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1 Introduction

The aim of this work is to make progress towards a non-perturbative definition of quantum
gravity with vanishing cosmological constant. This is the ultimate goal of the celestial
holography program [1–3], whose focus is on the S-matrix of four-dimensional asymptotically
flat gravity. The proposal is that the gravitational theory admits a holographic description
in terms of a putative two-dimensional celestial conformal field theory, from which S-
matrix elements can be extracted. Even though a great deal of progress has been made
in this direction, an explicit realization of the holographic duality, where both sides are
independently defined, is currently lacking (see the recent proposal of [4]).

Here, we take a different approach to the problem and instead focus on the much
simpler case of two-dimensional gravity theories, hoping such toy models provide valuable
general lessons about the nature of flat space quantum gravity (as has certainly been the
case for AdS [5–8]). One of the simplest flat space theories is CJ gravity, introduced by
Cangemi and Jackiw in the nineties [9]. Building on [10–13], an exact holographic dual
for this theory has been recently proposed in [14, 15]. Similarly as in other AdS2 cases [5],
the holographic system is not given by a single celestial theory but instead an ensemble of
random matrices, i.e. a celestial matrix model.
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In this article we define the natural N = 1 supersymmetric extension of CJ gravity and
provide rigorous evidence that points to a double scaled Hermitian random matrix model as
its holographic dual. Our construction is particularly appealing given that the matrix model
is as simple as it can be: its probability density is characterized by a Gaussian potential.
This gives a concrete realization of flat space holography in two-dimensions where the dual
system is not only under complete control but where full non-perturbative effects can be
studied, in many cases, analytically. In the remainder of the introduction we summarize
and provide further technical details on the construction presented in the main text.

Summary of results. We begin in section 2, which contains all the analysis regarding
the gravitational side of the duality. Cangemi and Jackiw originally defined the CJ
gravity action (2.13) from a BF gauge theory built from the Maxwell algebra (2.6), a
central extension of the Poincaré algebra. In subsection 2.1 we follow their approach and
construct the N = 1 CJ supergravity action (2.12) from a BF theory with an appropriate
supersymmetric extension of the Maxwell algebra (2.7). The bosonic field content of the
theory is the same as in CJ gravity: the metric gµν and dilaton Φ are accompanied by the
scalar Ψ and the abelian topological gauge field Aµ. The novelty is in the fermionic sector,
given by a gravitino ψαµ and a dilatino λα. Apart from its equivalence to a BF theory, the
other crucial element of CJ supergravity which makes it a very tractable model, is the linear
dependence of the dilaton in the action, given by

ISCJ ⊃
1
2

∫
M
d2x
√
gΦR . (1.1)

Varying with respect to Φ forces all solutions of the theory to be locally flat.
In subsection 2.2 we study the physical degrees of freedom of the theory which, due to its

topological nature, are completely localized at the boundary. After prescribing a natural set
of asymptotic boundary conditions, we determine the infinite dimensional superalgebra (2.33)
satisfied by large gauge transformations and show that (after a redefinition of its generators)
it is equivalent to the three dimensional BMS superalgebra (2.35) of [16]. We continue
in subsection 2.3 where we find the dynamics of the boundary modes are controlled by a
simple N = 1 supersymmetric quantum mechanics with the following action1

I∂ [F, h, ϑ] = γ

∫ β

0

dτ

F ′(τ)
[
h′(τ)F ′′(τ) + 2ϑ′(τ)ϑ′′(τ)

]
, (1.2)

where
(
F (τ), h(τ)

)
are β-periodic functions and ϑ(τ) an anti-periodic Grassmann function.

The Euclidean coordinate τ ∼ τ + β parametrizes the boundary of a flat manifold with the
topology of the disk, obtained by analytically continuing the retarded Bondi time u→ iτ .
The bosonic sector of this action agrees with the one obtained for ordinary CJ gravity
in [11].

Having defined and understood the degrees of freedom of the theory, in subsection 2.4
we compute the observable we are mostly interested in: the Euclidean partition function

1The inverse length scale γ is introduced via the boundary conditions, see footnote 10.
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Z(β1, . . . , βn) with an arbitrary number of boundaries with periodicity βi. In two dimensions,
the partition function admits the following topological expansion

Z(β1, . . . , βn) '
∞∑
g=0

(e−S0)2(g−1)+nZg(β1, . . . , βn) , (1.3)

with S0 ∈ R+, the parameter multiplying the Euler characteristic term in the action, and
Zg the partition function which only includes contributions from surfaces of fixed genus
g. The symbol ' reminds us that such expansion is not the full result as it is missing, by
construction, doubly non-perturbative corrections O(e−eS0 ).

There are two features that allow us to compute this expansion exactly. First, since Φ
appears linearly in the action (1.1) we can solve the dilaton path integral along a purely
imaginary contour and obtain a Dirac delta δ(R), meaning only locally flat surfaces with
asymptotic boundaries actually contribute to the partition function. The classification of
orientable locally flat surfaces with boundaries is well understood and quite simple [17]: there
is only the disk and cylinder. This results in a dramatic collapse of the topological expansion,
with the only non-vanishing contributions given by (g, n) = (0, 1) and (g, n) = (0, 2). The
partition functions on the disk and cylinder are then written as a path integral over the
boundary modes appearing in the action (1.2). The second feature that allows us to
determine (1.3) exactly is that the path integral over the N = 1 boundary quantum
mechanics is one-loop exact, due to the Duistermaat-Heckman theorem [18, 19]. Putting
everything together, we derive the following expression for the partition function

Z(β) ' eS0 2
√

2
β

, Z(β1, β2) ' 1
β1 + β2

, Z(β1, . . . , βn) ' 0 , n ≥ 3 ,
(1.4)

where here βi is dimensionless, measured in units of γ. Since the Euclidean time coordinate
τ is obtained from an analytic continuation of the retarded Bondi time u, this partition
function is probing the spectrum of the Bondi Hamiltonian of the theory. The spectral
density can be obtained from an inverse Laplace transform of Z(β), and (quite surprisingly)
one finds it is constant %(E) ' eS02

√
2Θ(E). This should be compared with ordinary CJ

gravity, where the density is linear in the energy instead [12].
We continue in section 3, where the matrix model dual to N = 1 CJ supergravity is

constructed and explored. Our first task is easy to state: we need to determine whether
there is a random matrix model such that the connected ensemble average of a single trace
matrix operator O(β) reproduces the partition function (1.4) to all orders in perturbation
theory

Z(β1, . . . , βn) ' 〈O(β1) . . .O(βn)〉c . (1.5)

The solution to this problem is unique and remarkably simple. Consider an ensemble of N
dimensional squared Hermitian matrices M with a Gaussian probability density measure
dM e−

1
2N TrM2 . The ensemble average of the normalized eigenvalue density to leading order

in N � 1 is the famous Wigner semi-circle distribution [20]

〈ρ(λ)〉 = 1
2π
√

4− λ2 +O(1/N) . (1.6)
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As understood in the nineties [21], the naive large N is not enough to match with gravity.
Apart from considering big matrices, we need to simultaneously rescale the eigenvalues λi
in the following way

1
N

= ~δ , λi = αiδ , (1.7)

where δ → 0. The matrix model quantities (N,λi) are replaced by the scaled parameters
(~, αi). Using the matrix model loop equations (a set of recursion relations used for
computing observables perturbatively) in subsection 3.1 we prove the matching (1.5) to all
orders, subject to the following identifications2

O(β) =
∫ +∞

−∞
dpTr e−β(M̄2+p2) , ~ = e−S0

2
√

2
. (1.8)

This is the unique double scaled matrix model which ensures the matching in (1.5).
In agreement with other well understood holographic models in AdS, the operator

O(β) takes the form “ Tr e−βH “, where in this case H should be interpreted as the Bondi
Hamiltonian. Interestingly, it contains two factorized contributions: a discrete matrix part
M̄2 and a continuous non-relativistic free particle p2. This peculiar structure (whose origin
and significance is not fully understood) is exactly the same as the one obtained for ordinary
CJ gravity in [14, 15]. It is therefore tempting to speculate this factorization is a feature of
flat quantum gravity, where the continuous part might be somehow related to the infinite
volume of flat space.

While fully non-perturbative effects are not under control in the metric description of
N = 1 CJ supergravity, they are not particularly difficult to study using the matrix model.
One can therefore use the holographic theory as a (non-unique) stable non-perturbative
completion of flat quantum gravity. In practice, this simply means assuming the symbol '
in (1.5) can be replaced by an exact equality. All matrix model observables can be then
computed exactly from the knowledge of the matrix model kernel K(α, α′) [22], which for
our simple double scaled model is nothing more than the famous sine kernel

K(α, α′) = 1
π

sin [(α− α′)/~]
α− α′

. (1.9)

We should stress that in this context, the sine kernel is not an approximation, but instead
the exact kernel of the double scaled model dual to N = 1 CJ supergravity. This provides
us with unprecedented control over non-perturbative effects on a flat space quantum gravity
theory. In subsection 3.2 we use this to carefully study the fine grained spectrum of its
Bondi Hamiltonian (figure 2), the late time behavior of the spectral form factor (figure 3),
and ultra-low temperature dependence of the quenched free energy (figure 4). We also
show the partition functions in (1.4) with n ≥ 3 are not exactly zero, as they receive
non-perturbative corrections (3.20).

We finish in section 4 with a brief discussion on promising future research directions
one might pursue in order to push forward our understanding of these simple models of
flat quantum gravity. Two appendices include some technical details regarding the N = 1

2Here we have defined M̄ = M/δ, so that M̄ has the rescaled eigenvalues αi.
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extension of the Maxwell algebra and the derivation of the matrix kernel (1.9) for the
Gaussian model from first principles.

Note added. After this work was completed, we learned of [23], where the N = 1 CJ
supergravity action was written down from the same Maxwell superalgebra (2.7) used here.

2 Minimal CJ supergravity

This section contains all gravitational calculations involving N = 1 CJ supergravity. We
define its action from a BF gauge theory with an appropriate superalgebra, study its
boundary degrees of freedom, and finally exactly compute the topological expansion of its
Euclidean partition function.

2.1 Formulation as a BF gauge theory

Following Cangemi and Jackiw [9], in this subsection we construct the action of N = 1 CJ
supergravity in first order formalism from a BF gauge theory.3 In this formulation there
are two elementary fields: a space-time scalar B and a one-form connection A, both valued
on the algebra g of the gauge group G. Under the group action, these fields transform as

B → G−1BG , A→ G−1(d+A)G , (2.1)

which means B is in the adjoint representation. While the gauge connection transforms
with the usual anomalous term G−1dG, its field strength F = dA+A ∧A also transforms
in the adjoint.

