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A Space-Frequency Data 

Compression Method for 

Spatially Dense Laser Doppler 

Vibrometer Measurements 

When spatially dense mobility shapes are measured with scanning laser Doppler 
vibrometers, it is often impractical to lise phase-separation modal parameter estima­
tion methods due to the excessive number of highly coupled modes and to the prohibi­
tive computational cost of processing huge amounts of data. To deal with this problem, 
a data compression method llsing Chebychev polynomial approximation in the fre­
quency domain and two-dimensional discrete Fourier series approximation in the 
spatial domain, is proposed in this article. The proposed space-frequency regressive 
approach was implemented and verified using a numerical simulation of a free-free­
free-free sllspended rectangular aluminum plate. To make the simulation more realis­
tic, the mobility shapes were synthesized by modal superposition using mode shapes 
obtained experimentally with a scanning laser Doppler vibrometer. A reduced and 
smoothed model, which takes advantage of the sinusoidal spatial pattern of structural 
mobility shapes and the polynomial frequency-domain pattern of the mobility shapes, 
is obtained. From the reduced model, smoothed curves with any desired frequency 
and spatial resolution can he produced whenever necessary. The procedure can he 
used either to generate nonmodal models or to compress the measured data prior to 
modal parameter extraction. © /996 John Wiley & Sons, inc. 

INTRODUCTION 

Experimental modal analysis (EMA) can be 

viewed as a technique for reducing experimental 

data obtained from standard dynamic tests using 

a modal model. The most frequently used meth­

odology (see for instance Ewins, 1984 consists of 

measuring frequency response functions (FRFs), 

and then estimating the parameters of a modal 

model, either directly from the FRFs or from their 

inverse Fourier transforms, the impulse response 

functions. These methods are known as phase­

separation methods, in contrast with the phase­

resonance methods, where a set of sinusoidal 

forces are amplitude and phase tuned to excite 

each mode separately. From the reduced modal 

model, any FRF can be synthesized with any 

desired frequency resolution at any of the mea­

sured degrees of freedom of the structure. 
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When using scanning laser Doppler vibrome-
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ters (LOVs), one usually measures the relative 

magnitudes and phases of the outward velocities 

at each surface location while exciting the struc­
ture harmonically (Li et aI., 1993). Using the force 

signal as a reference, this is equivalent to measur­

ing one frequency line of the FRFs. The outward 

velocity field measured in this way over the struc­

ture surface at each frequency is called a mobil­

ity shape. 

Storing and processing with commercial EMA 

software hundreds of those mobility shapes, each 

one with thousands of elements, is prohibitive. 

To be able to use phase-separation EMA tech­

niques, it is absolutely necessary to compress the 

data. This is a new situation in EMA applications, 

which is not likely to occur when using conven­

tional instrumentation. Oippery et al. (1994) 

recently proposed multi-input/multi-output 

(MIMO) modal test data compression techniques 

based on the singular value decomposition of the 

FRF matrix, which are not applicable to single­
reference LOV tests. 

Furthermore, there are practical limitations to 
the use of EMA, which are generally due to the 

modal model itself. Whenever the number of 

modes in the frequency range of interest is too 

high and/or the modes are strongly coupled by 

damping, applying EMA is not practical. This is 

the case, for instance, of shell modes of aircraft 

fuselages (Li et aI., 1993) and acoustic modes in 
cavities (Lyon, 1975). 

When EMA is not applicable, there are two 

other possible approaches. One consists of using 

the FRFs directly, which is referred to as using 

a response model. When using spatially dense 

laser measurements, response models become 

too cumbersome due to the high spatial resolu­

tion. The other is the statistical approach, the so­

called statistical energy analysis (SEA) developed 
by Lyon (1975). SEA is an approximate method 

that works reasonably well when the number of 

modes is very high. This leaves uncovered a fre­

quency range where there are too many modes 

for EMA but too few for SEA. 

Halvorsen et al. (1991) recently investigated 

new nonmodal identification methods applicable 

in this intermediate frequency range; but, again, 

their methods are only suitable for MIMO modal 

tests because they are based on the singular value 
decomposition of the FRF matrix. 

