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Abstract

We revisit the computation of bubble wall friction during a cosmological first-
order phase transition, using an extended fluid Ansatz to solve the linearized
Boltzmann equation. A singularity is found in the fluctuations of background
species as the wall approaches the speed of sound. Using hydrodynamics, we ar-
gue that a discontinuity across the speed of sound is expected on general grounds,
which manifests itself as the singularity in the solution of the linearized system.
We discuss this result in comparison with alternative approaches proposed re-
cently, which find a regular behaviour of the friction for all velocities.
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1 Introduction

The recent detection of gravitational waves, and the forthcoming launch of the space-
based interferometer LISA, have recently boosted the interest on the dynamics of phase
transitions in the early Universe and their observational consequences. If the phase
transition is first order, it will proceed via bubble nucleation, expansion and percola-
tion, producing sound waves and turbulence in the plasma which, together with the
kinetic energy of the Higgs field, could source stochastic gravitational waves observ-
able by LISA [1, 2]. Other relics could also be produced during this process, such as
a dark matter abundance [3] and a matter-antimatter asymmetry [4, 5, 6], and hence
the detection of primordial radiation by LISA could also give us information on the
underlying particle physics model. Crucially, the abundance of relics produced by this
phase transition depends, among other few parameters, on the expansion velocity of
these bubbles. The determination of this velocity depends on the microphysics of the
interactions of the bubble wall with particles in the plasma. The passage of the bubble
will drive the plasma out of equilibrium, and this will backreact on the bubble, act-
ing as a dissipative friction force which tends to halt its expansion. Thus, an accurate
determination of these relics, especially the stochastic gravitational wave spectrum gen-
erated at the early Universe, relies on an adequate modelling of this out-of-equilibrium
dynamics between the Higgs field and the hot plasma.

The calculation of this plasma friction has been previously tackled in the litera-
ture using the so-called fluid Ansatz for the non-equilibrium particle distribution func-
tion [7, 8]. This approach describes non-equilibrium via three fluctuations — chemical
potential, temperature and velocity fluctuations —, each with a specific momentum de-
pendence. This allows for the computation of the collision terms (at least in a leading-
log approximation), thus converting the integro-differential Boltzmann equation into a
more manageable set of ODE’s for the three parameters appearing in the Ansatz. It is
then found that the friction becomes singular as the wall velocity approaches the speed
of sound in the plasma [7, 8] — an effect akin to a sonic boom. Furthermore, the for-
malism also predicted that baryogenesis would be utterly impossible at any supersonic
wall velocity.

In fact, both effects have one and the same origin: a vanishing eigenvalue in the
kinetic matrix of the Boltzmann system when the wall velocity equals the sound speed.
At this singular point, all damping rates become increasingly large, meaning that all
modes which tend to be brought back to equilibrium by mutual collisions will do so very
quickly. Baryogenesis then vanishes because it cannot work in equilibrium. However,
energy-momentum conservation requires some of the fluctuations of the light species
(such as photons, gluons and light fermions) to actually be undamped, and in this case
the vanishing eigenvalue in the kinetic matrix will translate to a discontinuity in the
temperature and velocity of the plasma across the wall boundary. The need for such a
discontinuity is in fact confirmed by macroscopic hydrodynamical analyses [9, 10, 11,
12].

Recently, however, an alternative approach for treating the dynamics of microscopic
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non-equilibrium has been put forward [13], claiming to solve the Boltzmann equation
without specifying any Ansatz for the particle abundances 1. Instead, the authors intro-
duce an implicit truncation scheme in the mode expansion of the system, assuming that
all higher moments of the distribution function are proportional to the first order fluctu-
ation in velocities. It is then shown that the formalism predicts a continuous behaviour
for observables at all wall velocities, including across the speed of sound boundary.
In particular it predicts that electroweak baryogenesis can even work with supersonic
walls, even if at a somewhat reduced rate. When applied to a study of the friction and
the wall velocity, the formalism again predicted a continuous behaviour [25]2.

One is then led to wonder about the origin of such discrepancies and the reliability
of two different methods that yield so contrasting results. For the baryogenesis compu-
tation this issue has been recently tackled in [28], where it was shown that supersonic
baryogenesis is indeed possible (even if suppressed) if one considers an extended fluid
Ansatz with more than just three perturbations. Moreover, a continuous behaviour
does indeed emerge across all velocities as more and more perturbations are included
in the description, thus bringing the predictions of the fluid Ansatz in agreement with
those of the Ansatz -less approach of [13].