The construction of the BF action usually involves considering a gauge algebra which
admits a bilinear form 〈·, ·〉 : g×g→ R satisfying a number of properties.4 For a superalgebra
generated by JA ∈ g, these properties can be stated as follows

Symmetric : 〈JA, JB〉 = (−1)|JA|·|JB |〈JB, JA〉 ,

Adjoint invariant : 〈[JA, JC ]±, JB〉 = 〈JA, [JC , JB]±〉 ,

Non− degenerate : 〈JA, JB〉 = 0 , ∀ JA ∈ g ⇐⇒ JB = 0 ,

(2.2)

where |JA| = 0, 1 for bosons and fermions respectively and [JA, JB]± a commutator or
anti-commutator, where applicable. A canonical example of such a form is the Killing
form of a semi-simple Lie superalgebra. The action of the BF gauge theory placed on a
two-dimensional closed manifoldM is

IBF[A,B] =
∫
M
〈B,F 〉 , (2.3)

which is immediately invariant under gauge transformations. Varying the action one finds
its equations of motion

δIBF = 0 =⇒ F = 0 , dB + [A,B] = 0 . (2.4)
3See [23–25] for other studies of two-dimensional flat space supergravity theories using this same approach.
4Although we shall not consider them here, it is still possible to construct BF theories from algebras that

do not admit a bilinear form with these properties [26].
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To define a BF theory which has a geometric interpretation as a flat space dilaton
gravity theory, one needs to pick a gauge algebra g which contains as a subalgebra the
Minkowski isometries, i.e. the Poincaré algebra, generated by two translations Pa and a
boost/rotation J , so that the gauge connection is expanded as A = eaPa + wJ + · · · . The
one-form ea plays the role of the zweibein, related to the line element in the usual way
ds2 = gµνdx

µdxν = ηabe
aeb, where Latin frame indices a and b are raised and lowered with

the Minkowski/Euclidean metric ηab. Apart from ea, one has the spin connection wab, which
in two dimensions is entirely determined by a single one-form component w according to
wab = εabw with εab the Levi-Civita symbol. In terms of these quantities, the torsion T a

and curvature tensor Rab are written as

T a = dea + w ∧ εabeb , Rab = 1
2R

a
bcde

c ∧ ed = dwab . (2.5)

There is however a problem with the above construction: the Poincaré algebra does not
admit a non-degenerate bilinear form (2.2). For this reason, Cangemi and Jackiw considered
instead the minimal modification of Poincaré which allows for a bilinear form (2.2), obtained
by replacing the vanishing commutator between the two translations Pa by a non-vanishing
central element I. The resulting algebra is called the Maxwell algebra and has the following
non-vanishing commutators

[J, P±] = ±P± , [P+, P−] = I , (2.6)

where P± are null translations.5 The inclusion of the central element I in order to avoid
having a degenerate bilinear form is a procedure that works quite generally (see section 4.1
in [26]). Writing the BF action (2.3) using the Maxwell algebra (2.6), one obtains the CJ
gravity action.

The path for constructing the minimal CJ supergravity action is therefore quite clear.
The first step is to enlarge the Maxwell algebra (2.6) by introducing two fermionic generators
Q±. Requiring these generators have spin one-half [J,Q±] = ±1

2Q± and imposing the Jacobi
identities, one arrives at the following N = 1 Maxwell superalgebra

Bosonic : [J, P±] = ±P± , [P+, P−] = I ,

Mixed : [J,Q±] = ±1
2Q± , [P−, Q+] = −1

2Q− ,

Fermionic : {Q+, Q+} = P+ , {Q+, Q−} = I .

(2.7)

This is almost the unique N = 1 extension of the Maxwell algebra in two-dimensions.
There are two caveats. First, note there is an asymmetry between the relations satisfied
by Q±. More precisely, there are non-vanishing relations involving Q+ with P− (second
line) and with itself (third line) that have no corresponding relations for Q−. One could
have defined an analogous consistent superalgebra in which Q− has similar non-vanishing

5The null generators are defined as
√

2P± = P1 ± i1−ntP0, where P0 and P1 are the space and time
components respectively and nt = 0, 1 for the Euclidean and Lorentzian case.
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relations, instead of Q+.6 Secondly, another compatible superalgebra can be defined by
setting [P−, Q+] = {Q+, Q+} = 0 in (2.7), which corresponds to the case previously studied
in [27]. Although we could have used this variant to define the CJ supergravity action, (2.7)
turns out being more convenient given that it leads to a better behaved asymptotic structure,
related to the expected BMS symmetry of flat space. We provide more details on the N = 1
extensions of the Maxwell algebra in appendix A. In particular, we show how (2.7) can be
derived from an appropriate Inönü-Wigner contraction of the osp(1|2) superalgebra, as well
as provide an explicit six dimensional matrix representation.

The non-trivial quadratic Casimir of (2.7) is given by

C2 = {P+, P−}+ {J, I} − 1
2[Q+, Q−] . (2.8)

The matrix elements of the bilinear form hAB = 〈JA, JB〉 can be obtained from the Casimir
according to C2 = hABJAJB, which results in the following non-vanishing components

〈P+, P−〉 = 1 , 〈J, I〉 = 1 , 〈Q+, Q−〉 = 2 , (2.9)

satisfying all the properties listed in (2.2).
We can now define the associated BF theory. The gauge connection A and scalar B

have the following expansion in terms of the superalgebra generators7

A = e+P+ + e−P− + wJ +AI + ψ+Q+ + ψ−Q− ,

B = x+P+ + x−P− + ΨJ + ΦI + λ+Q+ + λ−Q− ,
(2.10)

so that the field strength F is given by

F =
[
T+ + 1

2ψ
+ ∧ ψ+

]
P+ + T−P− + dwJ +

[
dA+ e+ ∧ e− + ψ+ ∧ ψ−

]
I

+Dψ+Q+ +
[
Dψ− − 1

2e
− ∧ ψ+

]
Q− ,

(2.11)

where we have identified the components of the torsion T± = de±±w∧e± and the covariant
derivative Dψ± = dψ± ± 1

2w ∧ ψ
±.8 Finally, the N = 1 CJ supergravity action, in first

order formulation, is defined through the general BF action in (2.3)

ISCJ =
∫
M

{
x−
[
T+ + 1

2ψ
+ ∧ ψ+

]
+ x+T− + Φdw + Ψ

[
dA+ e+ ∧ e− + ψ+ ∧ ψ−

]
+ 2λ+

[
Dψ− − 1

2e
− ∧ ψ+

]
− 2λ−Dψ+

}
.

(2.12)
To better understand this theory, let us momentarily turn off the fermions and examine

its bosonic sector, which is ordinary CJ gravity. The scalars x± are Lagrange multipliers
6It is however not possible to define anN = 1 extension of the Maxwell algebra for which {Q±, Q±} = ±P±.

Only one of these anti-commutators can be non-zero.
7The fermionic components ψ± and λ± are Grassmann.
8Both in Lorentzian and Euclidean signature the flat metric in null coordinates is η+− = η−+ = 1, while

the Levi-Civita symbol non-zero components are ε−+ = 1 and ε+− = −1.
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which enforce the zero torsion constraint T± = 0 on the space-time. It is therefore useful to
momentarily switch to a second order description in terms of the metric gµν , so that the
bosonic action becomes

ISCJ
∣∣
fermions=0 = 1

2

∫
M
d2x

√
|g|
[
ΦR+ 2Ψ(εµν∂µAν + 1)

]
, (2.13)

where we have defined
√
|g|εµν = εµν . Crucially, the dilaton Φ appears linearly in the action,

multiplying the Ricci scalar R, whose value in two space-time dimensions fully determines
the Riemann tensor. As we see from (2.12), the term ΦR is actually not modified by the
presence of the fermions. The other bosonic contributions involve the scalar Ψ, which also
appears linearly in the action, coupled to a topological abelian gauge field Aµ.

Going back to the full action (2.12), the fermionic dependence is finely tuned in order
to ensure the theory is supersymmetric. The supersymmetry transformation, parametrized
by the Grassmann function εα, appears in the BF formulation as a gauge transformation
generated by a purely fermionic element of the superalgebra Θ = ε+Q+ + ε−Q−. Using the
transformation of the fundamental fields of the BF theory (2.1), it is simple to deduce the
following infinitesimal supersymmetry transformations for the individual components

δεe
+ = ψ+ε+ , δεA = ψ+ε− + ψ−ε+ , δεψ

+ = Dε+ , δεψ
− = Dε− − 1

2e
−ε+ ,

δεx
+ = λ+ε+ , δεΦ = λ+ε− + λ−ε+ , δελ

+ = 1
2Ψε+ , δελ

− = −1
2Ψε− − 1

2x
−ε+ ,

(2.14)
which, by construction, satisfy δεISCJ = 0.

Solution to the equations of motion. We now wish to construct a general class of
solutions to the equations of motion of the CJ supergravity action. From the variation of
the dilaton in (2.13) or (2.12) we see all solutions must have a locally flat metric. Starting
in Lorentzian signature, we fix the metric to the Bondi gauge and find the more general flat
metric is parametrized by two arbitrary functions T (u) and P (u) of the retarded Bondi
time u according to

ds2 = −2
(
P (u)r + T (u)

)
du2 + 2dudr . (2.15)

Since we are ultimately interested in the Euclidean partition function of this theory, we
analytically continue the retarded time u → iτ . One might be worried by the fact the
resulting metric becomes complex, essentially due to the non-diagonal components of the
metric (2.15) in the Bondi gauge. We do not think this is problematic. Not only the
associated path integral is finite and leads to a positive definite spectral density which
can be non-perturbatively completed by a matrix model, but one can also check all the
complex saddles used in these computations satisfy the criteria recently proposed in [28, 29]
to determine physically allowed complex manifolds.

For the analytically continued metric, a convenient choice for the frame fields e± which
reproduces the correct metric is

e+ = i
(
P (τ)r + T (τ)

)
dτ − dr , e− = −idτ , w = −iP (τ)dτ , (2.16)
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where the spin connection w (which trivially satisfies the flatness condition dw ∝ R = 0) is
obtained from imposing the vanishing torsion T± = 0. Requiring the remaining components
of F = 0 are satisfied, yields the following general solution for the abelian gauge field A

and the gravitino ψ±

A = −i(r +N(τ))dτ , ψ± = −iH±(τ)dτ , (2.17)

where N(τ) and H±(τ) are an ordinary and Grassmann functions respectively.
From (2.16) and (2.17) one can write the general solution to the BF gauge connection

A. Same as in other similar two-dimensional theories [10, 30], the τ and r dependence of A
admits the following factorized decomposition A = erP+(d+ a)e−rP+ where a = aτ (τ)dτ is
given by9

ia =
(
−T (τ)P+ + P− + P (τ)J +N(τ)I +H+(τ)Q+ +H−(τ)Q−

)
dτ . (2.18)

This description turns out being quite convenient for the analysis below. Although we could
also analyze the solutions to the equations of motion for the scalar B in (2.4), this will not
be necessary for the boundary conditions specified below.

2.2 Asymptotic boundary conditions

So far we have considered the theory defined on a closed manifold M. However, the
interesting case arises when there is a boundary, as all the physical degrees of freedom localize
on ∂M. We assume there is an asymptotic circular boundary for large r, parametrized
by the β-periodic coordinate τ ∼ τ + β. To ensure the variation problem (2.4) of the BF
theory is well defined, we add the following boundary term to the action

IBF[A,B] =
∫
M
〈B,F 〉 − 1

2

∫
∂M
〈B,A〉 , (2.19)

and relate the values of the fields according to (B + γAτ )
∣∣
∂M = 0 with γ an arbitrary

constant with units of inverse length.10 The variation of the action leads to the same
equations of motion as before (2.4).

On top of the boundary condition relating B and A we want to further constraint the
asymptotic fluctuations of the fields. Essentially, we impose a condition which, from the
gravitational perspective, allows for a wiggly boundary but not more. Our guide for doing
this is the solution to the equations of motion (2.18) which was constructed from a sensible
and well behaved flat metric (2.15). We therefore require off-shell fluctuations of A have
the following asymptotic behavior

A = erP+(d+ a)e−rP+ +O(1/r) , (2.20)
9We thank Oscar Fuentealba and Hernán González for suggesting this parametrization of the solution.

