts upon the request by querying its copy of the 

data base and returning the results to the requesting AP.  An 

interprocess communication facility to support AP-DBMP and 

DBMP-DBMP communication is assumed.  It is further assumed that 

the facility supports both intra-host (an AP and DBMP may reside 

at the same network host) and inter-host communication. 

We assume that, in general, APs initiate updates by first 

performing a computation based upon data base values obtained by 

one or more data base queries, and then submitting an update 

request to a DBMP.  The manner in which a DBMP acts upon an 

update request is somewhat more involved than that for a query 

request.  As noted earlier, due to the delay inherent in 

communication between DBMPs, it is not possible to guarantee that 

the data bases are identical at all times.  The objective of the 

DBMP in processing an update request, therefore, is to maintain 

both the mutual consistency of the collection of data base copies 

and the internal consistency of each copy. 
- 6 - 
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By "mutual consistency" we mean that given a cessation of 

update activity, and sufficient time for each DBMP to communicate 

with every other DBMP, the data base copies will be identical. 

The notion of "internal consistency" is somewhat more difficult 

to define precisely.  It has to do with the preservation of 

invariant relations that exist among items within the data base. 

As such, internal consistency is related to the interpretation or 

semantics of items in the data base.  Therefore, most of the 

responsibility for the internal consistency of a data base must 

rest with the application processes.  The DBMPs should be 

required to know little, if anything, about the data base 

semantics.  The DBMPs should, however, make it possible for a set 

of well behaved APs to update the data base in a way that 

preserves internal data relationships. 

After an AP initiates an update request, the collection of 

DBMPs act cooperatively to perform the requested update and 

notify the AP of its acceptance or rejection.  An AP process is 

free to resubmit a rejected request for reconsideration by the 

DBMPs. 

The DBMPs determine whether to accept a given update request 

by voting on it.  A request that receives a majority consensus 

from the DBMPs will be accepted.  Occassionally a DBMP set must 

reject requests in order to maintain the consistency of the data 

base copies.  In such a case, a single dissenting vote is 

sufficient to cause a request to be rejected (see Assertion 3 in 

Section 4). 

I 
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As an example, consider a 3 DBMP system for a data base 

which Includes the variables x and y, and assume that x and y 

have the values 1 and 2, respectively, In all three copies. 

Suppose that two application processes concurrently request x:=y 

and y:=x, respectively, by Initiating update requests at 

different DBMPs.  After the two updates are completed, one would 

expect x and y to be equal, although one could not predict 

whether their value would be 1 or 2.  If both requests were to be 

accepted, x and y would not be equal.  Hence, one of the requests 

must be rejected in order to maintain the (internal) consistency 

of the data base.  Stated somewhat differently, the update 

request that gets rejected must be refused because it is based on 

information made obsolete by the request that gets accepted.  The 

AP whose request is rejected is free to resubmit it.  If the 

request is based on current Information when it is resubmltted, 

it can be accepted. 

3.  THE UPDATE ALGORITHM IN DETAIL 

The basis of the distributed update algorithm is the voting 

procedure used by the DBMPs to determine the acceptability of 

data base update requests.  This section describes the algorithm 

in detail,  it begins by specifying the nature of update requests 

and the voting rules used by the DBMPs.  Next, it discusses the 

role of timestamps in the algorithm.  Finally, the properties of 

the algorithm which make it robust with respect to communication 

and data base site outages are described. 
- 8 - 

n 

i 

n 
n 

n 
n 

n 
n 

n 



f 

I 

I 

I 

3.1     Update   Requests  an.i   ..ting  Rules 

When   an   AP  submits  an   update   request   to  a  DBMP  it   includes 

as   part   of   the   request: 

■   Uanelo0[heth^aVLr"avb^L^S,r1Ch  ^  ^^  ^  »^ 

The  algorllhn,  requires  that  the  update  varlablea  be a  aubaet  of 

the  base  variables.     The  reason   for  this   requirement  is   discussed 

In  section  H. 

Typically an AP „ould accomplish an update by performing the 

following sequence: 

• request base variables and time stamps from a DRMP- 
• compute new values for the update 

When it is requested to vote or. an update request, a DBMP 

may vote "reject" (REJ). "OK", or "deadlock reject" (DR);  or, it 

may (temporarily) defer voting on the request.  The DBMP voting 

rules are: 

• Vote REJ only if one or more of the base variable 
tlmestamps is obsolete; vanaoie 

' a'nTthf °nly if ^e baSe va^ble timestamps are current 

to conflict if the InterseStion ^'th!"0 "e?ueStS are 3ald 
one reauest pnd tL K      .   of lhe uPdat-e variables of 

request and the base variables of the other request is 

I 
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non-ompty.  When a DBMP votes OK on a request, the request 
is said to be pending at that DBMP. 

Vote DH only if the base variable tlmestamps are current 
and the request conflicts with a pending request of higher 
priority.  Each request is assigned a priority which is a 
function of the DBMP at which it was initiated.  (For 
simplicity assume all requests initiated at the same DBMP 
have the same priority and that requests initiated at 
different DBMPs have different priorities.) 

Defer voting only if (a) the base variable tlmestamps are 
current, the request conflicts with a pending request, and 
the priority of the request in question is higher than 
that of the pending request, or (b) the base variable 
tlmestamps are more current than the corresponding data 
base tlmestamps.  Each DBMP maintains requests that it has 
deferred in a queue (FIFO). 

- 10 - 
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The algorithm Insures that requests upon which voting has 

been deferred will be automatically reconsidered at a later time 

after the conflicting, pending request which caused the deferral 

has been resolved.  It can be shown that this reconsideration 

will occur at an indefinite, but finite future time (see 

Assertion 6 in section 4). 

The voting rules prevent a DBMP from changing its vote on a 

request if it is given an opportunity to vote again on it.  (The 

mechanisms which Insure the algorithm's robustness may cause a 

DBMP to be requested to vote more than once on an update 

request.) 

n 

r 
A DBMP that votes REJ on an update request is responsible 

for seeing that the request is properly "rejected" by the set of 

DBMPs.  To do this, it must: 

. Notify each other DBMP that the request has been rejected: 
and ' 

n 



. Inform the requesting AP that the request has been 
rejected. 

When a DBMP discovers that a request has been rejected, it 

should attempt to vote on those requests which were deferred 

because ihey were in conflict with the rejected request.  The 

voting rules specified above are to be used and deferred requests 

are to be reconsidered starting from the beginning of the queue 

of deferred requests. 

