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A source coding perspective on node deployment in
two-tier networks

Jun Guo, Student Member, IEEE, Erdem Koyuncu, Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—Multi-tier networks have many applications in d-
ifferent fields. We define a novel two-tier quantizer that can
be applied to different node deployment problems including the
energy conservation in two-tier wireless sensor networks (WSNs)
consisting of N access points (APs) and M fusion centers (FCs).
We aim at finding an optimal deployment of APs and FCs to
minimize the average weighted total, or Lagrangian, of sensor
and AP powers. For one fusion center, M = 1, we show that the
optimal deployment of APs is simply a linear transformation
of the optimal N -level quantizer for density f , and the sole
FC should be located at the geometric centroid of the sensing
field. We also provide the exact expression of the AP-Sensor
power function and prove its convexity. For more than one
fusion center, M > 1, we provide a necessary condition for the
optimal deployment. Furthermore, to numerically optimize the
AP and FC deployment, we propose three Lloyd-like algorithms
and analyze their convergence. Simulation results show that our
algorithms outperform the existing algorithms.

I. INTRODUCTION

A. One-Tier Quantization for Node Deployment
In many applications, one needs to provide service to and

collect data from a geographical area of interest via multiple
nodes, such as sensors or providers. Usually, the nodes are
distributed such that each point or client in the area is only
served by only one node, resulting in a partition of the target
area to disjoint regions. The service cost for each node may
depend on its characteristics and local service region. The
fundamental goal in such a formulation is to jointly optimize
the node locations and the corresponding service regions to
optimize the overall performance, which is typically defined
as an aggregate of node service costs.

As we also discuss in the sequel, the cost of providing
service to a client is usually related to its distance to the local
service node. Therefore, minimizing the total cost by optimally
deploying the nodes and the service regions is identical to a
spatial tessellation problem [2]. Such problems (which have
also been referred to as facility location or node deployment
problems by different research communities) are equivalent
to the quantization problem of data compression and source
coding. In fact, in the language of quantization theory, the
service nodes and service regions correspond to the reproduc-
tion points and quantization regions, respectively. Minimizing
the total service cost becomes equivalent to minimizing the
corresponding average distortion. We now present several
specific applications to highlight the above equivalency.

In sensor networks, sensors are deployed in a two-
dimensional planar to collect data from the environment. The
goal of sensor/node deployment is to maximize the sensing
performance and quality. An example of the sensor deploy-
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(a) (b)
Fig. 1: Two example node deployments. (a) One-tier network. (b)
Two-tier network. 100 first-tier nodes and 4 second-tier nodes are
denoted by dots and stars, respectively. The cell partitions are denoted
by polygons. The symbols associated with the same second-tier node
are filled with the same color.

ment in a two-dimensional planar is illustrated in Fig. 1a,
where each sensor is denoted by a dot that monitors its own
region. In this scenario, the reproduction points correspond to
the sensor nodes, and the quantization Voronoi regions cor-
respond to the sensor partitions. The cost function (distortion
measure) is usually a monotonically increasing function of the
distance between the sensor and the event that is being sensed,
and quantifies the inaccuracy of sensing. The most common
cost function used in the quantization literature is the squared
Euclidean distance [3]. It can be used directly in the sensor
network example to measure the overall sensing inaccuracy
in homogeneous wireless sensor networks (WSNs) [4]. For
heterogeneous WSNs, a weighted Euclidean distance square
measure can be used where the weights reflect the nodes’
different sensing capabilities [5]. Other cost functions have
also been utilized to formulate the sensing coverage or the
sensing probability [5]–[8].

Another example is the heterogeneous base station (BS)
deployment [9]–[12] in cellular networks where user equip-
ments (UEs) are considered as the source, heterogeneous BSs
are recognized by the reproduction points, and the BS cells
are represented by the quantization Voronoi regions. Because
of the path loss, the signal strength at the receiver is a non-
increasing function of the communication distance [13]–[15].
Using such a non-increasing function as the cost function,
the distortion measure can be defined as the expected signal
to noise ratio (SNR) at the UEs, where the expectation is
calculated for a given channel probability distribution.
B. Two-Tier Quantization for Node Deployment

The conventional spatial tessellation and node deployment
problems in Section I-A ignore the hierarchical architecture
that is inherent in many networks. In fact, to reduce the
network burden, many practical networks have a two-tier
structure, as an extension to the one-tier examples considered
in Section I-A. For example, to provide an effective delivery
service for the residents, the postal system uses a two-tier
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network including the local post offices and the postal hubs.
Then, there will be two costs associated with each delivery.
A first-tier-cost that is the cost of delivering packages from
clients to local post offices, determined by the population den-
sity and the distance from clients to their local post offices, and
a second-tier-cost which is the total cost of delivering packages
between local post offices and the corresponding postal hubs.
The second-tier-cost is determined by the workload of the
local post offices and the distance from the local post offices
to their postal hubs. A similar two-tier network appears in
the hospital system where local hospitals provide the basic
medical treatment and the residents with severe disastrous
issues are transferred to the hospital centers with more medical
facilities.

Two-tier WSNs and two-tier cellular networks are also
very common network architectures. A two-tier WSN [22]–
[25] includes densely deployed sensors, multiple access points
(APs), and fusion centers (FCs). In such a network, sensor
nodes collect the data and send it to their APs for processing.
Then, each AP transmits its aggregated data to its associated
FC [22]–[25]. As depicted in Fig. 1b, the sensors, APs, and
FCs correspond, respectively, to clients, first-tier nodes, and
second-tier nodes in our two-tier network. One reasonable cost
function in the two-tier WSN is the total energy consumption
at sensors and APs. The objective is to optimize the trade-off
between the sensor and AP energy consumptions.

The goal of this paper is to study node deployment problems
in two-tier networks, where two-tier nodes are deployed to
provide service for the clients in the target region. In such
two-tier networks, as depicted in Fig. 1b, the second-tier nodes
provide service for the first-tier nodes that serve the clients.
Similar to the one-tier networks, the cost between two points is
generally a non-decreasing function of the Euclidean distance.
Let the first-tier-cost be the total cost between clients and first-
tier nodes, and the second-tier-cost be the total cost between
the first-tier nodes and the corresponding second-tier nodes.
Moving the first-tier nodes towards the second-tier nodes,
usually, will increase the average distance between the first-
tier nodes and the local clients, resulting in the increase of the
first-tier-cost. On the other hand, moving the first-tier nodes
towards the local clients, usually, will increase their distance
to the second-tier nodes and will result in an increase in
the second-tier-cost. Therefore, there is a trade-off between
the first-tier-cost and the second-tier-cost. Like the one-tier
quantizer in Section I-A, we propose a two-tier quantizer to
optimally manage such a trade-off.

Clearly, such a two-tier quantizer is fundamentally different
from the one-tier quantizer discussed in the literature and
Section I-A. Even though the two-tier quantizer has diverse
applications, as discussed above, for the clarity of the presenta-
tion and as an important application, we focus on the example
of energy consumption in two-tier WSNs in this paper.
C. Related Work and Applications

A significant body of literature exists on designing the
one-tier quantizers. Gray et al. [3] summarize the theory
and practice of quantization since its inception. The best
possible quantization distortion in a high-resolution regime has
been discussed in [26]–[28] and the application of the high-

resolution theory to node deployment in heterogeneous sensor
networks is provided in [29]. Clustering is a related method
where the cluster heads and cluster regions are, respectively,
the reproduction points and quantization regions. Many dif-
ferent hierarchical clustering methods, such as Agglomerative
Clustering (AC) and Divisive Clustering (DC), are discussed
in [30].

Furthermore, some existing quantization schemes in the
literature are similar to our two-tiered quantizers. For example,
successively refinable vector quantizers (SRVQs) [31]–[33]
have multiple stages. However, while SRVQs progressively
refine the quantization rate, our quantizers are fixed-rate quan-
tizers and there is no rate refinement. As another example,
hierarchical vector quantizers (HVQs) [34]–[36] are proposed
to reduce the quantizer encoding complexity. HVQs employ
quantizers of different dimensions in different hierarchical
steps. In contrast, our method operates on the same dimension
at different tiers. In addition, different from the existing S-
RVQs and HVQs of which the distortion is only determined by
the homogeneous reproduction points, the distortion measure
of the proposed two-tier quantization depends on both first-tier
and second-tier reproduction points. Moreover, different stages
of the HVQs are designed independently while we design the
two tiers jointly.

Another related topic, facility location or node deployment,
has been widely studied for different applications, such as
service station distribution and sensing coverage. Jain et al.
[37] study the cost optimization for connecting cities to open
facilities. The authors assume that the facilities can be placed
at finite candidate locations with different opening costs. A
similar relaxation idea to solve the problem appears in [19]
where the authors fix the facility location and only optimize
the cell partitions. In order to balance the workload of the
facilities, different cell partitions serve the same amount of
area. Another work [38] focuses on the trade-off between
sensing quality and communication cost in indoor wireless
temperature sensor networks.

The above node deployment problems assume fixed n-
ode locations or finite location candidates. A more realistic
assumption is the possibility of continuous node locations.
In [6], the sensor nodes can be placed everywhere in the
target region. Three virtual force algorithms, VECtor-Based
Algorithm (VEC), VORonoi-Based Algorithm (VOR), and
Minimax Algorithm, are proposed to maximize sensor cover-
age. Cortes et al. [4] consider multiple distortion measures,
including the Euclidean distance square, in homogeneous
WSNs. Voronoi Diagram [2] is shown to be the best cell
partition for the one-tier homogeneous networks and Lloyd-
like Algorithms are applied to minimize the distortions. A
similar node deployment problem over a non-convex envi-
ronment, where the nodes can be placed everywhere other
than some obstacles, are considered in [39], [40]. The sensing
coverage problem in heterogeneous WSNs where sensors have
different sensing ranges is discussed in [41]–[43]. Mahboubi et
al. [41] extend the three movement-assisted protocols in [6] to
avoid coverage holes in heterogeneous WSNs. Wu et al. [42]
utilize a scoring method to improve the sensor coverage rate.
Yoon et al. [43] design a genetic algorithm to solve the node
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deployment problem and compare the performance with other
genetic algorithms. Our previous work [5] analyzes the sensing
coverage in one-tier heterogeneous WSNs where the sensors
have different sensing abilities and limited communication
ranges.

