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1. Introduction

Vocal learning, a behavior thought to constitute one of the 

components for human speech acquisition, is the ability to 

learn and produce vocalizations through imitation, rather 

than by instinct. Vocal learning is relatively rare: to date 

this behavior has only been found in humans, cetaceans 

(whales and dolphins), some species of bats, and in three 

avian groups: Passeriformes (songbirds), Psittaciformes 

(parrots), and in the family Trochilidae (hummingbirds) 

(reviewed in Kroodsma and Miller 1982; Hauser and 

Konishi 1999; Jarvis 2004; Zeigler and Marler 2004). 

Animal models commonly used in neuroscience research, 

such as non-human primates and rodents, do not appear 

to have vocal learning; they instead are thought to produce 

only innately acquired vocalizations (Jarvis 2004).

The animal models most often used to study the neural 

basis of vocal learning are songbirds. This is due to a 

combination of factors that include, but are not limited to, 

the relatively well understood anatomical and functional 

organization of the brain circuits that underlie vocal 

learning, their superb vocal learning abilities, a well defi ned 

window for the development of this behavior, ease of use, 

and availability.

The acquisition of learned vocal communication 

signals in songbirds appears to involve two critical stages: 
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Songbirds rely on auditory processing of natural communication signals for a number of social behaviors, including 
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cortex in mammals. Stimulation of songbirds with auditory stimuli drives vigorous electrophysiological responses and 

the expression of several activity-regulated genes in NCM. Interestingly, NCM neurons are tuned to species-specifi c 

songs and undergo some forms of experience-dependent plasticity in-vivo. These activity-dependent changes may 

underlie long-term modifi cations in the functional performance of NCM and constitute a potential neural substrate for 

auditory discrimination. We end this review by discussing evidence that suggests that NCM may be a site of auditory 
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(i) a sensory phase, when birds must listen to and memorize 

the vocalizations of an adult tutor – the memorized tutor 

model vocalizations are known as the "template memory"; 

(ii) a sensorimotor phase, when young birds hear their own 

vocalizations and use the template memory to "calibrate" 

their vocal output through sensorimotor feedback (for 

reviews, see Zeigler and Marler 2004). Much is known 

about the neural basis underlying the sensorimotor phase. 

However, the processes and loci where template memories, 

and other auditory memories, are formed and/or stored 

remain largely unknown. This article reviews evidence

that suggests that an auditory forebrain area residing 

outside of the traditional song-control circuit, namely the 

caudomedial nidopallium (NCM), may play a central role 

in auditory processing related to the formation of auditory 

memories required for auditory discrimination and vocal 

learning.

Understanding the neural basis of vocal learning in 

songbirds may shed light on the mechanisms responsible 

for the acquisition of spoken language in humans, as a 

number of similarities exist in how humans acquire and 

develop speech, and how songbirds learn their songs (Doupe 

and Kuhl 1999). For instance, both humans and songbirds 

must hear a tutor during a sensitive period early in life to 

form auditory memories (i.e. template memories) of how 

vocalizations are "expected" to sound. These auditory 

memory traces are thought to be used as templates against 

which the learning individual matches its own developing 

vocalizations through sensorimotor integration, using 

auditory feedback as an error-correcting mechanism (for 

reviews, see Doupe and Kuhl 1999; Zeigler and Marler 2004). 

Thus, after tutor exposure, vocal learners engage in vocal 

practice that requires auditory feedback to appropriately 

develop their learned vocalizations (Konishi 1985; Marler 

1991; Okanoya and Yamaguchi 1997; Funabiki and Konishi 

2003). Intact auditory processing, and seemingly the 

formation of auditory memories are, therefore, required 

for the normal development of vocal learning behavior. For 

example, deafening and other forms of interference with 

auditory feedback prevents both song learning in songbirds 

and normal speech acquisition in humans (Konishi 1965; 

Marler and Waser 1977; Woolley and Rubel 1997; Doupe 

and Kuhl 1999; Woolley 2004; Zeigler and Marler 2004). 