When a DBMP notes that a majority consensus has been reached 

on a request (i.e., a majority of DBMPs have voted OK), the DBMP 

must "accept" the update.  To accept an update, a DBMP must: 

. Update its local copy of the data base as specified by the 
request update variables; 

. Notify each other DBMP that the request has been accepted; 
and 

. Notify the requesting AP that the request has been 
accepted. 

When a DBMP is notified that a request has been accepted it 

must update its local copy of the data base as specified by the 

request update variables.  In addition, it should reject any 

pending or deferred requests that conflict with the accepted 

request since those requests can never gain a majority consensus 

(1). 

This procedure of rejecting pending requests in conflict may 
cause a request to be rejected by more than a single DBMP.  As 
we shall see, this causes no problems.  Alternatively, a DBMP 
could reject only deferred requests that are in conflict with 
the accepted request.  Rejecting pending requests results in 

- 11 - 



The reasoning which lead to the introduction of deferred and 

DR voting is somew,' dt involved.  The algorithm would be 

considerably simpler if a DBMP could vote REJ under the DR and 

deferred conditions.  There are two reasons why a DBMP should not 

vote REJ under these conditions.  First, consider a request (U) 

that would be ar 3pted by the DBMP set in the absence of a 

pending conflicting request (C).  In the case that C is 

eventually rejected by the DBMP set, by voting REJ for U, the 

DBMP set would reject U when it need not.  The second problem is 

a more serious one.  It has to do with the manner in which the 

voting rules int.eract with the mechanisms (to be introduced in 

Section 3.3) which insure robust behaviour in the presence of 

communication and DBMP outages.  There are outage patterns which, 

if a DBMP were to vote REJ under the DR and deferred conditions, 

could result in both acceptance and rejection of a given update 

request by the D3MP set.  Deferring the vote on a request that is 

in conflict with another pending one addresses both problems at 

the expense of introducing a potential for deadlocks. 

Introduction of the DR voting rule insures that deadlocks can not 

occur (see Assertion 7 in section k). 

A DBMP votes DR only when the variables in an update request 

conflict with those of another pending request.  The intent of a 

DR vote is to inform other DBMPs that a potential deadlock 

situation with respect to the request exists.  The request in 

quicker rejection of requests that are destined to be rejected 
at the expense of introducing possible multiple rejections of 
the same request. 

- 12 - 
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question can continue to be considered by other DBMPs until 

sufficient DRs accumulate to prevent a majority consensus on the 

request.  When (if) this condition occurs,  the DBMP that detects 

it must reject the request.  In effect, this rejection condition 

represents a consensus among the DBMPs that the request should be 

rejected to prevent a possible deadlock.  To see the kind of 

situation the DR rejection rule prevents, consider a 2N DfJMP 

system for which two conflicting update requests are initiated at 

different DBMPs.  It is possible for each request to progress to 

the point where each has N OK votes.  At that point, without a 

rule such as the DR rejection rule, neither could achieve a 

majority consensus and a deadlock would result. 

If, after voting on an update request, the outcome of the 

request is still unresolved (i.e., the request base variables are 

current but there are insufficient OK votes for acceptance or DR 

votes for rejection), the DBMP should forward the request to so 

other DBMP which has not yet voted on the request. 

me 

The APPENDIX to this paper presents several examples which 

Illustrate how update requests submitted to a DBMP set proceed 

toward resolution under the voting rules just described. 

3.2 Timestamps 

Each modifiable data item in the data base has a timestamp 

associated with it.  The timestamp reflects the time at which the 

item was assigned its present value. 
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Tlmestamps a^e used by the DBMPs in two ways.  They are used 

in Lhe voting procedure.  A DBMP can use timestamps to determine 

whether the base variables of an update request are current by 

comparing th- request base variable timestamps with the 

corresponding timestamps in its copy of the data base.  If any 

data base timestamp is more recent than the corresponding base 

variable timestamp, the request base variables are obsolete and 

the request must be rejected (1). 

The second way timestamps are used is to insure that 

accepted updates are "properly" sequenced as they are 

incorporated Into the data base copies.  The manner in which 

updates are accepted by and communicated among the DBMP set makes 

it possible for notification of the acceptance of an update (U2) 

to a data item to arrive at some DBMP before notification of the 

acceptance of a previous update (Ü1) to the same item. 

For example, consider a 3 DBMP system where DBMP 3 is down 

when U1 and U2 are accepted.  Further, suppose that U1 is 

initiated by an AP at DBMP 1 and accepted at DBMP 2, and that U2 

is initiated later at DBMP 2 and accepted at DBMP 1.  Now, assume 

that when DBMP 3 comes up DBMP 2 is down.  DBMP 3 will receive 

- U 
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Alternatively, a DBMP could determine the currency of request 
base variables by comparing their values with those in the 
data base.  However, for items which are complex, such *a 
lists or other data structures, the comparison (equality 
^InVi^i  

be T^6 ?xPen3lve.  The cost of the timestamp 
check is independent of the complexity of the item.  We note, 
however, that the timestamp check is sometimes too strong a r-, 

no? Je ^Je'cted?"10 reSUlt '" reJection of a ^e^ that need 
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notification of Ua's acceptance from DBMP 1;  sometime later, 

when DBMP 2 comes up, DBMP 3 will receive notification of Ul's 

acceptance from DBMP 2. 

By associating timestamps with update requests it is 

possible for a DBMP receiving notification of the acceptance of a 

request to deternfine the currency of the request.  In the case of 

the example abo/e, when DBMP 3 receives notification of Ill's 

acceptance, it should compare Ul's timestamp with that associated 

with the data item in its copy of the data base.  If Ul's 

timestarrfp is more recent, DBMP 3 should perform the accepted 

update;  otherwise, it should discard U1 as obsolete (1). 

The question arises as to when and by whom an update request 

should be timestamped.  There seem to be only two logical 

choices: 

. By the initiating DBMP. 
At the time the update is requested it is timestamped by 
the DBMP that receives the request from an AP; or 

. By the accepting DBMP. 
At the time the update is accepted it is timestamped by 
the accepting DBMP. 

The techniques used to insure robust behavior (described in 

section 3.3) make it possible for a given update request to be 

accepted by more than a single DBMP.  Therefore, in order to 

insure a single, unique timestamp, requests are timestamped by 

the DBMP with which the request is initiated. 

