
i
I

•

BOLT BERANEK AND NEWMAN ! N C

CONSULTING U E V £ I O P M E N T RESEARCH

!

I
I
I
I
I
I
1
I
I
I
I
I
I
I
(

(BBN Report No. 334

40

CO
Of

July 1976

A SOLUTION TO THE UPDATE PROBLEM FOR MULTIPLE COPY

DATA BASES WHICH USED DISTRIBUTED CONTROL

Robert H. Thomas

UISTPIBUTION STÄmreOTj
Approved for public "rel

 ä^üajtioa Uniimited

This work was supported by the Defense Advanced Research
Projects Agency of the Department of Defense. It was
monitored by the Office of Naval Research under Contract-
No. N00014-75-C-O773.

^

BOSTON

• ' «"* ■nmiinipi iiiiwwmi i

WASHINGTON CHICAGO HOUSTON IOS ANGELES OXNARD

A Solution to the Update Problem for Multiple Copy
Data Bases Which Uses Distributed Control

Robert H. Thomas
Bolt Beranek and Newman, Inc.*

ABSTRACT

I
I
I
I
I
[
I

I
I
I
I

I

I
I

A "majority consensus" algorithm which represents a new
solution to the update synchronization problem for multiple copy
data bases is presented. The algorithm embodies distributed
control and can function effectively in the presence of
communication and data base site outages. The correctness of the
algorithm is demonstrated and the cost of using it is analyzed.
Several examples that illustrate aspects of the algorithm
operation are included in an appendix.

Key Words and Phrases: distributed data bases, distributed
computation, distributed control, computer networks, update
synchronization, clock synchronization, multiprocess systems.

CR Categories: H.3, 4.32, 4.33, 4.39, S.L'!

The research reported in this paper was supported by the Advanced
Research Projects Agency of the Department of Defense under
Contract N0014-75-0773.

• 50 Moulton St., Cambridge, Mass., 02138

... :■

■

- 1 -

ft

"*WWIIWIIlW»IWll>J«WM Hfr

-»»-■ -»«■••'*■'■ ■«■■•'i.-ssrT'

1. INTRODUCTION

In a computer network environment it is often desirable to

store copies of the same data base at a number of different

network sites. A number of advantages can result from

maintaining such duplicate data bases. Among these advantages

are: increased data accessibUity - the data may be accessed

even when some of the sites where it is stored hava failed as

long as at least one of the sites is operational; more

responsive data aooe*) - data base queries initiated at sites

where the data is stored can be satisfied directly without

incurring network transmission delays and those initiated from

sites "near" the data base sites can be satisfied with less delay

than those "farther" from the data base sites; load sharing -

the computational load of responding to queries can be

distributed among a number of data base sites rather than

centralized at a single site.

These and other benefits of replicating data must be

balanced against the additional cost and complexities introduced

in doing so. There is, of course, the cost of the extra storage

required for the redundant copies. This paper considers the

problem of maintaining synchronization of multiple copy data

bases in the presence of update activity and presents a solution

to that problem. Other problems (e.g., determining for a given

application the number of copies to maintain and the sites at

which to maintain them; selecting a data base site to satisfy a

1!

I

j ;

M

n
- 2 -

n

query request when it is initiated; etc.) are not considered in

this paper.

The inherent communicatio delay between sites that maintain

copies of a data base makes it impossible to insure that all

copies remain identical at all times when update requests are

being processed. The goal of an update mechanism is to guarantee

that updates get incorporated into the data base copies in a way

that preserves their mutual consistency. By this we mean that

all copies converge to the same state and would be identical

should update activity cease.

Traditional update mechanisms can be characterized as

involving some form of centralized control whereby all update

requests are channeled through a single central point. At that

point the requests can be validated and then distributed to the

various data base sites for entry into the data base copies. A

second, fundamentally different approach to the update problem,

based on distributed control, is possible. For this approach the

responsibility for validating update requests and entering them

into the data base copies is distributed among the collection of

data base sites.

Mechanisms which use centralized control are attractive

because a central control point makes it relatively easy to

detect and resolve conflicts between update requests which, if

left unresolved, might lead to inconsistencies and eventual

divergence of the data base copies. The primary disadvantage of

- 3 -

such mechanisms is that data base update activity must be

suspended whenever the central control point is inaccessible.

Such inaccessiblity could result from outages in the

communcations network or of the network site where the control

point resides. Because a distributed control update mechanism

has no single point of control, it should, in principle at least,

be possible to construct one which is capable of processing data

base updates even when one or more of the component sites are

inaccessible (1). The problem here is that it is non-trivial to

design a distributed update control mechanism which operates

correctly; that is, which can resolve conflicting updates in a

way that preserves consistency of the data base copies and is

deadlock free. Centralized update control is adequate for many

applications. However, there are data base applications whose

update performance requirements can be satisfied only by a system

which uses distributed update control.

The mechanism for maintaining multiple copy data bases

presented in this paper is one which uses distributed control.

In particular, the update algorithm presented has the following

properties:

. Distributed Updating.
Updates to a redundantly maintained data base can be
initiated through any of the data base sites.

1. A "distributed" mechanism that comes quickly to mind is one
which locks all copies of the data base for the duration of
the update activity. Since the operation of such a mechanism
requires every data base site to be accessible to process an
update, it is even more vulnerable to component outages than
one which uses centralized control.

_ 4 -

II

n
n
n

n

n

1

i)

n

Update Synchronization.
Races between conflicting, "concurrent" update requests
are resolved in a manner that maintains both the internal
consistency and the mutual consistency of the data base
copies.

Deadlock Prevention.
The synchronization mechanism that resolves races does not
introduce the possiblity of so called "deadly embrace" or
deadlock situations.

Robustness .
The data base update
function effectively
system and data base
robust with respect t
(temporary) inability
communicate with one
outages), and the los
one or more of the da
developing the algori
data ise managing pr
order for it to funct
Mech-■i.lsms were sough
interactions among th

algorithm can
in the presenc
site failures,
o lost and dup
of data base

another (due t
s of memory (s
ta base managi
thm, any mecha
ocesses to be
ion effectivel
t that require
e data base ma

recover from and
e of communication

The algorithm is
licate messages, the
managing processes to
o network or host
täte information) by
ng processes. In
nism that required all
up and accessible in
y was rejected,
d only pairwise
naging processes.

Correctness.
It is possible to make a strong plausibility argument,
which serves as an informal proof, for the correctness of
the algorithm.

I

i

The remainder of this paper describes the update algorithm.

First the algorithm is described in overview and then in detail.

Following that, an informal proof for its correctness is

presented. Next, the cost of using the algorithm is

investigated. Finally, the impact memory loss at data base sites

has on the operation of the algorithm is briefly discussed.

I

I
- 5 -

'—-'«U »j.—. -

2. THE UPDATE ALGORITHM IN OVERVIEW

We assume an environment within which copies of a data base

are accessible at a number of data base sites. It is further

assumed that the data base copy at each site is acccessible only

through a data base manager process (DBMP) which resides at that

site. Query and update access to the data base is initiated by

application processes (APs). Each access to the data base is

completed by a DBMP acting on behalf of the initiating AP.

To query the data base an AP sends a query request to a

DBMP. The DBMP acts upon the request by querying its copy of the

data base and returning the results to the requesting AP. An

interprocess communication facility to support AP-DBMP and

DBMP-DBMP communication is assumed. It is further assumed that

the facility supports both intra-host (an AP and DBMP may reside

at the same network host) and inter-host communication.

We assume that, in general, APs initiate updates by first

performing a computation based upon data base values obtained by

one or more data base queries, and then submitting an update

request to a DBMP. The manner in which a DBMP acts upon an

update request is somewhat more involved than that for a query

request. As noted earlier, due to the delay inherent in

communication between DBMPs, it is not possible to guarantee that

the data bases are identical at all times. The objective of the

DBMP in processing an update request, therefore, is to maintain

both the mutual consistency of the collection of data base copies

and the internal consistency of each copy.
- 6 -

1!

