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Abstract

Thek-DNF resolution proof systems are a family of systems indexed by the integerk, where thekth

member is restricted to operating with formulas in disjunctive normal form with all terms of bounded
arity k (k-DNF formulas). This family was introduced in [Krajı́ček 2001] as an extension of the well-
studied resolution proof system. A number of lower bounds have been proven onk-DNF resolution proof
length and space, and it has also been shown that(k+1)-DNF resolution is exponentially more powerful
thank-DNF resolution for allk with respect to length. For proof space, however, no corresponding
hierarchy has been known except for the (very weak) subsystems restricted to tree-like proofs. In this
work, we establish a strict space hierarchy for the general,unrestrictedk-DNF resolution proof systems.

1 Introduction

Proof space A central theme in the field of propositional proof complexity is the study of limitations of
natural proof systems. This is typically done by considering acomplexity measureof propositional proofs
and studying under which circumstances this measure is large. The most heavily investigated complexity
measure is that ofproof size/lengthand the interest in this measure is motivated by its connections to theNP
vs. co-NP problem (see [CR79] for details), to methods for proving independence results in first order the-
ories of bounded arithmetic (for an example, see [Ajt88]), and because lower bounds on proof length imply
lower bounds on the running time of algorithms for solvingNP-complete problems such asSATISFIABILITY

(such algorithms are usually referred to asSAT solvers).
This paper focuses on a more recently suggested complexity measure known asspace. The space mea-

sure was first defined and studied by Esteban and Torán [ET01]in the context of the famousresolution
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A SPACE HIERARCHY FORk-DNF RESOLUTION

proof system introduced by Blake [Bla37], and was generalized to other proof systems by Alekhnovich et
al. in [ABSRW02]. Roughly speaking, the space of proving a formula corresponds to the minimal size of
a blackboard needed to verify all steps in the proof. The interest in space complexity stems from two main
sources that we survey next.

First, there are intricate and often surprising connections between the space and length complexity mea-
sures. Esteban and Torán showed in [ET01] that space lower bounds imply length lower bounds for the
proof system oftree-like resolution. Recall that thetree-likeversion of asequential1 proof system has the
added constraint that every line in the proof can be used at most once to derive a subsequent line. In terms of
space, a proof is tree-like if any “claim” appearing on the blackboard must be erased immediately after it has
been used to derive a new “claim”. Another connection between space and length is that these two measures
sometimes display atrade-off. By this we mean that there are formulas having proofs in bothshort length
and small space, but for which there cannot exist proofs in short length and small spacesimultaneously.
Such a space-length trade-off was shown initially for tree-like resolution by the first author in [BS02] and
more recently for (non-tree-like) resolution in [HP07, Nor07, BSN09].

A second motivation to study space is because of its connection to the memory consumption of SAT
solvers. For instance, the family of backtracking heuristics suggested by [DP60, DLL62] and known as
Davis-Putnam-Logemann-Loveland (DPLL)SAT solvers have the following property. When given as input
an unsatisfiable formulaF in conjunctive normal form—called henceforth aCNF formula—the description
of the execution of a DPLL SAT solver corresponds to a tree-like resolution proof refutingF . Thus, lower
bounds on tree-like refutation space imply lower bounds on thememory consumptionof DPLL SAT solvers,
much like lower bounds on tree-like refutation length implylower bounds on therunning timeof DPLL
heuristics. Of late, a family of SAT solvers known asDPLL with clause learning(denoted DPLL+) has been
put to practical use with impressive success. For instance,an overwhelming majority of the best algorithms
in recent rounds of the international SAT competitions (see[SAT]) belong to this class. These SAT solvers
have the property that an execution trace corresponds to a (non-tree-like) resolution refutation. Hence, space
lower bounds in general, unrestricted resolution translate into memory lower bounds for these algorithms.

We end this discussion by pointing out that there is still much left to explore regarding the connection
between space lower bounds in proof complexity and memory consumption of SAT solvers. On the one
hand, the memory consumption of a “typical” DPLL+ SAT solvercan be far greater than the theoretical
upper bounds on refutation space. On the other hand, the theoretical lower bounds on refutation space
areworst-casebounds fornon-deterministic algorithms, i.e., they apply even to the most memory-efficient
proof theoretically possible, which is not remotely close to the kind of proofs produced by a typical SAT
solver. Understanding what kind of limitations one can get on the memory consumption of SAT solvers
from refutation space lower bounds remains as an interesting challenge.

k-DNF resolution The family of sequential proof systems known ask-DNF resolutionwas introduced
by Kraj́ıček in [Kra01] as a intermediate step between resolution and depth-2 Frege. Roughly speaking,
for integersk > 0 thekth member of this family, denoted henceforth byR(k), is only allowed to reason in
terms of formulas in disjunctive normal form (DNF formulas) with the added restriction that any conjunction
in any formula is over at mostk literals. Fork = 1, the lines in the proof are hence disjunctions of literals,
and the systemR(1) is standard resolution. At the other extreme,R(∞) is equivalent to depth-2 Frege.

The original motivation to study this family of proof systems, as stated in [Kra01], was to better un-
derstand the complexity of counting in weak models of bounded arithmetic, and it was later observed that
these systems are also related to SAT solvers that reason using multi-valued logic (see [JN02] for a discus-
sion of this point). By now a number of works have shown superpolynomial lower bounds on the length of

1A proof system is said to besequentialif a proof π in the system is asequenceof linesπ = {L1, . . . , Lτ} where each line is
derived from previous lines by one of a finite set of allowedinference rules(See Section 2 for formal definitions).
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1 INTRODUCTION

R(k)-refutations, most notably for (various formulations of) the pigeonhole principle and for random CNF
formulas [AB04, ABE02, Ale05, JN02, Raz03, SBI04, Seg05]. Of particular relevance to our current work
are the results of Segerlind et al. [SBI04] and of Segerlind [Seg05] showing that the family ofR(k) systems
form astrict hierarchywith respect to proof length. More precisely, they prove that for every integerk > 0
there exists a family of formulas{Fn} of arbitrarily large sizen such thatFn has aR(k + 1)-refutation of
polynomial lengthnO(1) but allR(k)-refutations ofFn require exponential length2Ω(n).

Just as in the case for standard resolution, the understanding of space complexity inR(k) has remained
more limited. We are aware of only one prior work by Esteban etal. [EGM04] shedding light on this
question. Their paper establish essentially optimal spacelower bounds forR(k) and also prove that the
family of tree-likeR(k) systems form a strict hierarchy with respect to space. What they show is that there
exist arbitrarily large formulasFn of size n that can be refuted in tree-likeR(k + 1) in constant space
but require spaceΩ(n/ log2 n) to be refuted in tree-likeR(k). It should be pointed out, however, that
as observed in [Kra01, EGM04] the family of tree-likeR(k) systems for allk > 0 are strictly weaker
than standard resolution. As was noted above, the family of general, unrestrictedR(k) systems are strictly
stronger than resolution, so the results in [EGM04] leave completely open the question of whether there is a
strict space hierarchy for (non-tree-like)R(k) or not.

Main result—a space hierarchy for k-DNF resolution Our main result is that Kraj́ıček’s family
of R(k) systems do indeed form a strict hierarchy with respect to space. To explain this result we need to
describe more formally what we mean by “space”. We view an unsatisfiable CNF formulaF as a set of
clauses and, following [ABSRW02], define aR(k)-refutation ofF a to be a sequence ofsetsof k-DNF
formulasπ = {D0, . . . , Dτ} such thatD0 is the empty set andDτ contains the contradictory empty formula.
Informally, Dt is a snapshot of the blackboard after thetth step of the proof has been performed. The allowed
steps, i.e., the transitions fromDt−1 to Dt deemed as legal, correspond to(i) writing a clause ofF on the
blackboard,(ii) erasing a line from the board, and(iii) inferring a new line from those lines present on the
board according to the inference rules ofR(k).2

The length of a refutation is the number of derivation steps in it. There are several different ways to
measure the space of a setDt in our refutation. The crudest way is to count the number of lines on the board,
i.e., to measure the size ofDt, denoted|Dt|. We call this theformula space, or simply,spaceof Dt. (For
standard resolution, this is the well-studied measure ofclause space.) A finer granulation is to measure the
term space—the number of terms appearing in the formulas ofD. Viewing a DNF formulaD as a set of
terms this measure is

∑

D∈Dt
|D|. An even finer measure is thevariable space—the number of appearances

of literals inDt, counted with repetition. Viewing a termT as a set of literals this is
∑

D∈Dt

∑

T∈D |T |.
Our hierarchy theorem says that for every fixedk there exists a family ofefficiently constructible3

unsatisfiable CNF formulas{Fn}
∞
n=1 such that anyR(k)-refutation ofFn must have (formula) space at

leastΩ
(

k+1
√

n/ log n
)

but on the other handFn can be refuted inR(k + 1) in constant variable space.
(Moreover, the constant spaceR(k + 1)-refutation ofFn is also of linear length inn.) We point out that
these bounds in fact hold for all space measures discussed above, since the upper bound on space is in terms
of the largest of the space measures defined above—variable space, whereas the lower bound is stated in
terms of the smallest of these measures—formula space.

Minimally unsatisfiable k-DNF sets We end our overview by focusing on the main technical novelty
of this paper which discusses a question that may be of independent interest. The upper bound on the variable

2These rules are given in Definition 2.1, but for our results the exact definitions in fact do not matter—our lower bounds hold
for anyarbitrarily strong (but sound) rules. What is important is that the only new formulas that can be derived at any given point
in time are those implied by the set of formulas that are currently on the blackboard, and that these formulas are allk-DNFs.

3A family of formulas isefficiently constructibleif there exists a polynomial time algorithm that on input1n produces thenth

member of the family.
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space of refutingFn in R(k + 1) carries over quite straightforwardly from our recent work [BSN09]. It is
the lower bound on the formula space inR(k) that requires a new idea.