However, it still remains to be settled whether the two approaches would lead to
similar predictions for the friction calculation as well, i.e. whether the discontinuity
predicted in the three-fluid approximation for the background fluctuations could be
brought under control by extending the Ansatz to include more perturbations. The
goal of the present paper is to assess this question. It will be found that, unfortunately,
the answer is negative.

Even though the friction in the bubble wall during the phase transition constitutes
a quite similar problem to baryogenesis, there are some notable differences. One main
difference being that, for the friction calculation, one is interested in CP-even devia-
tions from equilibrium, whereas for baryogenesis they are CP-odd, and this leads to
some qualitative differences in the collision terms. Furthermore, energy-momentum
conservation plays a prominent role in the friction calculation. At the same time, as
mentioned above, the singularity in the friction close to the speed of sound is caused
by essentially the same reason that suppresses the baryon asymmetry for supersonic
walls: some of the eigenvalues of the linearized fluid system change sign as the wall
speed becomes supersonic. For baryogenesis, this leads to the fact that deviations are
only non-zero behind that wall, thus suppressing the BAU. For the friction calculation
the sign change of the eigenvalue results in a divergence of the friction (and hence the
breakdown of the perturbative scheme).

In the present work, we will argue that the discontinuity in the friction calculation is
actually physical. We will study in detail the origin of the singularity of the lineralized
system. We give some general arguments why such a ‘sonic boom’ should occur in
the plasma for wall velocities close to the speed of sound. Finally, we support our

1For other recent developments on bubble wall friction see [14, 15, 16, 17, 18, 19, 20, 21, 22, 27, 24].
2Recent applications of this approach can be found in [26, 27].
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arguments with an explicit calculation using higher moments and a generalized Ansatz
in the Boltzmann equation, as done in [28] for the analysis of the baryon asymmetry.

The paper is organized as follows. In section 2 we review the hydrodynamics of the
phase transition to show that a discontinuity in temperature and fluid velocity across the
bubble wall is expected on the grounds of energy-momentum conservation. Our point is
that the macroscopic analysis confirms the discontinuity predicted by the microphysical
approach with the fluid Ansatz. In section 3 we review the friction calculation with the
three-fluid Ansatz of [8] and discuss how the discontinuity emerges in this approach.
The extended fluid Ansatz is then reviewed in section 4, and the friction calculation is
performed in section 5, where we also show our main results. Finally, section 6 is left
for discussions and conclusions.

2 The origin of the discontinuity

Before we study the friction calculation using an extended Ansatz for the fluid, we will
provide some general arguments based on hydrodynamic considerations.

As we will see later, in the linearized system the origin of the singularity/discontinuity
in the friction arises from a sign change in the eigenvalues of the Liouville operator in
conjunction with energy-momentum-conservation. This system can also be studied on
length scales much larger than the longest damping scale in the problem. Since the
wall thickness is many orders smaller than the bubble size, this separation of scales is
easily achieved. This system is then in local equilibrium and fulfills the hydrodynamic
equations.

This hydrodynamic setup is typically studied to analyze the overall energy bud-
get of the phase transition and the expansions mode. In the following we follow the
conventions of [12].

Consider a system where the plasma in both phases is described by a radiation
component and a bag constant ε in one of the two phases. The pressure of the system
then reads

p± =
a±
3
T 4 − ε± . (1)

Defining the enthalpy ω = e+ p, conservation of the energy momentum tensor

Tµν = uµuνω − gµνp (2)

then reads (in the wall frame)

∆T0z = ∆Tzz = 0, (3)

or explicitly
γ2

+v
2
+ω+ + p+ = γ2

−v
2
−ω− + p− , γ2

+v+ω+ = γ2
−v−ω− . (4)

A change in the bag constant will be accompanied with a change in the plasma tem-
perature and velocity, T+ 6= T− and v+ 6= v−. Using the notation α = (ε+− ε−)/(a+T

4
+)
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and eliminating the temperatures then leads to the relation [12]

v+ =
1

1 + α

(v−
2

+
1

6v−

)
±
√(

v−
2

+
1

6v−

)2

+ α2 +
2

3
α− 1

3

 . (5)

The equation has per se two solutions but only one solution is consistent globally. For
wall velocities beyond the Jouguet velocity, the fluid in front of the wall has to be at
rest in the plasma frame. This implies v+ > v− and is called a detonation. For wall
velocities below the speed of sound, the fluid behind the wall has to be at rest in the
plasma frame. This implies v+ < v− and is called a deflagration. For wall velocities
in between, hybrid solutions are the most likely outcome which technically are also
deflagrations, v+ < v−. See [12] for details.