(i

[

1
n

i

n
n

-"'--mawvy ■ ■■»»"—■"—

I

I

I

i

By "mutual consistency" we mean that given a cessation of

update activity, and sufficient time for each DBMP to communicate

with every other DBMP, the data base copies will be identical.

The notion of "internal consistency" is somewhat more difficult

to define precisely. It has to do with the preservation of

invariant relations that exist among items within the data base.

As such, internal consistency is related to the interpretation or

semantics of items in the data base. Therefore, most of the

responsibility for the internal consistency of a data base must

rest with the application processes. The DBMPs should be

required to know little, if anything, about the data base

semantics. The DBMPs should, however, make it possible for a set

of well behaved APs to update the data base in a way that

preserves internal data relationships.

After an AP initiates an update request, the collection of

DBMPs act cooperatively to perform the requested update and

notify the AP of its acceptance or rejection. An AP process is

free to resubmit a rejected request for reconsideration by the

DBMPs.

The DBMPs determine whether to accept a given update request

by voting on it. A request that receives a majority consensus

from the DBMPs will be accepted. Occassionally a DBMP set must

reject requests in order to maintain the consistency of the data

base copies. In such a case, a single dissenting vote is

sufficient to cause a request to be rejected (see Assertion 3 in

Section 4).

I

- 7 -

As an example, consider a 3 DBMP system for a data base

which Includes the variables x and y, and assume that x and y

have the values 1 and 2, respectively, In all three copies.

Suppose that two application processes concurrently request x:=y

and y:=x, respectively, by Initiating update requests at

different DBMPs. After the two updates are completed, one would

expect x and y to be equal, although one could not predict

whether their value would be 1 or 2. If both requests were to be

accepted, x and y would not be equal. Hence, one of the requests

must be rejected in order to maintain the (internal) consistency

of the data base. Stated somewhat differently, the update

request that gets rejected must be refused because it is based on

information made obsolete by the request that gets accepted. The

AP whose request is rejected is free to resubmit it. If the

request is based on current Information when it is resubmltted,

it can be accepted.

3. THE UPDATE ALGORITHM IN DETAIL

The basis of the distributed update algorithm is the voting

procedure used by the DBMPs to determine the acceptability of

data base update requests. This section describes the algorithm

in detail, it begins by specifying the nature of update requests

and the voting rules used by the DBMPs. Next, it discusses the

role of timestamps in the algorithm. Finally, the properties of

the algorithm which make it robust with respect to communication

and data base site outages are described.
- 8 -

n

i

n
n

n
n

n
n

n

f

I

I

I

3.1 Update Requests an.i ..ting Rules

When an AP submits an update request to a DBMP it includes

as part of the request:

■ Uanelo0[heth^aVLr"avb^L^S,r1Ch ^ ^^ ^ »^

The algorllhn, requires that the update varlablea be a aubaet of

the base variables. The reason for this requirement is discussed

In section H.

Typically an AP „ould accomplish an update by performing the

following sequence:

• request base variables and time stamps from a DRMP-
• compute new values for the update

When it is requested to vote or. an update request, a DBMP

may vote "reject" (REJ). "OK", or "deadlock reject" (DR); or, it

may (temporarily) defer voting on the request. The DBMP voting

rules are:

• Vote REJ only if one or more of the base variable
tlmestamps is obsolete; vanaoie

' a'nTthf °nly if ^e baSe va^ble timestamps are current

to conflict if the InterseStion ^'th!"0 "e?ueStS are 3ald
one reauest pnd tL K . of lhe uPdat-e variables of

request and the base variables of the other request is

I

- 9 -

....

..-.. .■ .

non-ompty. When a DBMP votes OK on a request, the request
is said to be pending at that DBMP.

Vote DH only if the base variable tlmestamps are current
and the request conflicts with a pending request of higher
priority. Each request is assigned a priority which is a
function of the DBMP at which it was initiated. (For
simplicity assume all requests initiated at the same DBMP
have the same priority and that requests initiated at
different DBMPs have different priorities.)

Defer voting only if (a) the base variable tlmestamps are
current, the request conflicts with a pending request, and
the priority of the request in question is higher than
that of the pending request, or (b) the base variable
tlmestamps are more current than the corresponding data
base tlmestamps. Each DBMP maintains requests that it has
deferred in a queue (FIFO).

- 10 -

11

Fl
n

The algorithm Insures that requests upon which voting has

been deferred will be automatically reconsidered at a later time

after the conflicting, pending request which caused the deferral

has been resolved. It can be shown that this reconsideration

will occur at an indefinite, but finite future time (see

Assertion 6 in section 4).

The voting rules prevent a DBMP from changing its vote on a

request if it is given an opportunity to vote again on it. (The

mechanisms which Insure the algorithm's robustness may cause a

DBMP to be requested to vote more than once on an update

request.)

n

r
A DBMP that votes REJ on an update request is responsible

for seeing that the request is properly "rejected" by the set of

DBMPs. To do this, it must:

. Notify each other DBMP that the request has been rejected:
and '

n

. Inform the requesting AP that the request has been
rejected.

When a DBMP discovers that a request has been rejected, it

should attempt to vote on those requests which were deferred

because ihey were in conflict with the rejected request. The

voting rules specified above are to be used and deferred requests

are to be reconsidered starting from the beginning of the queue

of deferred requests.

When a DBMP notes that a majority consensus has been reached

on a request (i.e., a majority of DBMPs have voted OK), the DBMP

must "accept" the update. To accept an update, a DBMP must:

. Update its local copy of the data base as specified by the
request update variables;

. Notify each other DBMP that the request has been accepted;
and

. Notify the requesting AP that the request has been
accepted.

When a DBMP is notified that a request has been accepted it

must update its local copy of the data base as specified by the

request update variables. In addition, it should reject any

pending or deferred requests that conflict with the accepted

request since those requests can never gain a majority consensus

(1).

This procedure of rejecting pending requests in conflict may
cause a request to be rejected by more than a single DBMP. As
we shall see, this causes no problems. Alternatively, a DBMP
could reject only deferred requests that are in conflict with
the accepted request. Rejecting pending requests results in

- 11 -

The reasoning which lead to the introduction of deferred and

DR voting is somew,' dt involved. The algorithm would be

considerably simpler if a DBMP could vote REJ under the DR and

deferred conditions. There are two reasons why a DBMP should not

vote REJ under these conditions. First, consider a request (U)

that would be ar 3pted by the DBMP set in the absence of a

pending conflicting request (C). In the case that C is

eventually rejected by the DBMP set, by voting REJ for U, the

DBMP set would reject U when it need not. The second problem is

a more serious one. It has to do with the manner in which the

voting rules int.eract with the mechanisms (to be introduced in

Section 3.3) which insure robust behaviour in the presence of

communication and DBMP outages. There are outage patterns which,

if a DBMP were to vote REJ under the DR and deferred conditions,

could result in both acceptance and rejection of a given update

request by the D3MP set. Deferring the vote on a request that is

in conflict with another pending one addresses both problems at

the expense of introducing a potential for deadlocks.

Introduction of the DR voting rule insures that deadlocks can not

occur (see Assertion 7 in section k).

A DBMP votes DR only when the variables in an update request

conflict with those of another pending request. The intent of a

DR vote is to inform other DBMPs that a potential deadlock

situation with respect to the request exists. The request in

quicker rejection of requests that are destined to be rejected
at the expense of introducing possible multiple rejections of
the same request.

- 12 -

[}

D
n

*

n

I!
i

I

I

I
i

question can continue to be considered by other DBMPs until

sufficient DRs accumulate to prevent a majority consensus on the

request. When (if) this condition occurs, the DBMP that detects

it must reject the request. In effect, this rejection condition

represents a consensus among the DBMPs that the request should be

rejected to prevent a possible deadlock. To see the kind of

situation the DR rejection rule prevents, consider a 2N DfJMP

system for which two conflicting update requests are initiated at

different DBMPs. It is possible for each request to progress to

the point where each has N OK votes. At that point, without a

rule such as the DR rejection rule, neither could achieve a

majority consensus and a deadlock would result.