Intact hearing is also needed for the maintenance of learned 

adult songs. Impairment of auditory feedback in adult 

songbirds leads to a gradual deterioration of learned song 

structure (Nordeen and Nordeen 1992; Woolley and Rubel 

1997; Leonardo and Konishi 1999). Interestingly, this is also 

the case in humans: adults that become deaf after learning 

to speak also experience a steady decline in the structural 

features of speech (Cowie et al 1982; Cowie and Douglas-

Cowie 1983, 1992; Waldstein 1990). Given that auditory 

processing is not only required for vocal learning, but also 

for the maintenance of learned communication signals, a 

signifi cant effort in the fi eld has been directed at uncovering 

the anatomical and functional organization of circuits that 

underlie auditory processing and thus enable the formation 

of auditory memories.

2. The song-control system

The learning and production of birdsong is under the control 

of a system of brain structures known as the song-control 

system (Nottebohm and Arnold 1976; Nottebohm et al. 

1982; Bottjer et al 1989. 2000; Vicario 1991; Vates and 

Nottebohm 1995; Wild 2004; Zeigler and Marler 2004). 

This system is generally divided into two pathways: A motor 

pathway (also known as the posterior forebrain pathway; 

PFP) that controls production of song through projections 

that originate from telencephalic brain areas and target 

brainstem centers associated with vocal and respiratory 

function (Nottebohm and Arnold 1976; Vicario 1991; Wild 

1997), and an anterior forebrain pathway (AFP) that is 

associated with the learning and maintenance of the bird’s 

own song (Bottjer et al 1984; Sohrabji et al 1990; Scharff 

and Nottebohm 1991; Brainard and Doupe 2000; Brainard, 

2004 Wild, 2004) (fi gure 1). The PFP encompasses 

successive projections from the nidopallial nucleus HVC (a 

letter-based name), to the robust nucleus of the arcopallium 

(RA), and the descending projections of the latter onto the 

dorsomedial nucleus of the intercollicular complex (DM), 

the tracheosyringeal component of the hypoglossal nerve 

nucleus (nXIIts), which innervates muscles of the vocal 

organ (syrinx), and medullary respiratory centers. The AFP 

encompasses a set of topographically organized projections 

from area X of the medial striatum to the medial part of the 

dorsolateral thalamic nucleus (DLM), from DLM to the 

lateral magnocellular nucleus of the anterior nidopallium 

(LMAN), and from the latter back to area X (Bottjer et al 

1989; Johnson et al 1995; Vates et al 1996; Luo and Perkel 

1999a; Luo et al 2001). This projection system is thought to 

be analogous to basal ganglia-thalamo-cortical loops found 

in the mammalian brain that appear to be involved in the 

acquisition and/or performance of movements requiring 

fi ne sequential sensorimotor integration (reviewed in Parent 

and Hazrati 1995; Bottjer and Johnson 1997; Bottjer 2004; 

Farries 2004; Perkel 2004).

Given that the song-control system plays a critical role in 

vocal learning in songbirds, it has been generally believed 

that auditory processing, discrimination and the formation 

of auditory memories required for vocal learning are 

performed by this set of brain structures. Indeed, song-driven 

electrophysiological responses have been reported in all of the 

nuclei of the song-control system (Williams and Nottebohm 

1985; Doupe 1993; Margoliash 1997). These responses show 

selectivity to the bird’s own song (BOS) (Margoliash 1983; 
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Williams and Nottebohm 1985; Doupe and Konishi 1991; 

Vicario and Yohay 1993), and such selectivity emerges during 

a sensitive period for vocal learning, usually early in life 

(Solis and Doupe 1997, 1999, 2000; Theunissen et al 2004). 

Importantly, however, these vigorous song-evoked responses 

are generally only observed when birds are under anesthesia 

or asleep, and are signifi cantly less robust or absent in the 

awake animal (Dave et al 1998; Schmidt and Konishi 1998; 

Dave and Margoliash 2000; Nick and Konishi 2001, 2005). 

At least in song nucleus HVC, song-evoked activity appears 

to be directly modulated, or gated, by specifi c behavioral 

states, such as arousal and attentional processing (Cardin and 

Schmidt 2003; Rauske et al 2003).