The relation (5) has some interesting properties. One can rewrite it as

v+ =
1

1 + α

[
X+ ±

√
X2
− + α2 +

2

3
α

]
(6)

using X± = v−/2± 1/(6v−). For α = 0, the relation reads v+ = X+±X−, which yields
v+ = v− and v+v− = 1/3. For v− → cs = 1/

√
3, one obtains X+ → cs and X− → 0,

which translates into

v+ =
1

1 + α

[
cs ±

√
α2 +

2

3
α

]
for (v− → cs). (7)

However, in the limit of very weak phase transitions and expanding in α one obtains

v+ '
1

1 + α

[
X+ ±X− ±

1

3

α

X−

]
for (α→ 0). (8)

Selecting the physical branch then leads in leading order

v− − v+ =
3v−(1− v2

−)

1− 3v2
−

α , for (α→ 0). (9)

This is basically the expression one will necessarily obtain once the Boltzmann equations
are linearized and expanded around the equilibrium. Unfortunately, this limit shows
a divergence for X− → 0 or v− → cs. The divergence stems from the fact the the
square root in (5) is non-analytic in this limit. Figure 1 shows the exact and linearized
relations between v+ and v−, see (5) and (9). The strength of the phase transition is
α = 0.002 (cf. section 3 below) and only the physical branch is shown for the linearized
relation.

In the Boltzmann equations we will solve, the difference in the equation of state
between the two phases is actually not a bag constant but a mean field term and a bag
constant, so

p+ =
a

3
T 4 − ε, p− =

a

3
T 4 − bm2T 2 , (10)
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Figure 1: The exact (black dashed) and linearized (black solid) curves for the relation
between v+ and v−. The gray shaded region are unphysical. For the linearized relation
only the physical branch is shown, and the discontinuity across the speed of sound
is clear. The strength of the phase transition is α = 0.002. The region in between
the vertical lines in the middle satisfies α/X2

− > 1, where we expect a breakdown of
the linearization procedure. Indeed, it is clear that, outside this region, the solid and
dashed curves agree.

with a, b and ε given by the SM particle content and Higgs potential. The phase
transition will happen close to the critical temperature, so

bm2T 2 ' ε , (11)

since it is weak. This will be enforced by the Higgs equation in the Boltzmann setup.
Defining the strength of the phase transition in terms of the trace of the energy-
momentum tensor [29],

α =
∆θ

3w+

=
2ε− bm2T 2

−

2a T 4
+

' bm2

2a T 2
+

, (12)

then leads again to the result (9) that was obtained with only a bag constant. We will
see later that one can recover this relationship in the linearized Boltzmann equations.

In summary, the physical solution shows a discontinuity close to the speed of sound
(or more precisely the Jouguet velocity) because the globally consistent solutions are
changing the branch of solutions in (5). Linearizing the equation in the bag constant and
the mean field term (which encapsulate the energy injection) then leads to a singularity
in the solution for a wall velocity close to the speed of sound, which stems from the
non-analyticity of the square root in (7).

The solution to the Boltzmann equation will be valid in the regime α � X2
− and

beyond this point the actual solution would saturate to the value in (7) rather than to
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blow up. One should also explicitly check that the solution to the Boltzmann equa-
tion selects the globally consistent branch, meaning v+ ≶ v− for v− ≶ cs. This is
automatically fulfilled for the linearized system if it abides to (9).

3 Linearized Boltzmann setup

The results from the hydrodynamic analysis discussed in section 2 can also be obtained
from a microphysical perspective, studying the non-equilibrium dynamics of the plasma
during the phase transition. For not-too-strong phase transitions, with α� 1, the Higgs
bubble wall is typically thicker than the de Broglie wavelength of plasma particles, and
the non-equilibrium distribution function of particle species i can be found by solving
the semi-classical Boltzmann equation

pµ∂µ fi(x
µ, pµ) +mF µ∂pµ fi(x

µ, pµ) + C[fj] = 0 , (13)

where pµ is the four-momentum of the particles evaluated on-shell (p0 = E =
√
~p 2 +m2),

F µ is the semi-classical force from the wall driving the particles out of equilibrium, and
C is the collision term which tends to bring the system back to equilibrium.

