
J
H
E
P
1
2
(
2
0
1
7
)
1
5
5

Published for SISSA by Springer

Received: August 14, 2017

Revised: December 1, 2017

Accepted: December 23, 2017

Published: December 29, 2017

A solvable irrelevant deformation of AdS3/CFT2

Amit Giveon,a Nissan Itzhakib and David Kutasovc

aRacah Institute of Physics, The Hebrew University,

Jerusalem 91904, Israel
bPhysics Department, Tel-Aviv University,

Ramat-Aviv, 69978, Israel
cEFI and Department of Physics, University of Chicago,

5640 S. Ellis Av., Chicago, IL 60637, U.S.A.

E-mail: giveon@phys.huji.ac.il, nitzhaki@post.tau.ac.il,

kutasov@theory.uchicago.edu

Abstract: Recently we proposed a universal solvable irrelevant deformation of

AdS3/CFT2 duality, which leads in the ultraviolet to a theory with a Hagedorn entropy [1].

In this note we provide a worldsheet description of this theory as a coset CFT, and compare

its spectrum to the field theory predictions of [2, 3].

Keywords: AdS-CFT Correspondence, Conformal Field Theory, Integrable Field Theo-

ries, Renormalization Group

ArXiv ePrint: 1707.05800

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2017)155

mailto:giveon@phys.huji.ac.il
mailto:nitzhaki@post.tau.ac.il
mailto:kutasov@theory.uchicago.edu
https://arxiv.org/abs/1707.05800
https://doi.org/10.1007/JHEP12(2017)155


J
H
E
P
1
2
(
2
0
1
7
)
1
5
5

Contents

1 Introduction 1

2 Coset description 2

3 Comments on the spectrum 5

4 Discussion 8

1 Introduction

In this note we continue our study [1] of a certain deformation of string theory on AdS3.

This study was motivated by two recent papers [2, 3], which argued that perturbing a two

dimensional conformal field theory (CFT2) by a particular dimension (2, 2) operator, which

behaves near the original CFT like the product of the holomorphic and anti-holomorphic

components of the stress tensor, TT , leads to a well defined theory, despite the fact that

it corresponds to a flow up the renormalization group (RG). Moreover, the authors of

these papers argued that the model is in a certain sense exactly solvable, and in particular

computed its spectrum on IR × S1. An interesting property of the resulting spectrum is

that it smoothly interpolates between an entropy associated with a CFT2 in the IR, and

one that exhibits Hagedorn growth in the UV [1].

In the context of holography, the irrelevant deformation studied in [2, 3] is a double

trace deformation, which corresponds to a change of the boundary conditions of the bulk

fields on AdS3 [4, 5]. In [1], we pointed out that there is a single trace deformation of

string theory on AdS3 that shares many elements with that of [2, 3], but may be more

interesting, since it modifies the local geometry of the bulk theory. Some of the features

the two deformations have in common are:

(1) The perturbing operator is a quasi-primary of the (boundary, or spacetime) Virasoro

algebra with dimension (2, 2). Moreover, the OPE of the perturbing operator with

the stress tensor has the same structure in the two cases.

(2) The construction of [2, 3] is universal, in the sense that all CFT2’s contain the op-

erator TT that drives the RG flow. Similarly, the construction of [1] is universal, in

the sense that the single trace operator that drives the RG flow exists in all vacua of

string theory on AdS3.

(3) In the string theory construction, the irrelevant deformation of the spacetime theory

corresponds to a marginal deformation of the worldsheet one. Therefore, from the

string theory perspective it is natural that the resulting spacetime theory is well

defined, as in [2, 3].

– 1 –



J
H
E
P
1
2
(
2
0
1
7
)
1
5
5

(4) The marginal worldsheet deformation is by an operator bilinear in worldsheet cur-

rents, and as such is exactly solvable, as in [2, 3]. In fact, as mentioned in [1] and

will be further discussed below, the deformed worldsheet theory can be thought of as

a coset CFT, and one can use current algebra techniques to study it.

(5) The string theory construction of [1] gives rise to a theory that interpolates between

a CFT2 entropy in the IR and a Hagedorn entropy in the UV, like in [2, 3].