10In two-dimensional flat gravity there is no length scale that naturally arises in the definition of the
theory, given that Newton’s constant is dimensionless and there is no cosmological constant. One is therefore
forced to introduce γ, an inverse length scale that all dimensionfull quantities in the theory are going to be
measured with respect to.
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where for a we pick

ia = (−T (τ)P+ + P− + P (τ)J +H(τ)Q+)dτ , (2.21)

parametrized by three functions. Compared to the general solution in (2.18), note that we are
not allowing for fluctuations of N(τ) and H−(τ) (we have also relabelled H+(τ)→ H(τ)).
This is an arbitrary choice made in order to ensure a convenient class of large gauge
transformations and boundary action for the resulting theory.

With these boundary conditions in place, we can revisit the on-shell solutions to the
equations of motion (2.4). For the gauge connection, imposing a flat connection F = 0
means the configuration parametrized by the functions (2.21) is also valid in the interior
of the manifold. Put simply, the on-shell solution for A is given by (2.20) without any
O(1/r) corrections. For the scalar field one finds B = erP+be−rP+ where the boundary
condition below (2.19) forces b = −γaτ . The remaining equation of motion in (2.4) implies
db = −γdaτ = 0, meaning the three functions (P (τ), T (τ), H(τ)) that parametrize the
configurations are constant (P0, T0, H0) on-shell. The values (P0, T0) determine a particular
space-time metric, through the Euclidean version of (2.15), while H0 sets the boundary
value of the gravitino component ψ+. In particular, the disk manifold with its center at
r = 0 is obtained from

Disk : (P0, T0, H0) = 2π
β

(1, 0, 0) , (2.22)

where the value of P0 is fixed to avoid a conical singularity.

Large gauge transformations. To better understand the symmetry structure of the
theory as defined above, we now study the set of large gauge transformations allowed by
our boundary conditions. These correspond to gauge transformations that do not vanish
asymptotically, but instead preserve the form (2.20) while reshuffling the functions appearing
in (2.21)

(P (τ), T (τ), H(τ)) −→ (P̄ (τ), T̄ (τ), H̄(τ)) . (2.23)

From the gravitational perspective these are large diffeomorphisms that generate wiggles of
the boundary. To study them, consider gauge transformations generated by Θ = erP+θe−rP+

with θ an element of the superalgebra that depends only on τ . Requiring the behavior
in (2.20) is preserved under gauge transformations gives the following condition

dθ + [a, θ] =
[
δā

δP̄
δP̄ + δā

δT̄
δT̄ + δā

δH̄
δH̄

]
(P̄ ,T̄ ,H̄)=(P,T,H)

, (2.24)

where ā is (2.21) but with the transformed functions appearing on the right-hand side
of (2.23). Solving this constraint one finds large gauge transformations are parameterized
by two ordinary functions (ε(τ), σ(τ)) and a Grassmann function η(τ) in the following way

iθ =−
[
ε(τ)T (τ) + η(τ)H(τ) + iσ′(τ)

]
P+ + ε(τ)P− +

[
ε(τ)P (τ)− iε′(τ)

]
J − σ(τ)I

+
[
ε(τ)H(τ)− η(τ)P (τ) + 2iη′(τ)

]
Q+ + η(τ)Q− .

(2.25)
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The first order variations of the functions characterizing the asymptotic behavior are
given by

δP = ε(τ)P ′(τ) + ε′(τ)P (τ)− iε′′(τ) ,

δT = ε(τ)T ′(τ) + 2ε′(τ)T (τ) + η(τ)H ′(τ) + 3η′(τ)H(τ) + σ′(τ)P (τ) + iσ′′(τ) ,

δH = ε(τ)H ′(τ) + 3
2ε
′(τ)H(τ)− η(τ)P ′(τ) + 1

2 iη(τ)P (τ)2 + 2iη′′(τ) .

(2.26)

Let us make a few observations about these important expressions. For the bosonic
sector we recover the large gauge transformations of CJ gravity obtained in [11], which
match with the coadjoint representation of the warped Virasoro algebra [10]. Note that if
one sets σ(τ) and η(τ) to zero, the functions (P (τ), T (τ), H(τ)) transform as fields of spin
s = 1, 2, 3

2 with respect to ε(τ). Finally, the transformation of H(τ) contains a non-linear
contribution in the term P (τ)2, which means the associated superalgebra is non-linear. This
is not unusual, as non-linear algebras arise in similar supersymmetric [30, 31] and higher
spin theories [32, 33].

To explicitly figure out the superalgebra associated to (2.26), let use the covariant
phase space formalism to compute the charges that generate the transformations. The
variation of the bulk term in the BF action (2.19) gives the pre-symplectic potential that we
vary to obtain the pre-symplectic form Ω̃(δ1, δ2) = 〈δ1B, δ2A〉 − 〈δ2B, δ1A〉. Keeping the
first variation δ1 arbitrary while fixing the second δ2 = δgauge to the gauge transformation
in (2.25), one gets

Ω̃(δ, δgauge) = d〈δB,Θ〉 − 〈δ(dB + [A,B]),Θ〉 . (2.27)

Since the second term vanishes on-shell (2.4), the resulting expression is an exact form,
meaning the variation of the charge that generates the gauge transformation is

δQ[θ] =
∫ β

0
dτ 〈δB,Θ〉

∣∣
∂M = −γ

∫ β

0
dτ 〈δaτ , θ〉 , (2.28)

where in the second equality we used the boundary condition below (2.19). Note there is an
unusual feature in the way we have defined the charge, given that in general one should not
integrate over τ , but instead evaluate at a fixed time. However, defining the charges in this
way has been shown to be more adequate in setups similar to this one [34–36]. Using the
expressions above we can evaluate (2.28) and arrive at the final expression for the charges

Q[θ] = γ2
∫ β

0
dτ (ε(τ)T (τ) + σ(τ)P (τ) + 2η(τ)H(τ)) , (2.29)

where we have conveniently added an additional factor of −γ in their definition to have
Q[θ] dimensionless. The charges are integrable, given that the bilinear form only picks up
the components of θ that are independent of the functions (P (τ), T (τ), H(τ)).

The superalgebra satisfied by these charges with respect to the Poisson brackets is
obtained from {Q[θ1],Q[θ2]}PB = δθ2Q[θ1]. Computing the variation on the right-hand side
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of this expression is a straightforward exercise which gives

{Q[θ1],Q[θ2]}PB = Q[ε̄, σ̄, η̄] + iγ2
∫ β

0
dτη1η2P

2 − iγ2
∫ β

0
dτ(ε′1σ′2 − ε′2σ′1 + 4η′1η′2) ,

(2.30)
where the functions appearing on the first term on the right-hand side are

ε̄(τ) = ε1(τ)ε′2(τ)− ε2(τ)ε′1(τ) ,

σ̄(τ) = ε1(τ)σ′2(τ)− ε2(τ)σ′1(τ) + 2
(
η1(τ)η2(τ)

)′
,

η̄(τ) =
(
ε1(τ)η′2(τ)− ε2(τ)η′1(τ)

)
− 1

2
(
ε′1(τ)η2(τ)− ε′2(τ)η1(τ)

)
.

(2.31)

The second term in (2.30) cannot be written in terms of the charges, as it contains the
non-linear contribution in P (τ)2. Finally, the third term is independent of the functions
(P (τ), T (τ), H(τ)) and therefore corresponds to a central extension.

To get a better hold of the superalgebra, it is convenient to perform the following
Fourier mode decomposition of the generators

Ln = Q
[
β

2πe
in 2π

β
τ
, 0, 0

]
, Jn = Q

[
0, 1

2πγ2 e
in 2π

β
τ
, 0
]
, Gn = Q

[
0, 0, i

√
β

2πγ e
in 2π

β
τ

]
.

(2.32)
Replacing Poisson brackets by (anti-)commutators in the usual way, one finds

[Ln, Lm] = (n−m)Ln+m ,

[Ln, Jm] = −mJn+m + n2δn+m,0 ,

[Ln, Gr] =
(
n

2 − r
)
Gn+r ,

{Gr, Gs} = 2(r + s)Jr+s +
∑
q∈Z

JqJ(r+s)−q − 4r2δr+s,0 .

(2.33)

The bosonic sector (first two lines) is nothing more than a particular central extension
of the warped Virasoro algebra [35]. The addition of the fermionic generator Gr gives
its supersymmetric extension. The non-linearity of the superalgebra can be hidden by
exchanging Jn with the following twisted Sugawara generator

Mn = 2nJn +
∑
q∈Z

JqJn−q . (2.34)

In terms of Mn, the superalgebra is linear and closes to

[Ln, Lm] = (n−m)Ln+m ,

[Ln,Mm] = (n−m)Mn+m − 2n3δn+m,0 ,

[Ln, Gr] =
(
n

2 − r
)
Gn+r ,

{Gr, Gs} = Mr+s − 4r2δr+s,0 ,

(2.35)
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that is nothing more than the three dimensional BMS3 superalgebra [16], with Ln and Mn

playing the role of superrotations and supertranslations respectively.
Perhaps unsurpsisingly, the superalgebra (2.33) can be used to construct the supersym-

metric extension of the two dimensional BMS2 algebra, first written in [11].11 To do so, we
simply define the generator J̄n = 1

nJn and obtain

[Ln, Lm] = (n−m)Ln+m ,

[Ln, J̄m] = −(n+m)J̄n+m − nδn+m,0 ,

[Ln, Gr] =
(
n

2 − r
)
Gn+r ,

{Gr, Gs} = 2(r + s)2J̄r+s +
∑
q∈Z

q [(r + s)− q] J̄qJ̄(r+s)−q − 4r2δr+s,0 .

(2.36)

The first two lines give the bosonic BMS2 algebra [11, 37], extended by the addition of the
fermionic generator Gr.

2.3 Boundary dynamics

To properly characterize the boundary degrees of freedom of the theory, we would like to
derive the effective action that controls its dynamics. This is easy to do for large values of
r, by evaluating the BF action (2.19) using the boundary conditions (B + γAτ )

∣∣
∂M = 0

and (2.20), which gives

I∂ = γ

2

∫ β

0
dτ 〈aτ ,aτ 〉+O(1/r) = γ

∫ β

0
dτ T (τ) +O(1/r) . (2.37)

This simple result for the boundary action is one of the reasons we picked the boundary
conditions in (2.21). Note I∂ coincides with the charge (2.29) associated to a large gauge
transformation with constant ε(τ) and vanishing σ(τ) = η(τ) = 0. This observation will be
important when computing the Euclidean path integral.

It is useful to derive a different form for (2.37), obtained by acting with large gauge trans-
formations on an on-shell solution (P0, T0, H0). To do so, we follow [30] and note a flat con-
nection a can be written as a = g−1dg with g = g(τ) an element of the Maxwell supergroup.
Equating a = g−1dg to the expression of a in terms of the functions (P (τ), T (τ), H(τ)) given
in (2.21), one finds the more general expression for g(τ) in an Euler-Gauss decomposition is

g(τ) = eF (τ)P−+ϑ(τ)Q−+h(τ)Ie− ln[iF ′(τ)]Je
ih′(τ)P++ 2ϑ′(τ)√

−iF ′(τ)
Q+

. (2.38)

The supergroup element is parametrized by two arbitrary functions (F (τ), h(τ)) and the
Grassmann function ϑ(τ), which are related to the boundary modes (P (τ), T (τ), H(τ)) in

11We thank an anonymous referee for suggesting this.
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the following way

P (τ) = −iF
′′(τ)

F ′(τ) ,

T (τ) = −1
F ′(τ)

[
h′(τ)F ′′(τ) + 2ϑ′(τ)ϑ′′(τ)− F ′(τ)h′′(τ)

]
,

H(τ) = 2F
′(τ)ϑ′′(τ)− F ′′(τ)ϑ′(τ)

[−iF ′(τ)]3/2
.

