A solvable model of the genesis of amino-acid sequences

via coupled dynamics of folding and slow genetic variation
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Motivation: proteins have non-random disorder ...
Dynamics of folding and sequence selection

Finite-n replica analysis, replicated transfer matrices
The limit n — oo, deterministic sequence selection
Numerical results, simulations

Summary and outlook
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Proteins are disordered systems,
but with non-random disorder ...
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Primary structure:  monomer sequence (the disorder), DHJKAFACGD ...
Secondary structure: local conformation of a-helices, (3-sheets, etc

Tertiary structure: 3D arrangement of secondary structure elements

‘Knowledge of a protein’s tertiary structure is a prerequisite for the proper
understanding and engineering of its function.’

Problem for statistical mechanics
To use disordered systems techniques a la Parisi,
we need a formula for the disorder statistics ...

e Random amino-acid sequences do not fold into unique conformations,
amino-acid sequences of proteins have been selected during evolution

e Our options for ensembles of sequences:
(i) find a formula for a nontrivial ensemble of random amino-acid sequences?
(i) empirically: download all sequences from biomedical data base?



2. MODEL DEFINITIONS

slow process: fast process:

genetic selection folding of

of sequences A\ . residue orientations ¢
Hamiltonian Heg(\) Hamiltonian Hg(®|\)

e No defn of sequence statistics: define genetic dynamics of sequences

e Simple Hamiltonians, focus on secondary structure

e Solve coupled dynamics for disparate timescales using finite n replica method
e Exploit 1D nature of proteins: replicated transfer matrices

A;: the local amino-acid type
site 1+ 1: ()\i+17¢i+1)

L o ¢;: residue angle relative to ‘backbone’
27 ] .
2 % site it (A ) primary structure:  (Ag,...,Ay)
secondary structure: (¢1,...,oN)
0Q
// site 1—1: ()‘i—la ¢i—1)
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Variables: angles ¢ = (¢1,...,0n) % L

- site 7: (A“(bl)
¢i =10,27/q,..., (¢ —1)27/q}, .‘
q=2,3,... // site i—1: (Xi—1,i—1)

The fast process: folding
/ site ¢+ 1: ()\¢+1,¢1‘+1)

Hi(¢|A) = —]J\I; > EN)EN)) Og10; — s D cos[(Din1— i) — (di—di1) — a(Ny)]

polarity energy steric energy
e polarity energy: ﬁﬁ;; / \
proxy for energy gain by folding in 3D §§ S
£(A): polarity of residue A, Lol gi gg
¢ > 0: hydrophobic, & < 0: hydrophilic I i T o)
gg G

e steric energy: mechanical constraints,
residues ‘stick out’, distort homogeneous winding
a(\): winding shift induced by residue A



The slow process: genetic selection of sequences

sequence fitness:

(i) sequence must give protein with reproducible conformation
(ii) structure is useful, e.g. can act as catalyst of some reaction

translate into minimization of
Hat(A) = U +V(A) + F(A)
e U(A): biological utility as catalyst

o [(A): free energy of folding process
(low free energy = proxy for reproducible conformation)

e V(A): energetic cost of not having strictly hydrophilic ‘surface residues’ and
strictly hydrophobic ‘core residues’



stochastic minimization of Glauber type, noise level T
genetic selection evolves to equilibrium state,

Po(A) exp[—BHeff()\)]

combined model solved in equilibrium
by calculating effective free energy
1

5 1
N | ~BHea(N) _ _
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lOg Z e—nﬁ[U(A)—i—V()\)] {Zf<)\>]n
A

e temperature ratio n = (/0

e folding partition function Z¢(A) = Y exp|—OHi ()]

e solvable with replica method (finite n version)

e n—0 (T —o0): free energy of system with quenched random sequences

e effective free energy as generator of observables:

0
Hf((b‘)\) - Hf(¢|>‘) + XNG(¢7 A) : <<G(¢, >‘)>fast>slow = )1(11)% 8XfN



Connections with earlier studies

e Skantzos, Van Mourik, ACCC J. Phys. A 2001
random sequences (no genetic dynamics), but included hydrogen bonds

e Chakravorty, ACCC, Sherrington J. Phys. A 2002
genetic dynamics, but only (long-range) polarity forces, J; = J;, =0

Simple choices for remaining parameters

e Sequence utility potential: U(X) = S u(N;), u(A) = p&(N) + vcos[a(N)]
e Energetic cost of polarity imbalance: V(X) = J,Nv(3 5; £(\;) —k*)

e periodic boundary conditions, N even

e chemical characteristics of amino-acids statistically indep:

wlén) = 5 3 316 — €Ot — cosfalV] = w(©uly

A : nr of amino acid species, i.e. 20



Assumed amino-acid properties

a(\): winding shift of residue A
£(A): polarity of residue A

e independence of
polarity and
steric properties?

e preferred overall polarity
=N ()

(Eisenberg scale)
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3. REPLICA ANALYSIS OF THE MODEL

write Z{(A) in terms of n replicas of the system,
sum over sequences X before sum over conformations,

f =limy oo fr = extrypn(2)