Namely, in our proof of the lower bound we reach a crucial point where we have on thek-DNF resolution
“proof blackboard” a setD of k-DNF formulas that involves very many variables, but implies4 a number
of small (and strong) formulasG over very few variables. We wish to conclude that the only waythis
can happen is that the blackboard setD contains many distinct formulas. For the sake of simplicitylet us
assumeG is itself unsatisfiable, i.e.,G is a formula computing the constant0 function. Saying “D implies0”
is equivalent to saying thatD is unsatisfiable, i.e., there is no assignment that satisfiesall k-DNF formulas
in D. AssumingD is unsatisfiable and involves at leastn variables, can we bound from below the size ofD?
As stated, the answer to this question is a flat “no”. To see this consider the following unsatisfiable set
consisting of threek-DNF formulas, each formula involving a single term:

{

x ∧
∧n−1

i=1 yi, ¬x ∧
∧n−1

i=1 yi,
∧n−1

i=1 yi

}

(1)

Even if we “weaken” any term (i.e., make it easier to satisfy)by removing from it a variable labeledyi,
the remaining set is unsatisfiable. The reason for this is that the set above “hides” within it a weaker set of
formulas that is already unsatisfiable, namely, the set

{

x, ¬x
}

. This suggests rephrasing our question as
follows. We say that a setD of k-DNF formulas isminimally unsatisfiableif weakening any single term
appearing in it will make the “weaker” set of formulas satisfiable.

Open Problem 1. What is the minimal size of a set ofk-DNF formulas that is minimally unsatisfiable and
mentionsn variables?

For k = 1 this question has been completely resolved. In this case,D is equivalent to a CNF formula,
because it is a set of disjunctions of literals, and we have the following “folklore” result which seems to have
been proved independently on several different occasions.

Theorem 1.1 ([AL86, BET01, CS88, Kul00]).If D is a set of1-DNF formulas, i.e., a CNF formula, that
is minimally unsatisfiable and mentionsn variables, then|D| > n.

The following minimally unsatisfiable set ofn + 1 clauses overn variables shows that the bound stated
above is tight.

{
∨n

i=1xi, ¬x1, ¬x2, . . . , ¬xn

}

(2)

Theorem 1.1 has a relatively elementary proof based on Hall’s marriage theorem, but its importance to
obtaining lower bounds on resolution length and space cannot be overemphasized. For instance, the seminal
lower bound on refutation length of random CNFs given by Chv´atal and Szemerédi in [CS88] makes crucial
use of it, as does the proof of the “size-width trade-off” of [BSW01]. Examples of applications of this
theorem in resolution space lower bounds include [ABSRW02,BSG03, BSN08, BSN09, NH08, Nor06].

For sets ofk-DNF formulas withk > 1, we are not aware of any upper or lower bounds on mini-
mally unsatisfiable sets prior to our work. The main technical result that we need in order to establish the
k-DNF resolution space hierarchy is an extension of the lowerbound in Theorem 1.1 to the case ofk > 1.
Our result, stated in Theorem 3.5, says that a minimally unsatisfiable set ofk-DNF formulas involving
n variables must have size at leastk+1

√

n/k. Notice that the lower bound on the size of a minimally unsatis-
fiable set ofk-DNF formulas is of the same asymptotic order as theR(k)-space lower bound stated above.
We point out that the result needed for our space lower bound,stated in Lemma 4.3, has to work for a more
general definition of “minimal implication” (see Section 4 for more details). However, it seems reasonable
to believe that improving the bound stated in Theorem 3.5 forthe more restricted Problem 1 would lead also
to a stronger space separation ofR(k) andR(k + 1). We end by stating that we do not see any reason to
believe our lower bound fork > 1 is asymptotically tight. In fact, we are not aware of any setsof minimally
unsatisfiablek-DNF formulas that are of sizeo(n).

4A set of formulasD impliesa formulaG if and only if every assignment that satisfies all formulas inD must also satisfyG.
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Organization of the rest of the paper After presenting the formal definitions in Section 2, we give
precise statements of our main results in Section 3. Section4 starts the proof of theR(k)-space lower bound
on Fn. Section 5 is the technical heart of the paper and studies thesize of minimally unsatisfiable formula
sets. In Section 6, we complete the proof of the space lower bound forR(k). Section 7 provides the final
missing component, namely the (relatively straightforward) upper bound on theR(k + 1)-refutation space
of Fn. We conclude in Section 8 with a brief discussion of directions for future research.

2 Preliminaries

In this section we give the formal definitions used in this paper and state a few basic facts that we will need.

2.1 Formulas

For the most part we stick with the standard notations for formulas in conjunctive normal form (CNF) and
disjunctive normal form (DNF). However, often we will use the very convenient, although somewhat less
standard, set notation to treat objects such as clauses, terms, restrictions and CNF and DNF formulas. We
explain this terminology next. Definitions of standard notation regarding formulas can be found in, for
instance, [Nor08, Section 4.4]. Throughout this paper, we let [k] denote the set{1, . . . , k}.

DNF and CNF formulas as sets Forx a Boolean variable, aliteral overx is either a Boolean variable
x, called apositive literal overx or its negation, denoted¬x or x and called anegative literal overx. We
define¬¬x to bex. Whenx is understood from context or unimportant we simply speak ofa (positive,
negative)literal. A CNF formula is a set of clauses, i.e., disjunctions of literals, and aDNF formula is
a set of terms, i.e., conjunctions of literals. Thevariable setof a termT , denotedVars

(

T
)

, is the set of
Boolean variables over which there are literals inT . The variable set of a clause is similarly defined and
this definition is extended to CNF and DNF formulas by taking unions, i.e., forD = {D1, . . . ,Ds} a DNF
formula we define its variable set asVars

(

D
)

=
⋃s

i=1 Vars
(

Di

)

. If X is a set of Boolean variables and
Vars

(

T
)

⊆ X we sayT is a termoverX and similarly define clauses, CNF formulas, and DNF formulas
overX.

We think of aclauseas a set of literals and so is aterm. We will sometimes borrow set-theoretic notation
and terminology to discuss logical formulas. For instance,we say that the termT ′ is asubtermof T , and
write T ′ ⊆ T to denote that the set of literals ofT ′ is contained in the set of literals ofT . We similarly
speak of, and denote, subclauses and subformulas. We say theclauseC (or termT ) is ak-clause(k-term,
respectively) if|C| ≤ k (|T | ≤ k, respectively). Ak-DNF formula D is a set ofk-terms and ak-CNF
formula is a set ofk-clauses. Thesizeof a DNF formulaD, denoted|D|, is the number of terms in it and
the size of CNF formula is analogously denoted and defined.

Assignments and restrictions as sets As is the case with CNF and DNF formulas, we prefer to use
in our proof a set-theoretic representation of restrictions and assignments, as defined next.

A restrictionρ over a set of Boolean variablesX is a subset of literals overX with the property that for
each variablex ∈ X there is at most one literal overx in ρ. Theset of variables assignedby ρ is Vars

(

ρ
)

and thesizeof ρ is |ρ| = |Vars
(

ρ
)

|. We say the restrictionρ′ extendsρ if ρ′ ⊇ ρ, and in this case we also
say thatρ agreeswith ρ′. An assignmentα to X is a restriction satisfying|α| = |X|.

Fora a literal overX andρ a restriction overX, let the restriction ofa underρ be

a�ρ =







1 a ∈ ρ
0 ¬a ∈ ρ
a otherwise

(3)

5



A SPACE HIERARCHY FORk-DNF RESOLUTION

If a�ρ = 1 we sayρ satisfiesa, if a�ρ = 0 we sayρ falsifiesa and otherwise we sayρ leavesa unfixed. We
extend the definition of a restriction to a termT = a1 ∧ · · · ∧ as and clauseC = a′1 ∨ · · · ∨ a′s as follows.
Let¬ρ = {¬a|a ∈ ρ} denote the restriction obtained by replacing every literalin ρ by its negation.

T�ρ =







1 T ⊆ ρ
0 T ∩ ¬ρ 6= ∅
T \ ρ otherwise

, C�ρ =







0 C ⊆ ¬ρ
1 C ∩ ρ 6= ∅
C \ ¬ρ otherwise

(4)

In words, we sayT is satisfiedby ρ if ρ satisfies all literals inT , we sayT is falsifiedby ρ if some literal
of ρ is falsified and otherwiseT is unfixed byρ. Dually, C is satisfied if some literal of it is satisfied byρ,
it is falsified if all its literals are falsified byρ and otherwise it remains unfixed. Notice that theempty term,
i.e., the term of size0, is satisfied by every restriction and the empty clause is falsified by all of them. We
extend the definition of a restriction to a DNF formulaD = D1 ∨ · · · ∨ Dm = {D1, . . . ,Dm} by

D�ρ =







1 ∃i ∈ [m],Di�ρ = 1
0 Di�ρ = 0, i ∈ [m]

{Di�ρ : Di�ρ 6= 0} otherwise,
(5)

and to a CNF formulaF = C1 ∧ · · · ∧ Cm = {C1, . . . , Cm} by

F�ρ =







0 ∃i ∈ [m], Ci�ρ = 0
1 Ci�ρ = 1, i ∈ [m]

{Ci�ρ : Ci�ρ 6= 1} otherwise.
(6)

The notions of a restriction satisfying, falsifying and leaving unfixed a DNF or CNF formula are analogous to
those defined for terms and clauses. Ifρ is a restriction satisfying a formulaF , yet every proper subrestriction
ρ′ ( ρ does not satisfyF , then we sayρ is aminimalsatisfying restriction. A minimal falsifying restriction
is analogously defined. Whenα is an assignment andF is a formula we use the standard notation ofF (α)
to denoteF�α.

A term (clause, respectively) is said to betrivial if it contains both a positive and a negative literal
over the same variable. We may assume without loss of generality that all terms (clauses, respectively)
appearing in our paper are nontrivial, because the value of aDNF (CNF, respectively) remains unchanged
after addition or removal of trivial terms (clauses, respectively). We say that a DNF formulaD over X
representsa Boolean functionf : X → {0, 1} if and only if for all assignmentsα ∈ {0, 1}X , we have
f(α) = D(α). The notion of a CNF formula representingf is analogously defined. It is well-known that
every Boolean function can be represented by a CNF and by a DNF.