Despite the close analogy between the two constructions, the precise relation between

them is unclear, primarily due to our limited understanding of the spacetime CFT corre-

sponding to string theory on AdS3. In [1], it was pointed out that if we assume that the

spacetime CFT takes the symmetric product form Mp/Sp, where M is a CFT with central

charge 6k, and k is the level of the worldsheet SL(2, IR) current algebra in string theory

on AdS3, as suggested in [6, 7], the string theory single trace deformation corresponds to a

TT deformation of the block M. The high energy behavior of the entropy of the deformed

symmetric product CFT was shown to agree with the Bekenstein-Hawking entropy of black

holes in the deformed geometry induced by the single trace deformation.

In this note, we would like to comment on a few aspects of the construction of [1].

In section 2, we describe this construction in terms of a coset CFT, which involves null

gauging of a 10 + 2 dimensional background. We comment briefly on observables in the

theory, which are naturally described in terms of this coset CFT, and use it (in section 3)

to describe the spectrum of states of the resulting model on a spatial circle. We show

that for the superstring, in a particular vacuum with supersymmetry preserving boundary

conditions on the circle, the spectrum one gets is the same as that of [2, 3], assuming the

Mp/Sp structure mentioned above. In section 4, we discuss our results and their relation

to those of [8] on the string/black hole transition in AdS3 and linear dilaton backgrounds.

2 Coset description

A large class of (2, 2) supersymmetric vacua of string theory on AdS3 is obtained by study-

ing the worldsheet theory on AdS3×S1×N , where N is a compact background described

by a (2, 2) superconformal worldsheet theory (see e.g. [6, 9–11]). Spacetime SUSY leads

to a chiral GSO projection, which acts as an orbifold on this background. A useful way of

thinking about these backgrounds is as describing systems of NS5-branes wrapped around

various surfaces in a way that preserves some supersymmetry, in a state with a large number

of fundamental strings bound to the fivebranes [6, 12].

A special case of this construction, which is sufficient for our purposes, is the back-

ground corresponding to k NS fivebranes wrapped around a four manifold M4(= T 4 or

K3), and p strings,

AdS3 × S3 ×M4. (2.1)

As in [1], we are interested in deforming this background by adding to the worldsheet

Lagrangian the term

δL = λJ−J
−
, (2.2)
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where J− is the worldsheet SL(2, IR) current whose zero mode gives rise to the spacetime

Virasoro generator L−1. As described in [12–14], this marginal worldsheet deformation

leads to an asymptotically linear dilaton geometry, which interpolates between the (AdS3)

near-horizon geometry of both the strings and the fivebranes in the IR, and the linear

dilaton (CHS [15]) geometry of just the fivebranes in the UV.

To describe the deformed CFT as a coset, we start with the following 10+2 dimensional

background:1

IR1,1 ×AdS3 × S3 ×M4. (2.3)

Later, when studying states on the cylinder, we will compactify the spatial direction in

IR1,1 on a circle. The uncompactified geometry is useful for studying off-shell correlation

functions, as in [16, 17].

We note in passing that the background (2.3) plays an important role in many studies

of fivebranes in string theory. For example, the system of fivebranes on a circle [18, 19],

known as Double Scaled Little String Theory (DSLST), involves the coset of (2.3) by the

null current J3 −K3, where J3 is the timelike U(1) in AdS3 and K3 is a CSA generator of

SU(2) [20]. Systems of fivebranes in motion are described by modifying the null current to

involve the time translation generator [21]. And, recently it has been shown [22] that some

of the Ramond ground states of the string-fivebrane system can be described by adding the

null translation generator in IR1,1 (more precisely IR × S1) to the null generator J3 −K3

mentioned above. Other closely related cosets give rise to black holes (see e.g. [23, 24] and

appendix C of [8]) and cosmological backgrounds (see e.g. [25] for a review).

To describe the construction of [1] as a coset CFT, we gauge the null current

i∂(y − t) + ǫJ−, (2.4)

where (t, y) are coordinates on IR1,1 and, again, y may be compact. The current (2.4) is

null and thus anomaly free. We can also gauge the right-moving current i∂(y + t) + ǫJ
−
.

