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Abstract

The need for low-latency vision systems is growing: high
speed visual servoing and vision–based human computer
interface. In this paper we present a new intensity–to–time
processing paradigm suitable for low–latency massively
parallel global computation over fine–grained data such
as images. As an example of a low–latency global compu-
tation, we have developed a VLSI sorting computational
sensor — a sensor which sorts all pixels of an input image
by their intensities, as the image is being sensed. The first
sorting sensor prototype is a 21 by 26 array of cells. It
detects an image focused thereon and computes the image
of indices as well as the image’s cumulative histogram,
before the intensity data are readout. The image of indices
never saturates and has uniform histogram. Under user’s
control, the chip can perform other operations including
simple segmentation and labeling.

1   Introduction

As robotics is increasingly interacting with human users,
the need for low-latency vision systems is growing. Exist-
ing vision systems, however, do not meet this need. For
example, a standard video camera takes 1/30 of a second
to transfer an image, and in many applications it is too late
by the time the system receives the image. As another
example, the pipelined dedicated vision hardware can
deliver the processing power to update its output 30 times
per second, but the latency incurred through the pipeline is
typically several frame times. These two examples point to
two main sources of latency in vision systems: data trans-
fer bottleneck and the computational load bottleneck. It is
clear that an alternative is needed.

The computational sensor paradigm [5] has potential to
greatly reduce latency. By integrating sensing and process-
ing on a VLSI chip both transfer and computational bottle-
necks can be alleviated. On–chip routing provides high
throughput transfer, while an on-chip processor could
implement massively parallel computational models.

A great majority of computational sensory solutions so far
implement local operations on a single light sensitive
VLSI chip (for examples see [5] [6] [8]). Local operations
use operands within a small spatial/temporal neighbor-
hood of data and thus land themselves to the graceful
implementation in VLSI. Typical examples include
smoothing and edge detection. Local operations produce
preprocessed images; therefore, a large quantity of data
still must be read out and further inspected before a deci-
sion for an appropriate action is made — usually a time
consuming process. Consequently, a great majority of
computational sensors built thus far are limited in their
ability to quickly respond to changes in the environment.

Global operations, on the other hand, produce fewer quan-
tities for the description of the environment. If computed
at the point of sensing, these entities could be routed from
a computational sensor through a few output pins without
causing the transfer bottleneck. This information will be
often sufficient for rapid decision making and the actual
image does not need to be readout. However, implement-
ing global operations in hardware is not trivial. The main
difficulty comes from the necessity to bring together, or
aggregate, all or most of the data in the input data set [2].
This global exchange of data among a large number of
processors/sites quickly saturates communication connec-
tions and adversely affects computing efficiency in parallel
systems — parallel digital computers and computational
sensors alike. It is not surprising that there are only a few
computational sensors for global operations, all with mod-
est capability and/or low resolution [7].

This work introduces a novel intensity–to–time processing
paradigm — an efficient solution for massively parallel
globalcomputation over large groups of fine–grained data.
By using this paradigm we have developed a sorting com-
putational sensor — an analog VLSI chip which sorts pix-
els of a sensed image by their intensities. The sorting
sensor producesimages of indices that never saturate. It
also provides a cumulative histogram — a global image
quantity — on one of the pinsbefore the image is readout.
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2   Intensity–to–Time Processing Paradigm

The intensity–to–time processing paradigm implements
global operations by aggregating only few of the input
data at a time. Inspired by biological vision, it is based on
the notion that stronger input signals elicit responses
before weaker ones. Assuming that the inputs have differ-
ent intensities the responses are separated in time and a
global processor makes decision only on a few inputs at a
time. The more time allowed, the more responses are
received; thus, the global processor incrementally builds a
global decision first based on several, and eventually based
on all the inputs. The key is that some preliminary deci-
sion about the environment can be made as soon as the
first responses are received. Therefore, this paradigm has
an important place in low–latency vision processing.