Implication If C is a set of formulas we say that a restriction (or assignment)satisfiesC if and only if it
satisfies every formula inC. ForD, C two sets of formulas over a set of variablesX, we say thatD impliesC,
denotedD � C, if and only if every assignmentα to X that satisfiesD also satisfiesC. In particular,D � 0
if and only if D is unsatisfiable, i.e., no assignment satisfiesD.

2.2 k-DNF Resolution

We now give a more precise description of thek-DNF resolution proof systems and the proof complexity
measures for these systems that we are interested in studying.

Definition 2.1 (k-DNF-resolution inference rules). Thek-DNF-resolutionproof systems are a family of
sequential proof systems parameterized byk ∈ N+. Lines in ak-DNF-resolution refutation arek-DNF for-
mulas and the following inference rules are allowed (whereA,B,C denotek-DNF formulas,T, T ′ denote
k-terms, anda1, . . . , ak denote literals):

6
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k-cut (a1∧...∧ak′ )∨B, ¬a1∨...∨¬ak′ ∨C

B ∨C
, wherek′ ≤ k.

∧-introduction A∨T, A∨T ′

A∨ (T ∪T ′) , as long as|T ∪ T ′| ≤ k.

∧-elimination A∨T
A∨T ′ for anyT ′ ⊆ T.

Weakening A
A∨B

for anyk-DNF formulaB.

The formulas above the line are called theinference assumptionsand the formula below is called theconse-
quence. For brevity we denote byR(k) the proof system ofk-DNF resolution.

The following definition is the straightforward generalization to R(k) of the space-oriented definition
of a refutation from [ABSRW02].

Definition 2.2 (Derivation). A k-DNF configurationD, or, simply, aconfiguration, is a set ofk-DNF for-
mulas. A sequence of configurations{D0, . . . , Dτ} is said to be aR(k)-derivation from a CNF formulaF
if D = ∅ and for allt ∈ [τ ], the setDt is obtained fromDt−1 by one of the followingderivation steps:

Axiom Download Dt = Dt−1 ∪ {C} for someC ∈ F .

Inference Dt = Dt−1 ∪{D} for someD inferred by one of the inference rules listed in Definition 2.1 from
a set of assumptions that belongs toDt−1.

Erasure Dt = Dt−1 \ {D} for someD ∈ Dt−1.

A R(k)-derivationπ : F `D′ of a k-DNF setD′ from a formulaF is a derivationπ = {D0, . . . , Dτ} such
thatDτ = D′. A R(k)-refutationof F is aR(k)-derivation of the empty DNF (denoted by0), i.e., the DNF
formula with no terms, or, phrased differently, the unsatisfiable empty disjunction.

When the derivedk-DNF setD′ contains a single formulaD, we will often abuse notation slightly by
writing simply π : F `D instead ofπ : F `{D}.

Definition 2.3 (Refutation length and space).The formula space, or simplyspace, of a configurationD
is its size|D|. Thevariable support size, or justsupport size, of D, denotedSuppSize(D), is the number of
variables appearing inD, i.e.,SuppSize(D) = |Vars

(

D
)

| and thevariable spaceof D, denotedVarSp(D) is
the number of variables appearing inD counted with repetitions. (Notice thatVarSp(D) ≥ SuppSize(D).)

The length of a R(k)-derivationπ is the number of axiom downloads and inference steps in it. The
space (support size, variable space, respectively) of a derivation π is defined as the maximal space (support
size, variable space, respectively) of a configuration inπ. If π is a derivation ofD from a formulaF of
lengthL and spaces then we sayD can be derived fromF in lengthL and spaces simultaneously.

We define theR(k)-refutation lengthof a formulaF , denotedLR(k)(F ` 0), to be the minimum length
of any R(k)-refutation of it. TheR(k)-refutation spaceof F , denotedSpR(k)(F ` 0), and theR(k)-
refutation support sizeof F , denotedSuppSizeR(k)(F ` 0), are analogously defined by taking minima over
all R(k)-refutations ofF .

When the proof systemR(k) in question is clear from context, we will drop the subindex in the proof
complexity measures.

Notice that the systemR(1) is the usualresolutionproof system. We remark that in resolution, the
∧-introduction and∧-elimination rules do not apply, and the cut rule reduces to the familiarresolution rule
saying that the clausesC1∨x andC2∨¬x can be combined to deriveC1∨C2. Also, although the weakening
rule is sometimes convenient for technical reasons, it is easy to show that any weakening steps can always be
eliminated from a standard resolution refutation of an unsatifiable CNF formula without changing anything
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essential. Thus, while the results in this paper will be stated for resolution with the weakening rule, they
also hold for resolution refutations using only axiom downloads, resolution rule applications and erasures.
Let us highlight this fact in a (somewhat) formal proposition for the record.

Proposition 2.4 (Weakenings can be eliminated from resolution refutations). Any resolution refutation
π : F ` 0 using the weakening rule can be transformed into a refutation π′ : F ` 0 without weakening such
thatπ′ performs at most the same number of axiom downloads, inferences and erasures as doesπ, and such
that for any length or space complexity measureM studied in this paper5 it holds thatM(π′) ≤ M(π).

The proof of Proposition 2.4 is an easy forward induction over the resolution refutation (simply ignoring
all weakening moves and keeping the subclauses instead, which can never increase neither length nor space).
We omit the details.

We will also make use of theimplicational completenessof resolution. Formally, this means that ifC is
a set of clauses andC is a clause, thenC � C if and only if there exists a resolution derivation ofC from C.

Proposition 2.5 (Implicational completeness of resolution). SupposeC is a set of clauses andC is a
clause, both over a set of variables of sizen. ThenC � C if and only if there exists a resolution derivation
of C fromC. Furthermore, ifC can be derived fromC then it can be derived in length at most2n+1 − 1 and
variable space at mostn(n + 2) simultaneously.

Proof sketch.Suppose first thatC = 0 is the contradictory empty clause. Build a search tree whereall
vertices on leveli query theith variable and where we go to the left, say, if the variable isfalse under a given
truth value assignmentα and to the right if the variable is true. As soon as some clausein C is falsified by
the partial assignment defined by the path to a vertex, we makethat vertex into a leaf labelled by that clause.
This tree has heighth ≤ n and hence size at most2h+1 − 1, and if we turn it upside down we can obtain a
legal tree-like refutation (without weakening) ofC in this length. This refutation can be carried out in clause
spaceh + 2 and variable space upper-bounded by the clause space times the number of distinct variables,
i.e., at mostn(n + 2). (We refer to, for instance, [BS02, ET01] for more details.)

If C 6= 0, apply the unique minimal restrictionρ falsifying C. ThenC�ρ � C�ρ = 0, and we can
construct a refutation ofC�ρ from a search tree of heighth < n, sinceC�ρ contains strictly fewer variables
thanC. Removing the restrictionρ from this refutation, and adding at most one extra weakeningstep for
every other derivation step (this is an example of where the weakening rule comes in handy), we get a
derivation ofC from C. (See [BSW01] for a formal proof of this fact.) This derivation has length at most
2 · (2h+1 − 1) < 2n+1 − 1 and variable space at mostn(h + 2) < n(n + 2).

2.3 Substitution Formulas

Throughout this paper, we will letfd denote any (non-constant) Boolean functionfd : {0, 1}d 7→ {0, 1}
of arity d. We use the shorthand~x = (x1, . . . , xd), so thatfd(~x) is just an equivalent way of writing
fd(x1, . . . , xd). Every functionfd(x1, . . . , xd) is equivalent to a CNF formula overx1, . . . , xd with at
most2d clauses. Fix a canonical way to represent functions as CNF formulas and letCl [fd(~x)] denote
the canonical set of clauses representingfd. Similarly, letCl [¬fd(~x)] denote the clauses in the canonical
representation of the negation off. The following definition extends the notion of substitution to a CNF
formula F . For notational convenience, we assume thatF only has variablesx, y, z, et cetera, without
subscripts, so thatx1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables not occurring inF . We will say
that the variablesx1, . . . , xd, and any literals over these variables, allbelongto the variablex.

5And indeed, for any reasonable proof complexity measure whatsoever, but we do not want to get too formal here by discussing
what “reasonable” would mean in this context.
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Definition 2.6 (Substitution formula). For a positive literalx and a non-constant Boolean functionfd, we
define thefd-substitutionof x to bex[fd] = Cl [fd(~x)], i.e., the canonical representation offd(x1, . . . , xd)
as a CNF formula. For a negative literal¬y, thefd-substitution is¬y[fd] = Cl [¬fd(~y)]. Thefd-substitution
of a clauseC = a1 ∨ · · · ∨ ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak [fd]

(

C1 ∨ . . . ∨ Ck

)

(7)

and thefd-substitution of a CNF formulaF is F [fd] =
∧

C∈F C[fd].

As an example, for the clauseC = x ∨ y and forf2(x1, x2) = x1 ⊕ x2 being exclusive or, we get that

C[f2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .
(8)

3 Main Results

In this section we state our main results. We start with the hierarchy theorem and the main theorem needed
to prove it, the substitution space theorem. Then we discussthe main technical part of the paper: the size of
minimally unsatisfiablek-DNF sets.

3.1 k-DNF Resolution Space Hierarchy and the Substitution Space Theorem

Our main theorem is the following.

Theorem 3.1 (k-DNF resolution space hierarchy).For everyk ≥ 1 there exists an efficiently constructible
family of formulas{Fn}

∞
n=1 satisfying the following properties.

1. Fn is an unsatisfiable(3(k + 1))-CNF formula withO(n) variables andO(n) clauses.

2. Fn can be refuted inR(k + 1) in lengthO(n) and variable spaceO(1) simultaneously.

3. EveryR(k)-refutation ofFn requires formula spaceΩ
(

k+1
√

n/ log n
)

.

The constants hidden by the asymptotic notation depend onlyonk.