(2.39)

This gives a more explicit expression of the boundary action in (2.37)

I∂ [F, h, ϑ] = −γ
∫ β

0

dτ

F ′(τ)
[
h′(τ)F ′′(τ) + 2ϑ′(τ)ϑ′′(τ)

]
, (2.40)

where we have dropped a boundary term and corrections that vanish when r →∞.
The three modes (F (τ), h(τ), ϑ(τ)) control the boundary degrees of freedom. They

parametrize large gauge transformations acting on an on-shell configuration (P0, T0, H0).
Although not evident from our derivation, the action (2.40) is not completely general, but
only corresponds to configurations obtained from solutions with fixed P0 and vanishing
T0 = H0 = 0. To see this, we need to translate between (F (τ), h(τ), ϑ(τ)) and the
infinitesimal description of the transformation (2.25) in terms of (ε(τ), σ(τ), η(τ)). It turns
out these fields are related in the following way (see also [30])

F (τ) = eiP0(τ+ε(τ)) , h(τ) = iσ(τ) , ϑ(τ) =
√
−iF ′(τ)η(τ) . (2.41)

Using these relations we can expand the action (2.40) and match with the expansion of (2.37)
using (2.26)

I∂ [ε, σ, η] = γ

∫ β

0
dτ T (τ) = γ

∫ β

0
dτ

[
T0 + δT + 1

2δ
2T + . . .

]
, (2.42)

with (P0, T0, H0) = (P0, 0, 0). Setting P0 = 2π
β the action (2.40) controls the dynamics of

the boundary modes around the disk solution (2.22), with F (τ) and h(τ) periodic functions.
Although not necessary for our purposes, it would be interesting to derive the boundary
action (2.40) but for arbitrary values of (P0, T0, H0), as done in [11] for bosonic CJ gravity.

Let us now study some of the features of the boundary action (2.40). From its variation,
one finds the following equations of motion

d

dτ

[
F ′′(τ)
F ′(τ)

]
= 0 , d

dτ

[
h′′(τ)
F ′(τ) + 2ϑ

′(τ)ϑ′′(τ)
F ′(τ)2

]
= 0 , d

dτ

[(
ϑ′(τ)
F ′(τ)

)′
+ ϑ′′(τ)
F ′(τ)

]
= 0 .

(2.43)
Using (2.39) these equations can be shown to be equivalent to P ′(τ) = T ′(τ) = H ′(τ) = 0,
which are nothing more than the bulk equations of motion (2.4), as discussed above (2.22).
There are four bosonic and two fermionic independent symmetry transformations that
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preserve the equations of motion, given by

F (τ) −→ c1F (τ) + c2 ,

h(τ) −→ h(τ) + c3F (τ) + c4 + ε2ϑ(τ) ,

ϑ(τ) −→
√
c1

(
ϑ(τ) + ε1 + 1

2ε2F (τ)
)
,

(2.44)

where ci and εi are ordinary and Grassmann parameters respectively. In particular note
there is a single transformation, the one controlled by ε2, which mixes the bosonic and
fermionic fields. This means the boundary theory has N = 1 supersymmetry, reflecting the
same amount of supersymmetry of the parent CJ supergravity action (2.12).

2.4 Euclidean partition function

We can now finally turn our attention to the observable of CJ supergravity we are mostly
interested in: the Euclidean partition function. Formally, it is defined through the following
path integral

Z(β1, . . . , βn) =
∫
DX e−ISCJ[X]+S0χ(M) , (2.45)

where the action is given in (2.12) and DX is the integral measure over all the fields in
the theory.12 We added to the exponent a term proportional to the Euler Characteristic
χ(M) of the manifoldM, controlled by the parameter S0 ∈ R+. Since this is a topological
invariant, it can be included in the definition of the theory without modifying any of the
analysis in the previous subsections.

For (2.45) to make sense, we need to specify the boundary conditions. We allow for
n-asymptotic boundaries, each of them locally parametrized by a βi-periodic coordinate
τi, defined from the analytic continuation indicated below equation (2.15). For each of
these boundaries, we constraint to off-shell configurations with the behavior given in (2.20).
While for the bosonic fields we consider periodic boundary conditions when going around
the boundary circle, for the fermionic fields we take anti-periodic (Neveu-Schwarz). The
path integral not only includes a sum over bulk geometries consistent with these boundary
conditions, but also a summation over inequivalent bulk spin structures.

Computing the path integral in (2.45) is very challenging. One can make progress
by using that all two-dimensional orientable manifolds are classified by their genus g and
number of boundaries n. Using the Euler characteristic is given by χ(M) = 2(1− g)− n,
one arrives at the following topological expansion

Z(β1, . . . , βn) '
∞∑
g=0

(e−S0)2(g−1)+nZg(β1, . . . , βn) . (2.46)

The symbol ' reminds us this is nothing more than a series expansion, i.e. it is only equal
to the actual partition function (2.45) up to corrections of order O(e−eS0 ). Each of the

12Apart from the bulk contribution to the CJ supergravity action in (2.12), one must also include the
appropriate boundary term that ensures the variational problem is well defined. While in the BF formulation
given through (2.19) the boundary term is explicit, it would be interesting to work it out directly in the
gravitational formulation. For ordinary CJ gravity this was done in section 2.2 of [13].
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terms in the expansion are determined by Zg(β1, . . . , βn), which are defined in the same way
as (2.45) but with the important difference we only include contributions from manifolds of
fixed genus g.

It is now that the details of CJ supergravity become important, specifically the linear
dependence of the dilaton in the action (2.12). Taking the integration contour over Φ along
a purely imaginary line allows us to trivially solve the path integral of the dilaton and
obtain a Dirac delta δ(R). Since in two-dimensions the Riemann tensor is fully determined
by the Ricci scalar

Rµνρσ = R

2 (gµρgνσ − gµσgνρ) , (2.47)

the Dirac delta effectively becomes δ(Rµνρσ). This highly constraints the integral over
metrics, as instead of having arbitrary metric fluctuations, one only needs to consider locally
flat manifolds. The classification of two-dimensional orientable flat surfaces with asymptotic
boundaries is extremely simple [17]: there is only the disk and cylinder. Putting everything
together, the integral over the dilaton implies a spectacular cancellation of most terms in
the topological expansion, so that one is simply left with13

Z(β) ' eS0Zdisk(β) ,

Z(β1, β2) ' Zcylinder(β1, β2) ,

Z(β1, . . . , βn) ' 0 ,

(2.48)

where n ≥ 3. While the same reduction occurs for ordinary CJ gravity, a different mechanism
also results in the same effect for certain supersymmetric extensions of JT gravity and
deformations thereof [38, 39].

All we have to do, is compute the disk and cylinder partition functions. To do so, it is
convenient to write these quantities using the BF formulation of the theory, whose partition
function is given by

ZBF =
∫
DADBe−IBF[A,B] =

∫
DAδ(F )e−

γ
2

∫
∂M〈A,A〉 , (2.49)

where, similarly as in the gravitational description, the integral over B localizes the
remaining integral over flat connections F = 0. Path integrals of this kind were studied
long ago in [40]. Performing the standard gauge fixing via the Fadeed-Popov method, it
was shown that the resulting measure of the path integral is obtained from the Pfaffian of
the following symplectic form in the space of flat connections

Ω(δ1A, δ2A) = γ2c0

∫
M
〈δ1A ∧ δ2A〉 , (2.50)

where c0 is an arbitrary dimensionless constant and we are omitting the comma in the
bilinear form. The one-forms in the space of flat connections are given by δiA, which are

13One might wonder about a disk or cylinder with an arbitrary number of circular boundaries in their
interior. These do not contribute since we are constraining ourselves to asymptotic boundaries, i.e. boundaries
for which the distance of any bulk point to the boundary is infinite. These other surfaces should be considered
in the finite cut-off version of the theory.
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variations that preserve F = 0 to first order. The path integral is weighted by the boundary
action (2.37), corresponding to an N = 1 supersymmetric quantum mechanics.

Exactly computing the path integral of a quantum mechanical system is still, in general,
a challenging task. Usually, one is instead able to perform a perturbative loop expansion.
The Duistermaat-Heckman theorem [18] singles out certain situations in which the simple
one-loop computation is not only an approximation but it actually coincides with the exact
answer. As explained in [19], there are two conditions that must be satisfied for the theorem
to apply: the integration space must be symplectic and the action weighting the integral
must generate a U(1) symmetry of the manifold via the Poisson brackets.

The first condition is automatically satisfied by the BF partition function, given that
the integral is over the symplectic manifold of flat connections (2.50). For the second
requirement, note that using the boundary condition (2.20) we can write the boundary
action appearing in (2.49) as

I∂ = γ

∫ β

0
dτ T (τ) = Qτ , (2.51)

where Qτ is a particular generator (2.29) of a large gauge transformation

Qτ ≡ Q[ε, σ, η] , with ε(τ) = 1
γ
, σ(τ) = η(τ) = 0 . (2.52)

The action of this charge via the Poisson brackets on an arbitrary flat connection character-
ized by the functions (P (τ), T (τ), H(τ)) can be worked out from the infinitesimal variations
in (2.26)

{S(τ),Qτ}PB = δ(ε,σ,η)S(τ) = 1
γ
S′(τ) , where S(τ) = (P (τ), T (τ), H(τ)) . (2.53)

This shows the boundary action in the path integral is indeed generating τ transations
around the circle. Altogether, the Duistermaat-Heckman theorem applies and the BF path
integral (2.49), which determines the disk and cylinder partition functions in (2.48), can be
calculated exactly from a simple one-loop computation.

Before performing this calculation, we need to comment on an important subtlety
regarding the symplectic space of flat gauge connections. Although one of the defining
properties of a symplectic form is its non-degeneracy, this is actually not immediately
satisfied by (2.50) when evaluated on the asymptotic boundary. To see this, we use that
since the variations δiA correspond to large gauge transformations generated by Θi as
δiA = dΘi + [A,Θi], equation (2.50) can be reduced to a boundary integral

Ω(δ1A, δ2A) = γ2c0

∫ β

0
dτ〈θ1, δ2aτ 〉 , (2.54)

where we have used (dΘ1 +[Θ1,A])∧δ2A = d(Θ1∧δ2A) for variations that linearly preserve
F = 0. Using (2.25) and (2.26) this can be evaluated and written as

Ω(δ1A, δ2A) =γ2c0

∫ β

0
dτ
{
ε̄(τ)T (τ) +

[
σ̄(τ) + iη1(τ)η2(τ)P (τ)

]
P (τ) + 2η̄(τ)H(τ)

− i
(
ε′1(τ)σ′2(τ)− ε′2(τ)σ′1(τ) + 4η′1(τ)η′2(τ)

)}
,

(2.55)
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where the barred functions are defined in (2.31).14 For both the disk and cylinder we need
to evaluate this for on-shell solutions with (P (τ), T (τ), H(τ)) = (P0, T0, 0), which gives

Ω =γ2c0

∫ β

0
dτ
{
T0δε ∧ δε′ + P0δε ∧ δσ′ − iδε′ ∧ δσ′ − 2i

(
δη′ ∧ δη′ − (P0/2)2δη ∧ δη

)}
,

(2.56)
where we have written Ω using form notation. This expression becomes more transparent
when expanding the functions in their respective Fourier series

ε(τ) =
∑
n∈Z

εne
in
(

2π
β

)
τ
, σ(τ) =

∑
n∈Z

σne
in
(

2π
β

)
τ
, η(τ) =

∑
n∈Z+ 1

2

ηne
in
(

2π
β

)
τ
, (2.57)

where for η(τ) we have half-integer modes since we impose Neveu-Schwarz boundary
conditions η(τ + β) = −η(τ). The reality condition on these functions constraints ε∗n = ε−n
(and similarly for the other coefficients), so that the symplectic manifold is parametrized by
the complex parameters (εn, σn, ηn) with n ≥ 0. In this parametrization, (2.56) becomes

Ω =− 2πiγ2c0
∑
n≥0

n

[
2T0δεn ∧ δε∗n +

(
P0 + 2πn

β

)
δεn ∧ δσ∗n +

(
P0 −

2πn
β

)
δσn ∧ δε∗n

]

− 4βiγ2c0
∑
n>0

[(2πn
β

)2
−
(
P0
2

)2
]
δηn ∧ δη∗n .