If, after voting on an update request, the outcome of the

request is still unresolved (i.e., the request base variables are

current but there are insufficient OK votes for acceptance or DR

votes for rejection), the DBMP should forward the request to so

other DBMP which has not yet voted on the request.

me

The APPENDIX to this paper presents several examples which

Illustrate how update requests submitted to a DBMP set proceed

toward resolution under the voting rules just described.

3.2 Timestamps

Each modifiable data item in the data base has a timestamp

associated with it. The timestamp reflects the time at which the

item was assigned its present value.

13 -

Tlmestamps a^e used by the DBMPs in two ways. They are used

in Lhe voting procedure. A DBMP can use timestamps to determine

whether the base variables of an update request are current by

comparing th- request base variable timestamps with the

corresponding timestamps in its copy of the data base. If any

data base timestamp is more recent than the corresponding base

variable timestamp, the request base variables are obsolete and

the request must be rejected (1).

The second way timestamps are used is to insure that

accepted updates are "properly" sequenced as they are

incorporated Into the data base copies. The manner in which

updates are accepted by and communicated among the DBMP set makes

it possible for notification of the acceptance of an update (U2)

to a data item to arrive at some DBMP before notification of the

acceptance of a previous update (Ü1) to the same item.

For example, consider a 3 DBMP system where DBMP 3 is down

when U1 and U2 are accepted. Further, suppose that U1 is

initiated by an AP at DBMP 1 and accepted at DBMP 2, and that U2

is initiated later at DBMP 2 and accepted at DBMP 1. Now, assume

that when DBMP 3 comes up DBMP 2 is down. DBMP 3 will receive

- U

[]

n
n
n

n
n
D
LI

Alternatively, a DBMP could determine the currency of request
base variables by comparing their values with those in the
data base. However, for items which are complex, such *a
lists or other data structures, the comparison (equality
^InVi^i

be T^6 ?xPen3lve. The cost of the timestamp
check is independent of the complexity of the item. We note,
however, that the timestamp check is sometimes too strong a r-,

no? Je ^Je'cted?"10 reSUlt '" reJection of a ^e^ that need

n

ii

I

I

notification of Ua's acceptance from DBMP 1; sometime later,

when DBMP 2 comes up, DBMP 3 will receive notification of Ul's

acceptance from DBMP 2.

By associating timestamps with update requests it is

possible for a DBMP receiving notification of the acceptance of a

request to deternfine the currency of the request. In the case of

the example abo/e, when DBMP 3 receives notification of Ill's

acceptance, it should compare Ul's timestamp with that associated

with the data item in its copy of the data base. If Ul's

timestarrfp is more recent, DBMP 3 should perform the accepted

update; otherwise, it should discard U1 as obsolete (1).

The question arises as to when and by whom an update request

should be timestamped. There seem to be only two logical

choices:

. By the initiating DBMP.
At the time the update is requested it is timestamped by
the DBMP that receives the request from an AP; or

. By the accepting DBMP.
At the time the update is accepted it is timestamped by
the accepting DBMP.

The techniques used to insure robust behavior (described in

section 3.3) make it possible for a given update request to be

accepted by more than a single DBMP. Therefore, in order to

insure a single, unique timestamp, requests are timestamped by

the DBMP with which the request is initiated.

1. For a request with more than a single update variable, it may
be the case that some of the updates to individual variables
are performed while others must be rejected as obsolete.

- 15 -

Generating timetamps is a problem. We assume that each DBMP

has access to a local, tnonotonically increasing clock, but that

there is no common clock accessible to all DBMPs. Since

timescamps are being used to sequence update requests, it is

important that no two conflicting update requests have the same

timestamp. It is not difficult to insure that two timestamps

generated by a given DBMP are unique. To prevent duplication of

timestamps generated by different DBMPs, we assume that the low

order digit (or digits) of the timestamp obtained from a local

clock is unique to each DBMP.

ii

The possibility that the local DBMP clocks are skewed with

respect to one another or run at different rates could lead to

certain anomalous behavior [1]. In terms of the previous

example, anomalous behavior could result if the timestamp

generated by DBMP ! for U1 is more recent than that generated for

U2 by DBMP 2; the anomaly here would be that U1, the earlier

update, would be retained in the data base. We shall call such

an occurrence a "sequencing anomaly". Such behavior appears

anomalous only to an observer (such as a human user or an AP) who

can determine by some means external to the DBMP system that U2

"occurred after" in. However, since a DBMP system functions for

such external observers, it is important to prevent sequencing

anomalies. Section 4 describes a procedure for choosing

timestamps to prevent them (see Assertion 5).

[1

n

i
i

- 16 -

3.3 Robustness

Several observations can be made regarding the robustness of

the majority consensus algorithm as it has been described so far.

Only a majority of the DBMPs or fewer (in the case of a

rejection) are necessary for an update request to be resolved.

Therefore, the data base can undergo modification when some DBMPs

are inaccessible. Furthermore, the majority of DBMPs necessary

for a consensus need not all be available at the same time.

Since the algorithm involves only pairwise interactions among

processes, an update request can advance toward a consensus or

rejection when only two DBMPs are up.

It is not necessary for the DBMP at which a request is

initiated to remain up in order for the request to be resolved.

The initiating DBMP need only remain active sufficiently long to

vote on the request and forward it to another DBMP. The

requesting AP is notified by the DBMP that detects resolution of

the request, rather than by the initiating DBMP.

As the mechanism has been described, progress toward the

resolution of an update request can temporarily cease only if:

a DBMP that is trying to forward an unresolved request 3
unable to find another DBMP that is accessible and has
not yet voted on the request.

a DBMP that is trying to forward an unresolved request
crashes before it is able to forward the request.

- 17 -

has not already vote. be0omes acoesalbie. We aaau^e that the ' '
3endl„g DBHP is per3Utenl and hlll ^^^ the ^^^ ^ a

non-voting DBMP becomea aooesalbie (1).

The use or U.eouta oan ma.e the data haae „echanta™ .obuat
! '

with .eapeot to faüurea of the seoon. type. A DBMP wh.lch has f j

auooeaaruuy fo.Wanded an onneaotve. update nequeat shouK, time

the nequeat out in the foUowlng aense. If the DBMP doe3 not fl

^ean that the repeat haa teen neaotve. „tthtn a ti.eout pento. ,

should act to help the nequeat pnognea. further toward
resolution.

A procedure that a DBMP can use Uho„ . r can use when a request Is timed out

ta to check the status of the DBMP (call it x) to which U ' '

forwarded the request. Xf x Is not up, then the chec.tng DBMP H

that, to Its knowledge, haa not yet voted. lt x ls up and kn0

•bout the request, the checking DBMP need only reactivate the

request timeout atnce It can asau.e that the same procedure t

)WS

s

- 18 -

Ö
-^X to insure that the request proceeda towar. e8, ltlon f| _

DBMPs cooperate to Inplercen? a renlhf t0 ÄPs- That ls. the
mechanism. The critical propertvn? "•»••f« tranamlsslon
the delivery of Interprocess meaLvea^f ' ""J«"»»" U that
the receiving nrooM.i.<«..; f?fa is guaranteed even If
initiates the' Lsalge tranSmls^oSnlblewWhen.the 3endln8 »™t„
"all" facility of the ARPANET rpli We note that the "network
tranamlaslon ".echanlsm to Laure'tharne^w"'^5 'W * rellable
eventually delivered. The dltln, „r "etwork "a" Is alwaya
^ implemented, though ^Por^^VSoVbrdUc^^e^ (I

(2)

I
I
1

|

This procedure is analogous to the "timeout and retransmit"

procedures used in many network communication protocols [3]. The

procedure contributes to the robustness of the data base update

algorithm by Insuring that '.he system of DBMPs works toward the

resolution of an update request as long as at least one DBMP

which knows about the request Is functioning.

A side effect of this retransmission procedure Is that a

DBMP may be asked to consider a given update request more than

once. This Is similar to the receipt of duplicate messages In a

communication system which uses retransmission. Duplicate

requests represent no problem as long as a DBMP can determine

whether It has already voted on a request It Is asked to

consider, and, If It has, that It does not change its vote'.