We want to stress that the upper bound on refutation space inR(k + 1) is stated in terms of the largest
space measure—variable space—and hence holds also for formula space, whereas the lower bound on refu-
tation space inR(k) is stated using the smallest space measure, namely, formulaspace, and hence holds
also for variable space.

The space hierarchy theorem follows from the next theorem describing how the space requirements of
refuting a formulaF in k-DNF resolution is affected by performing substitutions asin Definition 2.6. After
presenting this “substitution space theorem,”, we show howto derive the space hierarchy theorem from it.
To state the theorem we need the following definition.

Definition 3.2 (Non-authoritarian functions). We say that a Boolean functionf over variablesX =
{x1, . . . , xd} is k-non-authoritarianif no restriction toX of sizek can fix the value off . In other words,
for every restrictionρ to X with |ρ| ≤ k there exist two assignmentsα0, α1 ⊃ ρ such thatf(α0) = 0 and
f(α1) = 1.

9
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Notice that a function ond variables can bek-non-authoritarian only ifk < d. The XOR function⊕ on
d variables is(d−1)-non-authoritarian and the majority function on2d′+1 variables isd′-non-authoritarian.

The substitution space theorem forR(k) tells us that for non-authoritarian functionsf, we can translate
back and forth between standard resolution refutations ofF andR(k)-refutations of the substitution for-
mulaF [f] in a (reasonably) length- and space-preserving way. To parse the bounds below more easily, the
reader might be helped by thinking ofc, d, andk as constants (which they will be in our application of the
theorem).

Theorem 3.3 (Substitution space theorem fork-DNF resolution). LetF be any unsatisfiablec-CNF for-
mula andfd be any non-constant Boolean function of arityd. Then the following two properties hold for
the substitution formulaF [fd]:

1. If F can be refuted in resolution in lengthL and variable spaceS simultaneously, thenF [fd] can be
refuted inR(d) in lengthL·d4cd

·4cd and variable spaceS ·d2d+(cd+2)3 ·4cd+O(1) simultaneously.

2. If fd is k-non-authoritarian andF [fd] can be refuted by aR(k)-refutation that requires spaceS′ and
makesL′ axiom downloads, thenF can be refuted by a resolution refutation that requires variable
support size at most(2S′k)k+1 · 4k2d and makes at mostL′ axiom downloads.

Assuming this theorem, we can establish thek-DNF resolution space hierarchy.

Proof of Theorem 3.1.The first author described in [BS02, Theorems 3.1 and 3.2] a family of efficiently
constructible3-CNF formulas{F ′

n}
∞
n=1 satisfying:

• F ′
n can be refuted in resolution in lengthO(n) and variable spaceO(1) simultaneously.

• Every resolution refutation ofF ′
n has variable support size6 Ω(n/ log n).

(The family {F ′
n}

∞
n=1 consists of so-called pebbling contradictions over directed acyclic graphsGn with

n vertices that have a black-white pebbling price ofΩ(n/ log n). We refer the interested reader to the
second author’s PhD thesis [Nor08] and upcoming survey [Nor09] for further information about pebble
games and their applications to proof complexity.)

The family{Fn}
∞
n=1 is obtained by substituting an arbitrary non-authoritarian Boolean functionfk+1 of

arity k+1, for instance XOR overk+1 variables, intoF ′
n, i.e., by settingFn = F ′

n[fk+1] for all n ∈ N+. By
constructionFn satisfies part 1 of Theorem 3.1. To obtain the remaining two parts of the theorem, we apply
Theorem 3.3 toF ′

n. Using part 1 of this theorem and noticing that in our cased = k+1 andc = 3(k+1) are
constants, we conclude thatFn can be refuted in(k+1)-DNF resolution in linear length and constant space
simultaneously, thus yielding part 2 of Theorem 3.1. To obtain part 3 we use the lower bound ofΩ(n/ log n)
on the variable support size ofF ′

n and combine it with part 2 of Theorem 3.3. This completes the proof of
Theorem 3.1.

3.2 Minimally unsatisfiable k-DNF formula sets

The proof of the first part of Theorem 3.3 is fairly straightforward and resembles our proof of the substitution
theorem for the standard resolution proof system in [BSN09]. For the second part, however, we require a
result, described next, that bounds the number of variablesappearing in a minimally unsatisfiablek-DNF
set of a given size. Since this result addresses a combinatorial problem that appears to be interesting (and
challenging) in its own right, we describe it in some detail in this section.

6The exact statement in [BS02] says that the variable space ofF ′
n is at leastΩ(n/ log n). However, the proof given there

actually shows a lower bound on the variable support size.
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We start by recalling that a set of1-DNF formulas, i.e., a CNF formula, is said to beminimally unsat-
isfiable if it is unsatisfiable but every proper subset of its clauses is satisfiable, and try to generalize this
definition to the case ofk > 1.

Perhaps the first, naive, idea how to extend of this notion is to defineD to be minimally unsatisfiable if
it is unsatisfiable but all proper subsets of it are satisfiable. The following example shows why this approach
is problematic.

{x,
(

(x ∧ y1) ∨ (x ∧ y2) ∨ (x ∧ y3) ∨ · · · ∨ (x ∧ yn)
)

} (9)

This set, which consists of two2-DNF formulas, is unsatisfiable but every proper subset of itis satisfiable.
However, the number of variables appearing in the set can be arbitrarily large so there is no way of bounding
|Vars

(

D
)

| as a function of|D|.
A more natural requirement is to demand minimality not only at the formula level but also at the term

level, saying that not only do all DNF formulas in the set haveto be there but also that no term in any
formula can be shrunk to a smaller, weaker term without the set becoming satisfiable. Luckily enough, this
also turns out to be the concept we need for our applications.The formal definition follows next.

Definition 3.4 (Minimal implication and minimally unsatisfi able k-DNF sets). Let D be a DNF set and
G be a formula. We sayD minimally impliesG if D � G and furthermore, replacing any single termT
appearing in a single DNF formulaD ∈ D with a proper subterm ofT , and calling the resulting DNF setD′,
results inD′ 6� G. If G is unsatisfiable we sayD is minimally unsatisfiable.

To see that this definition generalizes the notion of a minimally unsatisfiable CNF formula, notice that
removing a clauseC ′ from a CNF formulaF is equivalent to replacing a term ofC ′, which is a single literal,
with a proper subterm of it, which is the empty term. This is because the empty term evaluates to1 on all
assignments, which means that the resulting clause also evaluates to1 on all assignments, hence can be
removed fromF .

The following theorem is our extension of Theorem 1.1.

Theorem 3.5 (Small-size minimally unsatisfiablek-DNF sets have few variables).Suppose thatD is a
minimally unsatisfiablek-DNF set. Then the number of variables inD is at most|Vars(D)| ≤ (k · |D|)k+1.

We want to point out that in contrast to Theorem 1.1, which is exactly tight, there is no matching lower
bound on the number of variables in Theorem 3.5. And indeed, we see no particular reason to believe
that this theorem should be tight. We note that the best explicit construction of a minimally unsatisfiable
k-DNF set that we are currently able to obtain have number of variables onlylinear in the number ofk-DNF
formulas (fork constant), improving only by a factork2 over the bound for CNF formulas in Theorem 1.1.

Lemma 3.6 (Explicit construction of minimally unsatisfiable k-DNF set). There are minimally unsatis-
fiablek-DNF setsD with |Vars(D)| ≥ k2(|D| − 1).

Proof. Consider any minimally unsatisfiable CNF formula consisting of n + 1 clauses overn variables (for
instance, the one in (2)). Substitute every variablexi with
(

x1
i ∧ x2

i ∧ · · · ∧ xk
i

)

∨
(

xk+1
i ∧ xk+2

i ∧ · · · ∧ x2k
i

)

∨ · · · ∨
(

xk2−k+1
i ∧ xk2−k+2

i ∧ · · · ∧ xk2

i

)

(10)

and expand every clause to ak-DNF formula. Note that this is possible since the negation of (10) that we
need to substitute for¬xi can also be expressed as ak-DNF formula

∨

(j1,...,jk)∈[1,k]×...×[(k2−k+1,k2]

(

¬xj1
i ∧ · · · ∧ ¬xjk

i

)

. (11)

It is straightforward to verify that the result is a minimally unsatisfiablek-DNF set in the sense of Defini-
tion 3.4, and this set hasn + 1 formulas overk2n variables.
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We end this section by remarking that the precise statement required to prove the second part of The-
orem 3.3 (found in Lemma 5.4) is somewhat more involved than Theorem 3.5. However, the proof of
Lemma 5.4 follows closely the proof of Theorem 3.5. Both of these results are proved in sequence in
Section 5.

4 R(k)-refutations of F [f] Translate into Resolution Refutations of F

To prove part 2 of Theorem 3.3, we need to show how to convert aR(k)-refutationπf of F [fd] into a
resolution refutationπ of F such that the variable support size ofπ is bounded by the space ofπf , raised
to the power ofk + 1. The proof has two main parts. In Lemma 4.2 we claim that eachk-DNF setD ∈ πf

can be “projected” onto a set of clauses overVars
(

F
)

, such that the sequence of projected clause sets
forms the “backbone” of a resolution refutation ofF . By this we mean that the backbone can be completed
to a standard resolution refutation ofF without (essentially) increasing the variable support size. Then,
in Lemma 4.3, which forms the second and main part of the proof, we show that ifC is a set of clauses
projected by ak-DNF setD, the variable support size ofC is at most|D|k+1. Combining these lemmas
proves part 2 of Theorem 3.3.

This section is organized as follows. We start by formally defining the set of clauses “projected” by a
k-DNF set. Then we state the two main lemmas regarding projected proofs. After completing the proof of
part 2 of Theorem 3.3, we attend to the proofs of the lemmas.

The clauses projected by ak-DNF setD are those clauses that areprecisely impliedby D according to
the following definition.