(2.58)
From this expression, we see Ω is always degenerate along the (ε0, σ0) directions. This
means the actual symplectic space over which the path integral is performed corresponds
to (εn, σn, ηn) after modding out all degenerate directions (or zero modes), which may be
enhanced for special values of P0. As we shall see, these zero modes completely determine
the β scaling of the one-loop determinant according to

Zone−loop(β) ∝ β
1
2 (nf−nb) , (2.59)

where nb and nf are the number of bosonic and fermionic zero modes.

Disk partition function. Let us now compute the disk partition function from its
one-loop computation

Zdisk(β) = e−I
(on−shell)
∂

∫
Dε(τ)Dσ(τ)Dη(τ)Pf(Ω)e−I

(2)
∂

[ε(τ),σ(τ),η(τ)] , (2.60)

where we are implicitly removing the degenerate directions in the measure. From (2.37)
the on-shell boundary action is given by I(on−shell)

∂ = γβT0, which vanishes since for the
disk solution (2.22) we have T0 = 0. The quadratic action I(2)

∂ [ε, σ, η] around an on-shell

14This expression generalizes the symplectic form derived in [15] for bosonic CJ gravity.
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configuration with arbitrary (P0, T0) and H0 = 0 is obtained from (2.42) and (2.26)

I
(2)
∂ = γ

∫ β

0
dτ
[
T0ε
′(τ)2 + ε′(τ)

(
P0σ

′(τ) + iσ′′(τ)
)

+ 2i
(
η′(τ)η′′(τ)− (P0/2)2η(τ)η′(τ)

) ]
,

= γ
(2π)2

β

∑
n≥0

n2
[
2T0|εn|2 +

(
P0 + 2πn

β

)
εnσ

∗
n +

(
P0 −

2πn
β

)
ε∗nσn

]

+ γ(8π)
∑
n>0

n

[(2πn
β

)2
−
(
P0
2

)2
]
ηnη
∗
n ,

(2.61)
where in the second equality we used the Fourier decompositions of the functions (2.57).
Since we are now interested in the disk, we should evaluate this at (P0, T0) = 2π

β (1, 0). In
this case, the degenerate directions of the symplectic form (2.58) for the disk are enhanced
to (ε0, σ0, ε

∗
1, σ1) and (η1/2, η

∗
1/2) in the bosonic and fermionic sectors respectively, so that

the measure appearing in (2.60) is

dε1dσ
∗
1(4πγ2c0P0)

∏
n≥2

d2εnd
2σn(2πγ2c0P0)2n2(n2 − 1)

∏
m≥ 3

2

d2ηm
βγ2c0P 2

0 (4m2 − 1)
, (2.62)

where d2εn = dεndε
∗
n. Putting everything together in (2.60) we can solve all the integrals

and obtain the final expression for the disk partition function

Zdisk(β) = (4c0γβ)
∏
n≥2

(
c0γβ

n

)2 ∏
m≥ 3

2

(2πm
c0γβ

)
= 4(c0γβ)

2π(c0γβ)3

√
2(c0γβ)
π

= 2
√

2
(c0π2)γβ ,

(2.63)
where we have used the Riemann and Hurwitz Zeta functions to regularize the infinite
product, e.g. [41]. Since the on-shell action of the disk vanishes, the only β dependence
comes from the one-loop determinant, which scales as predicted by the simple counting of
the zero modes indicated in (2.59). Conveniently setting c0 = 1/π2 and rescaling β → β/γ

in order to have a dimensionless inverse temperature, we recover the result quoted in (1.4).

Cylinder partition function. The cylinder metric of circumference b ∈ R+ is given by
ds2 = dz2 + b2dϕ2 with z ∈ R and ϕ ∼ ϕ+ 1. It can be written in Bondi gauge by changing
coordinates to r = (b/β)z and τ = β(ϕ− iz/b), which results in the Euclidean version of
the metric (2.15) with (P0, T0) = b2

2β2 (0, 1).15 While this configuration certainly satisfies
the equations of motion for arbitrary H0, it is not an actual solution of the gravitational
theory given that it cannot satisfy the boundary conditions on both boundaries (see section
B.1 of [15]). This means the calculation of the cylinder partition function is slightly more
subtle than the case of the disk (2.60).

15Note the inverse temperature β is not defined as the circumference of the boundary circle but instead as
the period of the coordinate τ , obtained from analytically continuing the Bondi time u→ iτ . See [15] for a
detailed discussion on this feature, which is an important difference of these models of flat space holography
when compared to the standard AdS/CFT correspondence.
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Similarly as in JT gravity [5], one can bypass this problem by constructing the cylinder
path integral by appropriately gluing two “half-cylinders”. In the region where the half-
cylinders meet at z = 0, the metric is locally given by

ds2 = dz2 + (bdϕ+ υδ(z)dz)2 . (2.64)

There are two moduli (b, υ) associated to the gluing that one must integrate over: the
circumference b and the relative twist υ between the two boundaries that are being glued.
The correct measure over this two-dimensional moduli space can be determined from the
symplectic form provided by the BF theory (2.50). To do so, we must first construct the flat
F = 0 gauge connection A associated to the metric (2.64). A straightforward computation
shows A is given by

A = 1√
2
[
(bdϕ+υδ(z)dz)−idz

]
P++ 1√

2
[
(bdϕ+υδ(z)dz)+idz

]
P−+ibzdϕI+ψ−Q− , (2.65)

where ψ− satisfies dψ− = 0. From this expression one can evaluate the symplectic form (2.50)
and find

Ω(δ1A, δ2A) = γ2c0

∫
M

[δ1bδ2υ − δ1υδ2b] δ(z)dϕ ∧ dz , (2.66)

where the Dirac delta localizes the integral to the gluing region z = 0. In this way, one
finds the symplectic form associated to the gluing of two half-cylinders is given by

Ω = γ2c0 δb ∧ δυ , (2.67)

which is the same as the one obtained for the JT and CJ gravity theories [5, 15]. Putting
everything together, the cylinder partition function can be computed from

Zcylinder(β1, β2) = 2γ2c0

∫ ∞
0

db bZhalf−cylinder(β1, b)Zhalf−cylinder(β2, b) , (2.68)

where we have solved the integral over the twist using the half-cylinder partition functions
are independent of υ. The additional factor of two comes from the sum over inequivalent
bulk spin structures, see section 2.4.3 of [38].16

The half-cylinder partition function can be obtained from a one-loop computation as
in (2.60), where the quadratic fluctuations are around the on-shell solution (P0, T0, H0) =
b2

2β2 (0, 1, 0). For these values, the symplectic form associated to the asymptotic degrees of
freedom (2.58) contains only two bosonic degenerate directions (ε0, σ0), so that the measure
obtained from the Pfaffian is

∏
n≥1

d2εnd
2σn

[
c0(2πnγ)2

β

]2 ∏
m≥ 1

2

d2ηm

[
c0(4πnγ)2

β

]−1

. (2.69)

16Note the final result for the topological expansion of N = 1 CJ supergravity (1.4) is insensitive to
whether we define the theory which sums or takes the differences between even and odd spins structures [38].
As a result, both bulk theories will be given described by the same random matrix model, e.g. see section 5
of [42].
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Using that the on-shell action is I(on−shell)
∂ = γβT0 we can solve the relevant integrals of

the quadratic action (2.61) and find

Zhalf−cylinder(β, b) = e
− γb

2
2β
∏
n≥1

(
c0γβ

n

)2 ∏
m≥ 1

2

(2πm
c0γβ

)
=

√
2

2πc0γβ
e
− γb

2
2β , (2.70)

where the infinite products are regularized similarly as for the disk. The scaling of this
expression with β is consistent with the general formula (2.59), given that in this case there
are only two bosonic zero modes. Using this in (2.68), we solve the integral over the gluing
curve and arrive at the final expression for the cylinder partition function

Zcylinder(β1, β2) = 1
c0π2

1
γ(β1 + β2) , (2.71)

which gives (1.4) after fixing c0 = 1/π2 and rescaling βi by 1/γ. Notice that although we
are free to set the proportionality constant c0 to any value, it cannot be absorbed into
a redefinition of S0 in (2.46), as is the case for JT gravity (see section 3.4 in [5]). This
is because, as in ordinary CJ gravity, c0 does not scale with the genus and number of
boundaries in the same way as e−S0 .

3 Dual random matrix model

This section contains all the analysis and computations regarding the random matrix model
dual to CJ supergravity. We show there is a unique double scaled model that reproduces the
topological expansion (2.46), and then assume the non-perturbative completion provided
by the matrix model to exactly compute several observables of the gravitational theory.

3.1 Topological expansion from loop equations

To determine the appropriate random matrix model there are three pieces of data one needs
to fix:

1. Symmetry class of the random matrix M .

2. Matrix operator O(β) corresponding to the insertion of an asymptotic boundary in
gravity.

3. Probability measure over the ensemble.

In this subsection we explain how this data is uniquely fixed in order to match with the
topological expansion of the Euclidean partition function (1.4), effectively deriving the
identity in (1.5).

Let us start by considering the first item. There exist ten standard symmetry classes
of random matrix models. The three β = 1, 2, 4 Dyson ensembles [43] correspond to a
matrix M that is real symmetric, complex Hermitian, or quaternionic Hermitian, while
the remaining seven are the (α,β) ensembles of Altland and Zirnbauer [44]. Observables
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in all these models can be studied perturbatively in a large N ’t Hooft expansion. The
loop equations [45] is a method that allows one to compute such expansion to arbitrary
order, via a set of recursion relations [38, 46]. This matrix model expansion is very much
related, and ultimately identified [21], with the topological expansion of observables in
two-dimensional quantum gravity (1.3).

Out of the ten available ensembles, we can find the suitable one from some of the features
exhibited by the CJ supergravity partition function. To start, only orientable surfaces are
included in the Euclidean topological expansion. There are only two ensembles consistent
with this [38]: the β = 2 Dyson and (α,β) = (1, 2) Altland-Zirnbauer ensembles.17 In
addition, the gravity path integral exhibits the cancellation of contributions from higher
genus and multi-boundary surfaces (2.48). As shown in the general analysis of the loop
equations in [38], this singles out the β = 2 Dyson ensemble, which can produce precisely
such cancellations for a large class of models. This means the data in item 1 must be fixed
so that M is a complex Hermitian matrix.