This is a partial integro-differential equation, and in order to make progress we
need to make an Ansatz for the fi’s, such that we can actually solve the integrals in
the collision term and reduce the problem to a set of ordinary differential equations for
the fluctuations characterizing the displacement from equilibrium. We will postpone
a detailed discussion on this issue until the next section, focusing here instead on the
general argument which will allow us to recover the results of section 2.

First, note that, in principle, there is one such set of equations for each particle
species in the plasma. However, only the heavier species, such as the W±’s, Z0’s
and top quarks, feel the passage of the bubble and have a significant non-vanishing
source term. The other species, namely photons, gluons, light quarks and leptons,
remain very close to mutual equilibrium among themselves, and characterize the so-
called background. They are collectively driven out of equilibrium due to collisions with
the heavy particles, which communicate the passage of the bubble to the background.
We will parametrize the fluctuations of the heavy species relative to the background
fluctuations.

Following [7, 8] we can model the non-equilibrium functions fi as

fi(x, p) =
1

eβ(pµuµ−δp−δp,bg) ± 1
, (14)

with β−1 = T the temperature of the plasma and uµ its four-velocity relative to the
observer. Expanding the fluctuations in powers of momenta and keeping only first order
terms one obtains

δperfect fluid
p = δµ+ pµ(δuµ − uµδT/T ), (15)

and analogously for δp,bg. The plasma four-vector is in the wall frame given as uµ =
γw(1, vw), while we parametrize δuµ = δv ūµ = δv γw(vw, 1).
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Thus δµ encodes information on the chemical potential of the fluid composed of
species i, δT/T parametrizes its temperature deviation relative to the plasma, and δv
are fluctuations of the fluid velocity. Photon and gluon numbers quickly equilibrate
which implies δµbg = 0 [7], so the background is described only by temperature and
velocity fluctuations.

To solve for the three fluctuations of gauge bosons and tops we take three moments
of the Boltzmann equation, multiplying it by 1, pµuµ and pµūµ and integrating over
momenta. The resulting equations correspond to conservation equations for particle
number and energy-momentum [8]. The Ansatz allows for solving the collision terms
and, after linearizing in the fluctuations, and assuming a planar wall (such that the
problem becomes essentially one-dimensional in the coordinate z) we are left with a
system, as seen in the rest frame of the wall, of the form [8]

AW · (qW + qbg)
′ + ΓW · qW = SW ,

At · (qt + qbg)
′ + Γt · qt = St,

Abg · q′bg + Γbg,W · qW + Γbg,t · qt = 0,

(16)

where q = (δµ,−δT/T, δv)T and prime denotes derivative with respect to the coordinate
z. The matrices AW , At and Abg take the form

Ai =
γw
2π2

vwc2 vwc3 c3/3
vwc3 vwc4 c4/3
c3/3 c4/3 vwc4/3

 , Abg = γw
cbg

4

2π2

(
vw 1/3
1/3 vw/3

)
, (17)

with coefficients cn differing for bosons and fermions (see section 4 below), and γw =
(1−v2

w)−1/2 the relativistic factor associated to the wall velocity. The background matrix
corresponds to the bottom right 2× 2 block of the Ai, summed over all fermionic and
bosonic degrees of freedom in the background3, so cbg

4 = 78cf4 + 19cb4. The collision
matrices ΓW , Γt are then 3× 3 while Γbg,X are 2× 3. Notice that the matrices Ai and
Abg have a vanishing eigenvalue at vw = 1/

√
3 = cs.