Although the likely contributions of the song-control 

system to the auditory processing of songs and the formation 

of auditory memories remains unclear, mounting evidence 

suggests that the central auditory pathways in songbirds 

are crucial for song auditory processing and perception, 

and may also play a role in the memorization of song that 

is required for perceptual discrimination and possibly 

vocal learning (for reviews, see Gentner 2004; Mello et al 

2004; Bolhuis and Gahr 2006). In fact, discriminating and 

memorizing the spectro-temporal properties of songs, which 

is necessary for a number of key behaviors in songbirds 

such as individual recognition and territorial defense, does 

not appear to require an intact song-control system. For 

most songbird species, auditory discrimination occurs in 

both sexes, even though females do not typically produce 

song and have either a largely atrophied, or an entirely 

absent song-control system (Kroodsma and Miller 1996; 

Ratcliffe and Otter 1996). In fact, females choose potential 

breeding partners based on auditory discrimination of songs’ 

acoustic features, suggesting that the contributions of the 

song-control system to auditory discrimination and the 

formation of auditory memories may be limited (Ratcliffe 

and Otter 1996; Gentner and Hulse 2000; Nowicki and 

Searcy 2004). The zebra fi nch (Taeniopygia guttata) is a 

good example to illustrate this point. It is perhaps the most 

commonly used species for song learning studies, yet female 

zebra fi nches never sing and a large neuroanatomical sex 

difference exists in the song-control system (Brenowitz and 

Kroodsma 1996; MacDougall-Shackleton and Ball 1999). 

Both male and female zebra fi nches that are exposed to 

song early in life have been reported to show an equally 

strong infl uence of the tutor's song on adult song preferences 

(Riebel et al 2002). This fi nding suggests that the neural 

basis for song recognition learning is at least partially, if 

not completely, independent of that for song production 

learning. However, the presence of a song-control system 

may still have some infl uence on learning to recognize 

songs and other vocalizations, as behavioral assays have 

shown that some sex differences in discrimination occur 

in zebra fi nches. For instance, females need more trials 

than males in learning certain acoustic discrimination tasks 

(Cynx et al 1990; Cynx and Nottebohm 1992). Furthermore, 

female responses to conspecifi c (same species) calls appear 

to be infl uenced by stimulus duration and not spectral 

content (Vicario et al 2002). Conversely, only males show a 

categorical preference for female calls, with responses that 

are based upon both temporal and spectral characteristics of 

a call stimulus (Vicario et al 2002). It is not clear, however, 

to what degree these reported sex differences in responses to 

vocalizations refl ect differences in perceptual processing of 

auditory signals, behavioural motivation, or other unknown 

variables. Sex differences in sensory processing might 

be related to differences in the song-control circuitry, but 

may also refl ect a neural dimorphism elsewhere. Whatever 

the case may be, it is clear that females, the consumers of 

song in the context of mate selection, are able to process, 

discriminate and memorize biologically important learned 

social communication signals, suggesting that an intact 

Figure 1. Schematic representation of a parasagittal section 

through a zebra fi nch brain detailing the connectivity of the main 

stations of song-control system. For clarity, only the main nuclei 

and projections are shown in this diagram. Projection systems 

participating in the PFP are indicated by black arrows, while 

projections that compose the AFP are detailed by white arrows. 

The illustration of the syrinx in this fi gure was adapted from Goller 

and Suthers (1996), while the remainder of the fi gure was partly 

assembled by Erich Jarvis. Anatomical abbreviations not mentioned 

above or in text: DM, dorsal medial mesencephalic nucleus; E, 

entopallium; H, hyperpalium; Hp, hippocampus; M, mesopallium; 

MLd, dorsal lateral mesencephalic nucleus; N, nidopallium; NIf, 

interface nucleus; Ov, ovoidalis; St, striatum; v, ventricle.



song-control system is not required for these behaviours.