Arruda (1993) proposed a spatial modal param­

eter estimation technique suitable for LOV mea­

surements but only applicable to lightly damped 

structures. In this study, the possibility of com-

pressing spatially dense mobility shapes mea­

sured with LOVs for either applying phase-sepa­

ration modal estimation methods or storing 

reduced response models is investigated. The 

proposed space-frequency regressive approach is 

described and verified using a numerical simula­

tion example of a free-free-free-free rectangular 

aluminum plate. A set of mobility shapes was 

numerically simulated by modal superposition. 

To make the simulation more realistic, mode 
shapes, obtained experimentally using a scanning 

LOV, were used to synthesize the mobility 

shapes. 

SPACE-FREQUENCY REGRESSION 

Modal parameter estimation may be interpreted 
as a particular space-frequency (or space-time) 

regression of measured FRFs, one which uses 
a modal model (usually with a nonproportional 

viscous damping model). From a set of N; x No 

x N w complex FRF values, where N; is the num­

ber of input forces (or references), No the number 

of output velocities (or responses), and N w the 

number of frequency lines, a reduced set of (No 

+ 1)N complex modal parameter values is esti­
mated, where N is the number of estimated com­

plex modes. From this reduced model, any FRF 

between the measured degrees of freedom may 
be synthesized (reciprocity), with any desired fre­

quency resolution. The reduction is achieved as 
N <{ N w • 

Starting from this regressive viewpoint of 
modal parameter estimation, an alternative for­

mulation may be sought where the modal model 

is discarded. This may be necessary because ei­

ther N is too large or the available modal parame­

ter estimation methods fail to work in the pres­
ence of strongly coupled modes. 

The proposed frequency-spatial regression 
generates a reduced, smoothed model ofthe mea­

sured data that reproduces measured data as well 

as interpolates in frequency and space. 

Spatial Domain Regression 

The data compression in the spatial domain can 

be done using a two-dimensional (2-D) Fourier 

series, which takes advantage of the sinusoidal 

pattern of the mobility shapes of the structural 

surfaces sufficiently far from the boundaries. This 

is a well-known property of the wave equation 

solution for solids when the near-field effects 

are neglected. 



For 2-D mobility shapes mapped over a rectan­

gular grid, say H mn , one could think of using the 

2-D discrete fourier transform (DFT). The diffi­

culty in using the DFT is due to the fact that its 

implicit periodization introduces high-frequency 

components that account for the sharp edges 

present in the wrapped-around data. This phe­

nomenon is known as leakage. In the data 

smoothing process, leakage is prejudicial, as it 

causes distortion of the low-pass filtered data. 
The usual way to reduce leakage is windowing, 

but this technique is not suitable in the case of 

finite length, spatial domain data. To overcome 

the leakage problem, the proposed technique con­

sists of representing the data by a 2-D regressive 

discrete Fourier series (RDFS) proposed by Ar­

ruda (1992), which will be briefly reviewed here. 

Unlike the DFT, in the RDFS the original length 

of the data is not assumed to be equal to the 

signal period nor is the number offrequency lines 

assumed to be equal to the number of data 
points, i.e., 

p q 

H = '" '" Z wmkw',! + ~l1ln. mn L..L..ki.«.\ "" 
k=-p i=-q (1) 

m = 0, M - 1; n = 0, N - 1, 

where Hmn represents the discretized data with 

constant resolution Ax and Ay, Wtt = exp(t27TI 
.M), W}( = exp(127TI.N), and Smn accounts for the 

noise and higher frequency contents of H. The 

length of the data in x is MAx but the period of 

the RDFS is .MAx> MAx. The data reduction is 
achieved because p <%: M due to the expected low 

wavenumber of the surface. In the y direction 

.NAy> NAy and q <%: N. The M x N data in H 

are represented by a (2p + 1) x (2q + 1) complex 

matrix Z of elements Zki. 