Finally, the source terms are given by moments over the forces in the Boltzmann
equation

S = γwvw
(m2)′

4π2T 2

c1

c2

0

 , (18)

and is present for all species that significantly change mass during the phase transition.
The singularity in the friction arises then from an interplay of energy-momentum

conservation, the peculiar form of the collision terms, and the zero eigenvalue in the
kinetic matrix. First, notice that the equation of motion of the two background degrees
of freedom can be uniquely fixed using energy-momentum conservation. In other words,
there are two vectors χ such that χ · Γ = 0 which relates the matrices Γbg,X to the

3The background contains 78 fermionic degrees of freedom (5 light quarks × 12 d.o.f each, 3 charged
leptons × 4 d.o.f and 3 neutrinos × 2 d.o.f each) and 19 bosonic (16 gluons, 2 photons and 1 Higgs).
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corresponding 2 × 3 parts of the matrices ΓX . The collision terms drop out in the
corresponding equations

χ · A ·∆q = χ ·
∫
S dz . (19)

These two equations represent the linearized form of the energy-momentum conserva-
tion (3). The source terms parametrize the difference in the equation of state between
the two phases due to the mean field term, p+ − p− ∝ m2T 2 ∝

∫
S dz. At the same

time, almost all fluctuations ∆q are damped by the collision terms and tend to zero
away from the source. The sole exceptions are the two fluctuations that parametrize a
collective shift in the local equilibrium, parameterized by a temperature shift δT and a
shift in the fluid motion δv. Hence, away from the source, the constraint (19) becomes
essentially a 2× 2 system involving only δTbg and δvbg. This will produce a singularity
in the fluctuations once the wall velocity approaches the speed of sound, in analogy to
(9).

To be specific, the relation (19) can be solved for the change of the fluid velocity
across the wall,

δvbg =

∑
iNim

2
i c

i
2

2T 2
∑

c4

3vw
1− 3v2

w

, (20)

where the sum over i runs over the heavy particles (tops, W± and Z0) whereas the
sum over c4 runs over heavy particles as well as over background species. This exactly
reproduces the result of the hydrodynamic relation (9), due to

α =
bm2

2a T 2
=

∑
Nim

2
i c

i
2

2T 2
∑

c4

, (21)

which relates the thermodynamic potentials to the coefficients in the Boltzmann equa-
tions, and the relation (v− − v+)γ2 = δvbg that stems from duµ/dvw = γ2ūµ and the
definition of δv in (15). For a fiducial phase transition strength φ0/T = 1 this yields
α ≈ 0.002.

Notice that this conclusion seems unavoidable as long as the linearized Boltzmann
equations are solved, even if a generalized Ansatz is used and many more moments are
taken. Still, the blow up of these perturbations point to a breakdown of the lineariza-
tion procedure. This argument only relies on the facts that: a) two moments of the
Boltzmann equation represent total energy-momentum conservation, and b) the Ansatz
for the distribution functions contains fluctuations that represent collective changes in
the local equilibrium (i.e. for the collective temperature and fluid velocity).

4 Generalized fluid Ansatz

Let us now consider a generalized fluid Ansatz, where the distribution functions still
have the form in (14) but now the fluctuations read

δp = w(0) + pµw(1)
µ + pµpνw(2)

µν + . . . (22)
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and analogously for δp,bg. In other words, we expand the non-equilibrium fluctuations in
powers of momenta. Keeping only terms up to linear order in momenta, as in section 3,
consists in a description of a perfect fluid. Our generalized Ansatz allows for more
general entropy-producing phenomena [30, 7].

Before proceeding with the analysis, a few comments are in order. First, note
that (22) is not the most general Ansatz possible, and may not be appropriate in cer-
tain circumstances. In particular, additional tensor structures would be best suited for
fully resolving the angular dependence of the distribution function in high energy inter-
actions, such as pi/|pi|, pipj/|pi|2, and so on. Since we will always compute the collision
terms at leading-log, implying small momentum exchange, the parametrization adopted
in (22) should be adequate. We will confirm a posteriori that the friction converges us-
ing our set of fluctuations. Still, even if not the most general, using some Ansatz for the
fi’s is absolutely indispensable, since otherwise the momentum dependence of the colli-
sion terms cannot be resolved. Even in approaches that claim Ansatz -independence, a
choice has to be made for the collision terms, which is ultimately equivalent to choos-
ing an Ansatz for the distribution function. In such approaches one actually has to be
careful that the implicit Ansatz chosen for the collision terms is consistently applied in
the other terms of the Boltzmann equation as well. For instance, in [13] the collision
terms were computed using the perfect fluid Ansatz discussed in section 3, whereas
the kinetic term was computed differently. This consistency is difficult to accomplish
without knowing the Ansatz explicitly. Here it is guaranteed by construction.