Node deployment problems also appear in the context of
cellular networks [9]–[11]. Coskun et al. [9] analyze the
BS deployment in heterogeneous cellular networks including
macro and micro BSs. The corresponding average distortion
is the total channel capacity divided by the total power and
the corresponding constraint requires a capacity threshold. In
[9], a greedy algorithm is proposed to optimize the micro BS
deployment. Zhang et al. [10] consider a multi-tier cellular
network where BSs are placed in multiple tiers. The objective
function is defined as the ratio of the minimum achievable
throughput to the total power consumption. A survey of
general BS deployment optimization in heterogeneous cellular
networks can be found in [11].

Most existing node deployment algorithms and the corre-
sponding optimizations only consider the nodes in the same
tier. However, node deployment in two-tier networks requires
joint deployments of nodes in both tiers. A simple extension
of the existing algorithms is first to find the optimal first-
tier node deployment and cell partition and, fixing the first-
tier configuration, then solve the optimal second-tier node
deployment and the connection between the two phases. It
is not hard to find examples for which such a two-phase
approach provides a poor performance. Therefore, a truly joint
node deployment for two-tier networks is needed. To the best
of our knowledge, the problem of node deployment for two-
tier networks, which includes the facility deployment in two
different tiers, has not been considered in the literatures.

D. Main Contributions
In this paper, we study the node deployment problem in

two-tier networks and make the following contributions: (i) we
design a two-tier quantizer with a distortion measure that can
be used to formulate different optimization problems including
the energy consumption in a two-tier WSN; (ii) we show that
the optimal solution for the two-tier quantizer with one node
in the second tier can be obtained by shrinking the optimal
reproduction points of the optimal one-tier quantizer towards
the sole second-tier node; (iii) we propose the necessary
condition for the optimal node deployment in two-tier WSNs.
The necessary condition helps us to design efficient node
deployment algorithms; (iv) we find the optimal deployments
and the corresponding minimum powers in two-tier WSNs for
certain special cases; (v) we also propose numerical Lloyd-
like algorithms to minimize energy consumption in general;
(vi) we define a new formulation for the AP-Sensor power
function, which shows the trade-off between the two kinds of
power consumptions in WSNs, and prove its convexity.
E. Organization of the Paper

The rest of this paper is organized as follows: In Section
II, we introduce the system model. In Section III, we find the
optimal deployment of APs with one FC. In Section IV, we
study the optimal deployment problem with multiple APs and
FCs. In Section V, we provide AP-Sensor power function and
analyze the trade-off between the AP power and the sensor

power. In Section VI, we propose numerical algorithms to
minimize the energy consumption. In Section VII, we present
numerical simulations. Finally, in Section VIII, we draw our
main conclusions. Some of the technical proofs are provided
in the appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a two-tier WSN consisting of three kinds of

nodes: sensors, APs, and FCs. As discussed in Section I,
this is a canonical application of the two-tier quantizer. A
similar network architecture has been studied in [22] where
the authors ignore the energy consumption of the sensor nodes.
We model the energy consumption by radio communication in
two-tier WSNs.

Let Ω be a convex polygon in R2 including its interior.
Given the target area Ω, N APs and M FCs are deployed
to collect data. Without loss of generality, we assume that
N > M . IA = {1, · · · , N}, and IB = {1, · · · ,M} denote
the sets of AP indices and FC indices, respectively. AP
deployment and FC deployment are, respectively, defined by
P = (p1, · · · , pN ) and Q = (q1, · · · , qM ), where pn ∈ R2

is the location of AP n and qm ∈ R2 is the location of
FC m. An AP partition RA = {RA

n }n∈IA is a collection
of disjoint subsets of R2 whose union is Ω. Let T : IA → IB
be an index map for which T (n) = m if and only if AP n is
connected to FC m. A continuous and differentiable function
f(·) : Ω2 → R+ is used to denote the density of the data rate
from the densely distributed sensors [22]. Then,

∫
R
f(w)dw is

the total amount of data generated from the sensors in region
R in one time unit.

Usually, FCs have access to reliable energy sources and their
energy consumption is not the main concern in this paper.
Therefore, we focus on the energy consumption of sensors
and APs. In fact, the energy consumed by sensors and APs
comes from three parts: (i) Sensors transmit bit streams to
APs; (ii) APs transmit bit streams to FCs; (iii) APs receive
bit streams from sensors. The transmitting powers (Watt) of
nodes, e.g., sensors and APs, mainly depend on two factors:
(i) the instant-transmission-power (Joules/second); and (ii) the
channel-busy-ratio: the percentage of time that the transmitter
forwards data. The average-transmitting-power of AP n is
defined as PA

tn = EA
tnΓ

A
n , n ∈ IA, where EA

tn is the instant-
transmission-power of AP n and ΓA

n is the channel-busy-ratio
for the channel from AP n to the corresponding FC. In order
to achieve the required SNR thresholds at the receivers, the
instant-transmission-power EA

tn should be set to a value that
is determined by the distance, the antenna gain, and the SNR
threshold [44]. More realistically, the transmission power is
proportional to distance squared or another power of distance
in the presence of obstacles [14]. Taking path-loss into con-
sideration, it is reasonable to model the instant-transmission-
power from AP n to FC T (n) by EA

tn = ηAn,T (n)∥pn−qT (n)∥α,
where ∥ · ∥ denotes the Euclidean distance, ηAn,T (n) is a
constant determined by the antenna gain of AP n and the
SNR threshold of FC T (n), and α ∈ [2, 4] is the path-loss
parameter. We consider an environment without obstacles, i.e.,
α = 2. Let ξAnT (n) be the AP n’s instant-transmitter-data-
rate which is determined by the SNR at the corresponding FC
T (n). In this paper, we focus on homogeneous sensors, APs,
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and FCs. Hence, we consider identical sensor antenna gains,
identical AP antenna gains, identical AP SNR thresholds, and
identical FC SNR thresholds. Without loss of generality, we
set ηAn,T (n) = ηA and ξAnT (n) = ξA. In such a homogeneous
scenario, the total amount of data is proportional to the
number of sensors, and f(·) is just a scaled sensor density
function. Note that AP n collects data from the sensors
in RA

n , indicating that the average-receiver-data-rate - the
amount of data received from sensors in the unit time - is∫
RA

n
f(w)dw. It is reasonable to assume that the AP transmit-

ters have idle time and forward data only when the collected
sensing data comes into the buffer. Hence, the channel-busy-
ratio is proportional to the average-receiver-data-rate, and

can be written as ΓA
n =

∫
RA

n
f(w)dw·T/ξA

T =

∫
RA

n
f(w)dw

ξA
,

where ξA is AP n’s instant-transmitter-data-rate. Therefore,
the average-transmitter-power of AP n can be rewritten as
PA
tn = EA

tnΓ
A
n = ηA

ξA
∥pn − qT (n)∥2

∫
RA

n
f(w)dw.

The power consumption at AP receivers is a constant
and does not affect energy optimization [1]. Without loss
of generality, we drop it from the total energy consumption.
Therefore, to consider the total energy consumption, we use
the sum of the APs’ average-transmitter-powers, PA

tn , which
is calculated as

PA
(P,Q,RA, T )=

N∑
n=1

PA
tn =

N∑
n=1

∫
RA

n

ηA

ξA
∥pn−qT(n)∥2f(w)dw. (1)

Next, we discuss sensors’ total power consumption. Similar
to the power consumption at AP receivers, the power consump-
tion at sensor receivers is also a constant and thus dropped
from our objective function. In what follows, we focus on
power consumption at sensor transmitters. Since f should be
approximately uniform on an infinitesimal region [w,w+dw],
the total amount of data generated from [w,w+dw] in one time
unit is f(w)dw. As a result, the sum of channel-busy-ratios
of the sensors in [w,w+dw] is ΓS = f(w)dw·T/ξS

T = f(w)dw
ξS

,
where ξS is sensors’ instant-transmitter-data-rate. In addition,
sensors within [w,w+dw] are supposed to have approximately
the same distance to the corresponding FC q, and then have the
same instant-transmission-power ES

t = ηS∥w−q∥2, where ηS

is a constant determined by the antenna gain of sensors and
the SNR threshold of the corresponding AP. Hence, the sum of
the sensors’ average-transmitter-powers within [w,w+dw] is
ηS

ξS
∥q−w∥2f(w)dw. Note that sensors in RA transfer data to

AP n. Therefore, the sum average-transmitter-powers of the
sensors in the whole region Ω is calculated as

PS
(P,RA) =

N∑
n=1

∫
RA

n

ηS

ξS
∥pn − w∥2f(w)dw. (2)

We define the scaled AP power and the scaled sensor power,
respectively, as

PA(P,Q,RA, T), ξA

ηA
PA

(P,Q,RA, T )=

N∑
n=1

∫
RA

n

∥pn−qT (n)∥2f(w)dw,

(3)

PS(P,RA) , ξS

ηS ·PS
(P,RA)=

N∑
n=1

∫
RA

n

∥pn−w∥2f(w)dw. (4)

In what follows, we focus on the scaled sensor power and
the scaled AP power which are also, respectively, referred
to as Sensor-power and AP-power for simplicity. On one
hand, Sensors’ densely deployment prevent the network from
breaking by few sensor failures. On the other hand, the limited
number of APs makes the recharging possible for APs. Under
such scenario, saving the total energy consumption becomes
an important requirement. Therefore, one objective could be
minimizing the scaled total AP power consumption in (3)
given a constraint on the total sensor power (4) or vice
versa. Like rate-distortion function R(D) and the distortion-
rate function D(R), we define the AP-sensor power function
and Sensor-AP power function, respectively, as

A(S) , inf
(P,Q,RA,T ):PS(P,RA)≤S

PA(P,Q,RA, T ) (5)

S(A) , inf
(P,Q,RA,T ):PA(P,Q,RA,T )≤A

PS(P,RA). (6)

We can then define the Lagrangian objective function (two-
tier distortion) to be minimized as

D(P,Q,RA, T ) = PS(P,RA) + βPA(P,Q,RA, T )

=

N∑
n=1

∫
RA

n

[
∥pn − w∥2 + β∥pn − qT (n)∥2

]
f(w)dw.