 3. Auditory telencephalic circuitry

These facts have encouraged researchers to look at brain 

regions outside of the traditional song-control system that 

may serve as neural substrates for song perceptual processing, 

recognition and memorization. Songbirds have a set of 

ascending and descending projections that are analogous to 

the mammalian auditory system. Much fruitful work has been 

done in studies of the ascending auditory pathway, especially 

at the level of the telencephalon. As with mammals, the 

songbird ascending pathway conveys auditory information 

from the cochlea to telencephalic centers via a chain of 

pontine, mesencephalic and thalamic nuclei (Karten 1967, 

1968; Kelley and Nottebohm 1979; Brauth et al 1987; Vates 

et al 1996; Mello et al 1998) (fi gure 2). In the telencephalon, 

several auditory areas are located within the caudomedial 

region, and the pallial areas make up an interconnected 

circuit that is analogous, and possibly homologous, to the 

mammalian auditory cortex. The caudomedial telencephalon 

contains the thalamo-recipient fi eld L2, which is comparable 

to the thalamo-recipient layer IV of the mammalian primary 

auditory cortex, and two of its targets, the NCM (former 

caudomedial neostriatum) and the caudomedial mesopallium 

(CMM; former caudomedial hyperstriatum ventrale). NCM is 

thought to be comparable, based on anatomical connectivity 

studies, to the supragranular cortical layers of the mammalian 

primary auditory cortex (Karten 1967, 1968; Kelley and 

Nottebohm 1979; Brauth et al 1987; Vates et al 1996; Mello 

et al 1998) (fi gure 2). From fi eld L2 and its targets, auditory 

input reaches other telencephalic areas, including those

that contribute to descending auditory projections, such

as the shelf region underneath song nucleus HVC and

the cup area anterior to song nucleus RA (Mello et al

1998). One or more of these central auditory pathways are 

likely to be involved in the song memorization required for 

perceptual discrimination and song learning (for reviews, see 

Gentner 2004; Mello et al 2004; Bolhuis and Gahr 2006; 

see also Terpstra et al 2004; Terpstra et al 2006; Gobes and 

Bolhuis 2007). Possible candidates include NCM and CMM, 

given that these regions exhibit the highest neuronal activation, 

as revealed by immediate early gene (IEG) expression, as a 

result of hearing songs in the awake, behaving songbird (in 

both males and females), relative to other acoustic stimuli 

(detailed below). In this review we focus primarily on NCM, 

an auditory forebrain area that exhibits functional features 

analogous to the mammalian auditory association cortex, 

as a potential site involved in the perceptual processing 

and formation of auditory memories required for auditory 

discrimination and possibly vocal learning.

4. The songbird NCM: Possible involvement in 

auditory discrimination and memory formation

The fi eld’s current understanding of the anatomical and 

functional organization of the auditory stations in the 

songbird brain has been signifi cantly advanced by the use 

of activity-dependent markers, especially the expression 

of IEGs. Members of this class of genes are expressed 

rapidly and robustly as a result of many types of cellular 

stimulation, including neuronal activation (for reviews, 

see Herdegen and Leah 1998; Kaczmarek and Robertson 

2002; Pinaud and Tremere 2006). The activity-dependent 

IEG zenk (an acronym for the names of this gene in 

other species: zif268, egr-1, NGFI-A and krox-24) is the 

most commonly used IEG in avian studies. It encodes a 

transcriptional regulator (zif268, egr-1, NGF1A, Krox24, 

ZENK) that is extremely sensitive to neuronal depolarization 

and has been repeatedly implicated in paradigms of neuronal 

plasticity (Kaczmarek and Robertson 2002; Mello et al 2004; 

Pinaud 2004; Pinaud and Tremere 2006). The expression 

of zenk has proved very useful to map global patterns of 

neuronal activation that occur in response to a variety of 

experimental paradigms in the songbird fi eld, including 

hearing, singing and song-learning (for reviews, see Mello 

2002a; Zeigler and Marler 2004; Bolhuis and Gahr 2006; 
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Figure 2. Schematic diagram of a parasagittal section through 

a zebra fi nch brain illustrating the main stations of the ascending 

auditory pathway. For clarity, only the main nuclei and projections 

are shown in this diagram. The focus of the present study, NCM, 

receives input from the thalamo-recipient layer Field L2, and 

has reciprocal connectivity with the caudal mesopallium (CM). 