Collision terms and background equations

With the Ansatz (22) the linearized collision term has the form

C[f ] =
1

2T

∑
processes

∫
d3k d3p′d3k′

(2π)92Ek 2Ep′ 2Ek′
|Mpk→p′k′|2(2π)4δ4(p+ k − p′ − k′)×

× f0pf0k(1± f0p′)(1± f0k′)

[
(δp + δk − δp′ − δk′) + (δp,bg + δk,bg − δp′,bg − δk′,bg)

]
.

(23)

Now, an interesting cancellation takes place for some of the background perturba-
tions, which is at the core of the singularity across the speed of sound for the background
fluctuations. Recalling that we can set δµbg = w

(0)
bg = 0 since photon and gluon chemical

potentials equilibrate quickly [7], we have

δp,bg + δk,bg − δp′,bg − δk′,bg = w
(1)
µ,bg (pµ + kµ − p′µ − k′µ)

+ w
(2)
µν,bg(pµpν + kµkν − p′µp′ ν − k′µk′ ν) + . . . ,

(24)

and we see that the term proportional to w
(1)
µ vanishes due to energy-momentum conser-

vation. This means that the leading-order fluctuations in the background equations are
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undamped. This cancellation does not happen for higher order fluctuations, which in-
volve more complicated momentum dependences. In fact, we expect them to be severely
damped, because of the large number of processes involving background species. In
other words, these fluctuations equilibrate quickly, and we can set them to zero from
the start. Thus, even if we adopt an extended Ansatz for the heavy species, the back-
ground can be modelled by two perturbations only, corresponding to the undamped
w

(1)
µ — the background behaves as a perfect fluid.

We will consider the collision processes shown in figure 2, involving interactions of
the heavy species with background particles. In these diagrams the heavy species are
incoming particles in the interaction, so the corresponding collision term will enter the
equation for this species. Taking moments of the Boltzmann equation will introduce a
factor pµpν . . ., with p the momentum of this species. Importantly, for the two equations
corresponding to energy-momentum conservation, there will be just a single power of
pµ. If we now consider the equation for the other species in the diagram, this external
momentum becomes p → k, p′ or k′, and we then get the corresponding collision term
appearing in the background equations. So when summing over the equations for all
species, a factor p + k − p′ − k′ arises in the energy-momentum equations, and the
result vanishes. This argument does not rely on the specific Ansatz for the distribution
functions, and in general the moments of the Boltzmann equation that represent energy-
momentum conservation do not contain collision terms. So, overall, we do not need to
compute additional collision terms other than ΓW and Γt appearing in the equations
for the heavy species, because the corresponding matrices for the background equations
will be

Γbg,W = −NWΓW , Γbg,t = −NtΓt. , (25)

for the two moments that correspond to energy-momentum conservation. Since we deal
with only two fluctuations for the background, these are all the collision terms we need
to solve the system4.

Truncating the expansion (22) to keep terms up to order ` in powers of momenta
(the usual perfect fluid Ansatz corresponding to ` = 1) results in a description with
N = (`+1)(`+2)/2 fluctuations. We then need to take N independent moments of the
Boltzmann equation, which is obtained by multiplying (13) by factors (pµuµ)m(pµūµ)n,
with 0 ≤ m+n ≤ N , and integrating over momenta. The resulting matrices appearing
in the system (16) to an arbitrary order ` are obtained from integrals given in the
appendix of reference [28]. At ` = 2, with N = 6 fluctuations arranged in a vector as

q = (w(0), w
(1)
0 , w

(1)
z , w

(2)
00 , w

(2)
0z , w

(2)
zz )T , the Boltzmann equation becomes a matrix system

4This is the justification of the statement in section 3, that there are two vectors χ corresponding
to energy-momentum conservation such that χ · Γ = 0 for the overall collision matrix Γ.
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p

k

p′

k′

Figure 2: Collision processes taken into account in this study. We compute only the
leading-log contributions, which means focusing only on t and u−channel diagrams.
The four diagrams in the first row are processes changing the perturbations of the top
quark, namely double annihillation into gluons, scattering by light quarks, scattering
by gluons, and absorption and reemission of a gluon. The second row are processes
changing the distribution of W ’s, namely single annihillation (by gluons into quarks
and by quarks into gluons), double annihilation into quarks, absorption and reemission,
and scattering by quarks.