(7)

Our main goal is to minimize the two-tier distortion over
the following four variables: (i) AP deployment P ; (ii) FC
deployment Q; cell partition RA; (iv) index map T . As we
discussed in Section I, there are many applications that result
in a two-tier quantization set-up and as long as the corre-
sponding distortion is a function of the distance, our results
will hold for those applications as well. Another interpretation
is to consider (1) as the sensor energy consumption and (2)
as the sensing quality measured by the mean square error
(MSE) in a one-tier WSN scenario in which dots in Fig. 1b
are sensors, stars are APs and the density function f(·) is
replaced by the event probability density function. In other
words, the proposed optimization problem can also provide
the trade-off between energy efficiency and sensing quality in
one-tier WSNs.

III. THE BEST POSSIBLE DISTORTION FOR THE TWO-TIER
WSNS WITH ONE FC

As discussed earlier, the node deployment problem in two-
tier WSNs can be interpreted as a two-tier quantizer design
problem whose reproduction points are APs and FCs. Similar-
ly, if one only considers the energy consumption of sensors,
the corresponding optimization problem becomes a “regular”
(or one-tier) quantization problem with distortion

Dr(X,R) =

N∑
n=1

∫
Rn

∥xn − w∥2f(w)dw. (8)

Let (X∗,R∗) = argmin(X,R) Dr(X,R) be the optimal one-
tier quantizer. In some cases [22]–[25], only one FC or fusion
center is deployed to collect data from the entire WSNs. In the
case of one FC and multiple APs, the following proposition
holds.
Proposition 1. For a two-tier WSN with one FC, We have the
following:
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(i) The optimal FC location is the centroid of the target
region, i.e., q∗ =

∫
Ω
wf(w)dw∫

Ω
f(w)dw

.
(ii) The optimal AP locations of the two-tier WSNs are linear

transformations of the optimal reproduction points X∗ =

(x∗
1, . . . , x

∗
N ), i.e., p∗n =

x∗
n+βq∗

1+β , n ∈ IA.
(iii) The optimal AP partition is the same as the optimal one-

tier quantizer partition R∗=(R∗
1 , . . . , R

∗
N ), i.e.,RA∗=R∗.

(iv) The best possible distortion is 1
1+β

Dr(X
∗,R∗) +

β
1+β

∫
Ω
∥w − q∗∥2f(w)dw.

The proof of the proposition is provided in Appendix A.
By Proposition 1, one can obtain the optimal solution for the
two-tier quantization by shrinking the optimal reproduction
points of the one-tier quantizer towards the corresponding
FCs. Note that the algorithms AC and DC in [30] identify
the optimal reproduction of the N -level one-tier quantizer as
the AP deployment and then determine the FC deployment
in terms of the identified AP deployment, and vice versa.
In what follows, we provide an example to compare the
quantizer generated by AC/DC with our proposed optimal
quantizer, respectively. Consider one FC, n APs, and a uniform
distribution over the 1-dimensional target region Ω = [s, t].
The reproduction points and the cells of an optimal one-tier
quantizer are given by x∗

n = s + (2n−1)(t−s)
2N , n ∈ IA, and

R∗
n =

[
s+ (n−1)(t−s)

N , s+ n(t−s)
N

]
, n ∈ IA. In this case, the

quantizers generated by AC and DC are identical. There is no
surprise that the AP deployment and cell partition of AC/DC
are exactly the reproduction points and partition of the optimal
one-tier quantizer, i.e., p′n = x∗

n, RA′

n = R∗
n, n ∈ IA. FC

location is the geometric centroid q′ = (t + s)/2. However,
according to Proposition 1, the optimal AP deployment and
cell partition are, respectively, p∗n = s+ β(t−s)

2(1+β) +
(2n−1)(t−s)
2N(1+β)

and RA∗
n = R∗

n, n ∈ IA. Similar to the solution of AC/DC, the
optimal FC location is q∗ = q′ = (t+s)/2. The corresponding
minimum distortion is (t−s)2

12(1+β)N2 + β(t−s)2

12(1+β) . In particular, for
β = 1 and Ω = [−1

2 ,
1
2 ] with 1 FC and 4 APs, the solution of

AC/DC, shown in Fig. 2a, is q′ = 0, RA′

n =
[
n−3
4 , n−2

4

]
,

and p′n = 2n−5
8 , n ∈ IA, indicting a distortion of 61

768 .
But, the optimal FC location is q∗ = 0, the optimal cells
are RA∗

n =
[
n−3
4 , n−2

4

]
, n ∈ IA, the optimal AP locations

are p∗n = 2n−5
16 , n ∈ IA, and the best possible distortion is

17
384<

61
768 . The optimal two-tier quantizer is shown in Fig. 2b.

Furthermore, the best possible distortion can be exactly
determined in the high resolution regime N → ∞. In fact,
the best possible distortion Dr(X

∗, R∗) of a one-tier quantizer
is given by [26]

κddN
− 2

d ∥f∥ d
d+2

+ o(N− 2
d ), N → ∞, (9)

where ∥f∥q , (
∫
Rd f

q(x)dx)
1
q , and κd depends only on the

dimension d. For example, we have κ1 = 1
12 and κ2 = 5

18
√
3

[26], [28]. By using Proposition 1, the best possible distortion
in high resolution regime N → ∞ with one FC is

1

1 + β
κddN

− 2
d ∥f∥ d

d+2
+

β

1 + β

∫
Ω

∥w − c∥2f(w)dw + o(N− 2
d ).

(10)IV. THE OPTIMAL DEPLOYMENT IN TWO-TIER WSNS
WITH MULTIPLE FCS

In this section, we extend the analysis of the optimal
deployment to WSNs with multiple FCs. Given multiple FCs,

APs are divided into clusters in terms of the index map T , and
the number of clusters is M . In particular, the m-th cluster is
defined as Nm , {n : T (n) = m}. Let Nm be the number of
elements in Nm, and Wm =

∪
n∈Nm

RA
n be the mth cluster

region. Distortion in this general case is determined by (i) AP
deployment, (ii) FC deployment, (iii) AP cell partition, and
(iv) Clustering (or the index map from APs to FCs). Before
we discuss the optimal AP and FC deployment, we need to
know (a) the best index map T given P , Q, and RA, and (b)
the best AP partition RA given P , Q, and T .

The index map T only influences the second term in (7).
To minimize the second term, each AP should transfer data
to the closest FC. Thus, the best index map is TE

[P,Q](n) =

argminm ∥pn − qm∥. However, given P , Q, and T = TE
[P,Q],

AP cell partition RA affects both terms in (7). The best AP
cell partitions, called the energy Voronoi diagrams (EVDs),
are

VE
n (P,Q)={w

∣∣∥pn − w∥2+β∥pn−qTE
[P,Q]

(n)∥
2

≤∥pl−w∥2+β∥pl − qTE
[P,Q]

(l)∥
2, ∀l ̸=n, n∈IA}.

(11)

Now, let VE(P,Q) = {V E
n (P,Q)}n∈IA be the energy

Voronoi partition. Putting the best index map TE
[P,Q](·) and

the best AP partition VE(P,Q) into (7), the distortion is

D̃(P,Q) = D(P,Q,VE(P,Q), TE
[P,Q])

=

N∑
n=1

∫
V E
n (P,Q)

(
∥pn−w∥2+βmin

m
∥pn−qm∥2

)
f(w)dw.

(12)

Let P ∗ = (p∗1, . . . , p
∗
N ) and Q∗ = (q∗1 , . . . , q

∗
M ) be, respective-

ly, the optimal AP and FC deployments. Let vn(P
∗, Q∗) =∫

V E
n (P∗,Q∗)

f(w)dw be the Lebesgue measure (volume) of
V E
n (P ∗, Q∗). Without loss of generality, we may assume

vn(P
∗, Q∗) > 0, as quantization cells with zero probability

do not affect the overall distortion.

Proposition 2. Let α = 2 and N > M . The necessary
conditions for the optimal deployments in the two-tier WSN
with distortion defined by (7) are

p∗n =
cn(P

∗, Q∗) + βq∗
TE
[P∗,Q∗]

(n)

1 + β
, n ∈ IA, (13)

q∗m =

∑
n:TE

[P∗,Q∗]
(n)=m cn(P

∗, Q∗)vn(P
∗, Q∗)∑

n:TE
[P∗,Q∗]

(n)=m vn(P ∗, Q∗)
,m ∈ IB, (14)

where p∗n is the optimal location for AP n and q∗m is the opti-
mal location for FC m, TE

[P∗,Q∗](n) = argminm ∥p∗n−q∗m∥ is
the best index map, vn(P ∗, Q∗) =

∫
V E
n (P∗,Q∗)

f(w)dw is the
Lebesgue measure (volume) of V E

n (P ∗, Q∗) and cn(P
∗, Q∗)

is the geometric centroid of V E
n (P ∗, Q∗).

The proof of the proposition is provided in Appendix B.
According to (13), the optimal location of AP n, connected
to FC m, should be on the segment cn(P,Q)qm. According
to (14), the best location of FC m should be the geometric
centroid of the mth cluster region

∪
n:T (n)=m V E

n (P ∗, Q∗).
Obviously, the optimal deployment and the optimal partition
in Proposition 1 also satisfy the necessary conditions in Propo-
sition 2. In the next section, using Proposition 2, we design



6

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

(a)
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

(b)
Fig. 2: Two deployment examples in a 1-dimensional space with one FC. (a) The AC/DC two-tier quantizer. (b) The optimal quantizer. AP
and FC locations are denoted by circles and star. The optimal partition cells are denoted by intervals. Each AP and its corresponding cell
are illustrated by the same color.