A second (or third, etc.) request to consider a given update

may traverse a different path through the network of DBMPs than

the first. As a result, such a request may provide the receiving

DBMP with new information regarding the status of the update

request. That is, when the votes on the duplicate request are

merged with the votes already known to the DBMP there may be

sufficient OK votes for a consensus or sufficient DR votes for a

1
I

1. A DBMP might choose the timeout period to be a function of the
number of votes a request has accumulated to account for the
fact that, in. most cases, it will take a request with few
votes relatively longer to be resolved than one with many
votes.

I

1
- 19 -

rejection. Or, the receiving DBMP may detect that, althougn the

request remains unresolved, the number of OK and/or DR votes has

Increased.

3.^ IDs for Update Requests

The data base algorithm requires that update requests be

uniquely identified within the set of DBMPs. This ID is used in

a number of ways. When voting on an update request, a DBMP must

be able to determine whether it has previously voted on the

request. Similarly, in order for DBMPs to be able to "garbage

collect" storage used for maintaining state information for '

pending requests, when a DBMP is informed of the resolution of a

request, it must be able to determine whether it has any record

of the request.

The initiating DBMP is the process responsible for

generating unique IDs and associating them with updates requested

by APs. We note that the update timestamp generated by the

initiating DBMP for a request is unique and, therefore, is

adequate to serve as a request ID.

Should an update requested by an AP be rejected, subsequent

requests by the AP to accomplish the "same" update are regarded

by the DBMP set as different requests. That is, each request is

given a unique ID when it is submitted to the DBMP set for

consideration.

I!
n

n
1..

n
r

■

-

- 20 -

i
i
Ö

I

I

I

I

4. ALGORITHM CORRECTNESS

This section presents plausibility arguments which serve to

explain how and why the majority consensus algorithm works.

Taken together, these arguments represent an informal proof for

the correctness of the algorithm.

The important aspects of the algorithm operation are the use

of timestamps in the voting procedure, the relationship between

the bane and update variables in update requests, and the assumed

reliable transmission mechanism. The reliable transmission

mechanism guarantees that inter-DBMP messages are always

(eventually) delivered. The comparison of update timestamps with

data base variable timestamps made at each DBMP when an accepted

update is performed, together with the transmission mechanism,

guarantees mutual consistency. In effect, for each item in the

data base, each DBMP is able to reconstruct and then act upon the

same sequence of update events as each other DBMP.

The base variables of update requests are intended to be

used by APs and DBMPs as an aid for insuring internal data base

consistency. The intent is that an AP specify the base variables

which represent the premises upon which an update request is

based. The timestamp check for the request base variables and

the check for conflicts with pending requests made as a DBMP

votes on an update request insures that the premises upon which

the requesting AP has based the update have not changed.

Including the update variables in the base variable set is, in

- 21 -

1.11 !i|^

effect, equivalent to the premise that the requesting AP Is the

only process updating the variables in question.

Definitions and assertions about the update algorithm

constitute the remainder of this section.

Definition (Cover):

An update request A is said to "cover" another update request

B if and only if there is at least one variable which is an

update variable of A and a base variable of B. That is, A

covers B if and only if A's update variables and B's base

variables have a non-empty Intersection.

The voting rules prevent a DBMP that has voted OK on a request A,

which to its knowledge has not yet been resolved, from voting OK

on any request covered by A.

Definition (Concurrent):

Two requests A and B are said to be "concurrent" if and only

if each variable v in the intersection of their base

variables has the same timestamp in reouest A and in request

B.

Assertion 1:

An update request that is covered by another, concurrent

request which has been accepted by the set of DBMPs can not

be accepted.

- 22 -

11

D
I

D
n
n

[i

i
i
i

• 11'W—I.Ml ..I'

Plausibility Argument:

Let A be the accepted update and B be the update under

consideration.

I

I ,

i

I
I

Assume that B is accepted by the set of DBMPs. A majority of

DBMPs must have voted OK on B. Similarly, a majority of

DBMPs must have voted OK)n A. Therefore, at least 1 DBMP,

call it X, must have voted OK on both A and B.

When X voted OK on B either A was pending at X (because X had

not yet heard of A's acceptance) or A had been performed by X

(1). If A was pending, X could not vote OK on B since A

covers B and the voting rules prevent such a vote. If A had

been performed, X could not vote OK on B because at least one

of B's base variable timestamps would be obsolete since at

least one of B's base variables is an update variable of A (A

covers B). Therefore, X could not have voted OK on B.

This is a contradiction.

Therefore, the assumption that B is accepted is false and the

assertion is true.

Definition (Conflict):

Two update requests A and B are said to "conflict" if A

covers B or if B covers A.

I 1. The case that X has not yet heard about A need not be
considered since it is assumed that A has been accepted and
that X is one of the DBMPs that voted on A.

I

- 23

Assertion 2:

When the set of DBMPa oonaiders two oonfUotlng, eoneurrent

update requests, at most one of the requests will be

accepted.

Plausibility Argument:

The reasoning here Is similar to that for Assertion 1.

Let A and B be the two updates.

Assume that both A and B are accepted. Because each must

accumulate a majority consensus, there must be at least 1

DBMP which votes OK on both A and B. However, there can be

no such DBMP since the voting rules prevent a DBMP from

voting OK on conflicting requests. Therefore both A and B

cannot both be accepted.

Assertion 3:

If a single DBMP rejects an update request, U, It Is not

possible for U to achieve a majority consensus.

(That is, even if all other DBMPs were to be given an

opportunity to vote on U, U would not receive a majority

consensus.)

Plausibility Argument:.

Let X be a DBMP that rejects U.

The voting rules are such that X will reject U only if:

I!
n

n

n
n

n

n
- 24 -

n
■ '" WKWMiwm»

a. U has accumulated sufficient DR votes to prevent a

consensus; or

b. U is covered by another request (A) that obsoletes U's

base variables and that has already been accepted by the

set of DBMPs and performed by X.

Consider case (a). Since the DBMPs that have voted DR may

not change their votes U cannot achieve a majority consensus.

Next, consider case (b). Either X voted OK for A or it did

not.

First, assume that X did not vote OK for A. For U to be

accepted there must be a DBMP different from X in the

majority sets of both A and U (since X is not in the majority

set of A). Such a DBMP can not exist because the voting

rules prevent a DBMP from voting OK for both A and U since A

conflicts with U.

Now, assume that X voted OK for A and further, assume that

the number, n, of DBMPs is odd:

n = 2m - 1 ;

a majority of the DBMPs number at least m. In addition to X,

at least m-1 other DBMPs voted OK for A and are prevented by

the voting rules from voting OK for U. U cannot achieve a

majority consensus among the remaining DBMPs that did not

vote for A (and number at most m-1). A similar argument

holds when n is even.

Thus, the assertion is true.

- 25 -

-—T--.ir-w>tps.^||jlll|l, , _^,..

■ ■
■

Assertion 4:

It is not possible for the same request to be both accepted

and rejected by the set of DBMPs.

Plausibility Argument:

This assertion follows from Assertion 3.

Assertion 5:

The following function generates timestamps for update

requests in a way that prevents sequencing anomalies:

ts = max(time, 1 + maxCU.BaseVar.Timestamps))

"time" is the time obtained by a DBMP from its local

clock; and

U.BaseVar.Timestamps is the set of timestamps for request

U's base variables.

Plausibility Argument:

Let A and B be two update requests. ksL^me that first A is

requested and accepted by the DBMP set and then B is

requested and accepted. We wish to show that the value of

any data base variable which is both in A's and B's update

variables will be specified by B. Since we assume that A and

B have update variables in common, A covers B. We wish to

show that if the function above is used to generate the

timestamps, Ta and Tb, for A and B, then a sequencing anomaly

can not occur. That is, we wish to show that:

- 26 -

fl

t I

D

n
n
n
n
D
n

i

n
n

n
-t—^ | „w., •*m~*r-m*vuj..tuvfi^r-«

_______ ..
HHSMBOB

i

I

I

Tb > Ta

Since B Is covered by A and we have aasumed that B is

accepted after A, it must be the case that B Is Initiated at

a DBMP that has performed A; otherwise, the timestamps of at

least one of B's base variables would be obsolete, leading to

B's eventual rejection. Because A covers B, there is at

least 1 variable, v, that is a base variable of B and

update variable of A. The timestamp of v is Ta. Th.

function guarantees that Tb is at least Ta + 1. Therefore.