1. For a request with more than a single update variable, it may 
be the case that some of the updates to individual variables 
are performed while others must be rejected as obsolete. 
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Generating timetamps is a problem.  We assume that each DBMP 

has access to a local, tnonotonically increasing clock, but that 

there is no common clock accessible to all DBMPs.  Since 

timescamps are being used to sequence update requests, it is 

important that no two conflicting update requests have the same 

timestamp.  It is not difficult to insure that two timestamps 

generated by a given DBMP are unique.  To prevent duplication of 

timestamps generated by different DBMPs, we assume that the low 

order digit (or digits) of the timestamp obtained from a local 

clock is unique to each DBMP. 

ii 

The possibility that the local DBMP clocks are skewed with 

respect to one another or run at different rates could lead to 

certain anomalous behavior [1].  In terms of the previous 

example, anomalous behavior could result if the  timestamp 

generated by DBMP ! for U1 is more recent than that generated for 

U2 by DBMP 2;  the anomaly here would be that U1, the earlier 

update, would be retained in the data base.  We shall call such 

an occurrence a "sequencing anomaly".  Such behavior appears 

anomalous only to an observer (such as a human user or an AP) who 

can determine by some means external to the DBMP system that U2 

"occurred after" in.  However, since a DBMP system functions for 

such external observers, it is important to prevent sequencing 

anomalies.  Section 4 describes a procedure for choosing 

timestamps to prevent them (see Assertion 5). 

[1 
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3.3  Robustness 

Several observations can be made regarding the robustness of 

the majority consensus algorithm as it has been described so far. 

Only a majority of the DBMPs or fewer (in the case of a 

rejection) are necessary for an update request to be resolved. 

Therefore, the data base can undergo modification when some DBMPs 

are inaccessible.  Furthermore, the majority of DBMPs necessary 

for a consensus need not all be available at the same time. 

Since the algorithm involves only pairwise interactions among 

processes, an update request can advance toward a consensus or 

rejection when only two DBMPs are up. 

It is not necessary for the DBMP at which a request is 

initiated to remain up in order for the request to be resolved. 

The initiating DBMP need only remain active sufficiently long to 

vote on the request and forward it to another DBMP.  The 

requesting AP is notified by the DBMP that detects resolution of 

the request, rather than by the initiating DBMP. 

As the mechanism has been described, progress toward the 

resolution of an update request can temporarily cease only if: 

a DBMP that is trying to forward an unresolved request  3 
unable to find another DBMP that is accessible and has 
not yet voted on the request. 

a DBMP that is trying to forward an unresolved request 
crashes before it is able to forward the request. 
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has not already vote. be0omes acoesalbie.  We aaau^e that the ' ' 
3endl„g DBHP is  per3Utenl  and hlll ^^^ the ^^^ ^  a 

non-voting DBMP becomea aooesalbie (1). 

The use or U.eouta oan ma.e the data haae „echanta™ .obuat       
! ' 

with .eapeot to faüurea of the seoon. type. A DBMP wh.lch has        f j 

auooeaaruuy fo.Wanded an onneaotve. update nequeat shouK, time 

the nequeat out in the foUowlng aense.  If the DBMP doe3 not fl 

^ean that the repeat haa teen neaotve. „tthtn a ti.eout pento.       , 

should act to help the nequeat pnognea. further toward 
resolution. 

A procedure that a DBMP can use Uho„ . r can use when a request Is timed out 

ta to check the status of the DBMP (call it x) to which U ' ' 

forwarded the request.  Xf x Is not up, then the chec.tng DBMP        H 

that, to Its knowledge, haa not yet voted. lt  x ls up and kn0 

•bout the request, the checking DBMP need only reactivate the 

request timeout atnce It can asau.e that the same procedure t 

)WS 

s 
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This procedure is analogous to the "timeout and retransmit" 

procedures used in many network communication protocols [3].  The 

procedure contributes to the robustness of the data base update 

algorithm by Insuring that '.he system of DBMPs works toward the 

resolution of an update request as long as at least one DBMP 

which knows about the request Is functioning. 

A side effect of this retransmission procedure Is that a 

DBMP may be asked to consider a given update request more than 

once.  This Is similar to the receipt of duplicate messages In a 

communication system which uses retransmission.  Duplicate 

requests represent no problem as long as a DBMP can determine 

whether It has already voted on a request It Is asked to 

consider, and, If It has, that It does not change its vote'. 

A second (or third, etc.) request to consider a given update 

may traverse a different path through the network of DBMPs than 

the first.  As a result, such a request may provide the receiving 

DBMP with new information regarding the status of the update 

request.  That is, when the votes on the duplicate request are 

merged with the votes already known to the DBMP there may be 

sufficient OK votes for a consensus or sufficient DR votes for a 

1 
I 

1. A DBMP might choose the timeout period to be a function of the 
number of votes a request has accumulated to account for the 
fact that, in. most cases, it will take a request with few 
votes relatively longer to be resolved than one with many 
votes. 

I 
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rejection.  Or, the receiving DBMP may detect that, althougn the 

request remains unresolved, the number of OK and/or DR votes has 

Increased. 

3.^  IDs for Update Requests 

The data base algorithm requires that update requests be 

uniquely identified within the set of DBMPs.  This ID is used in 

a number of ways.  When voting on an update request, a DBMP must 

be able to determine whether it has previously voted on the 

request.  Similarly, in order for DBMPs to be able to "garbage 

collect" storage used for maintaining state information for ' 

pending requests, when a DBMP is informed of the resolution of a 

request, it must be able to determine whether it has any record 

of the request. 

The initiating DBMP is the process responsible for 

generating unique IDs and associating them with updates requested 

by APs.  We note that the update timestamp generated by the 

initiating DBMP for a request is unique and, therefore, is 

adequate to serve as a request ID. 

Should an update requested by an AP be rejected, subsequent 

requests by the AP to accomplish the "same" update are regarded 

by the DBMP set as different requests.  That is, each request is 

given a unique ID when it is submitted to the DBMP set for 

consideration. 
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4.  ALGORITHM CORRECTNESS 

This section presents plausibility arguments which serve to 

explain how and why the majority consensus algorithm works. 

Taken together, these arguments represent an informal proof for 

the correctness of the algorithm. 

The important aspects of the algorithm operation are the use 

of timestamps in the voting procedure, the relationship between 

the bane and update variables in update requests, and the assumed 

reliable transmission mechanism.  The reliable transmission 

mechanism guarantees that inter-DBMP messages are always 

(eventually) delivered.  The comparison of update timestamps with 

data base variable timestamps made at each DBMP when an accepted 

update is performed, together with the transmission mechanism, 

guarantees mutual consistency.  In effect, for each item in the 

data base, each DBMP is able to reconstruct and then act upon the 

same sequence of update events as each other DBMP. 

The base variables of update requests are intended to be 

used by APs and DBMPs as an aid for insuring internal data base 

consistency.  The intent is that an AP specify the base variables 

which represent the premises upon which an update request is 

based.  The timestamp check for the request base variables and 

the check for conflicts with pending requests made as a DBMP 

votes on an update request insures that the premises upon which 

the requesting AP has based the update have not changed. 