Lloyd-like algorithms to determine the optimal deployment.
First, note that when the AP cell partition is fixed, the

geometric centroid cn, n ∈ IA, and the volume of the cells
vn, n ∈ IA, are fixed. Second, the index map TE

[P,Q] represents
the best connection between APs and FCs (or clustering) if
and only if P and Q are given. We now find the optimal
deployment, the optimal partition, the optimal index map and
the best possible distortion for a uniform density in one-
dimensional space.

Theorem 1. Let Ω = [s, t] with length µ(Ω) = t−s. Also, let

ℓa =
(
β + ⌈ N

M
⌉−2)− 1

2 , ℓb =
(
β + ⌊ N

M
⌋−2)− 1

2 (15)
Ma = (N mod M), Mb = M − (N mod M). (16)

Then, given a uniform distribution on Ω with M FCs and N
APs, the minimum distortion is

µ2(Ω)

12(1 + β)
(Maℓa +Mbℓb)

−2 . (17)

The minimum is achieved if and only if

(i) Ma of the clusters consist of ⌈N
M ⌉ APs each and have

length ℓaµ(Ω)/(Maℓa +Mbℓb),
(ii) Mb of the clusters consist of ⌊N

M ⌋ APs each and have
length ℓbµ(Ω)/(Maℓa +Mbℓb),

(iii) FCs are deployed at the centroids of the cluster regions,
(iv) AP cells are uniform partitions of the cluster, and
(v) AP n is deployed at cn+βqT (n)

1+β , n ∈ IA, where cn is the
geometric centroid of AP n’s cell.

The proof of the theorem provided in Appendix C.
In particular, when K = N

M is a positive integer, the optimal
FC locations are q∗m = s + (2m−1)(t−s)

2M ,m ∈ IB, and the
optimal index map is T ∗(n) =

⌈
n
K

⌉
, n ∈ IA. The optimal

AP locations are p∗n = s+ (t−s)
(1+β)

(
(2n−1)

2N + β
(2⌈ n

K ⌉−1)

2M

)
, n ∈

IA, and the optimal AP cell partitions are RA∗
i =[

s+ (n−1)(t−s)
N , s+ n(t−s)

N

]
, n ∈ IA. The corresponding

minimum distortion is (t−s)2

12(1+β)M2

(
1

K2 + β
)
. However, in such

a uniform distributed 1-dimensional scenario, the quantizers
generated by AC [30] and DC [30] are identical but dif-
ferent from the above optimal solution. The corresponding
FC and AP deployments of AC/DC are, respectively, the
optimal M -level and N -level one-tier reproduction points,
i.e., p′n = s + (2n−1)(t−s)

2N , q′m = s + (2m−1)(t−s)
2M , n ∈

IA,m ∈ IB. The corresponding AP cell partitions are RA′

n =[
s+ (n−1)(t−s)

N , s+ n(t−s)
N

]
, n ∈ IA. In what follows, we

provide an example to elucidate the gap between AC/DC quan-
tizer and the optimal quantizer. For β = 1 and Ω = [− 1

2 ,
1
2 ]

with 2 FC and 6 APs, the AC/DC quantizer, illustrated by Fig.
3a, is Q′ = {− 1

4 ,
1
4}, P ′ = {− 5

12 ,−
3
12 ,−

1
12 ,

1
12 ,

3
12 ,

5
12}, and

RA′

n =
[
n−4
6 , n−3

6

]
, n ∈ IA. The corresponding distortion is

thus 49
2592 . Nonetheless, according to Theorem 1, the optimal

FC deployment is Q∗ = {−1
4 ,

1
4}, the optimal AP deployment

is P ∗ = {−1
3 ,−

1
4 ,−

1
6 ,

1
6 ,

1
4 ,

1
3}, the optimal AP cells are

RA∗
n =

[
n−4
6 , n−3

6

]
, n ∈ IA, and the optimal index map is

T ∗(n) = ⌈n
3 ⌉, n ∈ IA. The optimal quantizer, shown in Fig.

3b, gains the minimum distortion, 5
432 which is much smaller

than 49
2592 . The distortion gap holds for more complicated

circumstances, e.g., non-uniform distributed 2-dimensional
space. Therefore, in order to approach the optimal distortion,
it is necessary to designed a better two-tier quantizer. This is
the topic of the discussion in Section VI.

V. AP-SENSOR POWER FUNCTION

As explained before, minimizing the distortion in (7) is
the unconstrained version of minimizing the sum of the AP
powers when the sum of the sensor powers is constrained or
vise versa. In this section, we study the minimization of the
sum of the AP powers when the sum of the sensor powers
is constrained via analyzing the AP-Sensor power function in
(5). An AP-Sensor power pair (x, y) is said to be achievable
if there exists a solution (P,Q,RA, T ) with Sensor-power
PS(P,RA) ≤ x and AP-power PA(P,Q,RA, T ) = y.
(P,Q,RA, T ) is said to be a feasible solution for the AP-
Sensor power pair (S,A(S)) if and only if PS(P,RA) ≤ S
and PA(P,Q,RA, T ) = A(S). Let F (S) be the set of the
feasible solutions for the point (S,A(S)), and F̂ =

∪
S

F (S)

be the set of all feasible solutions for all points on the curve
A(S). It is self-evident that every point above the curve A(S)
is achievable. We now discuss the convexity of the AP-Sensor
power function. By parallel axis theorem, (2) can be rewritten
as

PS(P,RA) =
N∑

n=1

∫
RA

n

∥cn − w∥2f(w)dw +
N∑

n=1

∥pn − cn∥2vn,

(18)

where cn =

∫
RA

n
wf(w)dw∫

RA
n

f(w)dw
is the centroid of RA

n , vn =∫
RA

n
f(w)dw is the volume of RA

n . Note that cn and vn are
functions of RA. cn and vn are constants if and only if the AP
cell partition RA is fixed. Furthermore, AP-power, (1), can be
rewritten as

PA(P,Q,RA, T ) =

N∑
n=1

∥pn − qT (n)∥2vn. (19)

The representations (18) and (19) are convenient for the
following convexity analysis.
Lemma 1. Let DR(k) be the minimum distortion of the k-level
one-tier quantizer on space Ω. Let M and N be, respectively,
the number of FCs and the number of APs, where N > M .
The AP-Sensor power function is a non-increasing function
with the domain [DR(N),+∞) such that A(S) > 0 when
DR(N) ≤ x < DR(M) and A(S) = 0 when x ≥ DR(M).

The proof of the lemma is provided in Appendix D.
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Fig. 3: Two deployment examples in a 1-dimensional space with two FCs. (a) The AC/DC two-tier quantizer. (b) The optimal two-tier
quantizer. AP and FC locations are denoted by circles and stars. The optimal partition cells are denoted by intervals. Each AP and its
corresponding cell are illustrated by the same color. The two clusters are denoted by solid and dashed lines.

A. Closed-form formulas and convexity for one FC

In this section, we assume only one FC and derive a closed-
form analytical formula for the AP-Sensor power function. We
also prove that the AP-sensor power function is convex.
Lemma 2. When one FC Q = (q) and multiple APs
P = (p1, . . . , pN ) are provided, and RA is fixed, the minimum
PA(P,Q,RA, T) with the constraint PS(P,RA)≤S is defined by

Â(S,RA) , inf
(P,Q,T ):PS(P,RA)≤S

PA(P,Q,RA, T ). (20)

We have the following results: (i) The domain of Â(S,RA) is
{(S,RA)|H(RA) ≤ S};
(ii) When (S,RA) ∈ {(S,RA)|H(RA) ≤ S,DR(N) ≤ S <
DR(M)}, we have{
Â(S,RA)=

[√
(S−H(RA))−

√
DR(1)−H(RA)

]2
, S∈ [DR(N), DR(1))

0, S∈ [DR(1),+∞)
(21)

where H(RA)=
∑N

n=1

∫
RA

n
∥cn−w∥2f(w)dw, cn=

∫
RA

n
wf(w)dw∫

RA
n
f(w)dw

is

the centroid of RA
n , and vn=

∫
RA

n
f(w)dw is the volume of RA

n.

The proof is provided in Appendix E.
Theorem 2. When one FC and multiple APs are provided,
i.e., M = 1 and N > 1, the AP-Sensor power function A(S)
is a convex function with the expression

A(S)=

{[√
S−DR(N)−

√
DR(1)−DR(N)

]2
, S∈ [DR(N), DR(1))

0, S∈ [DR(1),+∞)
(22)

The proof of the theorem is provided in Appendix F. When
M = 1, as an inverse function of A(S), the Sensor-AP power
function is also a convex function with the expression

S(A)=

{
DR(N)+

[√
DR(1)−DR(N)−

√
A
]2
, A∈ [0, DR(1)−DR(N))

DR(N), A∈ [DR(1)−DR(N),+∞)
(23)

Therefore, for M = 1, finding the solution of A(S) on
S ∈ [DR(N), DR(1)) is equivalent to (i) finding the mini-
mizer of PA(P,Q,RA, T )+λPS(P,Q), where the Lagrange
Multiplier λ = −

(
∂A(S)
∂S

)
=
√

DR(1)−DR(N)
S−DR(N) − 1 is the neg-

ative derivative at (S,A(S)) and (ii) finding the minimizer of
D(P,Q,RA, T ) = PS(P,Q)+βPA(P,Q,RA, T ), where the

Lagrange Multiplier β = −
(

∂A(S)
∂S

)−1

= 1√
DR(1)−DR(N)

S−DR(N)
−1

is the negative reciprocal of the derivative at (S,A(S)).
In what follows, we provide an example for the 1-

dimensional space [s, t] and a uniform distribution. On one
hand, due to the quantization theorem [3], we have DR(1) =
(t−s)2

12 and DR(N) = (t−s)2

12N2 . Therefore, (22) becomes

A(S)=S− (t−s)2

6N2
+
(t−s)2

12
−2

√(
S− (t−s)2

12N2

)(
(t−s)2

12
− (t−s)2

12N2

)
.