Consider then a random Hermitian squared matrix M drawn from an ensemble whose
probability density is determined by a potential V (M). Observables O are arbitrary
functions of M , such that their expectation values are computed as

〈O〉 = 1
Z

∫
dM O e−N TrV (M) , (3.1)

where Z is the numerator without the operator insertion and dM the flat measure over the
independent matrix components. An example of a very useful observable is the resolvent

W (z) = Tr 1
z −M

, z ∈ C , (3.2)

which is a holomorphic function in the complex plane away from the spectrum of M . Its
higher trace generalization is W (z1, . . . , zn) =

∏n
i=1W (zi). Knowledge of this observable

completely determines the expectation value of all other trace class operators.
The connected expectation value of the resolvent can be written in a large N series

expansion

〈W (z1, . . . , zn)〉c '
∞∑
g=0

N2(1−g)−nWg(z1, . . . , zn) , (3.3)

where the symbol ' indicates the right-hand side is missing non-perturbative contributions
in 1/N . The loop equations are a set of recursion relations that fully determine the expansion
coefficients Wg(z1, . . . , zn) given a particular potential V (M) defining the matrix model
probability density. In fact, instead of the potential, the loop equations are also completely
determined by the leading large N behavior of the eigenvalue spectral density18

lim
N→∞

1
N
〈Tr δ(λ−M)〉 = 1

2πh(λ)
√

(a− − λ)(λ− a+)× 1[a−,a+] , (3.4)

17The Altland and Zirnbauer ensemble with (α,β) = (1, 2) is also sometimes called a complex matrix
model [47, 48], given that its probability measure can be constructed from an arbitrary complex matrix M
where the potential that determines the measure is only a function of the combination MM†.

18Since it will be enough for our purposes, we are restricting to the single-cut case, in which the leading
density is supported in a single interval.
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where 1A is the indicator function and h(λ) an analytic function that is non-negative in
λ ∈ [a−, a+]. From the data provided by a± and h(λ), a standard computation allows one
to determine the potential V (M) [22].

The nature of the loop equations changes substantially depending on whether the
parameters a± are finite or not. While for finite a± all the coefficients in the expansion (3.3)
are generically non-zero, a dramatic cancellation of precisely the same kind as observed
for the Euclidean partition function (2.48), is recovered when a± → ±∞, i.e. only W0(z)
and W0(z1, z2) are non-zero [38].19 The correct and rigorous way to reach this regime is
to instead take a double scaling limit, controlled by an additional parameter δ → 0 and
taking 1/N = ~/δ#, where the power of δ depends on the particular potential V (M), while
simultaneously rescaling the matrix to M̄ = M/δ. This has the effect of zooming into the
λ ∼ 0 eigenvalues in (3.4). In this limit one should consider observables of the rescaled
matrix M̄ , so that the large N expansion of the resolvent in (3.3) is replaced by a small ~
series (not related to Planck’s constant). One finds the expansion for the resolvent of the
matrix M̄ collapses to

〈W (z)〉 ' 1
~
W0(z) ,

〈W (z1, z2)〉c 'W0(z1, z2) ,

〈W0(z1, . . . , zn)〉c ' 0 ,

(3.5)

where n ≥ 3. This expansion has precisely the required structure to match gravity (2.48).
One still needs to fix the data in items 2 and 3, which is done as follows.

While W0(z) will depend on the fine grained details of the potential V (M), this is
not the case for W0(z1, z2), which is only determined by a±. Since we have already fixed
a± → ±∞, the function W0(z1, z2) can be unambiguously computed and written as [38]

W0(z1, z2) =


0 , (z1, z2) same sheet ,
−1

(z1 − z2)2 , (z1, z2) different sheets .
(3.6)

This function is defined on a two-sheeted Riemann surface with a branch-cut along the
entire real line. From this expression and (3.5) one can compute the full perturbative
expansion of two insertions of an arbitrary trace class operator O(β). This allows us to fix
item 2, by picking the operator which ensures the matching with the cylinder partition
function Zcylinder(β1, β2) ' 〈O(β1)O(β2)〉c. A straightforward computation (see section 3.2
of [15] for details) shows the required matrix operator is given by

O(β) =
∫ +∞

−∞
dpTr e−β(M̄2+p2) . (3.7)

The integral over p can be solved to give a factor of
√
π/β.

All we have left to do is fix the probability measure of the matrix model, as indicated in
the item 3. Instead of specifying a potential V (M) in (3.1), it is more clear (and ultimately

19For a specific and more detailed discussion of how this mechanism arises from the matrix model loop
equations, see section 3.2 in [15], as well as appendix C in that paper. As mentioned above, this kind of
cancellation is not possible for the (α,β) = (1, 2) Altland-Zirnbauer ensemble.
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equivalent) to first determine the analytic function h(λ) controlling the eigenvalue spectral
density in (3.4). Defining αi as the eigenvalues of the rescaled matrix M̄ = M/δ (in contrast
to the ordinary eigenvalues λi of M) the spectral density of M̄ is

ρ(α) = Tr δ(α− M̄) . (3.8)

Its leading behavior, which due to (3.5) it is actually the only non-zero perturbative
contribution, is determined by h(λ) in (3.4). In order to match with gravity 〈O(β)〉 '
eS0Zdisk(β) one needs to take

〈ρ(α)〉 ' 1
π~

, where ~ = e−S0

2
√

2
, (3.9)

corresponding to h(λ) constant. The potential V (M) implied by this constant spectral
density can be worked out and found to be the simplest case possible, a quadratic polynomial
V (M) = 1

2M
2. While in the naive large N limit this gives Wigner’s semi-circle law (1.6),

the appropriate double scaling limit is attained by zooming into the λ ∼ 0 region in the
following way

1
N

= ~δ , λi = αiδ , (3.10)

with δ → 0. All in all, we have shown there is a unique double scaled matrix model which
is able to reproduce the CJ supergravity partition function to all orders in perturbation
theory

Z(β1, . . . , βn) ' 〈O(β1) . . .O(βn)〉c . (3.11)

Let us now make a number of comments about certain features and subtleties of the
matching between gravity and matrix model that we have just derived.

Uniqueness and double scaling. As showed above, there is a single double scaled
matrix model which ensures the matching in (3.11). When making this statement, the
words “double scaled” matrix model are important, as there is actually always an inherent
ambiguity in the double scaling limit. This comes from the fact it involves zooming
into eigenvalues with λ ∼ 0, essentially forgetting about the behavior of large magnitude
eigenvalues. More concretely, there is always an infinite class of matrix model potentials
V (M) one could have chosen which result in the same double scaled model. Given that the
particular representative potential one picks to perform calculations is inconsequential, one
usually takes the simplest one, in this case V (M) = 1

2M
2. This is very much related to the

universality of eigenvalue repulsion in matrix models.

Was it bound to work? From the way we have constructed the matrix model it might
seem that once the gravitational partition function takes the form in (2.48), one is always
going to find an appropriate random matrix model that does the job. One could think that
no matter the specific details of the disk and cylinder partition functions, one can always
pick the operator O(β) and the leading spectral density in order to ensure the matching.
This is actually not the case. Although one can always find an operator O(β) such that
the cylinder partition function is reproduced, in certain cases the matching with the disk
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topology might require a spectral density that is simply not allowed by the matrix model.
By this we mean one might find the function h(λ) in (3.4) that is required for the matching
is not analytic or non-negative. As an example, if the cylinder partition function of CJ
supergravity stays the same while the disk scales with the inverse temperature with a
half-integer power, no matrix model can reproduce the corresponding partition functions.
There is an underlying relation between the disk and cylinder partition functions of CJ
supergravity that enables the matching to work.

Free particle sector. Given what we have learned from Euclidean partition functions
in AdS quantum gravity, one could have guessed the operator O(β) would take the form
“ Tr e−βH “. Here, the operator H should be interpreted as the generator of translations
along the direction that was analytically continued to define the path integral. Since in this
case it is the Bondi time u→ iτ in (2.15), we should think of H as the Bondi Hamiltonian.
The operator O(β) in (3.7) has precisely the right structure, with the surprising feature
that the Bondi Hamiltonian contains not only a discrete contribution coming from the
eigenvalues of the matrix M̄2, but also a continuous sector p2 corresponding to the energy
of a free particle. In fact, precisely the same operator H was obtained for ordinary CJ
gravity [14, 15], showing it is not an accident but a persistent feature of these theories of
flat quantum gravity. What is the origin and significance of this peculiar structure? While
we do not have a definite answer for this question, there are a few comments we can make.

At the technical level, one can trace the origin of the free particle to the central
extension I that is present in the Maxwell superalgebra (2.7). The β scaling of the partition
function (2.59) is directly influenced by this central extension, since it results in an additional
zero mode which provides an extra factor of 1/

√
β to the disk and cylinder partition functions.

This is precisely the contribution of the free particle to the matrix operator O(β) in (3.7).
This suggests one might be able to remove the free particle by getting rid of the central

extension. By removing it, the CJ gravity theory is replaced by a BF theory whose gauge
group is ordinary Poincaré, which is nothing more than ordinary flat JT gravity. This
is not good, as flat JT gravity only has a thermal solution with a single fixed (infinite)
temperature, and is therefore not amenable to the thermodynamic analysis implied by the
computation of Z(β).20 As a result, the central extension of the algebra seems to be very
much required, playing a crucial role in the formulation of the theory.

Another perspective is that the free particle sector is not a bug but a feature of flat
space quantum gravity. A feasible interpretation might be that the free particle, which
yields a continum spectrum for the Bondi Hamiltonian, is somehow related to the infinite
volume of flat space. This is in contrast to the covariant AdS “box”, which has a discrete
spectrum instead. Although conceptually appealing, further evidence needs to be gathered
to make such statement concrete.

20A more detailed discussion of this issue can be found in [13, 49], which also considers the very much
related case of the CGHS gravity theory [50]. Although the analysis of [37] is able to bypass this problem by
picking a different set of boundary conditions, their formulation of the theory does not seem to allow for a
cylinder topology, which is crucial for the matrix model interpretation.
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3.2 Non-perturbative completion

In our discussion so far the analysis of both the matrix model and supergravity has been
limited to perturbative effects in the parameter ~ ∝ e−S0 . What about non-perturbative
contributions? While on the gravitational side there is currently no known method for
capturing such effects, a non-perturbative analysis is indeed tractable for the matrix model.
In this subsection we assume the non-perturbative completion of the gravity theory provided
by the matrix model and use it to investigate CJ supergravity non-perturbatively. More
concretely, we assume we can replace the symbol ' in (3.11) by a strict equality. The
method of loop equations is an intrisic perturbative approach and therefore not useful for
computing non-perturbative contributions in the matrix model. Instead, we shall use the
method of orthogonal polynomials, that is better suited for this task.21

The central quantity that determines all observables is the matrix model kernel K(λ, λ′).
For a Hermitian matrix model with an arbitrary potential V (M), the computation of the
kernel is quite complicated and can be rarely performed analytically. However, for the
Gaussian matrix model V (M) = 1

2M
2 one can write the kernel explicitly for finite N .

Moreover, in the double scaling limit, given by (3.10), it simplifies to the well know
sine kernel

K(α, α′) = 1
π

sin [(α− α′)/~]
α− α′

. (3.12)

In appendix B we explain in detail how to derive this result using the method of orthogonal
polynomials. We should stress that in this context, the sine kernel is not an approximation.
Instead, it is the exact result, including all perturbative and non-perturbative contributions
in ~, to the kernel of the double scaled matrix model required to describe N = 1 CJ
supergravity. As a result, all observables obtained from this kernel are exact.