1 1 1 1
nen(z) = Jp%z(iQS + nJg[v(n%zw—k: ) — (n%za¢)vl(n%za¢—k )] — ﬁlog/\
, 1
- ]\}1_%0 N 10g¢12¢nfiﬂ\4[¢m b, P17

L & 5600 S 2 g — Tyt (2 S zap kT, X, cos[d, 402, —26¢—a(A)]—nfu(A
M[‘bi—l’qb"’“z’”l‘z]:AZeﬁﬂ>za[ p2a0p =g (5 Tag Zag= 46y T coslof 651 =208 —a(N)] —nfu())

structure: replicated transfer matrix product
embedded within a mean-field calculation

in principle solvable!

only order pars with one replica index, so RS ok



Simplest case ¢ =2: ¢; € {—7/2,7/2}

¢; = o;m/2, with o; = +1

Hi(o|A) = —ZPV S EMVEOL + 010,] — Iy X cosfa(A) o101

solution:

log A 1
B0 Bn log A(m, k)}

f = extrm,k{;Jp(m%kQ)+Jg[v(k—k*)—kv'(k—k*)]—

A(m, k): largest eigenvalue
of 2" x 2" transfer matrix

Mgg/(m, k) = <66n[JsGU’—nV}> <€nﬂ§[Jp(k+%Zaaa)—u—Jgu’(k—k*)}>

n §

(9(€)) = Jd& w(€)g(&),
(g(n)) = Sdn w(n)g(n)



physical meaning of {m, k}:

m = lim iZ<€()\i)<0'i>fast>slow

saddle-point equations:

L R

Yoo Ug0iYgo U
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Am, k) Zo ugue

where
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Solution of replicated eigenvalue problem

ug = [de @(r)e" Xt ug = [dy U(y)eh T

from replicated spins
to effective fields:

\b() = [da/Ag(z,2")0(2')  AU(x) = [da/Ay(w,2') ()

Ag(z,2') = (0[z—EJym—A(a!,nJ,))e Pl ephmp ookt moly
Ay(z,2') = ((5[x—A(x’+§me,nJS)]e”mB(ﬂc'+5mev"7Js)+€(ka*u*ng’(k*k*))*Vﬂ]>>§m

Alz,y) = ﬁ_ltanh_l[tanh(ﬁx)tanh(ﬁy)]

Blr.y) = 50 logl4cosh[3(a-+y)] cosh[(z—y)]

everything follows from © W ...



simplify, play around ...
m = [d¢dh W (h,€) Stanh(Bh) k= [dgdh W (h,€) &
W(h.€) = p(&) cosh"[Bh] fdx V(x)V(h—z—.J,m¢)

~[d€'dh'p(€") cosh™[BN] fdx W (x) V(B — x— J,m&)
in which
w enﬁg(ka—,u—ng’(k—k*))
p(§) = / &) N o1 B (Jpk—p—Jyv'(k—k*
Jd€ w(&e BE (Jpk—p—Jgv'( )

_ Jdz'®(2') [dn w(n)dlx— A2, nJ,)]emPBE ) =)

v
(=) Jdx'®(x") fdn w(n)erIBEnTs) vl

formulas for f and for

w(€.m) = Jim Sl — I8l — cosfa(A)]])

1

e.g. (&) = m(&)n(n), =(§) = [dh W(h,E)

(x) = [dE p(&)¥(z—JymE)



Simple solutions and special cases

e state without secondary structure (always a soln): m = 0

Jd¢ € w(g)enEph—n=Jyvk=k")]

\I/(x) - (I)(x) - 5(.%‘), W(h’ f) - p(f)(S(h), k= Jdé w(5)enﬁ&[ka—u—ng’(k—k*)]

e infinite temperature: G =0

V() =8(x),  WEh) =w@sh), m=0, k= [d&w()
%iil(l)ﬁf = —n"tlogA —log?2

e Random sequences: n — 0
U(z) = [dy U(y)(dle—A(y+Tmé nJ)en  D(x) = (B(z—Jyme))e
m = [dudx’ ®(x')¥(2)((€ tanh[B(z+EJym+ A2, 1J)]))e.

recovers Skantzos et al 2001
(random bond chain methods, ratios of constrained partition functions)



4. DETERMINISTIC SEQUENCE SELECTION

choose v(u) = u?,

define natural polarity balance ko = L’“b/‘]g
L - Jp/ Jg

take n — oo in system below:

Jda' fd€ p(&)W (') fdn w(n)d[x — A(z'+J,m&, nJ,)|enPBatTymends) =yl

\II(T) = Idax’ fdf p(g)qj<qn/> fd?? w(n)6nﬂ[B(x’+me§,an)—yn]
— Jd€ p(€)E fdxdy V(x)V(y) tanh[F(J,mE+x+y)] cosh"[G(JyméE+z+y)]
Jd€ p(§) fdxdy V(x)V(y) cosh”[B(Jymé + x + y)]
o S PO ey ()W) cosh"[3(Jymé + 7 + )
Jd§ p(§) Jdzdy W (x)V(y) cosh"[B(Jymé + x + y)]
nﬁf(Jp_Jg)(k_kO)
p(§) wit)e

T Jde w(€)entE T ko)



Form of V(z) for n — oo

¢ INC [-J,, J: V(z)=0forz¢Q, U(z)=e""" forzecQ
e max,cq¥(zr) =0
e need to find Q and lim,, . ¥(x)

several pages later ...