as in (16), with kinetic terms

Ai =
γw
2π2


vwc2 vwc3 c3/3 vwc4 c4/3 vwc4/3
vwc3 vwc4 c4/3 vwc5 c5/3 vwc5/3
c3/3 c4/3 vwc4/3 c5/3 vwc5/3 c5/5
vwc4 vwc5 c5/3 vwc6 c6/3 vwc6/3
c4/3 c5/3 vwc5/3 c6/3 vwc6/3 c6/5
vwc4/3 vwc5/3 c5/5 vwc6/3 c6/5 vwc6/5

 , (26)

where, for n ≥ 2,

cbn ≡
1

T n+1

∫
dp pnfBE

p (1 + fBE
p ) = n! ζn , (27)

cfn ≡
1

T n+1

∫
dp pnfFD

p (1− fFD
p ) =

(
1− 1

2n−1

)
n! ζn , (28)

and fBE,FD the Bose-Einstein and Fermi-Dirac distributions. For n = 1 one has cf1 =
log 2 and cb1 = log(2T/m).

With gauge couplings αs ≈ 0.12 and αW ≈ 1/30, the collision matrices are

Γt =


0.00899 0.01752 0 0.05489 0 0.01830
0.01752 0.05311 0 0.234580 0 0.07819

0 0 0.01801 0 0.08331
0.05489 0.23458 0 1.38413 0 0.46138

0 0 0.08331 0 0.51188 0
0.01830 0.07819 0 0.46138 0 0.34591

T, (29)
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ΓW =


0.00466 0.00903 0 0.02822 0 0.00941
0.00903 0.03101 0 0.13043 0 0.04348

0 0 0.0123 0 0.0479 0
0.02822 0.13043 0 0.71107 0 0.23702

0 0 0.0479 0 0.25481 0
0.00941 0.04348 0 0.23702 0 0.15841

T. (30)

These numbers correct some mistakes in reference [7] that are mentioned in [31].
Finally, the source term for fluctuations of a heavy species reads

S = γwvw
(m2)′

4πT 2

(
c1 c2 0 c3 0 c3/3

)T
. (31)

With this setup, we solve the Boltzmann equation for the fluctuations using the
shape Ansatz

φ(z) =
φ0

2

(
1− tanh

z

Lw

)
, (32)

which gives the functional dependence m(z) and its derivative. We can then plug the
fluctuations into the Higgs equation to find the friction.

5 Friction

The passage of the bubble drives the plasma away from equilibrium, which then back-
reacts on the Higgs field, acting as a friction against the bubble expansion. Indeed,
from energy-momentum conservation one can show that the Higgs equation of motion
takes the form [8]

− φ′′ + dVT
dφ

+
∑
i

dm2
i

dφ

∫
d3p

(2π)32Ei
δfi(x

µ, pµ) = 0, (33)

with VT the Higgs thermal potential in equilibrium. We see that the non-equilibrium
contribution from δfi corresponds to a dissipative term, a friction which counters the
bubble expansion.

There are two independent variables to be solved for, namely vw and Lw, so we take
two moments of (33), multiplying it by φ′ and by (2φ− φ0)× φ′ and integrating. This
yields

∆VT
T 4

= ffl + fbg, (34)

− 2

15(LwT )2

(
φ0

T

)3

+
1

T 5

∫ φ0

0

dVT
dφ

(2φ− φ0)dφ = gfl + gbg, (35)

with ∆VT = VT (φ0, T )− VT (0, T ) the free energy released during the phase transition.
Equation (34) states the balance in total pressure on the wall, equating the inside
pressure to that of friction against it. The second equation (35) is a balance of pressure
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gradient behind and in front of the wall, which also has to vanish overall because
otherwise the wall would stretch or compress, which does not happen in the stationary
state.

The functions ffl and gfl (respectively fbg and gbg) are the contributions to friction
coming from the fluctuations of the heavy species in the fluid (resp. of the background).
They are shown in figure 3 as a function of the wall velocity vw, for various orders in
momentum expansion of the fluid Ansatz up to ` = 5, which takes into account a total
of 21 fluctuations.