The RDFS is an approximation instead of an 

interpolation of Hmn. The Euler-Fourier coeffi­
cients cannot be calculated by the DFT. Rewrit­

ing Eq. (1) in matrix form: 

(2) 

The least-squares solution is given by 

(3) 

where the matrices to be inverted have a very 

small size, (2p + 1) x (2p + 1) and (2q + 1) x 

(2q + 1), respectively. The smoothed data lJls) 
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may be obtained from 

(4) 

where W.M. and Ws can be calculated for the de­

sired spatial resolution. 
The reduction of the data is achieved as Z 

represents the data using only (2p + 1)(2q + 1) 

values, instead of the original MN values. The 

formulation of the RDFS for nonequally spaced 

data given by Arruda (1992) can be used in place 

of the formulation above when the mobility 
shapes are mapped over a nonregular, arbitrary 

grid. 

Frequency-Domain Regression 

The dependence of the FRF amplitudes upon fre­

quency is approximated using polynomial regres­

sion. Orthogonal Chebychev polynomials are 

used in a way that is similar to the orthogonal 
polynomial modal parameter estimation method 

formulated by Shih et al. (1988). However, in­

stead of curve fitting the FRFs directly, the RDFS 

coefficients, taken as virtual measurement sta­

tions, are curve fitted. 
Because the mobility shapes used here are spa­

tial distributions of FRF frequency lines, the 

RDFS coefficients are, in fact, linear combina­
tions ofthese FRFs. Therefore, the RDFS coeffi­

cients as a function of the frequency will have 

the same poles as the original FRFs. This allows 

us to write: 

(5) 

where <f>k is the kth Chebycheff polynomial, ak is 
the kth polynomial matrix coefficient (of the same 

dimensions as Z), bk is the kth denominator poly­
nomial coefficient, a scalar for single excitation, 

and 1= v=t. Equation (5) may be arranged into 

a least-squares problem and easily solved for ak 

and bk , which form the final reduced model. Mak­

ing, without loss of generality, bs = 1, one can 

write 

s-l r 

2: Z(w)H<f>tbt - 2: <ptIaf! = - <piZ(W)H (6) 
k=O k=O 

where I is the identity matrix, H denotes the com­

plex conjugate transpose of a matrix, and * de­

notes the complex conjugate of a scalar. Arrang-
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ing Eq. (6) in matrix form for w varying produces 

the linear system of equations 

b{! 

bf 

b~_1 

a{! 

af 

a~ 

(7) 

It is important to mention that the frequency 

w should be scaled so that the frequency range is 

always [0, 1]. This improves the condition of the 

least-squares problem. 

If the order of the polynomial of the denomina­

tor is s and the order of the numerator is r, the 

order of the reduced model will be (for a single 

reference) (2p + 1) x (2q + 1) x r + s. We 

used r = s - I in the examples shown here. The 

interpolation of the RDFS coefficients from the 

polynomial coefficients is immediate, with any 

arbitrary frequency resolution. It must be men­

tioned here that it is possible to proceed with 

the computation of the structure eigenvalues and 

eigenvectors at this point. For this purpose, a 

companion matrix can be built with the computed 

polynomial coefficients, as explained in detail by 

Shih et al. (1988). 

Proposed Procedure 

A prototype software was developed to verify 

the proposed formulation. The algorithm may be 

summarized as follows: 

1. Apply a robust data smoothing technique 

to eliminate outliers from measured mobil­

ity shapes. 

2. Apply the RDFS to each mobility shape. 

3. Curve fit the RDFS coefficients as functions 

of the frequency (using them as virtual mea­

surement stations). 

4. Obtain the polynomial coefficient matrices 

ak and scalars bk , which form the reduced 

model. 

5. Synthesize mobility shapes at any desired 

frequency with arbitrary spatial resolution, 

or any desired FRF at any location within 

the scanned area with arbitrary frequency 

resolution from the reduced model. 

The robust data smoothing technique used to 

remove the noise spikes common in LDV mea­

surements was the weB-known median filter (see 

for instance Huang, 1981). The removal of the 

outliers is important because they can bias the 

RDFS approximation, which is made in a least­

squares sense. 