The intensity–to–time paradigm for parallel processing
involves the following steps. The input data are gathered in
parallel by focusing an image on the array of sensor–pro-
cessor cells. An architecture of such an array is shown in
Figure 1. Each cell is comprised of radiation sensitive con-

trol element and a local processor. The local processor in
each cell performs one or more predetermined (i.e. pre–
wired or pre–programmed) operations. Theinstant when
this operation is executed is determined by the radiation
sensitive control element and is related to the intensity of
the radiation received at the particular cell. A single global
processor supervises and services the array of cells. Since
local processors trigger at times determined by the magni-
tude of their input operands, the global processor serves
only a few local processors at a time.

The intensity–to–time relationship has been used to
improve image segmentation [3] — a local operation, and

for image processing in a SIMD architecture [4]. In con-
trast, our architecture allows global operations and shares
some features of traditional MIMD parallel processing.
Namely, the local processors perform their operations
asynchronously, an essential feature for a quick response
and the low latency performance of parallel systems.

3   Sorting Chip

By using the intensity–to–time paradigm we have devel-
oped a sorting computational sensor — an analog VLSI
sensor which sorts the pixels of an input image by their
intensities. The chip detects an image focused thereon and
computesimage of indices.The image of indices has uni-
form histogram which has several important properties:
(1) the contrast is maximally enhanced, (2) the available
dynamic range of readout circuitry is equally utilized, i.e.
the values read out from the chip use available bits most
efficiently, and (3) the image of indices never saturates and
always preserves the same range (e.g. from 1 to N). Dur-
ing the computation, the chip computes a cumulative his-
togram — one global quantity of the detected image —
and reports it with low–latency on one of the pins.

3.1   Circuitry and Operation

Shown in Figure 2, the sorting sensor is comprised of a
sensor–processor cell array and a global processor. The
global processor comprises of the current–to–voltage con-
verter (resistorR), a voltage follower and two wires:Win
and Wout. The global processor communicates with the
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sensor–processor cells over the wiresWin andWout. Each
cell has a local processor and a photo sensitive control ele-
ment. The local processor consist of a track–and–hold (T/
H) circuit comprised of capacitorC and switch S7, and a
current signal generator comprised of current sourceIo
and switchS6. Accordingly, the local processors perform
two functions: (1) remember data supplied by the global
processor viaWin in their T/H circuits; and, (2) send their
current signalsIo to the global processor viaWout. The
remaining portion of the cell comprises the photo sensitive
control element. It controls the instant when the corre-
sponding local processor executes its functions.

Figure 3 shows the simulation of the circuit operation for
the sorting sensor with four cells. A photodiodePD oper-
ating in the photon flux integrating mode detects the light.
In this mode of operation the capacitance of the diode is
charged to a high potential and left to float. Since the diode
capacitance is discharged by the photocurrent, the voltage
decreases approximately linearly at a rate proportional to
the amount of light impinging on the diode (Figure 3, top
graph).

The diode voltage is monitored by a CMOS inverterInv.
Once the diode voltage falls to the threshold of the
inverter, the inverter’s output changes state from low to
high (Figure 3, second graph). A switchS3 is included to
force rapid latching action.

The output of the inverter represents a control signal pro-
duced by the photo sensitive control circuit. It controls the
instant when the capacitorC in the T/H memorizes the
voltage supplied on the wireWin. It also controls the
instants when the currentIo is supplied to the wireWout.
This is achieved by two complementary switchesS6 and
S7; one turns on the internal current sourceIo, and the
other disconnects the storage capacitorC from the global
input wireWin.

Currents from all cells are summed up on a output wire
Wout; therefore, this wire functions as a global summer.
The voltage on the resistorR (Figure 3, third graph) repre-
sents the index of a cell that is changing state and is sup-
plied to the global input wire. The capacitor within each
cell follows this voltage until it is disconnected, at which
point a capacitorC retains the index of the cell (Figure 3,
bottom graph). The bottom graph shows that the cell with
the highest intensity input has received the highest
“index”, the next cell one “index” lower, and so on.