To understand the geometry that we get by gauging (2.4) and its right-moving analog

in (2.3), we start with the sigma model on AdS3×IR1,1, which is described by the worldsheet

Lagrangian

L = k(∂φ∂φ+ e2φ∂γ∂γ) + ∂x+∂x−. (2.5)

The coordinates γ = γ1 − γ0, γ = γ1 + γ0 parametrize the boundary of AdS3; x
± = y ± t

are coordinates on IR1,1.2 The symmetry we would like to mod out by is

x− → x− + α ; γ → γ + ǫα,

x+ → x+ + α ; γ → γ + ǫα,
(2.6)

where α, α are the gauge parameters of the two null U(1)’s.3

1Or, in the more general class of vacua mentioned above, IR1,1 ×AdS3 × S1 ×N .
2While we present the construction in section 2 as a Lorentzian one, one can describe it in Euclidean

space as well. This can be done by replacing t in eq. (2.4) by iτ and γ0 after eq. (2.5) by iγ2, and taking x−, γ

to be complex conjugates of x+, γ, respectively. In fact, this Euclidean description is useful for considering

off-shell Green’s functions in this model, a topic mentioned below.
3In (2.6) we chose an axial gauging. One could also perform a vector gauging, for which γ → γ − ǫα.

This gives rise to a singular geometry [1].
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To implement the gauging, we modify (2.5) as follows:

L = k
[
∂φ∂φ+ e2φ(∂γ + ǫA)(∂γ + ǫA)

]
+ (∂x+ +A)(∂x− +A). (2.7)

Eliminating the gauge fields gives rise to the background

L = k∂φ∂φ+
k

kǫ2 + e−2φ
∂(γ − ǫx−)∂(γ − ǫx+), (2.8)

with a dilaton that goes like Φ ∼ − ln(1+ kǫ2e2φ). The metric, B field and dilaton depend

on the gauge invariant coordinates φ, γ0 − ǫt and γ1 − ǫy. We can fix the gauge x± = 0,

which is natural in the infrared region φ → −∞, or γ = γ = 0, which is natural near the

boundary φ → +∞. This gives rise to the well known geometry of strings and fivebranes

(see e.g. appendix A of [12]).

The parameter ǫ in (2.8) controls the transition from the near-horizon region of both

the strings and the fivebranes (e−φ ≫ ǫ
√
k), and the region where we are in the near

horizon of the fivebranes but not of the strings (e−φ ≪ ǫ
√
k). We can set it to any

particular value by shifting φ and rescaling (γ, γ). The role of this parameter in the bulk

theory is very similar to that of the coefficient of the irrelevant operator in the Lagrangian

of the corresponding boundary theory. The latter determines the scale at which the theory

transitions from being dominated by the IR CFT, and the UV (Hagedorn) regime.

As mentioned above, the coset perspective is useful for studying correlation functions of

off-shell operators in the theory. We will postpone a detailed discussion of these correlation

functions to another publication, limiting our discussion here to a few comments.

Setting the deformation parameter λ in (2.2) to zero (or, equivalently, setting ǫ = 0

in the coset (2.4)), off-shell observables correspond to local operators on the boundary of

AdS3. A large class of such observables4 is given by vertex operators in the (NS,NS) sector,

which take the form (in the (−1,−1) picture)

Ô(x) =

∫
d2ze−ϕ−ϕΦh(x; z)O(z). (2.9)

Here ϕ, ϕ are worldsheet fields associated with the superconformal ghosts, that keep track

of the picture. Φh(x; z) are natural vertex operators on AdS3, labeled by position on the

boundary, x, and on the worldsheet, z (see e.g. [26, 27] for more detailed discussions and

references), and O is an (N = 1 superconformal primary) operator in the worldsheet theory

on S3×M4, or more generally S1×N . The operator (2.9) satisfies the mass-shell condition

− h(h− 1)

k
+∆O =

1

2
, (2.10)

which relates the scaling dimension of the operator Ô(x) in the spacetime (or boundary)

CFT, h, to the worldsheet scaling dimension of the operator O, ∆O.