Definition 4.1 (Precise implication and projected clauses). LetF be a CNF formula andfd a non-constant
Boolean function, and suppose thatD is ak-DNF set derived fromF [fd] and thatP andN are (disjoint)
subsets of variables ofF . If

D �
∨

x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) (12a)

but for all strict subsetsP ′ $ P , andN ′ $ N it holds that

D 2
∨

x∈P ′

fd(~x) ∨
∨

y∈N

¬fd(~y) , and (12b)

D 2
∨

x∈P

fd(~x) ∨
∨

y∈N ′

¬fd(~y) , (12c)

we say that the clause setD implies
∨

x∈P fd(~x) ∨
∨

y∈N ¬fd(~y) preciselyand write

D B
∨

x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) . (13)

LettingC = C+ ∨C− be the clause defined byC+ =
∨

x∈P x andC− =
∨

y∈n ¬y, we say thatD projects
the clauseC if (13) holds. Finally, we let

proj F (D) =
{

C
∣

∣D B
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)
}

(14)

denote the set of all clauses thatD projects onF .
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Informally, the next lemma states that the projection of ak-DNF resolution refutation ofF [fd] is essen-
tially a refutation of the original formulaF in standard resolution. And more importantly for our purposes,
smallR(k)-refutation space implies the projected resolution refutation has small variable support size. The
proof of this lemma appears in Section 6.

Lemma 4.2 (Basic properties of projected proof).Let k ≥ 1. Suppose thatπf =
{

D0, . . . , Dτ

}

is a
R(k)-refutation ofF [fd] for some arbitrary unsatisfiable CNF formulaF and some arbitrary non-constant
functionfd. Then the sets of projected clauses

{

proj F (D0), . . . , proj F (Dτ )
}

form the “backbone” of a
resolution refutationπ of F in the sense that:

• proj F (D0) = ∅.

• proj F (Dτ ) = {0}.

• The only timeπ performs a download of some axiomC in F is whenπf downloads some axiom
D ∈ C[fd] in F [fd].

• All transitions fromproj F (Dt−1) to proj F (Dt) for t ∈ [τ ] can be accomplished by axiom down-
loads fromF , resolution inferences, erasures, and possibly resolution weakening steps in such a
way that the variable support size inπ during these intermediate derivation steps never exceeds
2 · maxD∈πf

{

SuppSize(proj F (D))
}

.

The following statement is the main technical part of our argument. Its proof is deferred to the next
section.

Lemma 4.3 (Main lemma—lower bound on space of projected proof). Suppose thatF is a CNF formula
andfd is a k-non-authoritarian function of arityd > k andD is a k-DNF set overVars

(

F [fd]
)

. Then it
holds that

SuppSize(proj F (D)) ≤ 4k2d · (k · Sp(D))k+1 .

Given the two lemmas above we proceed to prove the second partof the substitution space theorem.

Proof of part 2 of Theorem 3.3.Let F be an unsatisfiablec-CNF formula andfd a non-constant Boolean
function of arityd > k ≥ 1. Let πf be aR(k)-refutation ofF [fd] that requires spaceS′ and makesL′

axiom downloads. By Lemma 4.2, the sequence of sets of clauses π′ =
{

proj F (D0), . . . , proj F (Dτ )
}

can
be extended to a resolution refutationπ of F such that the number of axiom downloads inπ is L′ and the
variable support size ofπ is at most2S′. Additionally, Lemma 4.3 implies that the maximal support size of
π′ is bounded by(2kS′)k+1 · 4k2d and this number is also an upper bound on the maximal support size ofπ
as well. This completes the proof of part 2 of Theorem 3.3.

5 On the Size of Minimally Implicating k-DNF Sets

In this section we prove Lemma 4.3, which bounds the number ofvariables appearing in ak-DNF set
that minimally implies a formula. We first deal with the special case of a minimally unsatisfiable set in
Section 5.1. The actual result needed to prove the substitution space theorem follows the outline of this
simpler case and appears in Section 5.2.
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5.1 Warmup—on the Size of Minimally Unsatisfiable k-DNF Sets

In this subsection we prove Theorem 3.5. The following simple but important lemma will be used both in
the proof of Theorem 3.5 and of Lemma 4.3. We state it in the more general form needed to prove the latter
result. (For proving Theorem 3.5 it suffices to restrict our attention tounsatisfiableformulasG.)

Lemma 5.1. Suppose thatD is a k-DNF set that minimally implies a formulaG. Then for every literala
appearing in any termT in a k-DNF formulaD ∈ D there exists a restrictionρ to Vars

(

D
)

satisfying

• |ρ| ≤ k|D|.

• D′�ρ = 1 for all D′ ∈ D \ {D}.

• (T \ {a})�ρ = 1.

• G�ρ 6= 1.

The point here is that, intuitively speaking, the restriction ρ is very nearly satisfying thek-DNF setD
(except for a single literal in a single term) but still has not fixed the formulaG implied byD to true. Also,
ρ assigns values to comparatively few variables.

Proof of Lemma 5.1.By Definition 3.4, there exists an assignmentα to Vars
(

D
)

such that

• D′(α) = 1 for all D′ ∈ D′ \ {D}.

• (T \ {a})(α) = 1.

• G(α) = 0.

Let ρ be a restriction of minimal size that agrees withα and satisfies the second and third bullet in the
statement of the lemma. Such a restriction can be found by selecting one termT ′ satisfied byα in each
D′ ∈ D′ \ D and settingρ to agree withα on

⋃

j Vars(Tj) ∪ Vars(T \ {a}) and be unfixed elsewhere.
Since|T ′| ≤ k we seeρ has size≤ k|D′|. The last bullet stated above holds becauseG(α) = 0 andρ agrees
with α on all variables fixed byρ.

We now bound the number of variables appearing in a minimallyunsatisfiablek-DNF set.

Proof of Theorem 3.5.Let D = {D1, . . . ,Dm} be ak-DNF formula set withm = |D|. For S a set of
literals, letDi(S) be the set of terms inDi that containS (recall we identify a term with the set of literals
appearing in it). Formally,

Di(S) = {T ∈ Di : T ⊇ S} . (15)

Let Vars
(

Di(S)
)

denote the set of variables appearing in the set of termsDi(S). Our theorem follows from
the next claim.

Claim 5.2. If S is a set of literals and|S| = k − r then|Vars
(

Di(S)
)

| ≤ k · (km)r.

Before proving the claim let us complete the proof of the theorem. TakeS = ∅ for which we getr = k
and notice thatDi(∅) = Di. Claim 5.2 gives

|Vars(Di)| = |Vars(Di(∅))| ≤ k(km)k (16)

and summing over all allm formulas in the set we get

|Vars(D)| ≤
∑m

i=1|Vars(Di)| ≤ m · k(km)k = (km)k+1 = (k|D|)k+1 (17)

which concludes the proof.
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Proof of Claim 5.2.By induction onr ≥ 0. For the base case ofr = 0 notice |S| = k so there can be at
most one term inDi that contains all literals inS implying |Vars

(

Di(S)
)

| is either0 or k.
For the inductive step we may assume the existence of some term T ∈ Di that strictly containsS,

because otherwiseS appears at most once as a term inDi and the claim holds as in the base case. Assuming
T ) S, let a be a literal inT \ S. Lemma 5.1 guarantees the existence of a restrictionρ of size at mostkm
such thatDj�ρ = 1 for all j ∈ [m], j 6= i and(T \ {a})�ρ 6= 0. By the unsatisfiability ofD we concludeρ
falsifies every termT ′ ∈ Di for whichT ′ ) S. Since(T \ {a})�ρ = 1 and(T \ {a}) ⊇ S we conclude that
every term inDi that containsS must also contain a literal set to false byρ, because otherwiseρ could be
extended to an assignment satisfyingD. Recall that¬ρ is the set of literals set to false byρ. We have just
shown that

Di(S) =
⋃

a′∈¬ρ Di(S ∪ {a′}) . (18)

So to boundVars
(

Di(S)
)

we need only boundVars
(

Di(S ∪ {a′})
)

for all a′ ∈ ¬ρ. We use the inductive
hypothesis. Notice(¬ρ)∩S = ∅ becauseρ satisfiesS. Thus, fora′ ∈ ¬ρ we have|S ∪{a′}| = k− (r−1).
Summing over alla′ ∈ ¬ρ and recalling|¬ρ| = |ρ| ≤ km, we apply the inductive hypothesis toS ∪ {a′} to
conclude from (18) that

|Vars
(

Di(S)
)

| ≤
∑

a′∈¬ρ|Vars
(

Di(S ∪ {a′})
)

| ≤ |¬ρ| · k(km)r−1 ≤ k(km)r (19)

as claimed.

5.2 Upper-bounding the Space of Projections—Proof of Lemma 4.3

To prove Lemma 4.3 we need to address two issues that did not appear in the previous subsection. First,
our starting point is ak-DNF setD that is satisfiable and implies a set of projected clauses. Wedeal with
this by constructing a formula (denotedG′ later on) that is the conjunction of all clauses projected byD.
The second issue, which is more subtle, is thatD is a set of formulas defined overVars

(

F [fd]
)

whereas the
clauses projected byD are over the different variable setVars

(

F
)

. The following definition will be used to
connect the two sets of variables and is crucial to our proof.

Definition 5.3 (Shadow). For a a literal over a variabley ∈ Vars
(

F [fd]
)

let theshadowof a, denoted
V(a), be the variablex ∈ Vars

(

F
)

to which a belongs, i.e., the shadow ofy is the variablex such that
y ∈ Vars

(

x[fd]
)

. ForT a set of literals (which will later on be identified with a termor a restriction) let its
shadow beV(T ) =

⋃

a∈T V(a) and forD a set of terms we define its shadow asV(D) =
⋃

T∈D V(T ).

The following sublemma, which will be proved later on, is theanalog of Claim 5.2, accounting for the
needed modifications which were discussed in the beginning of this section. The claim in this sublemma
is also the central point in our proof of Lemma 4.3. We now state the sublemma and promptly use it to
complete the proof of Lemma 4.3.

Lemma 5.4. SupposeD = {D1, . . . ,Dm} is ak-DNF set overVars
(

F [fd]
)

andG is a CNF formula over
Vars

(

F
)

such thatD minimally implies the substituted formulaG′ = G[fd]. Suppose furthermore that
S ⊂ Vars

(

F
)

and |S| = k − r for r ≥ 0. Then, lettingDi(S) = {T ∈ Di|V(T ) ⊇ S} denote the set of
terms inDi whose shadow containsS, we have

|V(Di(S))| ≤ k ·
(

4kd · k|D|
)r

.