The sorting sensor computes several important properties
about the image focused thereon. First, the time when a
cell triggers is approximatelyinverselyproportional to the
input radiation received. Second, by summing up the cur-
rentsI0 from all the local processors the global processor
knows at each given time how many cells have been trig-

gered. This time waveform is closely related to a cumula-
tive histogram of the input image. The time derivative of
this signal is related to a histogram of the input image [1].
This is one global property of the input image that is
reported by the chip with very low latency.

4   VLSI Realization and Evaluation

A 21 x 26 cell sorting sensor has been built in 2µ CMOS
technology. The size of each cell is 76µ by 90µ, with 13%
fill factor. The micrograph of the chip is shown in
Figure 4. A next generation sorting computational sensor
is currently being fabricated in 1.2µ CMOS technology
with 38µ by 38µ pixel, and 32% fill factor.

An image was focused directly onto the silicon. The
cumulative histogram waveform, as well as the indices
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Figure 3: Sorting computational sensor: a four cell
simulated operation

Figure 4: Micrograph of the sorting chip.
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from the sorting sensor were digitized with 12 bit resolu-
tion. In order to facilitate a hard copy reproduction the
26x21 images obtained by the sorting chip are interpolated
and magnified by the factor of 2.

Scene1 of an office environment was imaged by the sort-
ing chip under common office illumination coming from
the ceiling. Figure 5 shows the cumulative histogram of
the scene and the image of indices both computed by the
chip. We evaluated the histogram of the indices. It is
shown as the bottom graph in Figure 5. Most pixels
appeared to have different input intensities and, therefore,
received different indices. Occasionally as many as 3 pix-
els were assigned the same index. Overall the histogram of
indices is uniform, indicating that the sorting chip has per-
formed correctly.

There is a total of 546 pixels in this prototype, and most of
them received different indices. This means that without
special considerations as to the illumination conditions,
low–noise circuit design and temperature and dark current
control, our lab prototype readily provided images with
more then 9 bits of resolution. Furthermore, the range of
indices remains unchanged (from 0 to 545) and the indices
maintain uniform histogram regardless of the range of
input light intensity or its histogram.

Scene2 from the same office was also imaged. Figure 6
shows the scenes’s cumulative histogram and image of
indices, as well as histogram of those indices. Scene 1
(Figure 5) contains more dark regions than Scene 2
(Figure 6) because the moderately bright wall in the back-
ground is replaced by the dark regions of the person in the

partial shadow. Therefore, the chip takes longer to com-
pute Scene 1 than Scene 2, but the dynamic range of the
output indices is maintained. The total time shown on the
time sample axis of the cumulative histograms is about
200ms.

By producing the cumulative histogram waveform and the
image of indices, the sorting computational sensor pro-
vides all the necessary information for the inverse map-
ping — the mapping from the indices to the input
intensities. Figure 7a shows the image of indices for Scene

1 and the image of inferred input intensities. Figure 7b
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Figure 5: Scene 1 imaged by the sorting sensor.
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Figure 6: Scene 2 imaged by the sorting sensor.
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includes an image taken by a commercial CCD camera for
showing natural light conditions in the office environment
from which Scene 1 was taken. The inferred input intensi-
ties closely resemble the natural condition in the environ-
ment.

5   Sorting Sensor Image Processing

The data that are stored in the local processors are pro-
vided by the global processor. These global data — a func-
tion of time — define a mapping from the input intensities
to output data. For the sorting operation this global func-
tion is the cumulative histogram computed by the chip
itself. In general, when appropriately defined this global
function enables the sorting sensor to perform numerous
other operations/mappings on input images. Examples of
such operations include histogram computation and equal-
ization, arbitrary point-to-point mapping, region segmen-
tation and adaptive dynamic range imaging. In fact, in its
native mode of operation — sorting — the chip provides
all the information necessary to perform any mapping dur-
ing the readout.