When we add to the theory the IR1,1 factor in (2.3) and gauge the symmetry (2.6), the

observables change as follows. First, to facilitate the gauging, we need to Fourier transform

4The worldsheet CFT for the parabolic deformation (2.2) is not yet understood; this work presents some

of its properties.
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the operators Φh(x; z) from the position (x) to the momentum (p) basis on the boundary.

This gives rise to operators, which we will denote by Φh(p; z) (in a slight abuse of notation),

which are eigenfunctions of the currents (J−, J
−
) with eigenvalues (p, p). These operators

behave like

Φh(p) = fh(φ)e
i~p·~γ . (2.11)

Near the boundary at φ → ∞, one has fh(φ) ∼ eβφ, with β proportional to h− 1. Gauge

invariance implies that the operators (2.9) must be replaced in the deformed theory by

Ô(p) =

∫
d2ze−ϕ−ϕΦh(p)e

−i(ωt+pyy)O. (2.12)

The mass-shell condition (2.10) is now deformed to

− h(h− 1)

k
+

α′

4
(p2y − ω2) + ∆O =

1

2
. (2.13)

Moreover, gauge invariance sets ω = ǫp0 and py = ǫp1. Observables corresponding to

non-normalizable vertex operators, (2.12) with 1
2 < h ∈ IR, are labeled by two-dimensional

momentum (ω, py), with h fixed by the mass-shell condition (2.13). One can use the coset

description to calculate off-shell correlation functions of such observables, and use them to

study the high (and low) energy behavior of the theory. Note that the observables (2.12)

are labeled by their momenta. One does not expect to be able to Fourier transform them

to position space, due to the non-locality of the theory. This is believed to be a general

feature of all vacua of Little String Theory, such as DSLST [17–19].

3 Comments on the spectrum

To study the spectrum of the theory, we would like to compactify the spatial direction on

the boundary of the geometry (2.8) on a circle. In the undeformed theory (i.e. for ǫ = 0),

we can do this by identifying γ1 ∼ γ1 + 2πR1, with all fields satisfying periodic boundary

conditions on the circle. This gives rise to the M = J = 0 BTZ black hole geometry, which

describes a Ramond-Ramond ground state of the boundary CFT.

The spectrum of perturbative string states in this background is continuous. This is

easy to understand from the spacetime point of view. The background (2.1) is obtained by

adding to a linear dilaton background, of the form IRφ× IRt×S1×M4×S3, p fundamental

strings wrapping the S1 [12]. The resulting state is BPS — the strings preserve some

of the supersymmetry of the original background. Thus, these strings do not feel a force

attracting them to the fivebranes, and their excitations form a continuum. This continuum

is described by the vertex operators of long strings constructed in [6, 28].

The deformation (2.2) extends the background from the near-horizon geometry of both

the strings and the fivebranes to just that of the fivebranes. This extension does not change

the fact that the strings experience a flat potential; hence, one expects to find a continuum

of states corresponding to strings wound around the spatial circle in (2.8), and having an

arbitrary radial momentum in φ and oscillation level.
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Such states can be described as follows using the coset description of the previous

section. Consider for example the (NS,NS) sector vertex operators in eq. (2.12). To describe

states carrying arbitrary momentum n and winding w around the y circle, we replace the

factor eipyy by

eipyy → eipLyL+ipRyR , (3.1)

with

pL =
n

R
+

wR

α′
; pR =

n

R
− wR

α′
. (3.2)

States carrying real radial momentum correspond to

h = j + 1 =
1

2
+ is ; s ∈ IR. (3.3)

The mass-shell condition (2.13) now takes the form

α′

4
ω2 =

α′

4
p2L − j(j + 1)

k
+∆O − 1

2
, (3.4)

and a similar equation for the other worldsheet chirality,

α′

4
ω2 =

α′

4
p2R − j(j + 1)

k
+∆O − 1

2
. (3.5)

Adding (3.4) and (3.5) gives

ω2 =
( n

R

)2
+

(
wR

α′

)2

+
2

α′

(
−2j(j + 1)

k
+∆O +∆O − 1

)
. (3.6)

The difference of the two gives

∆O −∆O = nw. (3.7)

For w = 1, the mass-shell conditions (3.6), (3.7) describe a string winding once around

the spatial circle on the boundary in a particular excitation state labeled by O and with a

particular radial momentum labeled by s (3.3). To rewrite it in a more suggestive form, it

is useful to measure the energy of this state relative to the energy of a BPS string wrapping

the circle (which corresponds to the supersymmetric vacuum), i.e. write

ω = E +
R

α′
. (3.8)

It is also useful to recall that in the AdS3 limit of the background (2.8), the last term

in (3.6) is related to the value of L0, h1, for a long string with the same quantum

– 6 –
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numbers [6, 28, 29],5

h1 −
k

4
= −j(j + 1)

k
+∆O − 1

2
,

h1 −
k

4
= −j(j + 1)

k
+∆O − 1

2
.