Proof of Lemma 4.3.Let D = {D1, . . . ,Dm} andG′ =
∧

C∈proj F (D) C[fd]. Notice that by Definition 4.1,

G′ is of the formG′ = G[fd] for some CNF formulaG overVars
(

F
)

soG′ conforms to the assumptions
of Lemma 5.4.
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First we argue that we may assume without loss of generality thatD minimally impliesG′. If this is not
the case, there must exist a termT appearing inDi ∈ D and a proper subtermT ′ ⊆ T such that replacing
T by T ′ and calling the replacedk-DNF set byD′, we still haveD′ � G′. In this case replaceD with D′

and repeat the process. Notice that repeating the process does not increase the size ofD (in fact, the size
can shrink if somek-DNF formula includes an empty term). Since each repetitionof this process strictly
shrinks the number of literals inD (counted with repetitions), we see it must terminate. Upon termination
the remainingk-DNF set, denoted̂D, which is of size at mostm, minimally impliesG′.

Our next observation is that for every variablex appearing inG there must exist a literala belonging to
it that appears in̂D, implying

SuppSize(G) = |Vars(G)| ≤ |V(D̂)| . (20)

To see this, argue by way of contradiction. LetC = C ′ ∨ x be a clause appearing inG and assume for
simplicity thatx is a positive literal (the case of a negative literal is identical). Conditions (12a) and (12b) of
Definition 4.1 imply that there exists an assignmentα to Vars

(

F [fd]
)

such thatα(D) = α(x[fd]) = 1 but

α(C ′[fd]) = 0. By construction,D � D̂ soα(D̂) = 1 as well. By assumption, no variable belonging tox
appears in̂D, so by changing the value ofα onVars

(

x[fd]
)

as to falsifyx[fd] we reach an assignment that

satisfiesD̂ but falsifiesG[fd], contradiction.
Having established (20), we bound|V(D)| for D ∈ D̂ with the use of Lemma 5.4 and get

|V(D)| = |V(D(∅))| ≤ k ·
(

4kd · k|D̂|
)k

. (21)

Summing over allD ∈ D and recalling|D̂| ≤ |D| gives

|V(D̂)| ≤
∑

D∈D̂

|V(D)| ≤ |D̂| · k ·
(

4kd · k|D̂|
)k

≤ 4k2d · (k|D|)k+1 (22)

and this, together with (20), completes the proof of Lemma 4.3.

We end this section with a proof of Lemma 5.4.

Proof of Lemma 5.4.By induction onr ≥ 0. For the base case ofr = 0 we have|S| = k. SinceDi is a
k-DNF formula then any termT for which V(T ) ⊇ S must haveV(T ) = S. Thus,|V(Di(S))| = k and
the inequality claimed in the lemma holds.

For the inductive case ofr > 0, let S̄ denote the set of literals that belong toS, and letterms(S)

denote the set of terms overS̄. We bound the number of terms by|terms(S)| = 22|Vars
(

S̄
)

| ≤ 4kd because
each term is a set of literals coming from a set of literals of size 2|Vars

(

S̄
)

|. Partition the terms inDi(S)
according to their intersection with̄S. Formally, for everys ∈ terms(S) let

Di(s) = {T ∈ Di(S)|T ∩ S̄ = s} . (23)

We have partitionedDi(S) into 4kd partitions so to prove the claim in the lemma it is sufficient to show for
each partition that

|V(Di(s))| ≤ km

(

k ·
(

4kdkm
)r−1

)

. (24)

Consider one terms ∈ terms(S). If V(Di(s)) = S then clearly (24) holds so we assumeV(Di(s)) ) S.
In this case there existsT ∈ Di such thatV(T ) ) S which implies the existence of a literala ∈ T \ S̄. Let
ρ be a restriction satisfying the properties of Lemma 5.1 withrespect toa, T,Di andG′.
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Proposition 5.5. Every termT ′ appearing inDi(s) must include a literala 6∈ S̄ whose shadow belongs to
the shadow ofρ as well. Formally,(V(T ′) \ S) ∩ (V(ρ) \ S) 6= ∅.

Proof. By way of contradiction. AssumeT ′ falsifies the proposition. By assumptionT ′ has the same set
of literals asT within S̄ and the third property ofρ listed in Lemma 5.1 impliesρ satisfies all literals ofT ′

inside S̄. Assuming that the intersection in the statement of the proposition is empty, we can extendρ to
a restrictionρ′ that satisfiesT ′ by setting at mostk “new” variables on top of those set byρ. The crucial
observation is that none of the “new” variables set byρ′ have their shadow inV(ρ). More to the point,
supposexi is a “new” variable whose value is set byρ′ but is not set byρ. Letx denote the shadow ofxi and
let~x = {x1, . . . , xd} be the set of variables whose shadow isx. Our crucial observation, restated in different
words, is thatρ does not set the value ofanyvariable in~x. This is where thek-non-authoritarianism offd

comes into play, because it implies thatρ′ cannot fix the value offd(~x) becauseρ′ sets at mostk variables
in ~x. But this means that we can extendρ′ so thatfd(~x) will obtain any truth value we find fit. We conclude
that the fourth property listed in Lemma 5.1 holds forρ′ as well as forρ. This property implies thatρ′ can
be extended to an assignmentα′ such thatG′(α′) = 0. Soα′ is an assignment that satisfiesD but falsifies
G′. We have reached a contradiction, and the proposition follows.

We continue with the proof of the inequality (24). The secondproperty of Lemma 5.1 implies that
|V(ρ)| ≤ km. Thus, Proposition 5.5 shows that there exists a setVs ⊆ Vars

(

F
)

\ S of size at mostkm
such that

V(Di(s)) ⊆
⋃

v∈Vs

V(Di(S ∪ {v})) . (25)

Sincev 6∈ S we have|S ∪ {v}| = k − (r − 1) so we may apply the inductive hypothesis of the inequality
in Lemma 5.4 toS ∪ {v} which gives

|V(Di(s))| ≤
∑

v∈Vs

|V(Di(S ∪ {v}))| ≤ km

(

k ·
(

4kd · km
)r−1

)

. (26)

We have shown that the inequality (24) holds for alls ∈ terms(S). Summing over all terms, there are at
most4kd of them, completes the proof of Lemma 5.4.

6 Projected R(k)-refutations Are (Almost) Resolution Refutations

This section contains the proof of Lemma 4.2. We establish this lemma in very much the same way as
for [BSN09, Theorem 4.4], but there is a subtle difference between the two proofs due to the fact that our
definition of precise implication (Definition 4.1) is somewhat different than what is used there (cf. [BSN09,
Definition 4.2]). Definition 4.2 in [BSN09] appears to be “theright one” and yields tighter results for
standard resolution, but for technical reasons we are forced to relax that definition a bit in order to obtain
the results fork-DNF resolution in the current paper.

We first fix some notation. Let us use the convention thatD andD denotek-DNF sets andk-DNF
formulas derived fromF [fd] while C andC denote clause sets and clauses derived fromF . Let us also
overload the notation and writeD � C, D 2 C, andD B C for C = C+ ∨ C− when the corresponding
implications hold or do not hold forD with respect to

∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y). Finally, letCt be a
shorthand forproj F (Dt).

Suppose now thatπf =
{

D0, . . . , Dτ

}

is a k-DNF resolution refutation ofF [fd] for some arbitrary
unsatisfiable CNF formulaF and some arbitrary non-constant functionfd.

The first two bullets in Lemma 4.2 are immediate. ForD0 = ∅ we haveC0 = proj F (D0) = ∅, and it is
easy to verify thatDτ = {0} yieldsCτ = proj F (Dτ ) = {0}. We note, however, that the empty clause will
have appeared inCt = proj F (Dt) earlier, namely for the firstt such thatDt is contradictory.
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The hard part is to show that all transitions fromCt−1 = proj F (Dt−1) to Ct = proj F (Dt) can be
performed in such a way that the variable support size in our refutation under constructionπ : F ` 0 never
exceedsSuppSize(Ct−1) + SuppSize(Ct) ≤ 2 ·maxs∈[τ ]

{

SuppSize(Cs)
}

during the intermediate deriva-
tion steps needed inπ. The proof is by a case analysis of the derivation steps. Before plunging into the
proof, let us make a simple but useful observation.

Observation 6.1. Using the above notation, ifDt � C then C = C+ ∨ C− is derivable fromCt =
proj F (Dt) by weakening.

Proof. Pick C+
1 ⊆ C+, andC−

2 ⊆ C− minimal so thatD � C+
1 ∨ C−

2 still holds. Then by definition
D B C+

1 ∨C−
2 soC+

1 ∨C−
2 ∈ Ct andC ⊇ C+

1 ∨C−
2 can be derived fromCt by weakening as claimed.

Consider now the rule applied inπf at timet to get fromDt−1 to Dt. We analyze the three possible
cases—inference, erasure and axiom download—in this order.

Inference Note that obviouslyDt−1 � Dt since all inference rules are sound. Moreover, sinceDt ⊇ Dt−1

we haveDt � Dt−1. It follows from Definition 4.1 the set of projected clauses does not change, i.e.,
Ct−1 = Ct, and nothing needs to be done.

Erasure If C ∈ Ct \ Ct−1 is a new projected clause appearing at timet as a result of an erasureDt =
Dt−1 \ {D}, it clearly holds thatDt−1 � C. Hence, all such clausesC ∈ Ct \ Ct−1 can be derived
by weakening fromCt−1 by Observation 6.1, after which all clauses inCt−1 \ Ct can be erased. During
these intermediate steps the support size is upper-boundedby SuppSize(Ct−1 ∪ Ct) ≤ SuppSize(Ct−1) +
SuppSize(Ct).