3.2.1 Bondi spectrum

One of the simplest observables is the spectral density %(E) of the supergravity theory,
obtained from the inverse Laplace transform of the single boundary partition function.
Since the path integral is defined through the analytic continuation of the Bondi time (2.15),
%(E) captures the spectrum of the Bondi Hamiltonian. To all orders in perturbation theory,
this is easily obtained from (1.4), which gives

%(E) ' eS02
√

2Θ(E) . (3.13)

Non-perturbative contributions not captured by this expression can be obtained from the
eigenvalue spectral density of the matrix model ρ(α), whose expectation value is determined
by the diagonal components of the kernel (3.12). While for a generic matrix model one
expects small non-perturbative oscillations around the leading perturbative behavior, this
is not the case for the double scaled Gaussian model, where one finds no corrections of
any kind 〈ρ(α)〉 = 1

π~ . This means the non-perturbative completion provided by the matrix
model predicts the constant Bondi spectrum in (3.13) is actually exact, i.e. there is a
strict equality.

21See section 5 of [22] and appendix C in [39] for a more detailed discussion of this method for finite N
and double scaled models, respectively.
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Figure 1. In the left diagram observe the histogram corresponding to the eigenvalues of 106

Hermitian random matrices of size N = 100, drawn from the Gaussian ensemble. The dashed line
corresponds to Wigner’s semi circle law (1.6). To the right, we zoom-in the λ ∼ 0 region by taking
the double scaling limit αi = λi~N (3.10) with ~ = 1. The histograms in this second plot correspond
to the ordered eigenvalues of each sample matrix.

A more fine grained characterization of the Bondi spectrum is obtained by studying the
probability density function pi(α) of individual eigenvalues. For an arbitrary matrix model,
this is computed from a Fredholm determinant of an integral operator constructed from
the matrix model kernel, which can be evaluated numerically (see [15, 51–53]). In this case
however, there is an alternative path that is simpler, as one can instead numerically sample
an ensemble of Gaussianly distributed Hermitian random matrices and directly compute
the average of any quantity of interest. More explicitly, one writes M = (A + A†)/2

√
N

with A ∈ CN×N a random matrix drawn from a normal distribution of unit variance and
zero mean. After generating 106 samples of size N = 100, one computes their respective
eigenvalues and obtains the histogram appearing in the left plot of figure 1, which is nothing
more than Wigner’s semi-circle law (dashed line). The double scaling limit is obtained by
zooming-in the region λ ∼ 0 via the rescaling λi = αi/~N of the matrix eigenvalues. In
the right diagram of the same figure, we plot the histograms of the individual ordered and
rescaled eigenvalues of the sample matrices, which provide a good numerical approximation
of the probability density functions pi(α) of each eigenvalue. As expected, summing those
histograms gives the correct constant value for the eigenvalue spectral density 〈ρ(α)〉 = 1

π~ ,
without any non-perturbative oscillations.22

We can use this results to characterize the fine grained structure of %(E). Using the
matching with the matrix model provided by O(β), one can derive the following formula

22If instead of zooming into the λ ∼ 0 eigenvalues one takes a double scaling limit which focuses on the
edge of Wigner’s semi-circle, one obtains the Airy model. In that case, the eigenvalue spectral density does
exhibit non-perturbative oscillations around the leading perturbative result, see figure 3 of [54].
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Figure 2. Expectation value of µi(E), defined in (3.14), for the first few values of i, computed
from the sample of random matrices used to generate the plots in figure 1. Taking the sum of these
curves one recovers the spectral density %(E) = Θ(E)/~ with ~ = 1.

for the Bondi spectral density

%(E) =
∞∑
i=1

〈Θ(E − α2
i )√

E − α2
i

〉
≡
∞∑
i=1
〈µi(E)〉 , (3.14)

where we have defined µi(E). Since 1/
√
E is the spectral density of a free particle, %(E) is

constructed from a superposition of free particle spectral densities centered at the location of
the eigenvalues αi of the random matrix. While the whole sum can be computed analytically,
giving the constant value in (3.13), we can do better and use the sampling over the Gaussian
random matrices to calculate each of the terms individually. In figure 2 we plot 〈µi(E)〉
for the first few values of i. Summing these contributions one recovers (as expected) the
correct spectral density %(E) = Θ(E)/~. A very similar structure for the fine grained Bondi
spectrum was obtained for ordinary CJ gravity in [14, 15], where the analogous curves in
figure 2 where computed using the Fredholm determinant approach instead.

3.2.2 Multi-boundary observables

While single boundary observables do not receive any kind of non-perturbative corrections,
this is not the case for multi-boundary observables. As an example, consider the spectral
form factor, defined from the Euclidean partition function with two boundaries as [55]

S(β, t) = Z(β + it)Z(β − it) + Z(β + it, β − it) . (3.15)

The first and second terms get contributions from disconnected and connected geometries
respectively. Using (1.4) one can easily compute S(β, t) to all orders in the small ~
perturbative expansion and find

S(β, t) ' 1
~2

1
β2 + t2

+ 1
2β . (3.16)
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Non-perturbative corrections to this expression can be obtained using the matrix model
completion. This requires knowledge of the observable 〈O(β + it)O(β − it)〉, which can be
calculated from

〈ρ(α)ρ(α′)〉c = 〈ρ(α)〉δ(α− α′)−K(α, α′)2 , (3.17)
where the kernel is given in (3.12). Using this, one obtains the following exact expression
for the spectral form factor

S(β, t) = 1
~2

1
β2 + t2

+ 1
2β

(
1− e−

1
~2

2β
β2+t2

)
+ 1

~

√
π

2β(β2 + t2)

(
1− Erf

[1
~

√
2β

β2 + t2

])
,

(3.18)
which corrects the perturbative answer (3.16) in an interesting and non-trivial way.23 It is
quite remarkable that one can analytically write down the exact expression for the spectral
form factor of this gravitational theory.

Let us analyze the time dependence of the spectral form factor for fixed β, starting with
the perturbative expression in (3.16). At early times t � eS0 , the contribution from the
two disconnected boundaries dominates, as it is enhanced by a factor of 1/~2 ∝ e2S0 . This
results in the initial “dip” that is generally expected for the spectral form factor [55]. Later,
for t ∼ eS0 , both terms are of the same order and the perturbative result for S(β, t) in (3.16)
takes a constant value. This is a departure from the more familiar case of AdS gravity,
where for this time scale one instead finds a linear “ramp” [56], related to the repulsion of
the underlying microscopic spectrum of the theory. Given the non-perturbative completion
of CJ supergravity found here, it should not be a surprise the ramp has disappeared, given
that the repulsion of the eigenvalues of the matrix M̄ is contaminated by the continuous
free particle contribution to the spectrum of O(β) in (1.8). For late times t � eS0 , the
perturbative expansion in (3.16) breaks down and one needs to consider the exact expression
in (3.18) instead, which decays to zero.24 While this behavior is again different when
compared to the AdS case, where one instead gets a constant “plateau” [55], the late time
decay observed here is exactly the expected behavior for a model with a continuous spectrum.
In figure 3 we plot the spectral form factor, the dashed and solid curves corresponding to
the perturbative (3.16) and exact (3.18) results respectively. The overall behavior of the
spectral form factor is analogous to the one observed for ordinary CJ gravity in [15].

A similar analysis can be performed for any other multi-boundary observable. One
could argue the situation is even more interesting for three or more boundaries, since in
those cases non-perturbative effects are the only non-zero contributions to the partition
function (1.4). To illustrate this point, consider the partition function with three boundaries,
so that non-perturbative effects as captured by the matrix model can be obtained from

〈
3∏
i=1

ρ(αi)〉c = 〈ρ(α1)ρ(α2)〉c δ(α2−α3)+〈ρ(α1)ρ(α3)〉c δ(α1−α2)+〈ρ(α2)ρ(α3)〉c δ(α3−α1)

−2〈ρ(α1)〉δ(α1−α2)δ(α1−α3)+2K(α1,α2)K(α2,α3)K(α3,α1) .
(3.19)

23Although the small ~ expansion only captures very rough features of the spectral form factor, note the
large ~ expansion actually has an infinite radius of convergence.

24See [57] for a recent attempt of capturing the plateau from a perturbative analysis of the gravitational
path integral.
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Figure 3. Spectral form factor (3.15) of N = 1 CJ supergravity at fixed β = 1/2. The dashed and
solid curves correspond to the perturbative (3.16) and exact (3.18) results respectively. The exact
result decays to zero at late times, as expected from the continuous spectrum of O(β) in (3.7).

This expression can be derived using the procedure explained in appendix C of [39]. From
this one computes the connected expectation value of three insertions of O(βi) and obtains
the following expression for the three boundary partition function

Z(β, β, β) = −2
3

1
~β

+ 1
β

(
1− e−

3
2~2β

)
+ 1

~β

√
3π
2β

(
1− Erf

[
1
~

√
3

2β

])
+ I(β) , (3.20)

where for convenience we have fixed all three boundaries to the same value of β and defined

I(β) = 2
(πβ)3/2

∫ +∞

−∞
dα1dα2dα3

sin
(α1−α2

~
)

α1 − α2

sin
(α2−α3

~
)

α2 − α3

sin
(α3−α1

~
)

α3 − α1
e−β(α2

1+α2
2+α2

3) . (3.21)

Solving this triple integral is quite challenging and we have not been able to find an analytic
solution. It is therefore not possible to extract the perturbative contribution for small ~,
given that one should first solve the integral and only then peform the expansion. However,
there is no obstruction to first expanding for large ~ and then solving the integral. In this
case, one finds the first few terms for the regime in which ~� 1 are given by

Z(β, β, β) = 1
~β

[√
3π
2β −

2
3

]
− 3

2(~β)2 + 2
(~β)3 +O(1/~4) . (3.22)

This shows there are non-zero contributions to the multi-boundary partition functions that
are not captured by the naive topological expansion in gravity.

3.2.3 Low temperature thermodynamics

Let us now turn our attention to the thermodynamics of CJ supergravity. The central
quantity is the free energy, which in terms of the matrix model completion, is defined as

FQ(T ) = −T 〈lnO(1/T )〉 . (3.23)

Calculating this observable is much more challenging than any of the previous, as it involves
computing the ensemble average of the logarithm of the single trace operator O(β). A
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Figure 4. Quenched and annealed free energies of N = 1 CJ supergravity computed numerically
from the sample of random matrices shown in figure 1, using the fourteen smallest magnitude
eigenvalues of each matrix. The circled data shown in the plot corresponds to the analytic annealed
free energy (3.25), agreeing perfectly with the numerical result. The inset shows the ultra-low
temperature behavior of the quenched free energy.

simple trick which simplifies the computation is to exchange these operations, and instead
consider the “annealed” free energy

FA(T ) = −T ln〈O(1/T )〉 , (3.24)

as compared to the “quenched” free energy in (3.23). Including all non-perturbative
corrections, FA(T ) can be computed exactly as

FA(T ) = −T ln T/~ . (3.25)

As first discussed in [58], one should be careful with the annealed free energy, as it is a
good approximation to the physically meaningful quenched free energy (3.23) only at high
temperatures. Exchanging the ensemble average with the logarithm is not allowed at low
temperatures. Therefore, one needs FQ(T ) to fully characterize the thermodynamics of the
gravitational theory.