The number of wavenumber lines in the RDFS 

may be determined by visual inspection of the 

smoothed mobility shape compared to the mea­

sured one or by an error norm criterion. The num­

ber of frequency lines is increased until the error 

criterion is satisfied. 

The determination of the order of the polyno­

mial is more involved. Although orthogonal 

Chebychev polynomials are used, the orthogonal­

ity does not insure, in this case, a diagonal matrix 

in the linear system of equations that must be 

solved to determine the polynomial coefficients, 

Eq. (7). The Chebychev polynomials improve the 

condition of the matrix to be inverted, but do not 

insure its fuB rank. If the order of the polynomial 

increases too much (in our case this happened 

above order 12 or higher), the system may be­

come numerically unstable and the polynomial 

approximation may fail. 

SIMULATION EXAMPLE 

To iBustrate the use of the proposed space-fre­

quency data compression method, a numerical 

simulation of a free-free-free-free rectangular alu­

minum plate was used. To make the simulation 

more realistic, the mode shapes used to synthe­

size the mobility shapes were obtained experi­

mentally. 

A 16.75 x 18 and 0.125 in. thick aluminum 

plate was hung from its two upper corners (larger 

sides vertical) by fish lines to approximate the 

free-free-free-free boundary condition. The first 

five modes of the plate were obtained with a sin­

gle-input, phase-resonance method consisting of 

exciting the plate with a sinusoidal force using 

an electromagnetic shaker and looking for the 



frequencies where the ve locities measured with 

the LDV are a ll in phase with the force signal. 

At those frequencies the mobility shape was as­

sumed to be approximately equal to the mode 

shape, which is a reasonable assumption for low­

damped structures with well-separated modes . 

The measured natural frequencies were approxi­

mately : 54.5 , 72 .7, 96.6 , 128.39, and 135 .28 Hz. 

Figure I shows a scheme of the experimental 

setup. 

The detailed description of this approximate 

modal analysis method using an LDV is given by 

Sun et al. (1993). T he measurement grid was 70 

x 65 . No correction for the angle between the 

laser beam direction and the normal to the plate 

sUlface was needed , because the LDV head was 

placed at approximately lOft away from the plate. 

Given the plate dimensions , the angular error was 

very small, under 0 .2% . 

Figure 2 shows the first five mode shapes mea­

sured with the LDV. The mode shapes were fil­

tered using a median filter with a 25-point cell. A 

set of mobility shapes was synthesized by mode 

superposition using these first five modes. The 

synthesis was made using the formulation of the 

FRF of a proportionally damped structure: 

H .. ( ) = ~ tJ;i, tJ; jk (8) 
IJ W L... 2 2 2t: 

,= 1 W , - W + I .,WW, 

where tJ;i' is the ith element of the kth mode shape 

vector. The excitation station was kept constant, 

j = I , while the measurement stations varied , 

i = I. M N. For each frequenc y w, the elements of 

the vector H ij ' j = I , i = I , M N were arranged 

in matrix form following the mapping that was 

stinger 

steel 

plate 

laser beam 

FIGURE 1 Scheme of the experimenta l setup . 
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(a) (b ) 

(e) (d) 

(e) 

FIGURE 2 First five mode shapes of the rectangular 

plate measured with a scanning LDV . (a) mode I ; (b) 

mode 2: (c) mode 3: mode 4 ; mode S. 

used when measuring the mode shapes with the 

LDV , thus producing a mobility shape H I/III' 

m = 0 , M - 1, n = 0 , N - 1. In the example 

plate , M = 70 and N = 65 . The simulated FRFs 

are unscaled ; each mode shape was normalized 

with unitary maximum amplitUde. The decibel 

scale was used when plotting the FRF magnitudes 

and the reference value is 1. 

The proposed space-frequency data compres­

sion method was applied to the synthesized mo­

bility shapes in the freque ncy range 40-108 Hz 

with a 2-Hz resolu tion . 