This fi gure was partly assembled by Erich Jarvis. Anatomical 

abbreviations not mentioned above or in text: CN, cochlear nuclei; 

LL, lateral lemniscal nuclei; SO, superior olive.



Mello and Pinaud 2006). Song playback triggers a rapid 

and robust induction of zenk in multiple structures of the 

songbird auditory telencephalon, including CMM, NCM, 

the thalamo-recipient fi eld L (subfi elds L1 and L3, but not 

L2) and the cup and shelf regions that are adjacent to song-

control nuclei RA and HVC, respectively (Mello et al 1992, 

1998; Mello and Clayton 1994; Mello 2002b). Importantly, 

the highest expression of zenk in response to auditory

input anywhere in the songbird brain is in NCM (Mello

et al 1992, 2004), while hearing songs does not drive

zenk expression in the song-control nuclei (reviewed in 

Mello 2002b; Mello et al 2004) (fi gure 3). These fi ndings 

show that auditory input in freely-behaving animals drives 

signifi cant activity-dependent gene expression in multiple 

stations of the auditory telencephalon, especially in NCM, 

but signifi cantly less, if any, in all stations of the song-control 

system.

Subsequent electrophysiological fi ndings supported 

and expanded upon the zenk expression data. Stimulation 

of awake songbirds with a variety of auditory stimuli 

(detailed below) drives vigorous multi-unit responses in 

NCM (Chew et al 1995, 1996; Stripling et al 1997, 2001; 

Terleph et al 2006 2007). NCM responses to stimuli usually 

consist of bursts of action potentials associated with onset, 
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Figure 3. Induction of zenk mRNA and protein levels in the songbird forebrain following exposure to song. (A) In-situ hybridization 

autoradiogram of a section of an adult male zebra fi nch exposed to 45 minutes of playbacks of conspecifi c songs. (B) Unstimulated control. 

These sections correspond to parasagittal plane 250 µm lateral to the medial surface of the brain. (C) ZENK expression, revealed by 

immunocytochemistry, in the caudomedial telencephalon. Notice the presence of numerous ZENK-labeled cell nuclei after song stimulation 

in the zebra fi nch caudomedial nidopallium (NCM). (D) Unstimulated control. (E) Map of ZENK expression in the NCM of a canary 

resulting from presentation of a playback of conspecifi c songs. (F) Unstimulated control. Colors and brightness correspond to relative 

density and intensity of labeling of ZENK positive cells. Anatomical abbreviations not mentioned above or in text: Hp, hippocampus; T, 

telencephalon. Adapted from Mello et al (1992), Mello and Ribeiro (1998), Ribeiro et al (1998) and Mello and Pinaud (2006).



Raphael Pinaud and Thomas A Terleph150

J. Biosci. 33(1), March 2008

and sometimes offset, of each song syllable, followed 

by sustained fi ring that may bridge the intervals between 

syllables (Terleph et al 2006, 2007).

Interestingly, these auditory-evoked responses in NCM 

are more selective towards complex stimuli (Müller 

and Leppelsack 1985) and have longer latency than 

hierarchically earlier auditory stations, such as fi eld L (Sen 

et al 2001). Recent fi ndings indicate that, not surprisingly 

for a structure in the ascending auditory pathway, NCM has 

a tonotopic organization. Electrophysiological responses to 

low and high frequencies are observed dorsally and ventrally, 

respectively, in both canaries and zebra fi nches (Terleph et 

al 2006, 2007). ZENK expression experiments have also 

revealed a tonotopic organization in the canary NCM: 

neuronal ensemble activity follows a frequency-dependent 

organization with low frequency whistles (canary song 

syllables) activating clusters of cells dorsally in NCM, while 

stimulation of animals with whistles of higher frequencies 

activates neurons that are located more ventrally (Ribeiro et 

al., 1998). Thus, fi ndings obtained with ZENK expression 

are consistent with those obtained with electrophysiological 

approaches (Terleph et al 2006, 2007).