Histogram Equalization. When the voltage of the cumu-
lative histogram (computed by the chip itself) is supplied
to the local processors, the generated image is a histogram
equalized version of the input image [1]. This is the basic
mode of operation for the sorting chip and has been illus-
trated in the previous section.

Linear Imaging. When the waveform supplied to the
input wire is inversely proportional to time, the values
stored in the capacitors are proportional to the input inten-
sity, implementing a linear camera. The results of such
mapping have been illustrated in Figure 7. As expected,
the result is similar to the image obtained by the linear
CCD imager.

Scene Change Detection. Analyzing the change in the
histogram pattern is a basic technique to classify images or
detect a scene change. The sorting computational sensor
computes the cumulative histogram at real–time and can
be used for low-latency scene discrimination/surveillance
without requiring the image to be read out.

Image Segmentation. Thresholding is a rudimentary
technique to segment an image into regions. The cumula-
tive histogram can be used to determine this threshold.
Pixels from a single region often have pixels of similar
intensity that appear as clusters in the image
histogram [1]. The values which ought to be stored in the
cells can be generated to correspond to the “label” of each
such region. The global processor can perform this label-
ing by updating the supplied value when the transition

between the clusters in the (cumulative) histogram is
detected. An example of segmentation is shown in
Figure 9b and Figure 9c in which the illuminated and
shadowed regions respectively are “colored” as a black
region.

Adaptive Dynamic Range Imaging. For faithful imaging
of scenes with strong shadows, a huge dynamic range lin-
ear camera is needed. For example, the illumination of the
scene which is directly exposed to the sunlight is several
orders of magnitude greater than the illumination for the
surfaces in the shadow. Due to the inherently large
dynamic range of the sorting sensor, both illuminated and
shadowed pixels can be mapped to the same output range
during a single frame.

We demonstrate this concept with back illuminated
objects. Figure 8 shows a global view of this scene as cap-
tured by conventional CCD camera. Due to the limited
dynamic range of the CCD camera, the foreground is
poorly imaged and is mostly black. (The white box
roughly marks the field–of–view for the sorting sensor.)

When the scene is imaged with the sorting sensor
(Figure 9a), the detail in the dark foreground is resolved,
as well as the detail in the bright background. Since all 546
indices are competing to be displayed within 256 levels
allowed for the postscript images in this paper, one
enhancement for purpose of human viewing is to segment
the image and amplify only dark pixels. The result is
shown in Figure 9b. Conversely, as shown in Figure 9c, the
bright pixels can be spanned to the full (8 bit) output
range. Finally, if these two mappings are performed simul-
taneously the shadows are removed (Figure 9d.)

The same method can be applied to the image obtained
from a standard CCD camera. If the CCD image of
Figure 8 is cropped to the white box, and such an image is
histogram equalized, we arrive at the result shown in

Figure 8: A scene with back lit objects as captured by a
conventional CCD camera.
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Figure 10a. This image is analogous to the image of indi-
ces obtained by the sorting sensor (Figure 9a.) Due to the
limited dynamic range, noise and quantization, the CCD
image only resolve the face with 2–3 bits. The histogram
equalized image from the CCD is used for further map-
ping using the same steps as for Figure 9d. Due to the
obvious reasons, the result is poor. In contrast, the sorting
computational sensor allocates as many output levels (i.e.
indices) as there are pixels within the dark region, or the
entire image for that matter. By comparing Figure 9d and
Figure 10b, the superior utilization of the sensory signal
with the sorting chip is obvious.

6   Conclusion

The intensity–to–time processing paradigm enables com-
putational sensor to be a massively–parallel computational
engine which makes some global computation or overall
decisions about the sensed scene and reports such deci-
sions on a few output pins of the chip with low latency.
The power of this paradigm is demonstrated with an ana-
log VLSI implementation of sorting — an operation still
challenging in computer science when performed on large
groups of data. This work shows that if an appropriate
relationship is maintained between the circuitry, algorithm
and application, a surprisingly powerful performance can
be achieved in a fairly simple but high resolution VLSI
vision computational sensors.
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