(24)

On the other hand, let (P ∗, Q∗,RA∗, T ∗) be an optimal
solution for D(P,Q,RA, T ) with β = 1√

DR(1)−DR(N)

S−DR(N)
−1

. By

Proposition 1, we have PS(P ∗,RA∗) = S and

PA(P ∗, Q∗,RA∗, T ∗) = S − (t− s)2

6N2
+

(t− s)2

12

−2

√(
S − (t− s)2

12N2

)(
(t− s)2

12
− (t− s)2

12N2

)
,

(25)

which is the same as (24).
VI. NODE DEPLOYMENT ALGORITHMS

We introduce three algorithms, One-Tiered Lloyd (OTL),
Two-Tiered Lloyd (TTL), and Combining Lloyd (CL), to
minimize the distortion in two-tier WSNs. First, we quickly
review the conventional Lloyd algorithm. Lloyd Algorithm has
two basic steps in each iteration: (i) The node deployment is
optimized while the partitioning is fixed; (ii) The partitioning
is optimized while the node deployment is fixed. As shown
in [5], Lloyd algorithm, which provides good performance
and is simple enough to be implemented distributively, can be
used to solve one-tier quantizers or one-tier node deployment
problems. However, the conventional Lloyd Algorithm cannot
be applied to two-tier WSNs where two kinds of nodes are
deployed. We thus introduce three Lloyd-based algorithms to
solve the optimal deployment problem in two-tier WSNs.

A. One-tier Lloyd Algorithm

OTL combines two independent Lloyd Algorithms. Using
the Lloyd algorithm, an M -level one-tier quantizer is de-
signed and its reproduction points are used as Q. Another
N -level one-tier quantizer is designed and its partition is
used as RA. The index map is determined by T (n) =
argminm ∥p′n − qm∥ and the deployment P is determined
by pn = minm

p′
n+βqm
1+β , n ∈ IA, where p′n is the nth

reproduction point obtained by the N -level quantizer. Using
Proposition 1, it is easy to show that, for the networks with one
FC, the distortion of OTL converges to the minimum as long
as the second Lloyd Algorithm provides the optimal N -level
quantizer.

B. Two-tier Lloyd Algorithm
Before we introduce the details of TTL, we introduce two

concepts: (i) AP local distortion and (ii) FC local distortion.
The AP local distortion is defined as

DA
n (P,Q,RA, T ) =

∫
RA

n

[
∥pn − w∥2 + β∥pn − qT (n)∥2

]
f(w)dw.

The total distortion is the sum of the AP local distortions,
i.e.,

D(P,Q,RA, T )=

N∑
n=1

DA
n (P,Q,RA, T ).

Similarly, for Nm , {n : T (n) = m}, the FC local distortion
is defined as
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DB
m(P,Q,RA, T )=

∑
n∈Nm

∫
RA

n

(
∥pn−w∥2 + β∥pn−qm∥2

)
f(w)dw.

The total distortion is the summation of these FC local
distortions, i.e., D(P,Q,RA, T )=

∑M
m=1 D

B
m(P,Q,RA, T ).

Let cn and vn be, respectively, the geometric centroid and
the volume of the current AP cell partition. TTL iterates over
four steps: (i) AP n moves to cn+βqT (n)

1+β ; (ii) AP partitioning
is done by assigning the corresponding EVD to each AP node;
(iii) FC m moves to

∑
n∈Nm

pnvn∑
n∈Nm

vn
; (iv) Clustering is done by

assigning the nearest FC to each AP. Furthermore, to avoid
the APs with a zero-measure partition, we move such an AP
towards a randomly selected FC q until the distance to the q
is minn∥pn − q∥ after (ii).

In what follows, we show that the distortion with TTL
converges. First, due to the parallel axis theorem and (28),
the local distortion of AP n can be rewritten as

DA
n (P,Q,RA,T)=

1

1+β

∫
RA

n

∥cn − w∥2f(w)dw

+ (1 + β)∥pn − p̂n∥2vn +
β

1+β

∫
RA

n

∥w−qT (n)∥2f(w)dw,

(26)

where p̂n =
cn+βqT (n)

1+β . When Q, RA, and T are given,

the first term and the third term of (26) are constants. In
other words, the AP local distortion becomes a function of
∥pn − p̂n∥. Therefore, Step (i) does not increase the AP
local distortions and then the total distortion. Second, given
P , Q and T , EVDs minimize the total distortion, indicating
that the total cost is not increased by Step (ii). Third, ob-
serve that for q̂m =

∑
n∈Nm

pnvn∑
n∈Nm

vn
, we have

∑
n∈Nm

vn∥pn −
qm∥2=

∑
n∈Nm

vn
[
∥pn−q̂m∥2+∥qm−q̂m∥2

]
. Therefore, the

local distortion of FC m can be rewritten as

DB
n (P,Q,RA,T ) =

∑
n∈Nm

∫
RA

n

∥pn − w∥2f(w)dw

+ β

( ∑
n∈Nm

vn

)
∥qm − q̂m∥2 + β

∑
n∈Nm

(
vn∥pn − q̂m∥2

)
.

(27)

When P , RA, and T are given, the first term and the

third term in (27) are constants. In other words, the FC local
distortion becomes a function of ∥qm − q̂m∥. Therefore, Step
(iii) does not increase the FC local distortions and then the
total distortion. Last, given P , Q, and RA, TE

[P,Q](n) =
argminm ∥pn−qm∥ minimizes the total distortion, indicating
that the total distortion is not increased by Step (iv). In
other words, the algorithm generates a positive non-increasing
sequence of distortion values and therefore will converge.

C. Combining Lloyd Algorithm

Note that there is no guarantee to achieve a minimum
distortion with OTL when M > 1. The distortion with TTL
converges to the local minimum, however, depends on the ini-
tial deployments. Our simulations show that starting with some
initial deployments, TTL ends with large minimum distortions.
A natural idea to avoid these issues is to combine the two
algorithms. First, OTL is applied to obtain a deployment with
small distortion as the initial deployment for TTL. Second,
TTL is applied to further decrease the distortion. We refer to
such an algorithm as Combining Lloyd (CL) Algorithm.

VII. PERFORMANCE EVALUATION

We provide the simulation results in two two-tier WSNs: (i)
WSN1: A two-tier WSN including one FC and 20 APs; (ii)
WSN2: A two-tier WSN including 4 FCs and 20 APs. Similar
to [4], [5], the target region is set to Ω = [0, 10]2 and β is set
to 1. The traffic density function is the sum of five Gaussian
functions of the form 5 exp(0.5(−(x−xc)

2−(y−yc)
2)), where

centers (xc, yc) are (8,1), (4,9), (7.6,7.6), (9.4,5), and (2,2). We
generate 50 initial AP and FC deployments on Ω randomly, i.e,
every node location is generated with uniform distribution on
Ω. For each initial AP and FC deployments, we connect every
AP to its closest FC and then assign the corresponding EVD
to the AP node. The maximum number of iterations is set to
100. FCs and APs are denoted, respectively, by colored five-
pointed stars and colored circles. The corresponding geometric
centroid of AP cells are denoted by colored crosses. Each
FC and its connected APs form a cluster. To make clusters
more visible, the symbols in the same cluster are filled with
the same color. As discussed in Section I, the distortion
is the weighted power. We compare the distortion of our
three algorithms (OTL, TTL, and CL) with Minimum Energy
Routing (MER), Agglomerative Clustering (AC) [30], and
Divisive Clustering (DC) [30] algorithms. AC and DC are
two clustering methods applied to multi-tier networks. MER
combines Voronoi Partition [2] and Bellman-Ford algorithms.
On one hand, Voronoi Partition is the optimal cell partition
in the first tier (one-tier WSNs). On the other hand, when
edge costs are set as the AP powers, Bellman-Ford Algorithm
provides the flow with the minimum energy consumption
[23], [45], indicating the optimal routing protocol in one tier
network. Note that multi-hop communication among sensors
is unnecessary because of the small distance between a sensor
and its corresponding AP [22]. Therefore, the existing routing
protocol, Bellman-Ford, is only applied to the second tier.

Figs. 4a, 4b, 4c, and 4d show one example of the final
deployments of the four algorithms (MER, AC, DC, and CL)
in WSN1. For MER, the multi-hop paths are denoted by
black dotted lines in 4a. From Fig. 4d, we can find that
APs are placed on the line between the corresponding FCs
and cell centroids, as expected from Proposition 2. Compared
to MER, CL saves 41.90% of the weighted total power in
WSN1. However, AC and DC consume more energy compared
to MER. Figs. 5a, 5b, 5c, and 5d show examples of the
final deployments of MER, AC, DC, and CL, in WSN2,
respectively. Compared to MER, the AC, DC, and CL save,
respectively, 60.69%, 69.92%, and 81.55% of the weighted
total power. Moreover, in Figs. 4 and 5, the FC deployments
of the three algorithms, AC, DC, and CL, are approximately
the same, but the AP deployments of AC and DC are more
uniform than that of CL. Intuitively, compared to the MER,
AC, and DC Algorithms, the APs are deployed closer to FCs
and then produce smaller AP powers in CL Algorithm, which
justifies our observation that CL saves more power compared
to the other three algorithms.

Figs 6a and 6b illustrate the weighted total power (7) of
different algorithms in WSN1 and WSN2. Our algorithms,
OTL, TTL, and CL, outperform MER, AC, and DC in both
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(a) (b) (c) (d)

Fig. 4: AP and FC deployments of different algorithms in WSN1. (a) MER. (b) AC (c) DC. (d) CL.