5. Song-specifi c habituation may serve as a neural 

basis for auditory discrimination

Perhaps one of the most interesting features of NCM 

neurons is that their electrophysiological responses undergo 

a marked decrease (or "habituation") as a result of repeated 

presentations of the same stimulus in both zebra fi nches 

(Chew et al 1995) and canaries (Terleph et al 2006) (fi gures 

4 and 5). Habituation to repeated song presentation is rapid, 

occurring in a time-scale of seconds, and is song-specifi c, 

as presentation of novel auditory stimuli re-instate vigorous 

electrophysiological responses (Chew et al 1995) (fi gure 

4). Song-specifi c habituated responses in NCM are long-

lasting and exhibit conspecifi c song selectivity; habituated 

responses last far longer (>40 h) for conspecifi c song stimuli 

than for heterospecifi c songs (~5 h) (Chew et al 1995, 

1996) (fi gure 5). Moreover, the long-lasting maintenance 

of habituated responses depends on protein synthesis, as the 

phenomenon is blocked by either RNA or protein synthesis 

inhibitors (Chew et al 1995).

Interestingly, a marked decrease in the expression levels 

of the activity-dependent gene zenk have also been reported 

after repeated presentations of a given song (Mello et al 

1995), a response that is similar to the electrophysiological 

habituation described above. Likewise, zenk expression 

levels remain strong in response to novel songs (Mello 

et al 1995). Although a causal relationship between zenk 

expression and the long-term maintenance of habituated 

electrophysiological responses has not been established, 

these fi ndings suggest that NCM neurons are able to keep 

Figure 4. Electrophysiological recordings (multi-unit activity) 

obtained from NCM in response to the sequential presentation of 

four different conspecifi c songs. Note that repeated presentations 

of the same song lead to a rapid and signifi cant decrease in the 

responsiveness of NCM units for each of the songs (inter-song 

interval 11-12 s). Once responses are habituated to a given 

song and re-tested later (grey dotted lines, dark bars on x axis), 

electrophysiological activity remains decreased in a song-specifi c 

manner even after training with the other songs. Adapted, with 

author’s permission, from Chew et al (1995); PNAS 92: 3406-

3410. Copyright © 1995 by The National Academy of Sciences of 

the United States of America, all rights reserved.

Figure 5. Habituation of NCM responses are long-lasting, 

especially for conspecifi c songs. Plotted are habituation rates (+ SE) 

for conspecifi c (�), heterospecifi c songs (�) and human speech 

(▲) at various delays from training to testing. The histograms 

show the percentage frequency distributions of habituation rates 

for novel songs (open bars) and familiar songs tested after ≤ 10 

h (solid bars). The small area of overlap of these distributions is 

represented by shaded bars. The dashed horizontal lines indicate 

the mean habituation rates for novel (upper line) and familiar 

(lower line) songs. Adapted, with author’s permission, from Chew 

et al (1995); PNAS 92: 3406-3410. Copyright © 1995 by The 

National Academy of Sciences of the United States of America, all 

rights reserved.
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cellular memory traces of songs that they have been exposed 

to (as habituated responses persist for long periods of time), 

and are able to discriminate across songs (as habituated 

responses can be immediately reinstated upon presentation 

of a novel song).

6. NCM activity is selective to conspecifi c auditory 

stimuli and likely modulated by behavioral salience

Previous electrophysiological studies have also demonstrated 

that NCM neurons respond preferentially (more vigorously) 

to conspecifi c songs, as compared to heterospecifi c songs 

or artifi cial stimuli, such as pure tones (Chew et al 1996; 

Stripling et al 2001), although at least one study did not fi nd 

such a preference (Stripling et al 1997). Importantly, unlike 

in areas of the song-control system, these preferential song-

evoked responses occur in awake animals. The selectivity 

of NCM neurons to conspecifi c songs has also been 

documented on the basis of zenk expression. Stimulation of 

songbirds (either zebra fi nches or canaries) with playback 

of conspecifi c songs triggers signifi cantly higher zenk 

expression levels in NCM as compared to stimulation 

with heterospecifi c songs or pure tones (Mello et al 1992). 