Including the update variables in the base variable set is, in 
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effect, equivalent to the premise that the requesting AP Is the 

only process updating the variables in question. 

Definitions and assertions about the update algorithm 

constitute the remainder of this section. 

Definition (Cover): 

An update request A is said to "cover" another update request 

B if and only if there is at least one variable which is an 

update variable of A and a base variable of B.  That is, A 

covers B if and only if A's update variables and B's base 

variables have a non-empty Intersection. 

The voting rules prevent a DBMP that has voted OK on a request A, 

which to its knowledge has not yet been resolved, from voting OK 

on any request covered by A. 

Definition (Concurrent): 

Two requests A and B are said to be "concurrent" if and only 

if each variable v in the intersection of their base 

variables has the same timestamp in reouest A and in request 

B. 

Assertion 1: 

An update request that is covered by another, concurrent 

request which has been accepted by the set of DBMPs can not 

be accepted. 
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Plausibility Argument: 

Let A be the accepted update and B be the update under 

consideration. 

I 

I   , 

i 

I 
I 

Assume that B is accepted by the set of DBMPs.  A majority of 

DBMPs must have voted OK on B.  Similarly, a majority of 

DBMPs must have voted OK )n A.  Therefore, at least 1 DBMP, 

call it X, must have voted OK on both A and B. 

When X voted OK on B either A was pending at X (because X had 

not yet heard of A's acceptance) or A had been performed by X 

(1).  If A was pending, X could not vote OK on B since A 

covers B and the voting rules prevent such a vote.  If A had 

been performed, X could not vote OK on B because at least one 

of B's base variable timestamps would be obsolete since at 

least one of B's base variables is an update variable of A (A 

covers B).  Therefore, X could not have voted OK on B. 

This is a contradiction. 

Therefore, the assumption that B is accepted is false and the 

assertion is true. 

Definition (Conflict): 

Two update requests A and B are said to "conflict" if A 

covers B or if B covers A. 

I 1. The case that X has not yet heard about A need not be 
considered since it is assumed that A has been accepted and 
that X is one of the DBMPs that voted on A. 

I 

- 23 



Assertion 2: 

When the set of DBMPa oonaiders two oonfUotlng, eoneurrent 

update requests, at most one of the requests will be 

accepted. 

Plausibility Argument: 

The reasoning here Is similar to that for Assertion 1. 

Let A and B be the two updates. 

Assume that both A and B are accepted.  Because each must 

accumulate a majority consensus, there must be at least 1 

DBMP which votes OK on both A and B.  However, there can be 

no such DBMP since the voting rules prevent a DBMP from 

voting OK on conflicting requests.  Therefore both A and B 

cannot both be accepted. 

Assertion 3: 

If a single DBMP rejects an update request, U, It Is not 

possible for U to achieve a majority consensus. 

(That is, even if all other DBMPs were to be given an 

opportunity to vote on U, U would not receive a majority 

consensus.) 

Plausibility Argument:. 

Let X be a DBMP that rejects U. 

The voting rules are such that X will reject U only if: 

I! 
n 

n 

n 
n 

n 

n 
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a. U has accumulated sufficient DR votes to prevent a 

consensus; or 

b. U is covered by another request (A) that obsoletes U's 

base variables and that has already been accepted by the 

set of DBMPs and performed by X. 

Consider case (a).  Since the DBMPs that have voted DR may 

not change their votes U cannot achieve a majority consensus. 

Next, consider case (b).  Either X voted OK for A or it did 

not. 

First, assume that X did not vote OK for A.  For U to be 

accepted there must be a DBMP different from X in the 

majority sets of both A and U (since X is not in the majority 

set of A).  Such a DBMP can not exist because the voting 

rules prevent a DBMP from voting OK for both A and U since A 

conflicts with U. 

Now, assume that X voted OK for A and further, assume that 

the number, n, of DBMPs is odd: 

n = 2m - 1 ; 

a majority of the DBMPs number at least m.  In addition to X, 

at least m-1 other DBMPs voted OK for A and are prevented by 

the voting rules from voting OK for U.  U cannot achieve a 

majority consensus among the remaining DBMPs that did not 

vote for A (and number at most m-1).  A similar argument 

holds when n is even. 

Thus, the assertion is true. 
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Assertion 4: 

It is not possible for the same request to be both accepted 

and rejected by the set of DBMPs. 

Plausibility Argument: 

This assertion follows from Assertion 3. 

Assertion 5: 

The following function generates timestamps for update 

requests in a way that prevents sequencing anomalies: 

ts = max(time, 1 + maxCU.BaseVar.Timestamps)) 

"time" is the time obtained by a DBMP from its local 

clock;  and 

U.BaseVar.Timestamps is the set of timestamps for request 

U's base variables. 

Plausibility Argument: 

Let A and B be two update requests. ksL^me  that first A is 

requested and accepted by the DBMP set and then B is 

requested and accepted.  We wish to show that the value of 

any data base variable which is both in A's and B's update 

variables will be specified by B.  Since we assume that A and 

B have update variables in common, A covers B.  We wish to 

show that if the function above is used to generate the 

timestamps, Ta and Tb, for A and B, then a sequencing anomaly 

can not occur.  That is, we wish to show that: 
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Tb > Ta 

Since B Is covered by A and we have aasumed that B is 

accepted after A, it must be the case that B Is Initiated at 

a DBMP that has performed A;  otherwise, the timestamps of at 

least one of B's base variables would be obsolete, leading to 

B's eventual rejection.  Because A covers B, there is at 

least 1 variable, v, that is a base variable of B and 

update variable of A.  The timestamp of v is Ta.  Th. 

function guarantees that Tb is at least Ta + 1.  Therefore. 

Tb > Ta, under the stated assumptions. 

an 

18 

j assertion 5 means that It Is possible for a DBMP ,,et to 

properly sequence «nfliotlng update events without requiring 

|        that the looal DBMP clocks used In the generation of update 

timestamps be synchronized.  * local DBMP clock can run at a 

different rate than other DBMP docks;  it can even run at a 

|        varlabie rate, or not run at all.  The only requirement Is that 

looal DBMP time „ever back up.  Assertion 5 Is an Important 

result because it is verv diffi^nn- f« io very airtlcult to synchronize clocks in a 

distributed environment. 
I L. 
. ^ n0te that " *>•• not ^How fom this assertion that any 

I        two events Initiated at different DBMPs In a system with 

asynchronous DBMP clocks can be properly sequenced.  It only 

insures that events with something In common (I.e., those that 

j        oonfllot with one another) can be . quenced.  The ability of the 

algorithm to properly sequence updates that modify the same 
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Assertion 6: 

An update request n «m K 
111 ^ resolvedby the DBMPset In 

^Pable of Interacting with on 
the set, they are 

e another in a finite time. 