(a) (b)

(c) (d)

Fig. 5: AP and FC deployments of different algorithms in WSN2.
(a) MER. (b) AC (c) DC. (d) CL.
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Fig. 6: The weighted power comparison of different Algorithms. (a)
WSN1. (b) WSN2.

networks, especially when β is large (the energy consumed on
APs is significant). In WSN1, the three proposed algorithms
have almost the same weighted power savings. Although it
cannot be seen from the figure, for WSN2, TTL’s power
saving relative to MER is about 1% better than that of OTL.
Comparing the two schemes directly, the power saving of
TTL over that of OTL is about 1-3%. Besides, CL, whose

performance is better than OTL and TTL in WSN2, requires
the shortest running time among the three algorithms. When
β = 1, the running time of repeating each algorithm 50
times is provided in Table I. Note that the running time is
dominated by the calculation of the partition. OTL calculates
Voronoi partitions for both FCs and APs. TTL calculates
energy Voronoi partitions for APs only. Therefore, the running
time of OTL increases as we increase the number of FCs. On
the contrary, the running times of TTL are almost the same
because WSN1 and WSN2 have the same number of APs.
CL, as a combination of OTL and TTL, is associated with the
running time that is related to the number of FCs. Besides,
TTL spends a lot of time to relocate APs with zero-measure
partitions because of the bad initial deployments. However,
CL attains a good deployment by operating OTL before TTL
which greatly reduces the time consumed by AP relocation.
Consequently, as shown in Table I, CL requires the shortest
running time among the three algorithms.

Figs. 7a and 7b illustrate the comparison between the AP
Sensor power pair (PS ,PA) using CL with different values
of β and the AP-Sensor power function A(S) in (5). One FC
and twenty APs are provided, i.e., M = 1 and N = 20. Fig.
7a is based on a one-dimensional region uniformly distributed
in [0, 1] and Fig. 7b is based on WSN1. The green dotted
line shows the value of DR(20) and the orange dotted line
shows the value of DR(1). DR(1) and DR(20) in Fig. 7a
are theoretical values derived from the quantization theory,
i.e., DR(1) =

1
12 and DR(20) =

1
12∗202 . DR(1) and DR(20)

in Fig. 7b are obtained from repeating Lloyd Algorithm and
choosing the smallest distortion. From Figs. 7a and 7b, we find
that the AP Sensor power pair (PS ,PA) obtained from CL
matches the theoretical AP-Sensor power function very well.
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Fig. 7: The comparison between the AP-Sensor power function
and the performance of TTL: (a) One-dimensional region uniformly
distributed in [0,1]. (b) WSN1.
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TABLE I: Running times(s)

Algorithms WSN1 WSN2
OTL 1931.41 2196.03
TTL 7078.12 7047.40
CL 1858.88 1968.30

VIII. CONCLUSION

A two-tier quantizer and its application, energy efficiency
in a two-tier wireless sensor network (WSN), are studied in
this paper. Different from one-tier WSNs, the two-tier WSN
collects data from a large-scale wireless sensor network to
fusion centers through access points. The necessary condition
for optimal deployment implies that every AP location should
be deployed between the centroid of its cell and its associated
FC. In addition, the AP-Sensor power function is introduced
and analyzed to provide the minimum AP power with a sensor
power constraint. We also proposed Lloyd-like algorithms to
minimize the distortion. Our simulation results show that our
algorithms significantly save the weighted power or energy in
two-tier WSNs. In this work, we do not consider collaboration
among sensors; such a case will be considered in our future
work.

APPENDIX A
PROOF OF PROPOSITION 1

When there is only one FC, all APs transfer data to the
unique FC located at q, and the index map is simply given by
T (n) = 1, n ∈ IA. The corresponding distortion is

D(P,Q,RA, T )=

N∑
i=1

∫
RA

n

[
∥pn−w∥2+β∥pn−q∥2

]
f(w)dw.

Since

∥pn−w∥2+β∥pn−q∥2=(1+β)
∥∥pn− (w+βq)

1+β

∥∥2+ β∥w−q∥2
1+β

, (28)
we obtain

D(P,Q,RA, T )=
1

1+β

N∑
n=1

∫
RA

n

∥((1+β)pn−βq)−w∥2f(w)dw

+
β

1 + β

∫
Ω

∥w − q∥2f(w)dw,

(29)

The first term in (29) is the distortion of a one-tier quantizer
with linear transformation of its reproduction points (AP
locations). The minimum value of the first term is Dr(X

∗,R∗)
and can be achieved by choosing the optimal AP deployment
P for any FC location q. On the other hand, the second
term in (29) is the distortion of another quantizer whose
reproduction point is the FC, and is independent of the
choice of AP locations and partition cells. In other words,
the second term only depends on the FC location q. As a
result, one can optimize (29) by finding the optimal q∗ to
minimize the second term and then calculate the optimal AP
deployment P ∗ for q∗. By parallel axis theorem, the second
term achieves the minimum if and only if the FC is placed at
the geometric centroid c =

∫
Ω
wf(w)dw∫

Ω
f(w)dw

of Ω, which proves
(i). The best possible distortion is then the summation of
1

1+βDr(X
∗,R∗) and β

1+β

∫
Ω
∥w − c∥f(w)dw, which proves

(iv). The two-tier quantizer achieves this minimum when
q∗ = c, x∗

n = ((1 + β)p∗n − βq∗) , n ∈ IA, and RA = R∗,
which proves (ii) and (iii).

APPENDIX B
PROOF OF PROPOSITION 2

Let (P ∗, Q∗,RA∗, T ∗) be an optimal solution for (7).
As we show at the beginning of Sec. IV, given the op-
timal deployment (P ∗, Q∗), the optimal partition and the
optimal index map are, respectively, RA∗ = V E(P ∗, Q∗)
and T ∗ = TE

[P∗,Q∗]. Thus, the optimal geometric centroid
and the optimal Lebesgue measure (volume) of RA∗ can be
represented as cn(P ∗, Q∗) and vn(P

∗, Q∗), where cn(P,Q) =∫
V E(P,Q)

wf(w)dw∫
V E(P,Q)

f(w)dw
and vn(P,Q) =

∫
V E(P,Q)

f(w)dw. Accord-
ing to the parallel axis theorem, given the optimal partition
V E(P ∗, Q∗) and the optimal index map TE

[P∗,Q∗], the objective
function in (7) can be expressed as

D
(
P,Q, VE(P ∗, Q∗), TE

[P∗Q∗]

)
=

N∑
n=1

∫
VE
n(P∗,Q∗)
∥cn(P ∗, Q∗)−w∥2f(w)dw

+∥pn−cn(P
∗, Q∗)∥2vn(P ∗, Q∗)+

N∑
n=1

[
β∥pn − qTE

[P∗,Q∗]
∥2vn(P ∗, Q∗)

]
.

(30)
The partial derivatives of (30) are

∂D(P,Q, V E(P ∗, Q∗), TE
[P∗,Q∗])

∂pn

=2
[
(pn−cn(P

∗, Q∗))+β
(
pn−qTE

[P∗,Q∗]
(n)

)]
vn(P

∗, Q∗), n∈IA,

and
∂D(P,Q, VE(P ∗, Q∗), TE

[P∗,Q∗])

∂qm
=
∑

n:TE
[P∗,Q∗]

(n)=m

2β(qm−pn)vn(P
∗, Q∗),m∈IB.

Since (30) is a convex function of P and Q, the optimal
deployment (P ∗, Q∗) satisfies zero gradient. Solving for p∗n
and q∗m, we obtain

p∗n =
cn(P

∗, Q∗)∗ + βq∗
TE
[P∗,Q∗]

(n)

1 + β
, n ∈ IA (31)

q∗m =

∑
n:TE

[P∗,Q∗]
(n)=m p∗nvn(P

∗, Q∗)∑
n:TE

[P∗,Q∗]
(n)=m vn(P ∗, Q∗)

,m ∈ IB (32)

Substituting (31) to (32), we have

q∗m =

∑
n:TE

[P∗,Q∗]
(n)=m cn(P

∗, Q∗)vn(P
∗, Q∗)∑

n:TE
[P∗,Q∗]

(n)=m vn(P ∗, Q∗)
,m ∈ IB. (33)

APPENDIX C
PROOF OF THEOREM 1

Before we discuss the best possible distortion in the
uniformly distributed 1-dimensional space, we need to
present the following concepts and lemmas. Let µ(W ) be
the (Lebesgue) measure of the set W . Let d(N,Ω) =
minx1,...,xN

∫
Ω
minn ∥xn − w∥2 dw

µ(Ω) be the minimum distor-
tion of the N -level one-tier quantizer for a uniform distribution
on Ω ⊂ R.
Lemma 3. We have d(N,Ω) ≥ µ(Ω)2

12N2 with equality if and only
if Ω is the union of N disjoint intervals, each with measure
µ(Ω)
N .

Proof. Let x1, . . . , xN ∈ Ω, and R1, . . . , RN ⊂ R respective-
ly denote the reproduction points and the quantization cells of
the optimal one-tier quantizer that achieves d(N,Ω). Note that
xn is the centroid of Rn. We have (34), where (a) follows since
for any xn ∈ R, we have d(1, Rn) =

∫
Rn

∥xn − w∥2 dw
µ(Rn)
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d(N,Ω)
(a)
=

N∑
n=1

∫
Rn

∥xn−w∥2 dw

µ(Ω)

(b)
=

N∑
n=1

µ(Rn)

µ(Ω)
d(1, Rn)

(c)

≥
N∑

n=1

1

µ(Ω)

µ(Rn)
3

12

(d)

≥ 1

12µ(Ω)

(
N∑

n=1

µ(Rn)

)3
N−2(e)=

µ(Ω)2

12N2
, (34)

by definition, and (c) follows since for any W ⊂ R, we
have d(1,W ) ≥ µ(W )2

12 with equality if and only if W is
an interval [46]. Also, (d) is the reverse Hölder’s inequality,
and (e) follows since

∑N
n=1 µ(Rn) = µ(Ω). Note that (c) is

an equality if and only if Ωns are intervals, and (d) is an
equality if and only if µ(Ωn) =

µ(Ω)
N , ∀n. Therefore, (e) can

be achieved if and only if Ω is the union of disjoint intervals
with the same measure µ(Ω)

N .