Tb > Ta, under the stated assumptions.

an

18

j assertion 5 means that It Is possible for a DBMP ,,et to

properly sequence «nfliotlng update events without requiring

| that the looal DBMP clocks used In the generation of update

timestamps be synchronized. * local DBMP clock can run at a

different rate than other DBMP docks; it can even run at a

| varlabie rate, or not run at all. The only requirement Is that

looal DBMP time „ever back up. Assertion 5 Is an Important

result because it is verv diffi^nn- f« io very airtlcult to synchronize clocks in a

distributed environment.
I L.
. ^ n0te that " *>•• not ^How fom this assertion that any

I two events Initiated at different DBMPs In a system with

asynchronous DBMP clocks can be properly sequenced. It only

insures that events with something In common (I.e., those that

j oonfllot with one another) can be . quenced. The ability of the

algorithm to properly sequence updates that modify the same

- 27 -

I
'

' '■ '" «■»'■—rr^-riiiiüii 'Wili..i*ji||lii'WWllBMiiiiiiuiiiiWii_

■

">at the up,ale varlables be a ;
0 "« ~.«9nt

^tuUUe te™3, th8 varlables ln " ^ ^^ ^
a""- ^

"P^atea are the handl h
belWeen «»""^ting

the handlea which e„ab1e the votlnK DBHP, f

—nee 3eenlngly a3ynohronou3 „^ J » —ly

-O" on the subJeot of event order
h ;« « —ted ln

uc'j-ng is referred to [H],

Assertion 6:

An update request n «m K
111 ^ resolvedby the DBMPset In

^Pable of Interacting with on
the set, they are

e another in a finite time.

Plausibility Argument:

Let Ü be initiated at DBMP I. l has , nnt<
to U: Ptl0nS Wlth resPect

^ It can reject U;
2- It can vote OK on U;

3- it can vote DR on U; or

^ it can defer voting on U.

If DBMP I rejects U (case 1) rr <

^".-«.3(2,.d "'"'r"ol¥-d(i" "-"•""'•
-the.OB.P, ht

Af—^ ! =- forMard „ t0

that this is done In finite tlme,

-J"t. U, U is re3olved ln flnlte t

M and there ane Insuffiolent vot . "
lent VOtes t0 '•es°ive D (neither

D
Ö

D
n

ö

I

i

- 28 - 1)
i

enough OKs for a consensus nor DRs to prevent a consensus), J

will forward U to another DBMP K that has not yet voted on U,

thereby, in finite time, advancing Ü one step closer toward

resolution. Since there are at most n (= number of DBMPs)

such steps required for U's resolution, it suffices to show

that each step requires only finite time.

The only case that is potentially troublesome is when a DBMP

defers voting on U. A DBMP K will defer voting on U only if

U conflicts with a pending request (LI) of lower priority.

The voting rules then prevent K from considering U until LI

is resolved. If LI is resolved, then K will learn of the

resolution in finite time. If LI is accepted, K will reject

U; if LI is rejected then K may vote on U. PC's vote will

result either in U's resolution or the advancement of U one

step further toward resolution. Therefore, if the request LI

that caused Ü to be deferred is resolved within finite time,

then U will either be resolved or advanced one step further

toward resolution by DBMP K in finite time.

We turn our attention now to LI. LI will be handled by the

DBMP set similarly to U. That is, it will proceed toward

resolution at a finite rate unless (and until) it is deferred

by some DBMP because it conflicts with a pending request of

lower priority.

Hence, progress toward U's resolution may be blocked by a

finite chain of requests L1,L2, ..., Lr; where U is deferred

- 29 -

'

\

i
at some DBMP K because it conflicts with the lower priority

request LI; LI is deferred at some other DBMP because it

conflicts with lower priority request L2; etc.

The lowest priority request Lr will be resolved in finite

time because the voting rules prevent it from being deferred

by any DBMP. The voting rules require that the chain of

deferred requests be reconsidered in a FIFO manner.

Therefore, when Lr is resolved, either Lr-1 will be rejected

or it will be advanced one step further toward resolution.

Hence, Lr-1 will proceed toward resolution at a finite rate

and therefore will be resolved in finite time, enabling Lr-2

to be resolved in finite time. ... enabling LI to be resolved

in finite time. Therefore, U will be resolved in finite

time.

Assertion 6 is an important result. From it, it follows

that:

Assertion 7:

11
n

ö

n
The DBMP set is deadlock free.

A guaranteed finite time for pairwise DBMP communication is

a necessary condition of Assertion 6 because at any given time

communication between a given pair of DBMPs may not be possible

due to network or host failure or outage. It is possible that

the outages and recoveries occur in such a way as to prevent a

- 30

r" i

i
n

"■'* 'wt—-~m TTT^^^^^^PfSsTvTFTT^l

request from ever being resolved. For example, consider a two

DBMP system in which the DBMPs are never up at the same time;

e.g., DBMP 1 is up from time 0 to T-e, 2T+e to 3T-e, ..., 2mT+e

to (2m+1)T-e, ... and DBMP 2 is up from TVe to 2t-e, ...,

(2m-1)T+e to 2mT-e, Clearly, no request can ever be

accepted by such a system because DBMPs 1 and 2 can never

interact. In practice, such failure and recovery patterns are

extremely unlikely. Therefore, the finite time condition for

pairwise DBMP communication is a reasonable assumption for a real

set of DBMPs.

5- COST OF THE ALGORITHM

It is possible to identify the following costs which are

incurred as a result of using the majority consensus update

algorithm:

. Communication. A number of interprocess messages must be
exchanged to accomplish an update;

. Computation. The update must be computed. This requires
one or more queries to obtain the base variables and
computation of the values for the update variables. The
race resolution mechanism occassionly requires that an
update request be rejected. If the requesting AP wishes to
ace«mplish an update that has been rejected, the AP must,
in general, first recompute it and then resubmit it as
another request.

. Delay. It takes some time for the DBMP sec to resolve an
update request.

This section examines the communication and computation costs

imposed by the algorithm.

- 31 -

iMjBt'jl.mH[i »i»» swuwa

v:-1-

;

Consider an n DBMP svstPm Th« aysLem. The number of nxin«^«. f^ "lesoages required
to acc«Pu3h an update under be3t ^^ oondition3 (i ^ ^

conn.ots „Uh ot.eP update request3| no ^ ^^Z;^

+ n/2

+ n-1

+ 1

Unter-DBMP messages)-

(lnn?e"fUpe
m

DBMP 3n'0f a«epta„oe
T^ fT^ BMP niessages):

(DBMP->AP message)

or n + (n/2) + 3

messages

If there a.e eonruot,. the votes of „o.e than „/2 DBMPS nay

^ "equlred to r.eso1Ve a reqUest. Eaoh addltlonal DBMp ^

IT;?
an additionai message-in the—"••-—»MP woUld ha.e to vote bero.e a reqUest oould be a00epte<i. Thls

would requlre „-, lnter.DBMp ^^ ^^ ^ ^ ^

case, a request would require

2n + 2

messages to be accepted.

" a .BMP tHat has voted on a reque5t CU. .e.o.e tt oan
forward the request adrfifi««-!

est. additional messages may be generated by the
request timeout mechanism.

The best case figure of n + (n/?) %
+

{n/2)

+ 3 compares favorably

with other techniques on? mi^wf q one might consider for managing
distributed, redundant data bases.

- 32*-

n
n

n
D
0
n

G
D

I

If

An update algorithm Is described In [1] which guarantees

mutual consistency but can not Insure Internal consistency of

data base copies. The number of messages required by that

mechanism to accomplish an update Is:

3 For an AP to Initiate an update;
+ 1 For the Inltlatng DBMP to acknowledge

the update;
+ n-1 To communicate the update to the other DBMPs

or

n + 3

i

I
I

messages. The difference of (n/2) Is exactly the number of

messages required to reach a majority consensus and can be

regarded as the cost of Insuring Internal consistency.