First, note that the friction contribution from fluctuations of the heavy species is
non-singular at all velocities. This happens because, for these fluctuations, the Boltz-
mann system takes the general form

q′ + (A−1 · Γ) · q = A−1 · S , (36)

for some matrices A and Γ and a source S, whose solution behaves as

q(z) ∼
∫ z

A−1 · S(z′) e−λz
′
dz′. (37)

Here, λ is an eigenvalue of A−1 ·Γ, which sets the rate at which fluctuations decay. One
sees that an eventual singular behaviour stemming from the kinetic matrix appears also
in the exponential factor, effectively damping the singularity in A−1 · S and leading to
the continuous behaviour seen in the plots.

On the other hand, as previously discussed, the two background fluctuations w
(1)
bg

are not damped at all — the collision terms vanish — and one ends up with a solution
similar to (37) but with λ = 0, cf. equation (19). Here, the vanishing eigenvalue in the
kinetic matrix, which for these modes occur at vw = cs, leads to a singularity in the
solutions and, consequently, in the friction functions fbg and gbg.

Note that, as we increase the order in the fluid expansion, the kinetic matrix becomes
singular for other values of the wall velocity. For instance, the matrix in (26) is singular
at vw = cs and vw =

√
3/5. However, these other singularities are associated with higher

order fluctuations which are damped by non-vanishing collision terms, cf. equations (23)
and (24). So we recover the continuous behaviour across these velocities. The only
remaining singularity happens at vw = cs, which has a clear physical interpretation, as
we argued in sections 2 and 3.

We also remark that the friction functions do converge as we increase the number
of fluctuations in the system, confirming that the series expansion in (22) is meaningful
and well-behaved. In fact, beyond the second order the friction calculation seems very
robust as long as the wall velocity is not too close to the speed of light.

6 Conclusions

We revisited the friction calculation during first-order phase transitions in light of the
recent developments in [13] and [25]. In the first part of the paper we argue that a
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Figure 3: Friction contributions from the fluid and the background in equations (34)
and (35) for different orders of the generalized fluid Ansatz. Note that only the back-
ground contributions have a singularity, and that it appears only at the speed of sound
cs = 1/

√
3 ≈ 0.577. We chose fiducial values for the wall thickness, LwT = 10, and the

phase transition strength, φ0/T = 1, which yields α ≈ 0.002. The gray shaded regions
satisfy α/X2

− > 1, where we expect a breakdown of the linearization procedure, see
section 2.
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discontinuity in the temperature and fluid background fields is expected on general
grounds, just relying on hydrodynamic considerations. This stems from the fact that
the global solutions to the fluid profiles transition from deflagrations to detonations
when the wall velocity passes the Jouguet velocity.

We also show that this discontinuity turns into a singularity once the hydrodynamic
equations are expanded in the (small) change in equation of state α that parametrizes
the (weak) phase transition. This unphysical singularity comes from the fact that the
hydrodynamic equations are non-analytic in α for wall velocities close to the speed of
sound, vw → cs, and α→ 0, see (7).

Based on this analysis, a singularity in the linearized Boltzmann equation is ex-
pected. Even if a method could be found to remedy the unphysical singularity for wall
velocities close to the speed of sound, this method should still reproduce the disconti-
nuity.

At this point, it is worth comparing our results to the approach presented in [25],
which finds a smooth behaviour for friction across the speed of sound. First, it should
be noted that this continuity was actually used as an input for constructing the setup
in [25], motivating the choices made for the moments and the fluctuations used in their
Ansatz. In particular, the moments of the Boltzmann equation taken in [25] do not cor-
respond to energy-momentum conservation. But this would imply that expression (25)
for the background collision matrix, which is assumed in [25], is no longer valid, and
these collision terms would have to be computed separately.

Here we have shown that the interplay of energy-momentum conservation and the
inclusion of fluctuations representing collective shifts in temperature and fluid velocity
necessarily lead to a singularity close to the speed of sound. Energy-momentum con-
servation provides two conserved quantities while the collective shifts are not damped
by collision terms. These features already imply the occurrence of a singularity, and
we reproduce the exact expression for the singularity found in hydrodynamics starting
from the Boltzmann equations, see (9) and (20).

Finally, we study the impact of a more general Ansatz for the fluctuations. In
baryogenesis calculations, adding more fluctuations indeed changes the outcome qual-
itatively [28], in agreement with [13]. Here we find that generalizing the Ansatz only
leads to minor changes in the final outcome for the friction, but the main qualitative
feature — the singularity across the speed of sound — still remains.
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