Plausibility Argument: 

Let Ü be initiated at DBMP I. l has  , nnt< 
to U: Ptl0nS Wlth resPect 

^ It can reject U; 
2- It can vote OK on U; 

3- it can vote DR on U; or 

^ it can defer voting on U. 

If DBMP I rejects U (case 1)  rr < 

^".-«.3(2,.d "'"'r"ol¥-d(i" "-"•""'• 
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enough OKs for a consensus nor DRs to prevent a consensus), J 

will forward U to another DBMP K that has not yet voted on U, 

thereby, in finite time, advancing Ü one step closer toward 

resolution.  Since there are at most n (= number of DBMPs) 

such steps required for U's resolution, it suffices to show 

that each step requires only finite time. 

The only case that is potentially troublesome is when a DBMP 

defers voting on U.  A DBMP K will defer voting on U only if 

U conflicts with a pending request (LI) of lower priority. 

The voting rules then prevent K from considering U until LI 

is resolved.  If LI is resolved, then K will learn of the 

resolution in finite time.  If LI is accepted, K will reject 

U;  if LI is rejected then K may vote on U.  PC's vote will 

result either in U's resolution or the advancement of U one 

step further toward resolution.  Therefore, if the request LI 

that caused Ü to be deferred is resolved within finite time, 

then U will either be resolved or advanced one step further 

toward resolution by DBMP K in finite time. 

We turn our attention now to LI.  LI will be handled by the 

DBMP set similarly to U.  That is, it will proceed toward 

resolution at a finite rate unless (and until) it is deferred 

by some DBMP because it conflicts with a pending request of 

lower priority. 

Hence, progress toward U's resolution may be blocked by a 

finite chain of requests L1,L2, ..., Lr;  where U is deferred 
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i 
at some DBMP K because it conflicts with the lower priority 

request LI;  LI is deferred at some other DBMP because it 

conflicts with lower priority request L2; etc. 

The lowest priority request Lr will be resolved in finite 

time because the voting rules prevent it from being deferred 

by any DBMP.  The voting rules require that the chain of 

deferred requests be reconsidered in a FIFO manner. 

Therefore, when Lr is resolved, either Lr-1 will be rejected 

or it will be advanced one step further toward resolution. 

Hence, Lr-1 will proceed toward resolution at a finite rate 

and therefore will be resolved in finite time, enabling Lr-2 

to be resolved in finite time. ... enabling LI to be resolved 

in finite time.  Therefore, U will be resolved in finite 

time. 

Assertion 6 is an important result.  From it, it follows 

that: 

Assertion 7: 

11 
n 

ö 

n 
The DBMP set is deadlock free. 

A guaranteed finite time for pairwise DBMP communication is 

a necessary condition of Assertion 6 because at any given time 

communication between a given pair of DBMPs may not be possible 

due to network or host failure or outage. It is possible that 

the outages and recoveries occur in such a way as to prevent a 
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request from ever being resolved.  For example, consider a two 

DBMP system in which the DBMPs are never up at the same time; 

e.g., DBMP 1 is up from time 0 to T-e, 2T+e to 3T-e, ..., 2mT+e 

to (2m+1)T-e, ... and DBMP 2 is up from TVe to 2t-e, ..., 

(2m-1)T+e to 2mT-e, ... .  Clearly, no request can ever be 

accepted by such a system because DBMPs 1 and 2 can never 

interact.  In practice, such failure and recovery patterns are 

extremely unlikely.  Therefore, the finite time condition for 

pairwise DBMP communication is a reasonable assumption for a real 

set of DBMPs. 

5-  COST OF THE ALGORITHM 

It is possible to identify the following costs which are 

incurred as a result of using the majority consensus update 

algorithm: 

. Communication.  A number of interprocess messages must be 
exchanged to accomplish an update; 

. Computation.  The update must be computed.  This requires 
one or more queries to obtain the base variables and 
computation of the values for the update variables.  The 
race resolution mechanism occassionly requires that an 
update request be rejected.  If the requesting AP wishes to 
ace«mplish an update that has been rejected, the AP must, 
in general, first recompute it and then resubmit it as 
another request. 

. Delay.  It takes some time for the DBMP sec to resolve an 
update request. 

This section examines the communication and computation costs 

imposed by the algorithm. 
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Consider an  n  DBMP svstPm       Th« aysLem.     The  number  of nxin«^«. f^ "lesoages  required 
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Unter-DBMP messages)- 
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(DBMP->AP message) 
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messages 

If there a.e eonruot,.   the votes of „o.e than „/2 DBMPS nay 
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case, a request would require 

2n + 2 

messages to be accepted. 

" a .BMP tHat has voted on a reque5t CU. .e.o.e tt oan 
forward the request adrfifi««-! 

est. additional messages may be generated by the 
request timeout mechanism. 

The best case figure of n + (n/?)       % 
+
  

{n/2)
  
+ 3 compares favorably 

with other techniques on? mi^wf q   one might consider for managing 
distributed, redundant data bases. 
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An update algorithm Is described In [1] which guarantees 

mutual consistency but can not Insure Internal consistency of 

data base copies.  The number of messages required by that 

mechanism to accomplish an update Is: 

3    For an AP to Initiate an update; 
+   1    For the Inltlatng DBMP to acknowledge 

the update; 
+ n-1    To communicate the update to the other DBMPs 

or 

n + 3 

i 

I 
I 

messages.  The difference of (n/2) Is exactly the number of 

messages required to reach a majority consensus and can be 

regarded as the cost of Insuring Internal consistency. 

It Is Interesting to note that update algorithms which use 

centralized control also require n + 3 Interprocess messages.  To 

see this assume that the central control point resides In one of 

the DBMPs.  As In the distributed control algorithm, an AT and 

the central DBMP must exchange 3 messages to Intltlate the 

urdate;  n-1 messages are required to distribute the update to 

the other DBMPs; and 1 message Is required to Inform the AP that 

the update has occurred. 

It Is possible to Imagine algorithms that Involve locking 

each copy of the data base for the duration of th« activity 

required to process an update. We consider such a mechanism only 

for purposes of comparison:  It Is clearly less robust with 

respect to component failures and outages than the majority 
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consensus mechanism;  furthermore, it may be very difficult to 

specify such a locking algorithm that is deadlock free.  The 

number of messages required by a locking algorithm to accomplish 

an update would be: 

n    To lock each copy of the data base; 
+  1    To obtain the base variables; 
+  n    To perform the update and unlock 

the data base copies 

or 

2n + 1 

messages.  Thus, even in the worst case (2n + 2) the majority 

consensus algorithm compares well with a simple 

lock-compute/update-unlock scheme. 