It Is Interesting to note that update algorithms which use

centralized control also require n + 3 Interprocess messages. To

see this assume that the central control point resides In one of

the DBMPs. As In the distributed control algorithm, an AT and

the central DBMP must exchange 3 messages to Intltlate the

urdate; n-1 messages are required to distribute the update to

the other DBMPs; and 1 message Is required to Inform the AP that

the update has occurred.

It Is possible to Imagine algorithms that Involve locking

each copy of the data base for the duration of th« activity

required to process an update. We consider such a mechanism only

for purposes of comparison: It Is clearly less robust with

respect to component failures and outages than the majority

- 33 -

_. -^ -r—»-^m.im.iii^ , .■i^.

■->-%•-

consensus mechanism; furthermore, it may be very difficult to

specify such a locking algorithm that is deadlock free. The

number of messages required by a locking algorithm to accomplish

an update would be:

n To lock each copy of the data base;
+ 1 To obtain the base variables;
+ n To perform the update and unlock

the data base copies

or

2n + 1

messages. Thus, even in the worst case (2n + 2) the majority

consensus algorithm compares well with a simple

lock-compute/update-unlock scheme.

The cost of accomplishing an update includes both

computation and communication costs. Let C be the cost of

computing an update. Let M be the cost of transmitting a single

message; for simplicity, we shall assume that all messages cost

the same.

Using the results from above, the cost, CO, of an update

that is accomplished without rejection is

C + (n+n/2+3)M < CO < C + 2(n+1)M.

If we define

COmin = C + (n+n/2+3)M
COmax = C + 2(n+1)M

1

11
n
n

n

[i

i
D

- 34 -

n

i

I

I

I

I

1

then the bounds on the cost, C1, of an update that Is

accomplished with a single rejection and resubmlsslon can be

shown to be:

COmln + C + 2M < C1 < COraax + C + 2nM

Intuitively, these bounds can be explained as follows. In the

best oase, the first update request will be rejected by the

Initiating DBMP; the 2M accounts for the messages from the DBMP

to the AP to reject the request and the message from the AP to

the DBMP to resubmlt the update (1); C represencs the cost of

recomputing the update. In the wcrst case, all DBMPs must vote

before the first update request Is rejected, requiring n-1

Inter-DBMP messages and an additional n-1 Inter-DBMP messages by

the rejecting DBMP to communicate the rejection to the other

DBMPs.

In general. It can be shown that the cost, Ck, of an update

that Is rejected and resubmltted to the DBMP set k times before

It Is accomplished Is:

COmln + k(C + 2M) < Ck < COraax + k(C + 2nM)

1. This assumes that the message to notify the AP that the
request has been rejected Includes the current values and
tlmestamps for the base variables; this enables the AP to
resubmlt the update without re-requestlng the base variables.
If the rejection Is to prevent a possible deadlock, the values
and tlmestamps returned may not be current.

- 35 -

6. THE PROBLEM OF MEMORY LOSS

Correct operation of the update algorithm requires that

information regarding the state of the data base system is never

lost by any DBMP. Wt. assume that anything worth remembering by a

DBMP, such as the data base itself and unresolved update

requests, is maintained by the DBMP on a non-volatile storage

medium, such as disk, which normally survives host system

failures. We further assume that the DBMP can determine when

data that is being moved from volatile (e.g., core) to

non-vol tile storage has been competely copied to the

non-v; .tile medium.

[]

A DBMP is said to have "lost memory" if it has forgotten

updates which have been accepted or if it has forgotten how it

has voted on currently unresolved update requests. A DBMP memory

loss would occur if the information or the non-volatile storage

medium used by the DBMP is destroyed.

If a DBMP that has lost memory is permitted to vote on

update requests, that DBMP can cause the majority consensus

algorithm to malfunction. This can happen if: (1) the DBMP

votes OK for a request which conflicts with accepted updates It

has forgotten, thereby possibly enabling the request, which it

should reject, to achieve a majority consensus; or, (2) when

asked to vote on an unresolved request it has previously voted on

and forgotten, the DBMP votes differently (e.g., votes OK rather

than DR), thereby possibly causing the request to be both

accepted and rejected.
- 36 -

n

ii
n

n

By Itself, a DBMP has no way of determining whether it has

lost memory. We assume that memory loss occurs as the result of

some catastropic event at the data base site and that in such a

case the information critical to DBMP operation is restored by a

human operator from a backup copy which is presumably out of

date. The backup copy would typically be archived on magnetic

tape. We assume that whenever the information is backed up in

this way, the DBMP is restarted and signalled in some way that a

memory loss has occurred. In addition, we assume the DBMP can

determine the point of memory loss. That is, we assume that the

DBMP keeps a record of timestamps for recent significant events,

such as the last update accepted at each other DBMP, on the

non-volatile storage medium and that this record is archived

along with the data base and also restored whenever a memory loss

occurs.

I
i
I

I
I I

When a DBMP restarts after a nemory loss, it must follow a

memory recovery procedure before it can safely vote on requests

it receives from other DBMPs. In order to become a voting member

of the DBMP set, a DBMP that has lost memory must:

. Recover all updates which the set of DBMPs has accepted
since the point of its memory loss (and which have not
been forgotten by the entire set of DBMPs);

. Recover all unresolved update requests which It has voted
on since the point of its memory loss.

It can be shown that, in general, a DBMP with memory loss

must interact with every other DBMP in order to guarantee

recovery of all the information it has lost. Furthermore, it can

- 37 -

■

be shown that a recovery scheme which involves only a simple

interaction with each other DBMP, in which such information is

requested and transmitted, is insufficient to recover all the

lost information (1).

Below we present a two pass memory recovery procedure which

involves only pairwise interactions among DBMPs. We assert that

thi? memory recovery procedure works correctly when ore, several

or all DBMPs have lost memory. However, it is beyond the scope

of this paper to prove its correctness.

Let M be the DBMP with memory loss. On the first pass M

informs each other DBMP that it is trying to recover from a

memory loss. When a DBMP is so informed, it must acknowledge,

and in addition, temporarily stop forwarding to other DBMPs

unresolved requests that have been voted on by M (2).

On the second pass, M requests from each other DBMP, in

turn. Information concerning updates accepted since the point of

M's memory loss and unresolved update requests voted on by M.

After it supplies M such information, a DBMP may resume

forwarding unresolved requests that M has voted on.

1. While one DBMP is attempting to recover memory, it is possible
for the other DBMPs to experience memory loss and engage in
memory recovery in pathological patterns which would enable
unresolved update requests voted on by the original DBMP to
remain active in the DBMP set but unrecoverable by any simple
one pass procedure.

2. This temporary freezing of data base activity with respect to
these unresolved requests prevents the pathological behavoir
mentioned in the previous footnote.

fl

i

n

11

- 38 -

i
I
I

I
I

i

If on the second pass M encounters a DBMP that Is unaware

that M is engaged in the memory recovery procedure, that DBMP has

also lost memory (since M's first pass). Should M encounter such

a DBMP, it must abort the second pass of the procedure. In such

a case, to proceed with its memory recovery M must repeat the

first pass of the procedure, after which it may restart the

second pass. When M successfully completes the second pass, it

can participate as a voting member of the DBMP set.

7. CONCLUDING REMARKS

This paper has presented a "majority consensus" algorithm

which represents a new solution to the update synchronization

problem for multiple copy data bases. Because the responsibility

for performing an update is distributed among the collection of

processes that manage data base copies rather than centralized in

a single process, the algorithm can function effectively (i.e.,

process updates) in the presence of communication and data base

site outages.

Analysis of the communication and computation costs incurred

■ by the majority consensus algorithm to accomplish an update (when

it is unnecessary to reject and resubmit it) shows these costs

are not significantly greater than for other more traditional

approaches. When the pattern of update activity is such that

conflicting update requests c'-cur, these costs increase because

- 39 -

more votes are required to resolve requests and because rejected

update requests must be resubmltted.

In addition to communication and computation costs, the

algorithm Imposes a significant short term storage requirement

upon the data base sites since each site must remember the state

of a pending update request until the request Is resolved. The

short term storage required for any application will depend upon

the expected patterns of update activity. In practice, the

dominant cost associated with use of the algorithm is likely to

be that incurred to satisfy this short term memory requirement.