Figure 3 shows a typical comparison of an FRF 

synthesized using the measured modal parame­

ters with the corresponding FRF synthesized us­

ing the reduced model. The FRF synthesized us­

ing the compressed model was computed with a 

finer frequency resolution of 0.5 Hz. It can be 

observed that it interpolates the simulated FRF 

values almost exactly. The average normalized 

error between simulated and synthesized FRFs 

was below 5% for all the FRFs used in the data 

compression process; its mean value was 3.2% . 

Figure 4 shows a typical comparison of a mobil­

ity shape synthesized using the measured modal 

parameters with the corresponding mobility 

shape synthesized using the reduced model. Both 

the real and imaginary parts of the mobility shapes 

are shown. The synthesized surfaces are 
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FIGU RE 3 Typica l compari son of simulated and sy n­

thesized F RFs with exc itati on at gri d locat ion In = 0, 

11 = O. and response at gri d locati on 111 = 4 . 11 = 4. (a) 

Magnitude: (b) Phase . *** sim ulated using measured 

mode shapes : - synthes ized using the compressed 

model. 

(a) (b) 

(e) (d) 

(e) (I) 

FIGU RE 4 Typical compari son of simulated and sy n­

thes ized mobili ty shapes , at 80 H z . Simulated using 

measured mode shapes ; (a) real; (b) imagina ry. Synthe­

sized usi ng the compressed model; (c) real; (d) imag­

nary. Di ffe rence between simulated and synthesized ; 

(e) real: (f) imaginary. 

smoother due to the spatial filt ering effect of the 

RDFS approximation, but it can be observed tha t 

the mobi lity shape information is well preserved . 

The average norma lized error for the 17 mobilit y 

shapes in the frequency range 40-108 H z with 

a 4-Hz in terval was below 9% ; its mean value 

was 2.3% . 

The origina l da ta consisted of 35 mobility 

shapes, each with 4550 complex F RF va lues. Us­

ing the RDFS with p = q = 3 a nd po lynomials 

of order s = 5, the reduced model consists of o nl y 

300 complex values. The reduction coeffi c ient 

achieved in thi s case was 530 times, bu t could be 

even la rger if mobili ty shapes with higher spatia l 

resolution had been used. 

The good ag reement be tween the original 

FRFs and mobility shapes and corresponding 

functio ns synthes ized using the compressed 

model, of which the res ult s in Figures 3 a nd 4 a re 

typical, shows that the regressive model repre­

sent s the measured data adequately. Besides , the 

reduced model can produce smoot hed cu rves 

with any des ired frequ ency and spatia l resolu­

tions . 

CONCLUSIONS 

A space-frequency regress ion method using 

Chebychev pol ynomials and 2-D di screte Fourier 

series approximation was proposed . The method 

may be used to compress spatiall y dense mobilit y 

shapes measured wi th scanning laser Doppler vi­

brometers . Large reduction rates, eas il y over 

1,000 , can be obtained without significant loss of 

information , and wi th the benefi t of data 

smoothing. 

With the proposed method , a red uced and 

smoothed model can be obtained , which takes 

advantage of the sinu soidal spatial pattern of 

structural mobilit y shapes and of the pol yno mial 

frequency-domain patte rn of the FRFs. The re­

duced model can be stored economica ll y , and 

later used to synt hesize smoothed mobility 

shapes or FRFs with any des ired spatia l and fre­

quency resolution. It can also make the modal 

parameter extraction from spatia ll y dense mobil ­

ity shapes measured with LDVs viab le . 

The technique was implemented and verified 

using a numerical simula tio n example of a free­

free-free-free rectangu lar alu mi num plate , where 

the mobi li t y shapes were synthes ized using modal 

superposition. The mode shapes used in the simu-



lation were obtained experimentally, which 

makes the example more realistic. 

An issue that deserves further investigation is 

the optimization of the number of wavenumber 

lines of the RDFS and of the order of the polyno­

mial. Some kind of quantitative measurement of 

the preservation of information in the compressed 

model could be used to determine the optimal 

order of both the RDFS and the polynomial ap­

proximations. Also, the application of the pro­

posed method to a realistic experimental example 

will require the on-line implementation of the pro­

posed method, such that the measured operating 

shapes can be compressed and stored as they are 

measured with the scanning LDV. 
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