The cost of accomplishing an update includes both 

computation and communication costs.  Let C be the cost of 

computing an update.  Let M be the cost of transmitting a single 

message;  for simplicity, we shall assume that all messages cost 

the same. 

Using the results from above, the cost, CO, of an update 

that is accomplished without rejection is 

C + (n+n/2+3)M < CO < C + 2(n+1)M. 

If we define 

COmin = C + (n+n/2+3)M 
COmax = C + 2(n+1)M 

1 
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then the bounds on the cost, C1, of an update that Is 

accomplished with a single rejection and resubmlsslon can be 

shown to be: 

COmln + C + 2M < C1 < COraax + C + 2nM 

Intuitively, these bounds can be explained as follows.  In the 

best oase, the first update request will be rejected by the 

Initiating DBMP;  the 2M accounts for the messages from the DBMP 

to the AP to reject the request and the message from the AP to 

the DBMP to resubmlt the update (1);  C represencs the cost of 

recomputing the update.  In the wcrst case, all DBMPs must vote 

before the first update request Is rejected, requiring n-1 

Inter-DBMP messages and an additional n-1 Inter-DBMP messages by 

the rejecting DBMP to communicate the rejection to the other 

DBMPs. 

In general. It can be shown that the cost, Ck, of an update 

that Is rejected and resubmltted to the DBMP set k times before 

It Is accomplished Is: 

COmln + k(C + 2M) < Ck < COraax + k(C + 2nM) 

1. This assumes that the message to notify the AP that the 
request has been rejected Includes the current values and 
tlmestamps for the base variables;  this enables the AP to 
resubmlt the update without re-requestlng the base variables. 
If the rejection Is to prevent a possible deadlock, the values 
and tlmestamps returned may not be current. 

- 35 - 



6.  THE PROBLEM OF MEMORY LOSS 

Correct operation of the update algorithm requires that 

information regarding the state of the data base system is never 

lost by any DBMP.  Wt. assume that anything worth remembering by a 

DBMP, such as the data base itself and unresolved update 

requests, is maintained by the DBMP on a non-volatile storage 

medium, such as disk, which normally survives host system 

failures.  We further assume that the DBMP can determine when 

data that is being moved from volatile (e.g., core) to 

non-vol tile storage has been competely copied to the 

non-v; .tile medium. 

[] 

A DBMP is said to have "lost memory" if it has forgotten 

updates which have been accepted or if it has forgotten how it 

has voted on currently unresolved update requests.  A DBMP memory 

loss would occur if the information or the non-volatile storage 

medium used by the DBMP is destroyed. 

If a DBMP that has lost memory is permitted to vote on 

update requests, that DBMP can cause the majority consensus 

algorithm to malfunction.  This can happen if:  (1) the DBMP 

votes OK for a request which conflicts with accepted updates It 

has forgotten, thereby possibly enabling the request, which it 

should reject, to achieve a majority consensus;  or, (2) when 

asked to vote on an unresolved request it has previously voted on 

and forgotten, the DBMP votes differently (e.g., votes OK rather 

than DR), thereby possibly causing the request to be both 

accepted and rejected. 
- 36 - 
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By Itself, a DBMP has no way of determining whether it has 

lost memory.  We assume that memory loss occurs as the result of 

some catastropic event at the data base site and that in such a 

case the information critical to DBMP operation is restored by a 

human operator from a backup copy which is presumably out of 

date.  The backup copy would typically be archived on magnetic 

tape.  We assume that whenever the information is backed up in 

this way, the DBMP is restarted and signalled in some way that a 

memory loss has occurred.  In addition, we assume the DBMP can 

determine the point of memory loss.  That is, we assume that the 

DBMP keeps a record of timestamps for recent significant events, 

such as the last update accepted at each other DBMP, on the 

non-volatile storage medium and that this record is archived 

along with the data base and also restored whenever a memory loss 

occurs. 

I 
i 
I 

I 
I I 

When a DBMP restarts after a nemory loss, it must follow a 

memory recovery procedure before it can safely vote on requests 

it receives from other DBMPs.  In order to become a voting member 

of the DBMP set, a DBMP that has lost memory must: 

. Recover all updates which the set of DBMPs has accepted 
since the point of its memory loss (and which have not 
been forgotten by the entire set of DBMPs); 

. Recover all unresolved update requests which It has voted 
on since the point of its memory loss. 

It can be shown that, in general, a DBMP with memory loss 

must interact with every other DBMP in order to guarantee 

recovery of all the information it has lost. Furthermore, it can 
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be shown that a recovery scheme which involves only a simple 

interaction with each other DBMP, in which such information is 

requested and transmitted, is insufficient to recover all the 

lost information (1). 

Below we present a two pass memory recovery procedure which 

involves only pairwise interactions among DBMPs.  We assert that 

thi? memory recovery procedure works correctly when ore, several 

or all DBMPs have lost memory.  However, it is beyond the scope 

of this paper to prove its correctness. 

Let M be the DBMP with memory loss.  On the first pass M 

informs each other DBMP that it is trying to recover from a 

memory loss.  When a DBMP is so informed, it must acknowledge, 

and in addition, temporarily stop forwarding to other DBMPs 

unresolved requests that have been voted on by M (2). 

On the second pass, M requests from each other DBMP, in 

turn. Information concerning updates accepted since the point of 

M's memory loss and unresolved update requests voted on by M. 

After it supplies M such information, a DBMP may resume 

forwarding unresolved requests that M has voted on. 

1. While one DBMP is attempting to recover memory, it is possible 
for the other DBMPs to experience memory loss and engage in 
memory recovery in pathological patterns which would enable 
unresolved update requests voted on by the original DBMP to 
remain active in the DBMP set but unrecoverable by any simple 
one pass procedure. 

2. This temporary freezing of data base activity with respect to 
these unresolved requests prevents the pathological behavoir 
mentioned in the previous footnote. 

fl 
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If on the second pass M encounters a DBMP that Is unaware 

that M is engaged in the memory recovery procedure, that DBMP has 

also lost memory (since M's first pass).  Should M encounter such 

a DBMP, it must abort the second pass of the procedure.  In such 

a case, to proceed with its memory recovery M must repeat the 

first pass of the procedure, after which it may restart the 

second pass.  When M successfully completes the second pass, it 

can participate as a voting member of the DBMP set. 

7.  CONCLUDING REMARKS 

This paper has presented a "majority consensus" algorithm 

which represents a new solution to the update synchronization 

problem for multiple copy data bases.  Because the responsibility 

for performing an update is distributed among the collection of 

processes that manage data base copies rather than centralized in 

a single process, the algorithm can function effectively (i.e., 

process updates) in the presence of communication and data base 

site outages. 