Lemma 4. Let N and M be two positive inte-
gers such that N ≥ M . We define a function

DLB(e1, . . . , eM ) =

(∑M
m=1

(
β + 1

e2m

)− 1
2

)−2

with the do-

main Rc = {(e1, . . . , eM )|
∑M

m=1 em = N, em ∈ N, ∀m},
where β is a non-negative constant. Let Ma = (N mod M)
and Mb = M − Ma. Then, DLB(e1, . . . , eM ) attains the
unique minimumMa

(
β +

1

⌈ N
M
⌉2

)− 1
2

+Mb

(
β +

1

⌊ N
M
⌋2

)− 1
2

−2

(35)

where Ma of the ems are equal to ⌈N
M ⌉ and Mb of the ems are

equal to ⌊N
M ⌋. In particular, when Ma = 0, DLB(e1, . . . , eM )

attains the unique minimum
(

β
M2 + 1

N2

)
at
(
N
M , . . . , N

M

)
.

Proof. Let e = (e1, . . . , eM ) ∈ Rc, DUB(e) =∑M
m=1

(
β + 1

e2m

)− 1
2

. Minimizing DLB is equivalent to max-
imizing DUB . Let i, j ∈ {1, . . . ,M} be two arbitrary indices.
When ek, ∀k ̸= i, j and γ = ei + ej are fixed, DUB only
depends on the difference between ei and ej . Without loss of
generality, suppose ei ≥ ej . Let δ = ei − ej , we have

D̃UB
ij (δ)=DUB

(
e1, . . . ,

ζγ+δ

2
, . . . ,

γ−δ

2
, . . . , em

)

=
∑
k ̸=i,j

(
β+

1

e2k

)− 1
2

+

(
β+

1(
γ+δ
2

)2
)−1

2

+

(
β+

1(
γ−δ
2

)2
)− 1

2

,

(36)

and therefore,

∂D̃UB
ij (δ)

∂δ
=

1

2

(1+β

(
γ+δ

2

)2)− 3
2

−

(
1+β

(
γ−δ

2

)2)− 3
2

 . (37)

Let g(y) = 1
2y

− 3
2 , y ∈ (0,∞), y(x) = 1 + x2, x ∈ [0,∞).

Since ei and ej are non-negative and ei ≥ ej , we have
δ ≥ 0, γ ≥ 0, and then x1 = γ+δ

2 ≥ γ−δ
2 = x2.

Consequently, y(x1) ≥ y(x2) > 0, and thus, ∂D̃UB(δ)
∂δ =

g(y(x1)) − g(y(x2)) ≤ 0 with equality if and only if δ = 0.
Therefore, D̃UB

ij (δ) is a decreasing function for non-negative
continuous δ.

Let e∗ = (e∗1, . . . , e
∗
M ) , arg min

(e1,...,eM )∈Rc

DLB(e1, . . . , eM )

be a minimizer of DLB on Rc, and δ̂ , mini ̸=j |e∗i − e∗j |
be the minimum difference among e∗ms. Since e∗i s are pos-
itive integers, we have δ̂ ∈ N. In what follows, we show
that δ̂ ∈ {0, 1}. Suppose δ̂ ≥ 2. Then, we can find two

indices i, j ∈ {1, . . . ,M} such that δ = e∗i − e∗j ≥ 2. Let
e′ = (e∗1, . . . , e

′
i, . . . , e

′
j , . . . , e

∗
M ) be a new solution where

e′i = e∗i − 1, and e′j = e∗j + 1. We have δ′ = e′i − e′j =

e∗i − e∗j − 2 = δ − 2 < δ. Since D̃UB
ij (δ) is a monotonically

decreasing function for non-negative continuous δ, we have
D̃UB

ij (δ′) > D̃UB
ij (δ) where δ′ and δ are non-negative integers.

Thus, we have DUB(e′) > DUB(e∗) which contradicts the
optimality of e∗.

Therefore, δ̂ ∈ {0, 1}, and e∗ms can thus assume at most 2
distinct values. Suppose M1 of the e∗ms are equal to h and M2

of the e∗ms are equal to h+1, where h ≥ 0 is an integer. It is
self-evident that at least one of M1 or M2 should be positive.
Without loss of generality, suppose M1 > 0 and M2 ≥ 0.
Since M1 +M2 = M and M1 > 0, we have 0 < M1 ≤ M
and 0 ≤ M2 < M . From the equalities M1 +M2 = M and
M1h+M2(h+ 1) = N , we obtain Mh+M2 = N . Solving
the system Mh + M2 = N and 0 ≤ M2 < M , we have
h = ⌊N

M ⌋ and M2 = N mod M = Ma. Finally, using the
equality M1 + M2 = M , we can determine M1 = M − (N
mod M) = Mb.

Now, we have enough tools to derive the best possible
distortion in the uniformly distributed 1-dimensional space.
We have

D(P,Q,RA, T )=
M∑

m=1

∑
n∈Nm

∫
RA

n

(
∥pn−w∥2+β∥pn−qm∥2

)
dw

(a)
=

M∑
m=1

∑
n∈Nm

∫
RA

n

(
1

1+β

∥∥(1+β)pn−βq−w
∥∥2+ β

1+β
∥w−q∥2

)
dw

(b)

≥
M∑

m=1

[
1

1 + β
d(Nm,Wm) +

β

1 + β
d(1,Wm)

]
µ(Wm)

µ(Ω)

(c)

≥ 1

12(1 + β)µ(Ω)

M∑
m=1

µ3(Wm)

(
β +

1

N2
m

)
(d)

≥ 1

12(1 + β)µ(Ω)

(
M∑

m=1

µ(Wm)

)3( M∑
m=1

(
β +

1

N2
m

)− 1
2

)−2

(e)
=

µ2(Ω)

12(1 + β)

(
M∑

m=1

(
β +

1

N2
m

)− 1
2

)−2

(f)

≥ µ2(Ω)

12(1 + β)
min

N1,...,NM∈N∑M
m=1 Nm=N

(
M∑

m=1

(
β +

1

N2
m

)− 1
2

)−2

(38)
where (a) follows from (28), the first inequality follows from

the definition of d(N,Ω), the second inequality follows from
Lemma 3, and the third inequality is the reverse Hölder’s
inequality. All these inequalities can be made tight with a spe-
cific choice of pn, qm, Wms and Nms. In fact, by Proposition
2, (b) is an equality if and only if pn =

cn+βqT (n)

1+β and qm
is the centroid of Wm, indicating (iii) and (v) in Theorem 1.
Also, according to Lemma 3, (c) is an equality if and only
if Wm,m ∈ IB, are intervals, and Wm is uniformly divided
into Nm intervals. Therefore, (iv) in Theorem 1 is proved.
According to the reverse Hölder’s inequality, (d) is an equality
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if and only if ∃τ > 0, µ(Wm) = τ
(
β + 1

N2
m

)− 1
2

, ∀m ∈
IB. Moreover, the sum of these measures is µ(Ω), i.e.,∑M

j=1 µ(Wj) = µ(Ω). Therefore, the corresponding measure
of the mth cluster region is

µ(Wm) =
Nm

(
1 + βN2

m

)− 1
2 µ(Ω)∑M

j=1 Nj

(
1 + βN2

j

)− 1
2

. (39)

Note that (e) is a function of (N1, . . . , NM ) and (f) is just the
minimum of (e). Therefore, the last inequality is an equality
when we properly select the variables N1, . . . , NM . Obviously,
the above equality conditions are compatible, i.e., all equality
conditions can be satisfied simultaneously. Therefore, (f) is an
achievable lower bound, indicating the minimum distortion.
The last thing is to determine the optimal (N1, . . . , NM ) that
attains the minimum of (e). By Lemma 4, (e) attains (f), if
and only if Ma of the Nms are equal to ⌈N

M ⌉ and Mb of
the Nms are equal to ⌊N

M ⌋. Substituting the optimal values
for Nms to (e), we obtain the minimum distortion formula in
(17). Substituting the optimal values for Nms to (39), we get
(i) and (ii) in Theorem 1.

APPENDIX D
PROOF OF LEMMA 1

Since PS(P,RA) is the distortion of an N -level quantizer,
we have PS ∈ [DR(N),+∞) which is then the domain
of the function A(S). Next, we justify the monotonicity of
A(S). Let F (S) be the set of the feasible solutions for the
point (S,A(S)). Thus, the AP-Sensor power function can be
rewritten as A(S) = inf

(P,Q,RA,T )∈F (S)
PA(P,Q,RA, T ). For

any two values S1 and S2 such that DR(N) ≤ S1 < S2,
we have F (S1) ⊆ F (S2) and then A(S1) ≥ A(S2). In
other words, A(S) is a non-increasing function. Note that
DR(·) is a mean-square-error distortion with continuous and
differentiable source. Therefore, DR(·) is a strictly decreasing
function. Since N > M , we have DR(N) < DR(M).
Now, we discuss the values of A(S) on [DR(M),+∞). Let
(X∗,R∗) = argmin(P,R)

∑M
n=1

∫
Rn

∥x−w∥2f(w)dw be the
optimal solution for the M -level one-tier quantizer. X∗ =
(x∗

1, . . . , x
∗
M ) and R∗ = (R∗

1, . . . , R
∗
M ) are, respectively,

the optimal reproduction points and quantization regions. Let
P ′=(x∗

1, x
∗
2, . . . , x

∗
M , x∗

1, . . . , x
∗
1) be a deployment including

N points (APs), in which the last N −M APs have the same
location x∗

1. Afterwards, we define R
′A = R∗, Q′ = X∗,

and T ′(n) = TE
[P ′,Q′](n) = argminm ∥p′n − q′m∥. Substituting

(P ′, Q′,R
′A, T ′) to (4) and (3), we obtain PS(P ′,R

′A) =
DR(M) and PA(P ′, Q′,R

′A, T ′) = 0. In other words,
A(DR(M)) ≤ 0. On one hand, since A(S) is a non-
negative non-increasing function, we have A(S) = 0 on
[DR(M),+∞). On the other hand, by quantization theorem,
when N APs are placed at K distinct locations, where
K ≤ M , we have PS(P,RA) ≥ DR(M). In other words,
when PS(P,RA) < DR(M), N APs have at least M + 1
distinct locations. Under such circumstances, it is impossible
to connect each AP to the FC with zero distance, indicating
that PA(P,Q,RA, T ) > 0. Therefore, we have A(S) > 0 on
[DR(N), DR(M)).