A multiple copy data base is one particular .ype of

distributed data base. Another type is one which consists of

distributed, non-overlapping segments; that is. a data base

which is a collection of smaller data base segments each of which

is singly maintained at a (possibly) different site (1).

Although the data itself is not redundantly stored for this tyoe

of distributed data base, in some applications it may be

desirable to maintain multiple copies of the catalogues for such

i segmented data base. For these applications the majority

consensus algorithm could be used to handle updates to the data

base catalogue.

n

«0 -

[J

n

i ■

n
» *

MM

■

I

I

I

I

I

I

I
I

I

A number of Intosresting questions regarding the use of

multiple copy data bases, in general, and the use of the majority

consensus algorithm, in particular, remain to be answere-1. These

questions include:

. How should application processes be programmed to deal
with the fact that data found in any given data b?se copy
may not be the most current? In some cases it may not be
critical that the data is not current. If it is critical,
how can a process locate the most current data?

. How will the algorithm perform under various patterns of
update activity and various patterns of communication
system and site outages? For example, given particular
activity and outage patterns, what is the probability that
an update will be accepted the first time it is submitted;
what is the expected number of DBMPs that must vote for an
update request to be resolved?

. In pra
in sec
requir
DBMP s
extent
each s
presen
consen
becaus
since
occurr
outage
adequa

ctice, use of th
tion 6 could be
ed to maintain u
ite. What strat
of the history

ite? The memory
ted is interesti
sus algorithm, i
e it incorporate
memory loss by a
ence (relative t
s), a simpler, c
te in most situa

e memory recovery procedure sketched
expensive in terms of the storage
pdate history information at each
egies can be used to minimize the
information that is maintained at
recovery proceoure that was

ng in that, like the majority
t can be made extremely robust
s distributed control. However,
DBMP is likely to be a rare

o communication system and site
entralized recovery procedure may be
tions.

ACKNOWLEDGEMENTS

The notion that a voting procedure might form the basis for

achieving update synchronization is due to Leslie Lamport. Paul

Johnson and Harry Forsdick contributed to the formulation of the

ideas in this paper. In addition, conversations with Rick

Schantz, Jerry Burchfiel, and Ray Tomlinson were helpful.

- 41 -

r r
■ —' '.■■■;:-

II
'I''

REFERENCES

[1] Johnson, P. and Thomas, R., The Maintenance of Duplicate
7™N ÜSS' ARPA Network Working Group Request for Comments
(RFC; #&77, Network Information Center (NIC) Document
#31507, January 1975.

[2] Klmbleton, S. and Schneider, G., Computer Communication
Networks: Approaches, Objectives, and Performance ACM
Computing Surveys, Vol. 7, No. 3, September 1975, pp.

[3] Cerf, V. and Kahn, R., A Protocol for Packet Network
Interconnection, IEEE Transactions on Communications. Vol
Comm-22, No. 5, May 197^, pp. 637-648.

[4] Lamport, L., Time, Clocks and the Ordering of Events In a
i J.i?^6? System, Massachusetts Computer Associates Report

*. fu I^2911' March 1976; also submitted to Communications of the ACM.

i

I

i

n
n

/

i

1
- 42 -

y "■"WBUMIPy ' •••**%
~— f-

APPENDIX

This appendix Includes a number of examples chosen to

Illustrate various aspects of the update algorithm.

Before presenting the examples It la necessary to specify In

some detail the messages exchanged among APs and DBMPs. The

following messages are used In the examples:

DBMP <-> AP messages:

SAO ■ SfS^fJ Varlable values and tlmestamps (AP to DBMP).
VAH - VARlables and tlmestamps (DBMP to AP).
RU - Request Update (AP to DBMP).
UA - Update Accepted (DBMP to AP).
UR - Update Rejected (DBMP to AP).

Inter-DBMP messages:

RC - Request Consensus on specified update request.
DO - The specified update request has been accepted; enter

it into your copy of the data base.
REJ - The specified update request has been REJected.

For each of the exampl -, that follow a number of different

sequences of events are possible; only one sequence is presented

for each example. The following notation is used in the

examples:

. X->Y:Z represents transmission of message Z to process Y
by process X. o F oo i

' fA i ?/ Cl fndicates the event sequence in which event A
is followed by event B which is followed by event C.

• L A 4 B] indicates that events A and B occur
concurrently.

. The update request status " —" indicates that the update
request is currently unknown at the DBMP in question. The
status "XX" indicates that the DBMP in question is down.

. okei2 means that DBMPs 1 and 2 have voted OK on the
request. Similarly doe2 (reje2) means that DBMP 2
accepted (rejected) the update request.

. DONE means that the DBMP has performed the update.

- 43 -

1 "■—-■■ . i. i „I.

. REJD means that the DBMP considers the request as
rejected.

. "•" indicates that the DBMP is actively trying to forward
information regarding the request; *ok means that it is
trying to forward an RC message; »DONE means that it is
trying to complete sending DO messages; *REJD means that
it is trying to complete sending REJ messages.

Example # 1: Normal update with no conflict.

Consider 3 DBMPs which manage a data base which includes a

variable x. Assume that an AP wishes to do the update:

x : = x 1,

Further, suppose that x is current in all copies of the data

base, and that its value is 3- Let the update requested be

called A. A has a single base variable, x, and a single update

variable, x. If accepted, A will change the value of x to 4.

The table below illustrates the sequence of events that

occur and how the status of the request A as seen by each DBMP

evolves as the DBMPs work to accomplish the update.

DBMP-1 DBMP-2 DBMP-3

Status
of:

A ••' ■*■" ——

[AP->1:RV(x) / 1->AP:VAR(x) / AP->1:RU(A) / 1 votes OK]

A »ok@1

[1->2:RC(A) / 2 votes OK]

n
n
[i

n
n

i

n
n
n

11

n
n
n

 —r-'i«« »■M-.-irCTCT-i.ir-

A ok#1 »okei2

[2 accepts A / 2->1:D0(A) / 2->AP:UA(A)]

A DONE
doe2

[2->3:DO(A)]

A DONE
do§2

»DONE
dog2

DONE
(io§2

DONE
do@2

[1,2,3 discard (1) request A]

Example # 2: Concurrent Conflicting Updates.

This is the example from section 2. There are 3 DBMPs

which manage a data base that includes variables x and y. Assume

all data bases are current and x=1 and y=2 in all copies of the

data base. Assume that API initiates update A and that AP2

initiates update B:

A: x : = y
B: y := x.

The base variables of A are x,y and the update variable is x;

B's base variables are x,y also, and its update variable is y. A

and B conflict.

In the following, A is accepted causing x to be set to

2 and B to be rejected. AP2 then chooses to re-initiate its

I

I

U
 L^l/tl "discard" an accepted update request after it has

S!? •d^h6 "P^6 int0 its data base copy. DBMPs also
a DRSprplnrfJ??te.d re?lie?ts- This Paper does not discuss how
a DBMP can tell when it is safe to discard a request:
however, it is not difficult to devise methods for doing so

- il5 -

^&

update (called B' to distinguish it from the AP2,s original

request) which updates y to 2. We assume that the priority of a

request initiated at DBMP 1 is greater than that of one initiated

at DBMP 2 or 3, etc.

DBMP-1 DBMP-2 DBMP-3

Status
of:

A
B

[AP1->1:RV(xy) & AP2->3:RV(xy) / 1->AP1:VAR(xy) & 3->AP2:VAR(xy) /
AP1->1:RU(A) & AP2->3:RÖ(B) / 1 votes A-OK & 3 votes B-OK]

»ok@1
»ok§3

[1->2:RC(A) & 3->1:RC(B) / 2 votes A-OK & 1 votes B-DR]

ok§1
»ok§3dr§1

»ok@12
ok@3

[2 accepts A & 1->2:RC^B) / 2->AP1:UA(A) & 2->1:D0(A) & 2 rejects B]

A DONE
do@2 do@2

B ok@3dr@1 *REJD ok@3

»DONE
do@2
»REJD
reje2

[2->3:DO(A) & 2-M,3:REJ(B) & 2->AP2 :UR (B,x ,y)]

A

B

DONE
do@2
REJD
rej§2

DONE
do@2
REJD
rej§2

DONE
do@2
REJD
rej@2

[1,2,3 discard A and B]

A
B

[AP2->2:RU(BI) / 2 votes B'-OK]

B« — »ok§2

[2->3:RC(B•) / 3 votes B'-OK / 3 acceots B' / ... etc.]