(3.9)

Plugging (3.8), (3.9) into (3.6), (3.7), we find (for w = 1) the mass-shell condition

(
E +

R

α′

)2

−
(
R

α′

)2

=
2

α′

(
h1 + h1 −

k

2

)
+
( n

R

)2
, (3.10)

and h1 − h1 = n. The mass-shell condition (3.10) agrees precisely with what one would

find for a state with the dimensions (3.9) in a CFT M of central charge cM = 6k, upon a

deformation of the sort studied in [2, 3], δL = −tTT . To determine t it is useful to recall

that the quantity R in [2, 3], RQFT , is in our language the circumference of the spatial

coordinate on the boundary of AdS3, γ1, and is related to the circumeference of the y

coordinate at infinity, 2πR, by a factor of ǫ,6 i.e. RQFT = 2πRǫ. Similarly, the energy in

these papers is related to the energy here by a factor of 1/ǫ. Taking all this into account,

and comparing (3.10) to the spectrum in [2, 3], we find t = πα′ǫ2.

As mentioned above, the physics is independent of ǫ, since one can change it by rescal-

ing the coordinates (γ, γ) (which also rescales the radius R) and shifting φ. A convenient

value is ǫ = 1, since for that value the coordinates (γ0, γ1) are normalized in the same way

as the asymptotic coordinates (t, y); this is the choice made in [1]. Note that the value

t = πα′, obtained here from the perturbative string spectrum (for ǫ = 1), agrees with that

found in [1] from black hole thermodynamics.

One can think of the states (3.10) as belonging to the untwisted sector of the orbifold

Mp/Sp. States with w > 1 belong to the Zw twisted sector of the orbifold. To see this,

one proceeds as follows. The analog of (3.8) for this case is

ω = E +
wR

α′
. (3.11)

Plugging this and (3.9) into (3.6) gives

(
E +

wR

α′

)2

−
(
wR

α′

)2

=
2

α′

(
h1 + h1 −

k

2

)
+
( nw

wR

)2
, (3.12)

with nw = wn. Comparing (3.12) to (3.10), we see that the spectrum of strings with

winding w is the same as that of a string singly wound around a circle with radius wR

5Note that in [6, 28], this equation is valid for long strings in the NS sector of the spacetime CFT, while

the states we apply it to are Ramond sector states. The difference between the Ramond and NS sectors

from the AdS3 point of view is that in the NS sector, strings feel an attractive potential to the origin [30, 31],

but that potential becomes flat above a gap, while in the Ramond sector (which we study) it is flat from

the outset and all the states are above the gap. Thus, if we are interested in the relation between the

worldsheet quantum numbers of long string states above the gap and the spacetime scaling dimensions in

the dual CFT2, the difference between the two is immaterial. This implies, in particular, that this equation

should be obtained in the worldsheet theory on the massless BTZ black hole, as well, which is in harmony

with the results obtained in [29].
6Due to the relation between y and γ1 mentioned above.

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
1
5
5

and momentum nw. This agrees with the spectrum in the Zw twisted sector of Mw/Zw,

with Zw acting via cyclic permutation on the w copies of M. Note that in the IR limit,

R/ls → ∞, (3.12) reduces to well known results in string theory on AdS3 [6, 28], such as, [8],

hw =
h1
w

+
k

4

(
w − 1

w

)
, (3.13)

describing long strings winding w times around the boundary circle.

To recapitulate, we have shown that states with w > 0 in the background (2.8) agree

with those found in the symmetric product CFT Mp/Sp, with M deformed via a TT

deformation. Next we show that string theory on this background has states that do not

fit this description, however these states decouple in the infrared limit, and thus are not

visible in the IR CFT.