The simplest way of computing the quenched free energy is numerically, using the
sample of random matrices shown in figure 1. At low temperatures, a good approximation
is obtained by only considering the first few small magnitude eigenvalues of each matrix.25

In figure 1 we plot both the quenched and annealed free energies computed in this way. As
expected, we observe their difference becomes significant at low temperatures. The circled
data corresponds to the analytic expression for the annealed free energy in (3.25), showing
perfect agreement with the numerical result.

25For the numerical precision required here, it is enough to include the first fourteen smallest magnitude
eigenvalues of each matrix. Including more does not modify any of the features shown in figure 4. This
approach for computing the quenched free energy was first proposed and implemented in [51, 54].
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The thermodynamic entropy can be easily obtained from the free energy by simply taking
a derivative S(T ) = −F ′(T ). Using the annealed free energy one finds S(T ) = 1 + ln T/~,
which is negative for T < ~/e given that FA(T ) is an increasing function at low temperatures
(figure 4). Although in this regime one should use the quenched free energy instead, one
finds the associated entropy still eventually becomes negative, since FQ(T ) has a maximum
(inset in figure 4). To better understand the origin of this behavior, it is convenient to
separate the two contributions to FQ(T ) coming from the discrete M̄2 and continuous p2

parts of the spectrum of O(β)

FQ(T ) = −T 〈ln Tr e−M̄2/T 〉 − 1
2T ln πT . (3.26)

The local maximum of the quenched free energy seen in figure 4 is ultimately generated
by the second term, i.e. by the continuous spectrum p2. In fact, as analyzed in [15], any
thermodynamic system with a continuous low temperature spectra will eventually result in
a negative entropy. Given that the non-perturbative completion of CJ supergravity contains
such a sector, it should not come as a surprise that the quenched free energy in figure 4
has a maximum at ultra-low temperatures. The ultimate meaning and significance of this
feature, which is also present for ordinary CJ gravity [15], is currently unclear.

4 Final remarks

In this work we have proposed an explicit realization of flat space holography in two
space-time dimensions. The most remarkable feature of our construction is the simplicity
of the boundary theory, given by an exactly solvable double scaled Gaussian matrix model.
This is surprising, as in the bulk definition of N = 1 CJ supergravity (2.12) there is no
obvious feature which hints towards the simplicity of the underlying holographic description.
Ultimately, this theory seems like an ideal model where concrete questions that probe the
nature of flat space quantum gravity may be answered.

In this regard, studying the S-matrix might be an interesting avenue to explore. Not
only it is arguably the most natural observable in flat space gravity, but it might also
allow us to make direct contact with the celestial holography program.26 However, the
computation of scattering amplitudes requires developing additional technology, as the
first step involves performing a careful analysis of the classical phase space of the theory,
as performed in [15] for ordinary CJ gravity. Furthermore, one also needs to understand
how the theory looks when coupled to probe matter, as it is this additional matter sector
that allows the creation of non-trivial asymptotic states that can ultimately scatter against
each other.

Without a doubt, the most puzzling aspect of our analysis is the continuous free particle
spectrum present in the matrix operator O(β). In fact, this project was started from the
desire to better understand such a sector, after it was previously encountered in ordinary
CJ gravity [14, 15]. The free particle does not seem to be an accident but instead a robust

26Making such a connection would require the additional step of figuring out the meaning of celestial
holography for a two-dimensional bulk, where the celestial sphere is just two points.

– 32 –



J
H
E
P
0
2
(
2
0
2
3
)
0
3
7

feature of this class of two-dimensional flat space theories, unchanged by the addition of
minimal supersymmetry. Exploring whether other extensions of CJ gravity which include
unorientable surfaces or extended supersymmetry modify the operator O(β) in any way,
is the natural next step in trying to better understand the degrees of freedom described
by these theories. Moreover, although technically more challenging, studying the finite
cut-off theory might help determine whether there is a concrete relation between the infinite
volume of flat space and the continuous spectrum. We hope to revisit these questions in
future work.
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A Minimal Maxwell superalgebra

In this appendix we further expand on certain aspects regarding the N = 1 supersymmetric
extensions of the Maxwell algebra (2.6). Several versions of the Maxwell superalgebra have
been constructed in varied space-time dimensions [23–25, 27, 59–61]. The superalgebra used
in this work can be obtained from a Inönü-Wigner contraction of the osp(1|2) superalgebra,
which contains three bosonic (J, P±) and two fermionic Q± generators. The non-vanishing
(anti-)commutators of osp(1|2) are given by [62]

Bosonic : [J, P±] = ±P± , [P+, P−] = 2J ,

Mixed : [J,Q±] = ±1
2Q± , [P±, Q∓] = −Q± ,

Fermionic : {Q±, Q±} = ±1
2P± , {Q+, Q−} = 1

2J ,

(A.1)

with the quadratic Casimir given by C2 = 1
2{P+, P−}+ J2 − [Q+, Q−].

To start, the ordinary N = 1 Poincaré superalgebra can be obtained by rescaling the
generators as

P± −→
√

2
ε
P± , Q± −→

Q±
(2ε)1/4 , (A.2)

and taking the ε→ 0 limit. Since osp(1|2) contains sl(2) as a subalgebra, which correspond
to the isometries of AdS2, this contraction can be understood as an ordinary flat limit
Λ→ 0 of Anti-de Sitter. The Maxwell superalgebra is obtained from a more subtle rescaling
of the generators, given by

P± −→
√

2
ε
P± , Q+ −→

Q+√
κ(2ε)1/4 , Q− −→

√
κ

Q−
(2ε)3/4 J −→ J+ 1

ε
I , (A.3)
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where κ is a fixed constant and in the shift in J we introduced an additional generator, the
central extension I. After this rescaling, the osp(1|2) superalgebra (A.1) becomes

Bosonic : [J, P±] = ±P± , [P+, P−] = I + εJ ,

Mixed : [J,Q±] = ±1
2Q± , [P−, Q+] = −κ2Q−, [P+, Q−] = − ε

κ
Q+ ,

Fermionic : {Q+, Q+} = κP+ , {Q+, Q−} = I + εJ , {Q−, Q−} = −2ε
κ
P− .

(A.4)

There are three distinct cases, depending on how κ scales with ε→ 0. Setting κ = 1, one
finds the superalgebra (2.7), used in the main text to construct the CJ supergravity action.
The second case corresponds to take κ = 2ε, which (roughly speaking) gives a superalgebra
in which roles of Q+ and Q− are exchanged, see the discussion below (2.7). Finally, one
can take κ =

√
ε to recover the Maxwell superalgebra found in [27]. Although this last

case might appear promising for defining a supergravity theory, we have explored such
theory and found the boundary physics does not admit the nice asymptotic algebra (2.33)
and boundary action (2.40) one gets when using the κ = 1 superalgebra instead. One can
check these three cases are the only ones allowed when requiring Q± have spin one-half
[J,Q±] = ±1

2Q± together with consistency with the Jacobi identities.
A six dimensional matrix representation for the superalgebra with κ = 1 is given by

(J)ij = −δi1δj1 + δi2δj2 −
1
2δi4δj4 + 1

2δi5δj5 , (I)ij = δi3δj6 ,

(P+)ij = −δi2δj6 − δi3δj1 , (P−)ij = δi3δj2 + 1
2δi4δj5 ,

(Q+)ij = −1
2δi3δj4 + δi5δj6 −

1
2 (δi2δj5 − 2δi4δj1) , (Q−)ij = 1

2δi3δj5 − δi4δj6 .

(A.5)

This explicit representation is sometimes convenient when performing some of the computa-
tions described in the main text.

B Matrix model kernel

The aim of this appendix is to derive the matrix model kernel K(α, α′) in (3.12) for the
Gaussian Hermitian matrix model V (M) = 1

2M
2 in the double scaling limit indicated

through (3.10). This is of course a very well known fact, intimately related to the bulk
universality in random matrix models.

Finite N . For any given N , the matrix model kernel is given in terms of a set of functions
ψn(λ)

K(λ, λ′) =
N−1∑
n=0

ψn(λ)ψn(λ′) . (B.1)

These functions are obtained from a family of monic polynomials Pn(λ) = λn +O(λn−1)

ψn(λ) = 1√
hn
e−

N
2 V (λ)Pn(λ) , (B.2)
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where the polynomials are orthogonal with respect to the Gaussian measure defined by the
matrix model ∫ +∞

−∞
dλ e−

N
2 λ

2
Pn(λ)Pm(λ) = hnδn,m , (B.3)

with hn their norm. To find an explicit expression for the polynomials, consider the
generating function

G(z) =
∞∑
n=0

Pn(λ)
n! zn . (B.4)

Using that the polynomials themselves satisfy the recursion relation λPn = Pn+1 + n
NPn−1

(e.g. see appendix C of [39]), the generating function can be computed as

λG(z) = G′(z) + z

N
G(z) =⇒ G(z) = ezλ−

z2
2N , (B.5)

where the λ-dependent integration constant is fixed by requiring the polynomials are monic.
Using the residue theorem we solve for each of the terms in the expansion, obtaining in this
way an integral expression for the polynomials

Pn(λ) = n!
2πi

∮
C

dz

z1+n e
zλ− z2

2N , (B.6)

where C is a contour around the origin of the z-complex plane. These polynomials turn out
to be the Hermite polynomials, normalized such that hn =

√
2πn!

Nn+1/2 .
The polynomials in (B.6) allow us to explicitly write down the functions ψn(λ) and

obtain the matrix model kernel (B.1) for any finite value of N , which using the recursion
relation below (B.4), can be written as

K(λ, λ′) = ψN (λ)ψN−1(λ′)− ψN−1(λ)ψN (λ′)
λ− λ′

. (B.7)

To take the double scaling limit, it will be convenient to derive a differential equation
satisfied by ψn(λ). Using P ′(λ) = nPn−1(λ) and the recursion relation one finds

1
N2ψ

′′
n(λ) =

[(
λ

2

)2
− 1
N

(
n+ 1

2

)]
ψn(λ) , (B.8)

where appropriate initial conditions can be obtained by using (B.6) to evaluate the functions
and their first derivative at λ = 0

ψ2n(0) = (−1)n√
h2n

(2n)!
n!(2N)n , ψ2n+1(0) = 0 ,

ψ′2n(0) = 0 , ψ′2n+1(0) = (−1)n√
h2n+1

(2n+ 1)!
n!(2N)n .

(B.9)

Double scaling limit. We now take the double scaling limit, given by

1
N

= ~δ , λi = αiδ , (B.10)
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with δ → 0. To compute the kernel (B.7) in this limit, we only need the function ψN+n0(λ)
with n0 a fixed integer that does not scale with δ. The differential equation (B.8) for ψn(λ)
evaluated at n = N + n0 becomes

~2∂2
αψN+n0(α) + ψN+n0(α) = O(δ) . (B.11)

In the double scaling limit the terms on the right-hand side vanish and this becomes the
equation for a classical harmonic oscillator. Fixing the integration constants through the
double scaled version of the initial conditions in (B.9), one finds the solution is given by

lim
δ→0

ψN+n0(α) = 1√
π

cos
[
α

~
+ (N + n0)π2

]
. (B.12)

This, together with (B.7), allows us to obtain the final expression for the kernel in the
double scaling limit

lim
δ→0

K(λ, λ′) = 1
πδ

sin [(α− α′)/~]
α− α′

. (B.13)

Rescaling the left hand side by δ, the kernel computes observables of the matrix model in
the usual way, but replacing the original matrix M by M̄ = M/δ. The rescaled kernel shall
be simply denoted as K(α, α′) ≡ limδ→0K(λ, λ′)δ.
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