APPENDIX E
PROOF OF LEMMA 4

At the beginning, we prove (i), the domain of Â(S,RA)
shown in the lemma is correct. An input (S,RA) belongs
to the domain if and only if there exists a P such that
PS(P,RA) ≤ S. When RA is fixed, the range of PS(P,RA)
is [H(RA),+∞), where H(RA) is the minimum distortion of
a one-tier quantizer with partition RA. Therefore, the domain
of Â(S,RA) can be represented as {(S,RA)|H(RA) ≤ S}.
Next, we prove (ii), the value of Â(S,RA) on the domain
shown in the lemma is correct. Note that one can simply
achieve the minimum AP-power 0 with Sensor-power DR(1)
by placing all APs at the centroid of the target area. Therefore,
when x ∈ [DR(1),+∞), Â(S,RA) = 0. In what follows, we
focus on the case that x ∈ [DR(N), DR(1)). To calculate the
value of Â(S) at (S,RA), we assume that the AP cell partition

is fixed as RA. Therefore, the centroid, cn =

∫
RA

n
wf(w)dw∫

RA
n

f(w)dw
,

and the volume of RA
n , vn =

∫
RA

n
f(w)dw, are constants.

Since M = 1, the index map T (n) = 1,∀n ∈ IA, is
determined. Let q be the location of the unique FC. Therefore,
the AP-power function becomes

PA(P,Q,RA, T )=

N∑
n=1

∫
RA

n

∥pn − q∥2f(w)dw

=

N∑
n=1

∥pn−q∥2vn=
N∑

n=1

∥pn
√
vn−q

√
vn∥2=∥p̃−q̃∥2,

(40)

and the Sensor-power function becomes

PS(P,RA)=

N∑
n=1

∫
RA

n

∥pn−w∥2f(w)dw=H(RA)+

N∑
n=1

∥pn−cn∥2vn

= H(RA)+

N∑
n=1

∥pn
√
vn−cn

√
vn∥2=H(RA)+∥p̃−c̃∥2,

(41)

where p̃ , [p1
√
v1, . . . , pN

√
vN ], q̃ , [q

√
v1, . . . , q

√
vN ],

and c̃ , [c1
√
v1, . . . , cN

√
vN ]. Since H(RA) is a constant,

(20) can be rewritten as

Â(S,RA) = inf
(p̃,q̃):∥p̃−c̃∥2≤S−H(RA)

∥p̃− q̃∥2. (42)

When q is fixed, one should minimize the distance of p̃ to
the fixed q̃ subject to the constraint that p̃ remain within a
ball of radius-square S − H(RA) centered at c̃. A simple
geometric argument reveals that the optimal solution should
then fall on a line between p̃ and q̃, i.e., p̃ = q̃+λc̃

1+λ for some
λ ≥ 0. Going back to the original variables, we have the
optimal AP locations pn = q+λcn

1+λ , n ∈ IA. Substituting the
optimal AP locations to (41), the constraint in (42) becomes
(1 + λ)2 ≥

∑N
n=1 ∥q−cn∥2vn

S−H(RA)
. Specially, when λ = 0, we have

pn = q, ∀n ∈ IA. In other words, all APs are placed at the
same location which is equivalent to the scenario that only
one AP is placed. Again, DR(1) is the minimum distortion
for the one-tier quantizer and then the minimum sensor power
when only one AP is placed. Thus, when λ = 0, we have
PS ≥ DR(1). Since we only consider S ∈ [DR(N), DR(1)),
to ensure the constraint S ≥ PS , λ cannot be 0. Thus, the
possible range of λ is (0,+∞).

On the other hand, T is determined and the constraint in
(20) is independent of Q = {q} so that Â(S,RA) can be
rewritten as
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Â(S,RA) = inf
(P,Q,T ):PS(P,RA)≤S

PA(P,Q,RA, T )

= inf
Q

inf
(P,T ):PS(P,RA)≤S

PA(P,Q,RA, T )

= inf
q

inf
λ:λ>0,(1+λ)2≥

∑N
n=1 ∥q−cn∥2vn

S−H(RA)

N∑
n=1

∥∥∥q + λcn
1 + λ

− q
∥∥∥2vn

= inf
λ:λ>0,(1+λ)2≥

∑N
n=1 ∥q−cn∥2vn

S−H(RA)

inf
q
Z(q),

(43)

where Z(q) =
∑N

n=1 ∥
q+λcn
1+λ − q∥2vn. In what follows, we

attempt to find the optimal q to minimize Z(q). Note that
Z(q) is a quadratic function and convex. Therefore, the unique
minimum is associated with zero-gradient. Since ∂Z(q)

∂q =

2λ2

(1+λ)2

(
q −

∑N
n=1 cnvn∑N
n=1 vn

)
, we obtain the optimal FC location

q =
∑N

n=1 cnvn∑N
n=1 vn

=
∑N

n=1

∫
Ω
wf(w)dw∑N

n=1 vn
= c, where c is the cen-

troid of the target region Ω. Substituting the optimal q to (43),
we get Â(S,RA) = inf

λ:λ>0,(1+λ)2≥ J(RA)

x−H(RA)

λ2

(1+λ)2 J(R
A),

where J(RA) =
∑N

n=1 ∥c−cn∥2vn. According to the parallel
axis theorem, we have

DR(1) =

N∑
n=1

∫
RA

n

∥c− w∥2f(w)dw =

N∑
n=1

∥c− cn∥2vn

+

N∑
n=1

∫
RA

n

∥w − cn∥2f(w)dw = J(RA) +H(RA).

(44)

Therefore, Â(S,RA) can be rewritten as
Â(S,RA)= inf

λ:λ>0,(1+λ)2≥DR(1)−H(RA)

S−H(RA)

λ2

(1+λ)2

(
DR(1)−H(RA)

)
.

Solving the inequality (1 + λ)2 ≥ DR(1)−H(RA)
S−H(RA)

results in

λ ≥
√

DR(1)−H(RA)
S−H(RA)

− 1 or λ ≤ −
√

DR(1)−H(RA)
S−H(RA)

− 1.
Since λ > 0, we have only one solution, i.e.,
λ ≥

√
DR(1)−H(RA)

S−H(RA)
− 1. Since λ2

(1+λ)2 is monotonically

increasing, Â attains the minimum at λ =
√

DR(1)−H(RA)
S−H(RA)

−1.

Substituting λ=
√

DR(1)−H(RA)

S−H(RA)
−1 to Â(S,RA), we prove (21).

APPENDIX F
PROOF OF THEOREM 2

By Lemma 1, we know A(S) = 0 on [DR(M),+∞)
and the domain of A(S) is [DR(N),+∞). In what follows,
we study A(S) on [DR(N), DR(M)). Let Â(S,RA) be the
minimum AP-power with the Sensor-power constraint PS ≤ S
for the fixed AP cell partition RA when M = 1. Therefore,
when M = 1, minimizing the AP-power with the Sensor-
power constraint PS(P,RA) ≤ S is equivalent to minimizing
Â(S,RA) on its domain. According to Lemma 2, the domain
of Â(S,RA) is {(S,RA)|H(RA) ≤ S}. Therefore, the AP-
Sensor power function can be rewritten as

A(S) = inf
(P,Q,RA,T ):PS(P,RA)≤S

PA(P,Q,RA, T )

= inf
RA:H(RA)≤S

inf
(P,Q,T ):PS(P,RA)≤S

PA(P,Q,RA, T )

= inf
RA:H(RA)≤S

Â(S,RA)

= inf
RA:H(RA)≤S

[√
(S−H(RA))−

√
DR(1)−H(RA)

]2
,

(45)

Note that RA affects A(S) merely via H(RA). Moreover,
H(RA) is the minimum distortion of the N -level quantizer
with partition RA, and DR(N) is the minimum distortion
of the N -level quantizer over all possible partitions. Thus,
H(RA) ≥ DR(N). Given the value of S, to satisfy the
inequality constraint H(RA) ≤ S, the range of H(RA) is
then [DR(N), S]. Therefore, the AP-Sensor power function
can be rewritten as

A(S) = inf
y:DR(N)≤y≤S

Ã(S, y), (46)

where Ã(S, y) =
[√

(S − y)−
√

(DR(1)− y)
]2

. When S ̸= y,
we have

∂Ã(S, y)

∂y
= −2 +

S +DR(1)− 2y√
(S − y)(DR(1)− y)

. (47)

Extending (S +DR(1)− 2y)2, we get

(S +DR(1)− 2y)2=((S − y) + (DR(1)− y))2

=(S − y)2 + (DR(1)− y)2 + 2(S − y)(DR(1)− y)

>4(S − y)(DR(1)− y)=
[
2
√

(S − y)(DR(1)− y)
]2

.

(48)

Again, we only consider the region [DR(N), DR(1)), indicat-
ing DR(N) ≤ S < DR(1). Taking the constraint DR(N) ≤
y ≤ S into consideration, we have y ≤ S < DR(1). When
y ̸= S, the term S+DR(1)−2y√

(S−y)(DR(1)−y)
is positive. Therefore,

we have ∂Ã(S,y)
∂y > 0, ∀S ∈ [DR(N), DR(1)) and S ̸= y.

Therefore, when y ∈ [DR(N), S), Ã(S, y) is increasing and
has its unique minimum at y = DR(N). Taking the case S = y
into account, we have A(S) = min(Ã(S,DR(N)), Ã(S, S)).
After straightforward calculation, we get Ã(S,DR(N)) <
Ã(S, S) when x ∈ [DR(N), D̂R(1)). Therefore, in order to
minimize Ã(S, y), y should be minimized to DR(N). In other
words, the AP-Sensor power function on [DR(N), DR(1))
can be rewritten as (22), which is a convex function. In
sum, the AP-Sensor power function is convex on the domain
[DR(N),+∞).
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