Analysis of the communication and computation costs incurred 

■        by the majority consensus algorithm to accomplish an update (when 

it is unnecessary to reject and resubmit it) shows these costs 

are not significantly greater than for other more traditional 

approaches.  When the pattern of update activity is such that 

conflicting update requests c'-cur, these costs increase because 
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more votes are required to resolve requests and because rejected 

update requests must be resubmltted. 

In addition to communication and computation costs, the 

algorithm Imposes a significant short term storage requirement 

upon the data base sites since each site must remember the state 

of a pending update request until the request Is resolved.  The 

short term storage required for any application will depend upon 

the expected patterns of update activity.  In practice, the 

dominant cost associated with use of the algorithm is likely to 

be that incurred to satisfy this short term memory requirement. 

A multiple copy data base is one particular .ype of 

distributed data base.  Another type is one which consists of 

distributed, non-overlapping segments;  that is. a data base 

which is a collection of smaller data base segments each of which 

is singly maintained at a (possibly) different site (1). 

Although the data itself is not redundantly stored for this tyoe 

of distributed data base, in some applications it may be 

desirable to maintain multiple copies of the catalogues for such 

i segmented data base.  For these applications the majority 

consensus algorithm could be used to handle updates to the data 

base catalogue. 
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A number of Intosresting questions regarding the use of 

multiple copy data bases, in general, and the use of the majority 

consensus algorithm, in particular, remain to be answere-1.  These 

questions include: 

. How should application processes be programmed to deal 
with the fact that data found in any given data b?se copy 
may not be the most current? In some cases it may not be 
critical that the data is not current.  If it is critical, 
how can a process locate the most current data? 

. How will the algorithm perform under various patterns of 
update activity and various patterns of communication 
system and site outages? For example, given particular 
activity and outage patterns, what is the probability that 
an update will be accepted the first time it is submitted; 
what is the expected number of DBMPs that must vote for an 
update request to be resolved? 
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APPENDIX 

This appendix Includes a number of examples chosen to 

Illustrate various aspects of the update algorithm. 

Before presenting the examples It la necessary to specify In 

some detail the messages exchanged among APs and DBMPs.  The 

following messages are used In the examples: 

DBMP <-> AP messages: 

SAO ■ SfS^fJ Varlable values and tlmestamps (AP to DBMP). 
VAH - VARlables and tlmestamps (DBMP to AP). 
RU  - Request Update (AP to DBMP). 
UA  - Update Accepted (DBMP to AP). 
UR  - Update Rejected (DBMP to AP). 

Inter-DBMP messages: 

RC  - Request Consensus on specified update request. 
DO - The specified update request has been accepted;  enter 

it into your copy of the data base. 
REJ - The specified update request has been REJected. 

For each of the exampl -, that follow a number of different 

sequences of events are possible;  only one sequence is presented 

for each example.  The following notation is used in the 

examples: 

. X->Y:Z represents transmission of message Z to process Y 
by process X. o      F   oo i 

' fA i ?/ Cl  fndicates the event sequence in which event A 
is followed by event B which is followed by event C. 

• L A 4 B ] indicates that events A and B occur 
concurrently. 

. The update request status " —" indicates that the update 
request is currently unknown at the DBMP in question.  The 
status "XX" indicates that the DBMP in question is down. 

. okei2 means that DBMPs 1 and 2 have voted OK on the 
request.  Similarly doe2 (reje2) means that DBMP 2 
accepted (rejected) the update request. 

. DONE means that the DBMP has performed the update. 
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. REJD means that the DBMP considers the request as 
rejected. 

. "•" indicates that the DBMP is actively trying to forward 
information regarding the request;  *ok means that it is 
trying to forward an RC message;  »DONE means that it is 
trying to complete sending DO messages;  *REJD means that 
it is trying to complete sending REJ messages. 

Example # 1:  Normal update with no conflict. 

Consider 3 DBMPs which manage a data base which includes a 

variable x.  Assume that an AP wishes to do the update: 

x : = x 1, 

Further, suppose that x is current in all copies of the data 

base, and that its value is 3-  Let the update requested be 

called A.  A has a single base variable, x, and a single update 

variable, x.  If accepted, A will change the value of x to 4. 

The table below illustrates the sequence of events that 

occur and how the status of the request A as seen by each DBMP 

evolves as the DBMPs work to accomplish the update. 

DBMP-1 DBMP-2 DBMP-3 

Status 
of: 

A        ••' ■*■" —— 

[ AP->1:RV(x) / 1->AP:VAR(x) / AP->1:RU(A) / 1 votes OK ] 

A        »ok@1 

[ 1->2:RC(A) / 2 votes OK ] 
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A       ok#1 »okei2 

[ 2 accepts A / 2->1:D0(A) / 2->AP:UA(A) ] 

A        DONE 
doe2 

[ 2->3:DO(A) ] 

A        DONE 
do§2 

»DONE 
dog2 

DONE 
(io§2 

DONE 
do@2 

[ 1,2,3 discard (1) request A ] 

Example # 2:  Concurrent Conflicting Updates. 

This is the example from section 2.  There are 3 DBMPs 

which manage a data base that includes variables x and y.  Assume 

all data bases are current and x=1 and y=2 in all copies of the 

data base.  Assume that API initiates update A and that AP2 

initiates update B: 

A: x : = y 
B: y := x. 

The base variables of A are x,y and the update variable is x; 

B's base variables are x,y also, and its update variable is y.  A 

and B conflict. 

In the following, A is accepted causing x to be set to 

2 and B to be rejected.  AP2 then chooses to re-initiate its 

I 

I 

U
  L^l/tl  "discard" an accepted update request after  it has 

S!?    •d^h6  "P^6  int0  its   data  base  copy.     DBMPs also 
a  DRSprplnrfJ??te.d re?lie?ts-     This Paper  does not  discuss how 
a DBMP can  tell when  it  is safe  to  discard a  request: 
however,   it  is not  difficult to  devise methods  for  doing so 
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update (called B' to distinguish it from the AP2,s original 

request) which updates y to 2.  We assume that the priority of a 

request initiated at DBMP 1 is greater than that of one initiated 

at DBMP 2 or 3, etc. 