Since states with winding w correspond to the Zw twisted sector, it is natural to expect

that states with w ≤ 0 are not captured by the symmetric orbifold. For w = 0 (3.6) takes

the form

(ER)2 =
2R2

α′

(
−2j(j + 1)

k
+∆O +∆O − 1

)
, (3.14)

where we also set the momentum n = 0 for simplicity. Thus, the dimensionless energy ER

diverges in the limit R2/α′ → ∞, which means that the states (3.14) are not present in

the undeformed CFT dual to string theory on AdS3. In the language of the TT deformed

theory, these are states with energy E ∼ 1/
√
t, which decouple in the IR limit t → 0.

States with w < 0 decouple even faster when t → 0, as their energy is bounded from below

by 2|w|R
α′ .

4 Discussion

In the previous section we described perturbative string excitations of the system of strings

and fivebranes wrapping the circle labeled by y (or γ1) in (2.8), with the fivebranes wrapping

an additional four dimensional surfaceM4 (2.3). We saw that the excitations of this system

that correspond to one or more of the p strings creating the background moving away from

the fivebranes (while remaining in their near-horizon region) are well described by a dual

boundary theory Mp/Sp, where M is a CFT with central charge cM = 6k, which roughly

corresponds to the theory of a single string. The worldsheet deformation (2.2), which corre-

sponds to ǫ 6= 0 in (2.8), is dual to a TT deformation (in the sense of [2, 3]) of the CFT M.

There are also states which do not fit the Mp/Sp structure, but they do not correspond

to small excitations of the string/fivebrane system. States with w < 0 can be thought of as

obtained from the system of p−1 strings and k fivebranes by adding to it an F1−F1 pair,

while states with w = 0 correspond to adding to the string/fivebrane system an additional

short string. In contrast, states with w > 0 can be thought of as describing excitations of

the p strings forming the vacuum.

In this note, we focused on the spectrum of excitations of a particular Ramond-Ramond

vacuum of the spacetime CFT, corresponding to the M = J = 0 BTZ black hole. Modular

invariance, spectral flow symmetry of the spacetime CFT, and explicit constructions imply

– 8 –
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the existence of many other Ramond and Neveu Schwartz vacua, and it would be interesting

to extend our discussion to these vacua. We will postpone this to another publication.

Our results are related to those of [8], which discussed the transition between per-

turbative strings and black holes in AdS3 and linear dilaton backgrounds. The picture

presented in that paper was the following. As one increases the available energy, first one

creates perturbative long strings that can propagate towards the boundary. As the energy

of these strings increases, they propagate to larger and larger radial distance, where the

coupling of the theory on the strings grows, and eventually they cross over to black holes.

In this sense, one can think of the long strings as precursors of the black holes. Our results

reinforce and extend this picture. The agreement found in [1] and here suggests that the

symmetric product provides a good description of both the long strings and the black holes

in AdS3, and the deformation (2.2) corresponds to the TT deformation in M.

Note that the above discussion is valid for the case where the level of the SL(2, IR)

current algebra k is larger than one. As discussed in detail in [8], for k < 1 the physics is

different — the black holes discussed in [8] are not normalizable, the coupling on the long

strings in AdS3 becomes weak near the boundary, and the generic high-energy states are

these long strings. All this agrees with the TT deformed symmetric product theory, where

in this case the spacetime CFT on M is one in which the SL(2, IR) invariant vacuum is not

in the spectrum.

Acknowledgments

We thank O. Aharony, J. Maldacena, E. Martinec, N. Warner and E. Witten for discussions.

The work of AG and NI is supported in part by the I-CORE Program of the Planning and

Budgeting Committee and the Israel Science Foundation (Center No. 1937/12), and by a

center of excellence supported by the Israel Science Foundation (grant number 1989/14).

DK is supported in part by DOE grant DE-SC0009924. DK thanks Tel Aviv University

and the Hebrew University for hospitality during part of this work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Giveon, N. Itzhaki and D. Kutasov, TT and LST, JHEP 07 (2017) 122

[arXiv:1701.05576] [INSPIRE].

[2] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories,

Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
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