Axiom download This is the place in the case analysis where we need to do some serious work. Suppose
thatDt = Dt−1 ∪ {D} for some axiom clauseD ∈ A[fd], whereA in turn is an axiom ofF . If C ∈ Ct\Ct−1

is a new projected clause then we must haveDt−1 2 C andDt−1 ∪ {D} B C.
We want to show that all such clausesC can be derived fromCt−1 = proj F (Dt−1) by downloading

A ∈ F , making inferences, and then possibly erasingA, and that this can be done without the variable
support size exceedingSuppSize(Ct−1) + SuppSize(Ct). The key to our proof is the next lemma.

Lemma 6.2. LetD be ak-DNF set derived fromD ∈ F [fd], D ∈ A[fd] be an axiom clause ofF [fd], andC
be a clause overVars(F ). If D, D, andC are such thatD ∪ {D} B C butD 2 C. Then ifA = a1∨· · ·∨ak,
for everyai ∈ A \ C there is a subclauseCi ⊆ C such thatD B Ci ∨ ai. That is, all clausesC ∨ ai for
ai ∈ A \ C can be derived fromC = proj F (D) by weakening.

Proof. Consider any assignmentα such thatD(α) = 1 but
[
∨

x∈C+fd(~x) ∨
∨

y∈C−¬fd(~y)
]

(α) = 0. Such
an assignment exists sinceD 2 C by assumption. Also, since by assumptionD ∪ {D} B C we must have
D(α) = 0. If A = a1 ∨ · · · ∨ as, we can writeD ∈ A[fd] on the formD = D1 ∨ · · · ∨ Ds for Di ∈ ai[fd].
Fix anya ∈ A and suppose for the moment thata = x is a positive literal. ThenDi(α) = 0 implies that
[

fd(~x)
]

(α) = 0 which means that
[

¬fd(~x)
]

(α) = 1. Since exactly the same argument holds ifa = y is a
negative literal, we conclude that

D �
∨

x∈(C∨ai)+
fd(~x) ∨

∨

y∈(C∨ai)−
¬fd(~y) (27)

or, rewriting (27) using our overloaded notation, that

D � C ∨ ai . (28)
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If ai ∈ C, the clauseC ∨ ai is trivially true and thus uninteresting, but otherwise we pick Ci ⊆ C minimal
such that (28) still holds (and notice that sinceD 2 C, the literalai cannot be dropped from the implication).
Then by Definition 4.1 we haveD B Ci ∨ ai as claimed.

We remark that Lemma 6.2 tells us that everyx ∈ Vars(A) \ Vars(C) appears in some clause at
time t − 1, namely, in the clauseCi ∨ ai found in the proof above. Since in addition obviouslyVars(A) ∩
Vars(C) ⊆ Vars(Ct) this means that if we downloadA ∈ F in our refutationπ : F ` 0 under construction,
we haveVars(A) ⊆ Vars(Ct−1) ∪ Vars(Ct) and henceSuppSize(Ct−1 ∪ {A}) ≤ SuppSize(Ct−1) +
SuppSize(Ct).

Thus, we can downloadA ∈ F , and then possibly erase this clause again at the end of our inter-
mediate resolution derivation to get fromCt−1 to Ct, without the variable support size ever exceeding
SuppSize(Ct−1) + SuppSize(Ct). Let us now argue that all new clausesC ∈ Ct \ Ct−1 can be derived
from Ct−1 ∪ {A}.

If A \ C = ∅, then the weakening rule applied onA is enough. Suppose therefore that this is not the
case and letA′ = A \ C =

∨

a∈Lit(A)\Lit(C) a. Appealing to Lemma 6.2, we know that for everya ∈ A
there is aCa ⊆ C such thatCa ∨ a ∈ Ct−1. Note that by the assumptionDt−1 2 C this means that
if x ∈ Vars(A) ∩ Vars(C), thenx occurs with the same sign inA andC, since otherwise we would
get the contradictionD � C ∨ a = C. Summing up,Ct−1 containsCa ∨ a for someCa ⊆ C for all
a ∈ Lit(A) \ Lit(C) and in addition we know thatLit(A) ∩ {a | a ∈ Lit(C)} = ∅. Let us writeA′ =
a1 ∨ · · · ∨ am and do the following weakening derivation steps fromCt−1 ∪ {A}:

A C ∨ A′

Ca1
∨ a1  C ∨ a1

Ca2
∨ a2  C ∨ a2

...

Cam ∨ am  C ∨ am

(29)

Then resolveC ∨ A′ in turn with all clausesC ∨ a1, C ∨ a2, . . . , Cam ∨ am, finally yielding the clauseC.
In this way all clausesC ∈ Ct \ Ct−1 can be derived one by one, and we note that we never mention

any variables outside ofVars(Ct−1) ∪ Vars(A) ∪ Vars(C) in these derivations.
Wrapping up the proof of Lemma 4.2, we have proven that no matter what derivation step is made

in the transitionDt−1  Dt, we can perform the corresponding transitionCt−1  Ct for our pro-
jected clause sets without the variable support size going aboveSuppSize(Ct−1) + SuppSize(Ct) ≤ 2 ·
maxD∈πf

{

SuppSize(proj F (D))
}

. Also, the only time we need to download an axiomA ∈ F in our
projected refutationπ of F is whenπf downloads some axiomD ∈ A[fd]. This completes the proof of
Lemma 4.2.

7 Converting Resolution Refutations of F to R(k)-refutations of F [f]

To prove part 1 of Theorem 3.3, we convert a resolution refutation π of F into a R(d)-refutation of the
substituted formulaF [fd] while (roughly) preserving the length and variable space simultaneously. This
is done in two steps. First, we substitute each positive literal x appearing in a clauseC in π with some
d-DNF representingfd(~x) and similarly substitute¬x with a d-DNF representing¬fd(~x). (Recall every
function overd variables can be represented by ad-DNF formula.) The sequence of sets of clauses that
wasπ is transformed under this substitution into a sequence ofd-DNF sets that forms the “backbone” of
a R(d)-refutation. Then, we convert the backbone into a properR(d)-refutation by simulating resolution
inferences and axiom downloads. Consider a resolution inference step inπ which involved inferringC ∨C ′
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from C ∨ x,C ∨ ¬x. After substitution what we need to show is thatC[fd] ∨ C ′[fd] can be inferred from
C[fd] ∨ x[fd], C

′[fd] ∨ ¬x[fd] in R(d). This is shown in Lemma 7.1 below. The simulation of an axiom
download is similarly addressed in Lemma 7.2, where we show that we can derive anyd-DNF representation
of A[fd] for an axiomA ∈ F via aR(k)-derivation of bounded length and space. Given these two lemmas,
the proofs of which follow below, we can complete the proof ofthe first part of Theorem 3.3.

Lemma 7.1 (Simulating Resolution inR(k)). SupposeD1,D2 are twok-DNF formulas overr variables.
If D1 ∧ D2 � 0, then thek-DNF set{D1,D2} has aR(k)-refutation of length|D1| · |D2| and variable
space at most2(VarSp(D1) + VarSp(D2)) simultaneously.

Lemma 7.2 (Implicational completeness ofR(k) with respect to clauses).SupposeF is a CNF formu-
la and D is a k-DNF formula and|Vars

(

F
)

∪ Vars
(

D
)

| = r. If F � D thenD can be derived from
F via a R(k)-derivation of length less thank|D| · 2r+1 and variable space at most((r + 2)VarSp (D))2

simultaneously.

Postponing the proofs for a moment, let us see how these two lemmas yield the first part of Theorem 3.3.

Proof of part 1 of Theorem 3.3.Letπ = {C0, . . . , Cτ} be a resolution refutation of the CNF formulaF . Let
πf = {D0, . . . , Dτ} denote the sequence ofd-DNF sets obtained by substitutingπ with fd in the following
way. We start by fixing for each literala a d-DNF formula representinga[fd]. For a clauseC =

∨

i ai

appearing inCt construct ad-DNF formulaDC which representsC[fd] by taking the disjunction of the
d-DNF formulas representingai. Finally, setDt = {DC | C ∈ Ct}. In this way, every clause inCt turns
into ad-DNF formula inDt. Notice that the variable space ofDt is less thand · 2d times the variable space
of Ct because every literal appearing inCt turns under substitution into ad-DNF with less than2d terms.
To complete the proof of part 1 of Theorem 3.3 it suffices to show for 0 ≤ t < τ thatDt+1 can be derived
from Dt via aR(d)-derivation of length≤ d4cd

· 4cd and extra variable space(cd + 2)3 · 4cd + O(1). We
divide into cases according to the type of thetth step.

Erasure If Ct+1 = Ct \ {C} then by construction we haveDt+1 ⊂ Dt, soDt+1 can be derived inR(d)
from Dt by erasures.

Axiom download Let A ∈ F be the axiom downloaded at timet + 1, i.e.,Ct+1 = Ct ∪ {A}. Let A′ be
an arbitraryd-DNF representation ofA[fd], recalling thatA[fd] is a set of axioms ofF [fd]. This set
involves at mostc·d many variables andA[fd] � A′. Furthermore,A′ is a DNF formula over2cd many
literals so it has at most4c·d many terms and has variable space at mostcd4c·d. Applying Lemma 7.2
we concludeA′ can be derived fromA[fd] in lengthd4cd

· 2cd+1 and variable space(cd + 2)3 · 4cd.

Inference SupposeCt+1 = Ct ∪ {C ∨ C ′} whereC ∨ C ′ is derived fromC ∨ x,C ′ ∨ ¬x ∈ Ct. Notice
that (C ∨ x)[fd] = (C[fd]) ∨ x[fd] and(C ′ ∨ ¬x)[fd] = C ′[fd] ∨ ¬x[fd]. Since we can bound the
number of terms in ad-DNF formula representingx[fd] by 2d, by Lemma 7.1 we can derive the
empty DNF formula0 from d-DNF formulas representingx[fd] and¬x[fd] via a derivation of length
at most22d and variable space at most22d+1. Applying weakening steps, when necessary, to the
formulas involved in this refutation, we conclude that thed-DNF formula representing(C ∨ C ′)[fd]
can be derived from thed-DNF formulas representing(C ∨ x)[fd] and(C ′ ∨ ¬x)[fd] via a derivation
of length at most22d and22d+1 extra variable space.