DBMP-1 DBMP-2 DBMP-3 

Status 
of: 

A 
B 

[ AP1->1:RV(xy) & AP2->3:RV(xy) / 1->AP1:VAR(xy) & 3->AP2:VAR(xy) / 
AP1->1:RU(A) & AP2->3:RÖ(B) / 1 votes A-OK & 3 votes B-OK ] 

»ok@1 
»ok§3 

[ 1->2:RC(A) & 3->1:RC(B) / 2 votes A-OK & 1 votes B-DR ] 

ok§1 
»ok§3dr§1 

»ok@12 
ok@3 

[ 2 accepts A & 1->2:RC^B) / 2->AP1:UA(A) & 2->1:D0(A) & 2 rejects B ] 

A        DONE 
do@2 do@2 

B       ok@3dr@1 *REJD ok@3 

»DONE 
do@2 
»REJD 
reje2 

[ 2->3:DO(A) & 2-M,3:REJ(B) & 2->AP2 :UR (B,x ,y) ] 

A 

B 

DONE 
do@2 
REJD 
rej§2 

DONE 
do@2 
REJD 
rej§2 

DONE 
do@2 
REJD 
rej@2 

[ 1,2,3 discard A and B ] 

A 
B 

[ AP2->2:RU(BI) / 2 votes B'-OK ] 

B«       — »ok§2 

[ 2->3:RC(B•) / 3 votes B'-OK / 3 acceots B' / ... etc. ] 
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Example # 3:  Deadlock Avoidance. 

Assume 3 DBMPs which manage a data base which includes 

the variables x, y, and z.  Assume that all copies of the data 

base are current and that x=1, y=2, and z=3.  Assume that 3 

application programs attempt the updates: 

A: x := y^z (by API) 
B: y •= z + x (by AFC) 
C: z := x - y (by AP3) 

I 

I 

I 
I 

I 

I 
i 

Update A would change x to 6;  B would change y to M;  C would 

change Z to -1.  The base variables of all 3 requests are x,y,z; 

the update variables are such that each request conflicts with 

each of the others.  In the following scenario the DBMPs act 

first to reject C in order to prevent a possible deadlock, next 

to accept B, and finally, to reject A because it conflicts with 

B. 

DBMP-1 DBMP-2 DBMP-3 

Status 
of: 

A        — 
B       — 
C       — 

[ ... AP1->1:RU(A) & AP2->2:RU(B) & AP3->3:RU(C) / 
1,2,3 vote OK on A,B,C ] 

A 
B 
C 

»ok^l 
•ok§2 

•oke3 

[ 1->2:RC(A) & 2->3:RC(B) & 3->1:RC(C) / 
2 defers A 4 3 defers B & 1 votes C-DR ] 
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A 
B 
C 

[ 1- 

A 
B 
C 

DEFR,ok@1 
0V.Q2 

ok@1 

*oke3<ire-\ 

>2:RC(C) / 2 votes C-DR / 2 rejects C ] 

ok§1 

okesdrgl 

DEFR,oke2 
ok@3 

DEFR,ok@1 
ok§2 
»REJD 
reje2 

DEFR,ok@2 
ok§3 

[ 2- 

A 
B 

>1,3:REJ(C) & 2->AP3:UR(C,x,y,z) / 3 votes B-OK / 3 accepts B ] 

ok@1 

REJD 
rej@2 

DEFR,ok§1 
ok@2 

»REJD 
rej§2 

»DONE 
do@3 
REJD 
reje2 

[ 3->1,2:D0(B) 4 3->AP2:UA(B) / 1,2,3 discard C 4 1,2 reject A ] 

A 

B 

C 

»REJD 
rejgl 
DONE 
doe3 

»REJD 
rej@2 
DONE 
do*?3 

»DONE 
does 

[ 1, 
2- 

B 
C 

2,3 discard B / 1->2,3:REJ(A) 4 1->AP1:UR(A,x,y,z) 4 
>1,3:REJ(A) 4 2->AP1:UR(A,xyz) ] 

REJD 
rejei2 

REJD 
rejei2 

REJD 
rej§12 

[ 1,2,3 discard A ] 

Example # Hi     Updating in the Presence of DBMP Crashes. 

For this example assume a b DBMP system and that all 

data base copies are current.  Further assume that DBMPs 4 and 5 

are initially down and that when DBMPs crash and later come up 

they do so without loss of memory.  Suppose that conflicting 

updates A and B are initiated at DBMPs 1 and 3 respactively.  The 
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I 
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following Uluatratea a aoenarlo in which various DBMPs craah ahd 

returh aa the aet of DBMPa aot to aooept B and rejeot A. 

DBMP-1 DBMP-2 DBMP-3 DBMP-4 
Status 
of: 

A 
B XX 

XX 

[ AP1.>1:RÜ(A) 4 AP2->3:RU(B) / 1,3 vote OK on A,B ] 

A     •okei 
kok§3 

XX 
XX 

DBMP-5 

XX 
XX 

XX 
XX 

L 3->1:RC(B) / 1 votes B-DR / i->?.Rrrn> / o 
1->2:RC(A) / 2 defers A ]    >2-RC(B) / 2 votis B-OK / 

A 
B 

okei 
ok^3dr§1 

DEFR,okei 
*oke23drei  oke3 

[ 2  crashes / I times out A ] 

A 
B 

•ok@l 
oke3dr§l 

XX 
XX owes 

XX 
XX 

XX 
XX 

C 1->3:RC(A) / 3 defers A / 4,5 up / 3 times out B ] 

XX 
XX 

XX 
XX 

A 
B 

okgl 
okg3drgl 

XX 
XX 

[ 3->^:RC(B) / H  votes B-OK ] 

DEFR,ok?; 
•oke3 

A 
B 

okgl 
oke3drei 

XX 
XX 

DEFR,ok@1 
okQS 

C 3,^ crash / 1 times out A ] 
»ok^ 

A 
B 

»ok§1 
oke3drei 

XX 
XX 

XX 
XX 

C 1->5:RC(A) / 5 votes A-OK / 2,3,1} Up ] 

A 
B 

okei 
ok§3drei 

DEFR.okgl   DEFR.okei 
foke23dr@l  oke3 

XX 
XX 

»oke34 
•okßlS 

[ a^araTthat^et68" reSOlVed '"' ^  n0 ain«le ™' ^ 
5->^BC(A) I -(->5..RC(B) / , defars A , 5 v0te3 B,m   , 

I 
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B   oHI]^,    S-j, s-0«'   0
D
k%Vw'5 Z%mt 

1  ^eje^W^^^je^^V'3'^"0«' ' ^^'«'B) / 

B 

•REJD 

DONE 
doQS 

»REJD 
rejg2 
DONE 
do@5 

*REJD 
reJQS 
DONE 
do§5 

»REJD 

DONE 
00^5 

»REJD 
rc)§5 
»DONE 
do§5 

[ 1.2.3^,5 exchange REJs for A / 1,2,3.^5 discard A,B J 
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