Jy>J,: k =k, heteropolar, m=0 or Fpg;(m)= —tanh(3J,)
Jy<Jp: k=%l homopolar, m=0 or Fpg;(m)=sgn(v)tan(sJ;)

with 10

0.4

—
tanh[lzm — L tanh™'(m)] %

Fx(m) - i i -1 Fi(m) oo
tanh[5om + 5 tanh™ (m)] j

206 |




Phase diagrams

Jg > Jp Jg < Jp, v <O Jg < Jp, v>0
16 IS """"" , 16 HS g l
12} B 12} B ) HS
T/)J, T/J, T/ Jp
IC 1 HC 1
0.2 HM\
JS/JP JS/JP JS/JP

inhom polarity, swollen (IS):  7(§) continuous, m =0
inhom polarity, collapsed (IC): m(£) = L(14+kg)6(E—1)+3(1—ko)d(E+1), m # 0
hom polarity, swollen (HS): #7(§) =4d(£1), m=0
hom polarity, collapsed (HC): 7(§) =d(6 +1), m #0
hom polarity, mixed (HM):  7w(§) = (£ £ 1), coexistence of m =0 and m # 0

v > 0: favours helices, T[TIT|T ...
v < 0: favours (-sheets, TTTTTTT ...



5. NON-DETERMINISTIC SEQUENCE SELECTION

Transitions for finite n, increased genetic noise

Generally hard ...
except continuous transitions away from m =0

m—Am, k—k+Ak, V(zx)—d(z)+AV(z)
gives

Jdz' [AV (") = J,kAmd' (2)] fdn w(n)d[z— A, njs)]enﬁ[B(x’,an)—Vn]

AV(z) = Jdn w(n)endBOnT)-vi]

Am = 2k [dh tanh(Bh) cosh™(Bh)AV(h) + BJ,Am [dE p(§)§*+ O(A?)

soln:

AV 4 (z) = ;\\{ﬁj]; §(z)Am A

_ Jdn w(n) tanh(ﬁnjs)enﬁ[B(o,an)_Vn]
B Jdn w(n)enﬁ[B(O,n.]s)_yn]




continuous m # 0 bifurcations:

Am #£0: 1= ﬁJp[/df &p(€) —
w(g)enﬁg(‘]p_']g)(k_ko)

p(f) — fdglw(gl)enﬂg’(Jp—Jg)(k‘—ko)

1 1.
e.g. Jy <=3y, v=73:

onset of discont transition at n = 2!
(as in other coupled dynamics models)
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Numerical solution via population dynamics

n appears in exponents,
which limits numerical analysis to n < 400

0.6 13

n =100
n = 200
04t n = 400
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(Jsy Jp, Jg) = (0.1,1,2), kg =0.7, p = 0.2, v = 0.5
n — oo: continuous IS—IC transition at 7. = 1.183
large but finite n: discontinuous



1

prediction:  lim, o ¥(z) = 30(z + 2*) + 56(z — 2*)

2

finite n corrections: O(n~/2) for v >0, O(n™?!) for v < 0
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v > 0: favours helices, T[TIT]T ...
v < 0: favours B-sheets, TTTTTTT ...



6. NUMERICAL SIMULATIONS

requires two nested equilibrations of disordered systems,
inner ‘loop’ of the code: disordered Ising chain ... HARD!
N too small: no transitions, N too large: no equilibration
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N = 1000, at T'= 0.3 and n = 200
v=J,= %, Jp, =1, and and £* = 0. For n — oco: coexistence & remanence




7. SUMMARY AND OUTLOOK

nice:
e solvable models describing protein structure formation
circumvent the obstacle of non-random amino-acid sequences
e nested equilibration of slow /fast processes: finite n replica method
short-range frozen random forces: diagonalization of replicated transfer matrix
e exact results for phase transitions,
especially for deterministic sequence selection, n — oo

not so nice:

e many simplifications:
one angle per residue (should be two), simple phenomenological Hamiltonian
no hydrogen bonds, only primary & secondary structure

e potential for evolution to homo-polar polymers,
artifact of Hamiltonian? probably ...

e statements on ensemble of hetero-polymers,
not solution of protein folding problem (not even approximate)



Future directions

If driven by passion for theory ...

e introduce contact maps to replace present long-range forces,

structure similar to ‘small-world’ topologies,

more sophisticated order parameters of finitely connected graphs, RSB, etc
e real-valued residue orientations, i.e. ¢ — oo

diagonalization of replicated transfer kernels

If driven by passion for biology ...

e increase level of biological detail:
two residue angles, with real rather than discrete values,
more realistic Hamiltonians:
work our steric effects for real amino-acids
include hydrogen bonds
more realistic modeling of tertiary structure influence, via contact maps

there is overlap!