Weakening SupposeCt+1 =Ct∪{C∨C ′} for C ∈ Ct. Then thed-DNF formula representing(C ∨ C ′)[fd]
can be derived in a single step from thed-DNF formula representingC[fd] using weakening.

We have shown how to complete the conversion ofπf into aR(d)-refutation ofF [fd] that is longer by at

most a factor ofd4cd
·2cd and uses at most(cd+2)3 ·4cd+O(1) extra variable space. Taking into account the

upper bound ofS · d · 2d on the variable space ofDt, this completes the proof of part 1 of Theorem 3.3.
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It remains to prove Lemmas 7.1 and 7.2. We attend to them in order.

Proof of Lemma 7.1.First we claim that for every termT ∈ D1 and for every termT ′ ∈ D2 we have

T ′ ∩ {¬a|a ∈ T} 6= ∅. (30)

To see this, assume by way of contradiction that (30) fails tohold for T ∈ D1 andT ′ ∈ D2. Consider the
minimal restrictionρ that satisfiesT . We see thatρ satisfiesD1 and can be extended to an assignment that
satisfiesT ′ as well, contradicting the assumptionD1 ∧ D2 � 0.

The refutation of{D1,D2} proceeds by sequentially removing fromD1 all its terms. LetT be a term
of D1 that we wish to remove. By (30) each termT ′ ∈ D2 contains a literal¬a such thata ∈ T . Apply ∧-
elimination to replaceT ′ by ¬a. Repeating this process for each termT ′ ∈ D2 we derive fromD2 in extra
variable space at mostVarSp(D2) the clause

∨

a∈T ¬a. Resolve this clause withD1 to removeT . This
step requires extra variable space at mostVarSp(D1) + VarSp(D2). Repeat the process for allT ∈ D1 to
obtain the empty DNF. This process required variable space at most2(VarSp(D1) + VarSp(D2)) and the
refutation length is|D1| · |D2| so the lemma follows.

Proof of Lemma 7.2.Roughly speaking, we derive fromF in resolution a set of clauses that is equivalent to
thek-DNF formulaD. From this set of clauses we deriveD using a sequence of∧-introduction inference
rule applications. The key idea is to do all of this in a space-efficient manner by deriving the clauses one
by one in a particular order and “merging” each derived clause into a DNF formula that, at the end of this
process, turns out to beD. Details follow.

Denote|D| by s. SupposeD =
∨s

i=1

∧ki

j=1 ai,j whereki ≤ k andai,j denotes a literal (belonging to a
set ofr variables). By the distributivity of disjunction over conjunction,D is equivalent to the CNF formula

GD :=
∧

j1,...,js∈[k1]×...×[ks]

s
∨

i=1

ai,ji
. (31)

Each clause ofGD is implied by F because otherwise there would be an assignment satisfyingF but
falsifying GD, thereby falsifyingD as well, in contradiction to the assumptionF � D. By the implicational
completeness of resolution (Proposition 2.5) there is a resolution derivation of each clause ofGD from F .
This derivation has length less than2r+1 and space at most(r + 2)2 because it involves at mostr variables.
We now show how to constructD from the clauses ofGD.

Fors′ ∈ [s] and~j = (js′+1, . . . , js) ∈ [ks′+1] × . . . × [ks], let

D
s′,~j

=





s′
∨

i=1

ki
∧

j=1

ai,j



 ∨
s
∨

i=s′+1

ai,ji
. (32)

We prove by induction ons′ ≥ 0 thatD
s′,~j

can be derived in variable space

(

(r + 2)(VarSp (D
s′,~j

))
)2

=

(

(r + 2)

(

s′
∑

i=1

ki + (s − s′)

))2

(33)

and length less thanks′2r+1. The base case (s′ = 0) follows from the discussion in the previous paragraph
becauseD0,~j

is a single clause that is implied byF . For the inductive step assume the claim holds fors′−1.
We show how to derive, fork′ = 1, . . . , ks′ , the formula

D′
k′ :=





s′−1
∨

i=1

ki
∧

j=1

ai,j



 ∨





k′
∧

j=1

as′,j



 ∨
s
∨

i=s′+1

ai,ji
(34)
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in length less thank′ks′−12r+1 and variable space

(

(r + 2)(VarSp (D′
k′))
)2

=

(

(r + 2)

(

s′−1
∑

i=1

ki + k′ + (s − s′)

))2

. (35)

This is shown by induction onk′ ≥ 1. For k′ = 1 notice (34) is nothing butDs′−1,(1,js′+1,...,js) so by the

inductive hypothesis with respect tos′− 1 it can be derived in length less thanks′−12r+1 and variable space

(

(r + 2)

(

s′−1
∑

i=1

ki + (s − (s′ − 1))

))2

=

(

(r + 2)

(

s′−1
∑

i=1

ki + k′ + (s − s′)

))2

(36)

For the inductive step assume we have derivedD′
k′ using at most the variable space stated in (35). Erase all

formulas in the memory but forD′
k′ and notice this remaining formula has variable space

s′−1
∑

i=1

ki + k′ + (s − s′) . (37)

Using the inductive hypothesis ons′ − 1 again, derive the DNF formula





s′−1
∨

i=1

ki
∧

j=1

ai,j



 ∨ as′,k′+1 ∨
s
∨

i=s′+1

ai,ji
(38)

in variable space as in (36) and length less thanks′−12r+1. Notice that the total variable space used is
bounded by the sum given in (36) plus the sum in (37) (this latter space is required to save the formulaD′

k′)
so the combined variable space is at most

(

(r + 2)

(

s′−1
∑

i=1

ki + (s − (s′ − 1))

))2

+

s′−1
∑

i=1

ki + k′ + (s − s′)

≤

(

(r + 2)

(

s′−1
∑

i=1

ki + (k′ + 1) + (s − s′)

))2

. (39)

Now combineD′
k′ and (38) using a single

∧

-introduction step to obtainDk′+1. We see thatDk′+1 can be
derived in variable space bounded by (36) and length less than k′ks′−12r+1. Summing overk′ = 1, . . . , k
we conclude that the derivation ofD

s′+1,~j
is of length less thank · ks′−12r+1 and variable space

(

(r + 2)

(

s′+1
∑

i=1

ki + (s − (s′ + 1))

))2

(40)

as claimed. Settings′ = s and noticingVarSp(D) =
∑s

i=1 ki completes the proof of the lemma.

8 Concluding Remarks

We conclude the paper with a brief discussion of some remaining open questions.
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A stronger space separation for k-DNF resolution We have proven a strict separation between
k-DNF resolution and(k+1)-DNF resolution by exhibiting for every fixedk a family of CNF formulas of
sizen that require spaceΩ

(

k+1
√

n/ log n
)

for anyk-DNF resolution refutation but can be refuted in constant
space in(k+1)-DNF resolution. This shows that the family ofR(k) proof systems form a strict hierarchy
with respect to space.

As has been said above, however, we have no reason to believe that the lower bound forR(k) is tight. In
fact, it seems reasonable that a tighter analysis should be able to improve the bound to at leastΩ

(

k
√

n/ log n
)

and possibly even further. The only knownupperbound on the space needed inR(k) for these formulas is
theO(n/ log n) bound that is easily obtained for standard resolution. Closing, or at least narrowing, the gap
betweenΩ

(

k+1
√

n/ log n
)

andO(n/ log n) is hence an open question.

Understanding minimally unsatisfiable k-DNF sets It seems that the problem of getting better
lower bounds on space fork-DNF resolution is related to the problem of better understanding the structure
of minimally unsatisfiable sets ofk-DNF formulas. Although the correspondence is more intuitive than
formal, it would seem that progress on this latter problem would probably translate into sharper lower
bounds forR(k) as well. The reason for this hope is that the asymptotically optimal results for standard
resolution in [BSN08, BSN09] can in some sense be seen to follow from (the proof technique used to obtain)
the tight bound for CNF formulas in Theorem 1.1.

What we are able to prove in this paper is that any minimally unsatisfiablek-DNF setD (for k a fixed
constant) must have at leastO

(

k+1
√

|D|
)

variables (Theorem 3.5) but we have no constructions of suchsets
with more thanΩ(|D|) variables (Lemma 3.6). This appears to be a natural and interesting combinatorial
problem in its own right, and it would be very nice to improve the upper and/or lower bound.

Generalizations to other proof systems Our previous paper [BSN09] presented the “substitution
space theorem” for resolution as a way of lifting lower bounds on the number of variables (i.e., support size)
to lower bounds on (clause) space. In this paper, we extend this result by lifting lower bounds on the number
of variablesin resolutionto lower bounds on formula space in themuch strongerk-DNF resolution proof
systems. It is a natural question to ask whether our techniques can beextended to other proof systems as
well.

We remark that the translation in Section 4 of refutations ofsubstitution formulas in some other proof
systemP via projection to resolution refutations of the original formula seems extremely generic and robust
in that it does not at all depend on which derivation rules areused byP nor on the class of formulas with
which P operates. The only place where the particulars of the proof system come into play is when we
actually need to analyze the content of the proof blackboard. As described in the introduction, this happens
at some critical point in time when we know that the blackboard of our translated (projected) resolution
proof mentions a lot of variables, and want to argue that thisimplies that the blackboard of theP-proof must
contain a lot of formulas (or possibly some other resource that we want to lower-bound inP). This part of
the analysis is the (essentially tight) result for resolution in [BSN09, Theorem 3.12] and the (likely not tight)
bound fork-DNF sets in Lemma 4.3 in this paper. Any corresponding result for some other proof systemP
would translate into lower bounds forP in terms of lower bounds on variable support size in resolution.
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[Kra01] Jan Kraj́ıček. On the weak pigeonhole principle. Fundamenta Mathematicae,
170(1-3):123–140, 2001.

[Kul00] Oliver Kullmann. An application of matroid theory to the SAT problem. InProceedings of
the 15th Annual IEEE Conference on Computational Complexity (CCC ’00), pages 116–124,
July 2000.
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