- 46 -

n
n

n
n
n
n
n
n
l:
n
n

□

i
i

Example # 3: Deadlock Avoidance.

Assume 3 DBMPs which manage a data base which includes

the variables x, y, and z. Assume that all copies of the data

base are current and that x=1, y=2, and z=3. Assume that 3

application programs attempt the updates:

A: x := y^z (by API)
B: y •= z + x (by AFC)
C: z := x - y (by AP3)

I

I

I
I

I

I
i

Update A would change x to 6; B would change y to M; C would

change Z to -1. The base variables of all 3 requests are x,y,z;

the update variables are such that each request conflicts with

each of the others. In the following scenario the DBMPs act

first to reject C in order to prevent a possible deadlock, next

to accept B, and finally, to reject A because it conflicts with

B.

DBMP-1 DBMP-2 DBMP-3

Status
of:

A —
B —
C —

[... AP1->1:RU(A) & AP2->2:RU(B) & AP3->3:RU(C) /
1,2,3 vote OK on A,B,C]

A
B
C

»ok^l
•ok§2

•oke3

[1->2:RC(A) & 2->3:RC(B) & 3->1:RC(C) /
2 defers A 4 3 defers B & 1 votes C-DR]

- 47 -

'-"■■^"^»»'.yg^^yr*

2

A
B
C

[1-

A
B
C

DEFR,ok@1
0V.Q2

ok@1

*oke3<ire-\

>2:RC(C) / 2 votes C-DR / 2 rejects C]

ok§1

okesdrgl

DEFR,oke2
ok@3

DEFR,ok@1
ok§2
»REJD
reje2

DEFR,ok@2
ok§3

[2-

A
B

>1,3:REJ(C) & 2->AP3:UR(C,x,y,z) / 3 votes B-OK / 3 accepts B]

ok@1

REJD
rej@2

DEFR,ok§1
ok@2

»REJD
rej§2

»DONE
do@3
REJD
reje2

[3->1,2:D0(B) 4 3->AP2:UA(B) / 1,2,3 discard C 4 1,2 reject A]

A

B

C

»REJD
rejgl
DONE
doe3

»REJD
rej@2
DONE
do*?3

»DONE
does

[1,
2-

B
C

2,3 discard B / 1->2,3:REJ(A) 4 1->AP1:UR(A,x,y,z) 4
>1,3:REJ(A) 4 2->AP1:UR(A,xyz)]

REJD
rejei2

REJD
rejei2

REJD
rej§12

[1,2,3 discard A]

Example # Hi Updating in the Presence of DBMP Crashes.

For this example assume a b DBMP system and that all

data base copies are current. Further assume that DBMPs 4 and 5

are initially down and that when DBMPs crash and later come up

they do so without loss of memory. Suppose that conflicting

updates A and B are initiated at DBMPs 1 and 3 respactively. The

I!

I

n

I

- 48 -

n
" ^iiimwpwaiiM

i

!

following Uluatratea a aoenarlo in which various DBMPs craah ahd

returh aa the aet of DBMPa aot to aooept B and rejeot A.

DBMP-1 DBMP-2 DBMP-3 DBMP-4
Status
of:

A
B XX

XX

[AP1.>1:RÜ(A) 4 AP2->3:RU(B) / 1,3 vote OK on A,B]

A •okei
kok§3

XX
XX

DBMP-5

XX
XX

XX
XX

L 3->1:RC(B) / 1 votes B-DR / i->?.Rrrn> / o
1->2:RC(A) / 2 defers A] >2-RC(B) / 2 votis B-OK /

A
B

okei
ok^3dr§1

DEFR,okei
*oke23drei oke3

[2 crashes / I times out A]

A
B

•ok@l
oke3dr§l

XX
XX owes

XX
XX

XX
XX

C 1->3:RC(A) / 3 defers A / 4,5 up / 3 times out B]

XX
XX

XX
XX

A
B

okgl
okg3drgl

XX
XX

[3->^:RC(B) / H votes B-OK]

DEFR,ok?;
•oke3

A
B

okgl
oke3drei

XX
XX

DEFR,ok@1
okQS

C 3,^ crash / 1 times out A]
»ok^

A
B

»ok§1
oke3drei

XX
XX

XX
XX

C 1->5:RC(A) / 5 votes A-OK / 2,3,1} Up]

A
B

okei
ok§3drei

DEFR.okgl DEFR.okei
foke23dr@l oke3

XX
XX

»oke34
•okßlS

[a^araTthat^et68" reSOlVed '"' ^ n0 ain«le ™' ^
5->^BC(A) I -(->5..RC(B) / , defars A , 5 v0te3 B,m ,

I
- 119 -

«^^i

B oHI]^, S-j, s-0«' 0
D
k%Vw'5 Z%mt

1 ^eje^W^^^je^^V'3'^"0«' ' ^^'«'B) /

B

•REJD

DONE
doQS

»REJD
rejg2
DONE
do@5

*REJD
reJQS
DONE
do§5

»REJD

DONE
00^5

»REJD
rc)§5
»DONE
do§5

[1.2.3^,5 exchange REJs for A / 1,2,3.^5 discard A,B J

n
n

i]

n
ö

- 50 -

i
n

1

I

I
1

1

I
!

i

f
i

I

Unclassified
ftcumrr cuAMiriCATioM OP TMI« PAOK fWi— Dm* inif <

REPORT DOCUMENTATION PAGE
nffFOTTMÜBIW "■

READ INSTRUCTIONS
BEFORE COMPLETING FORM .

BBN Report No. 3340
1. OOVT ACCIUION NO

-rvih» fmm mmniw) '" '——-—— ——«
.A SOLUTION TO THE UPDATE PROBLEM FOR
"MULTIPLE COPY DATA"BASES WHICH USES
DISTRIBUTED CONTROL*

r tmmn
R. Thomas

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02155

U. MONlfoklNO AÖENCV NAMC I AOORKUflf «fto^l »~ C-ilw'lliM 0»«c«;

- WBWWi Wl «WAII* nwwWWW

N00014-75-C-0773 J I , ,. , -

AMA • mfmK Lf.tpgaKKM^s——

II. »ecu"ITV CLASS, fo' IAI« rapartj

Unclassified
111. OtäLASSIflCATION/OOWNOIIAmNO

SCHtOULE

I«. tNSrmtUTION STATIMENT (ol Ihlm Htporl)

Distribution of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce for sale to the
general public.

17, Dl»THIBUTION STATtHtMT fol hw jfealrael attararf i« »IM* »0. II «Html ham Hapert;

I« SUPFLtMCNTANV NOTES

This research was supported by the Defense Advanced Research
Projects Agency under ARPA Order No. 2935.

IS. KEY WORDS (Cmillnu» on MtWM •<«• II mafmtrr «W Umlllr ** »»•«» "«aBWrJ

dictributed data bases
distributed computation
distributed control
computer networks

update synchronization
clock synchronization
maltiprocfess systems

lOr^^kw^CT fConHm» an r.»«raa aiANTKacaaaarr B MMM» *r W«» nmmkt)

"~ kA ""majority con8en8U8**^algorlthin which represents a new solution to the update
synchronization problem for multiple copy data bases Is presented. The
algorithm embodies distributed control and can function effectively in the
sresence of conmunlcatlon and data base site outages. The correctness of the
algorithm is demonstrcted and the cost of using it is analyzed. Several
examples that illustrate aspects of the algorithm operation are Included in
an appendix. ^

. s — —
W i JAN n 1473 EDITION Or I NOV •» IS OMOLETf. unclassified

SKCUIHTV eL*mriC*Vl«N OF THIS RACE (mm, Dim Bnl**0

06ÖJ00 ^