This evidence that NCM neurons are tuned to conspecifi c 

acoustic stimuli suggests that this auditory area may play a 

role in auditory discrimination. Direct data to support this 

hypothesis, however, remains to be found.

In addition to a species-specifi c preference, ZENK 

activity in NCM may depend upon the social relevance 

of songs. For example, NCM activity in white-crowned 

sparrows (Zonotrichia leucophrys oriantha), as revealed 

by ZENK expression, is proportional to a bird’s behavioral 

preference for a stimulus. Greater numbers of ZENK-

positive cells are detected in response to the song of one’s 

hatch-dialect, relative to a foreign dialect song (Maney et al 

2003). Similarly, the expression of a behavior that is a part 

of copulation solicitation display (wing quivering) correlates 

positively with this increased ZENK response to song in 

NCM (Maney et al 2003). Furthermore, ZENK induction is 

greater in the NCM of female European starlings (Sturnus 

vulgaris) in response to long conspecifi c song bouts, which 

are thought to be more attractive than short song bouts 

(Gentner et al 2001).

These ZENK expression fi ndings suggest that NCM 

does not likely respond in a simple way to broad categories 

of acoustic stimuli, but may also be infl uenced by sounds 

that vary subtly in their behavioural relevance (beyond a 

mere species preference), a central factor in the gating and 

facilitation of memory formation. However, the relevance 

of a song for a receiver is not necessarily restricted to the 

signal’s social context. For instance, it has been reported that 

re-introduction of a "familiar" (habituated) song in a new 

context (from the opposite side of the cage, at a reduced sound 

level, or paired with colored lights) leads to a re-induction of 

ZENK expression to that song (Kruse et al 2004). Moreover, 

it has been shown that previous pairing of a song with shock 

results in an increase in the ZENK response to that song 

when presented alone (Jarvis et al 1995). Together, these 

studies suggest that activity in NCM is not only tuned to 

behaviorally meaningful vocal communication signals, 

but may also be infl uenced by many factors other than the 

auditory input alone. NCM may, therefore, be involved in 

the integration of behaviorally-relevant sensory information 

to enhance the salience of acoustic stimuli.

7. NCM as a key site for the formation of 

auditory memories?

As described above, the sensory phase of vocal learning 

behavior involves the memorization of a tutor song (the 

"template memory") that may be used as a reference in the 

calibration of the developing bird’s own song. A signifi cant 

effort in the fi eld has been to uncover where the auditory 

memory associated with the tutor song is formed and/or 

stored in the songbird brain. Given that the song system is 

Figure 6. Graph sets illustrating the correlation between the 

number of neurons immunoreactive for the IEGs zenk (top) and c-

fos (bottom) in NCM and the strength of song learning in individual 

zebra fi nches that were tutored and re-exposed to the tutor song 

(red). In control animals, that were tutored but not re-exposed to 

the tutor song, the correlation is not signifi cant. Adapted, with 

author’s permission, from Bolhuis et al (2000); PNAS 97: 2282-

2285. Copyright © 2000 by The National Academy of Sciences of 

the United States of America, all rights reserved.
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clearly involved in the vocal learning process, it is generally 

thought that the neural substrate of these auditory memories 

is embedded in the song-control system and that auditory 

information (from feedback of hearing one’s-self) must 

reach the song-control system for correction of the vocal 

output. However, as indicated above, auditory-evoked 

responses are primarily seen under anesthesia and are

weak or mostly absent in awake songbirds (Dave et al

1998; Schmidt and Konishi 1998; Dave and Margoliash 

2000; but see Cardin and Schmidt 2003; Rauske et al 

2003).

Recent electrophysiological fi ndings suggest that NCM 

neurons of adult male zebra fi nches are selectively tuned to 

the song of a tutor heard early in life, and that the strength of 

this selectivity correlates with the fi delity of vocal imitation 

(Phan et al, 2006). Similarly, Bolhuis and colleagues found 

a strong and positive correlation between the strength of 

song learning (the number of elements that males copy 

from a tutor’s song) and the number of neurons that were 

immunoreactive to the proteins encoded by the activity-

dependent IEGs zenk and c-fos in NCM, also suggesting 

that NCM’s activity is higher when song memories are 

presumably stronger or more established (Bolhuis et al 2000, 

2001) (fi gure 6). These fi ndings also suggest that NCM may 

be part of the neural substrate for representing the tutor 

song memory trace. The thalamo-recipient fi eld L2, which 

projects to NCM, also exhibits vigorous electrophysiological 

responses to sounds and shows a tonotopic gradient, but 

lacks the selectivity to complex sounds and habituation 

to repeated song stimulation found in NCM (Muller and 

Leppelsack 1985; Terleph et al 2006). This suggests that the 

response properties described above likely arise from within 

NCM circuitry and not from earlier stations in the ascending 

auditory pathway.

A recent study provided further evidence that tutor-song 

memories may be represented within NCM. It was found 

that restricted bilateral neurotoxic lesions of NCM in adult 

male zebra fi nches impaired tutor-song recognition, but 

did not affect song production (Gobes and Bolhuis 2007). 

Furthermore, this lesion-induced decrease in tutor-song 

preference did not appear to be related to an impact in 

behavioural motivation or a reduced ability to discriminate 

auditory information, as lesioned animals retained the 

capacity to discriminate calls (Gobes and Bolhuis 2007). 

These fi ndings suggest that NCM circuitry, or processing 

at the level of this auditory area, may be necessary for the 

representation of tutor-song memories.

Based on the data discussed above, NCM is a likely 

candidate site for song-memory formation. Little evidence 

exists for a signifi cant sexual dimorphism in the anatomical 

and functional organization in the NCM of developing and 

adult songbirds, and the dimorphisms described to date 

are far less pronounced than those observed in the highly 

sexually-dimorphic song-control system (Bailey and Wade 

2003, 2005; Pinaud et al 2006; but see Terpstra et al 2004, 

2006). If this hypothesis proves to be correct, the similarities 

between the male and female NCM may explain why song 

discrimination, which requires the formation of auditory 

memories, is possible for either sex. Both males and females 

also show robust electrophysiological and IEG responses 

to conspecifi c songs in NCM and, under normal housing 

conditions, the frequency tuning width of responses to tone 

stimuli does not show a sex difference in NCM for either 

zebra fi nches or canaries (Terleph et al 2007).

8. Concluding remarks

The body of data described above shows that song stimulation 

triggers vigorous activity in NCM; this activity is selective 

to conspecifi c auditory stimuli and results in long-lasting, 

experience-dependent plasticity that may promote memory 

formation required for key behaviours in songbirds including 

vocal learning for males, preference learning for females, and 

auditory discrimination. These long-lasting modifi cations 

presumably involve the engagement of molecular cascades 

that are associated with electrophysiological activity, and 

underlie experience-dependent anatomical and functional 

changes in NCM circuitry (Clayton 2000; Mello et al 2004; 

Mello and Pinaud 2006). A few molecules that participate 

in this cascade are currently known and involve four 

transcription factors (Mello et al 1992; Nastiuk et al 1994; 

Velho et al 2005) and two signalling molecules (Cheng 

and Clayton 2004; Huesmann and Clayton 2006). Recent 

experiments involving large-scale quantitative proteomics 

screening strategies have uncovered multiple signaling 

pathways that are activated in NCM as a result of auditory 

experience (Pinaud et al 2008). Future studies will be 

directed at fully characterizing the molecular cascades that 

mediate experience-dependent plasticity events in NCM and 

investigating how they are dynamically regulated. Finally, 

efforts will also be focused at establishing the precise roles 

that plasticity-related molecules play in modifying the 

physiology of single cells and neuronal ensembles in NCM 

in the process of generating adaptive neural responses that 

guide behavior.

In summary, NCM does not appear to play a minor role 

in relaying auditory information in the ascending auditory 

pathway, but rather may play a signifi cant role in higher 

order network properties that guide the behaviors that rely 

on auditory information.
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