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Abstract. The real points of the Deligne–Knudsen–Mumford moduli spaceMn
0 of marked

points on the sphere have a natural tiling by associahedra. We extend this idea to construct
an aspherical space tiled by cyclohedra. We explore the structure of this space, coming
from blow-ups of hyperplane arrangements, as well as discuss possibilities of its role in
knot theory and mathematical physics.

1. Associahedra and Cyclohedra

1.1. We present an overview of two important polytopes.

Definition 1.1.1. Let A(n) be the poset of all dissections of a convex (n +1)-gon using
non-intersecting diagonals, ordered such that a ≺ a′ if a is obtained from a′ by adding
new diagonals.1 The associahedron Kn is a convex polytope of dim n − 2 whose face
poset is isomorphic to A(n).

The construction of the polytope Kn is given by Lee [14] and Haiman (unpublished).
Stasheff originally defined the associahedron for use in homotopy theory in connection
with associativity properties of H -spaces [18, Section 2]. There is a well-known bijection
between dissections of a convex polygon and partial bracketings of letters. Figure 1 shows
an example of this relationship.

1 Mention of diagonals will henceforth mean non-intersecting ones.



62 S. L. Devadoss

Fig. 1. Associahedron K4 using brackets and polygons.

1.2. The cyclohedron Wn originally manifested itself in the work of Bott and Taubes
and later given its name by Stasheff. A construction of the polytope Wn is given by Markl
[15, Section 1] based on the following.

Definition 1.2.1. Let B(n) be the poset of all partial bracketings of n letters arranged
on a circle, ordered such that b ≺ b′ if b is obtained from b′ by adding new pairs of
brackets. The cyclohedron Wn is a convex polytope of dim n − 1 whose face poset is
isomorphic to B(n).

It was the clever idea of Simion to come up with an alternate poset isomorphic to
B(n); in fact, she provides a construction of Wn using this poset [17, Section 2]. It is
formulated in terms of centrally symmetric 2n-gons, where a diagonal on such a polygon
will either mean a pair of centrally symmetric diagonals or a diameter of the polygon.

Proposition 1.2.2. The poset of non-intersecting diagonals on a centrally symmetric
2n-gon, ordered such that b ≺ b′ if b is obtained from b′ by adding diagonals, is
isomorphic to B(n).

Fig. 2. Cyclohedron W3 using brackets and polygons.

Figure 2 shows an example of the two descriptions of W3. One difference between
Kn and Wn is that for the codim 1 faces of the associahedron, we do not place brackets
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around all n variables. In contrast, the cyclohedron allows this since one can distinguish
the cyclic manner in which the n variables are combined.

1.3. It is worthwhile exploring some properties of Wn and its relationship with as-
sociahedra. It was noted by Stasheff that the boundary faces of Kn can be identified
with products of lower-dimensional associahedra [18, Section 2]. He makes a similar
observation for Wn .

Proposition 1.3.1 [19, Section 4]. Faces of the cyclohedron are products of lower-
dimensional cyclohedra and associahedra. In particular, all codim k faces of Wn have
the form

Wn0 × Kn1 × · · · × Knk ,

over varying values of 1 ≤ n0 < n and 1 < ni ≤ n such that
∑

ni = n + k.

Example 1.3.2. Since W5 is a four-dimensional polytope, we look at its possible
codim 1 faces. They are given by the different ways of placing a diagonal in a 10-
gon. Figure 3 illustrates the four possible types: On the far left is the product W4 × K2;
since K2 is simply a point, the result is W4 itself. The middle figures show W3 × K3 and
W2 × K4, where on one hand the line segment is K3 and on the other it is W2. The last
possible type is W1 × K5, which is simply K5.

Fig. 3. Codim 1 faces of W5.

Remark. A few observations follow:

1. For the associahedron, it is well known that the inclusions of lower-dimensional
faces form the structure maps of an operad [18]. Stasheff and Markl show the
inclusion maps above giving the cyclohedron a right module operad structure [15,
Section 2].

2. The inclusion Kn ↪→ Wn coming from the proposition above shows the asso-
ciahedron as a face of the cyclohedron. Tonks has constructed an explicit map
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Wn → Kn+1 between polytopes of the same dimension [22], in the spirit of his
map from the permutohedron Pn to Kn+1 [21].

3. It is also noteworthy to point out a similar insight discovered by Ulyanov [23]. He
shows n copies of Kn+1 gluing together to form Wn . For example, the line segment
W2 is made up of two K3 line segments with a pair of endpoints identified. Figure 4
shows the example of W3 constructed using three copies of K4, and, similarly, W4

from four copies of K5. Note that this gluing involves some non-trivial smoothing
of adjacent faces after the gluing.

W3
:

W4
:

Fig. 4. Building W3 and W4 from copies of K4 and K5.

2. Coxeter Groups and Blow-Ups

2.1. The relationship between Coxeter groups and the polytopes Kn and Wn is intro-
duced here. We begin by looking at certain hyperplane arrangements and refer the reader
to [3] for any underlying terminology.

Definition 2.1.1. For a Euclidean space V , a linear hyperplane is a codim 1 subspace
H ⊂ V passing through the origin. A finite reflection group W is a finite group of linear
transformations of V generated by reflections over a set of linear hyperplanes.

Let V n ⊂ R
n+1 be the hyperplane defined by � xi = 0. The collection of hyperplanes

{xi = xj | i = j} of V n forms the braid arrangement. The symmetric group Sn+1

is the reflection group acting on V n , where the transposition (ij) acts as orthogonal
reflections across the hyperplane xi = xj by permuting the coordinates. Let SV n and
PV n respectively be the sphere and the projective space in V n; that is, PV n is isomorphic
to RP

n−1. Note that the braid arrangement gives PV n a CW-cellular decomposition into
1
2 (n + 1)! open simplices. Figure 5(a) and (b) depicts the n = 3 case.

The Coxeter (or Weyl) group of type An is the symmetric group Sn+1; moreover, it
is the full symmetry group of the n-simplex, coming from representing the simplex as a
convex linear combination of vectors. The Coxeter diagram

• − • · · · • − •
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{12}

{23}

{13} {14}

{24}

{34}

( a ) ( b ) ( c )

Fig. 5. SV 3, PV 3, and M5
0(R).

with n nodes gives a presentation by n transpositions {si }, with the relations (si si+1)
3 =

1 for adjacent generators and (si sj )
2 = 1 otherwise. As discussed above, the braid

arrangement dissects PV n with the (n − 1)-simplex as its fundamental chamber. The
codim 1 faces of the simplex are indexed by the simple reflections, and hence by the
nodes of the Coxeter diagram of An . The other faces are indexed by subdiagrams of the
Coxeter diagram: a subdiagram gives a set of codim 1 faces, which intersect to give the
indexed face.

Proposition 2.1.2. Truncating faces of the (n − 1)-simplex which correspond to con-
nected subdiagrams of the Coxeter diagram of An in increasing order of dimension
results in Kn+1. Furthermore, the associahedron is a simple polytope.

The proof follows from the associahedron construction given in Section 5 of [7]. Lee
also obtains this using a sequence of stellar subdivisions on the polar dual to the asso-
ciahedron [14, Section 3]. Note that the simplex is a simple polytope, and a truncation
of a simple polytope remains simple. Figure 6 shows an example of the 3-simplex, with
the initial truncation of vertices and then of edges, resulting in K5.

2.2. We move from an associahedron to a space tiled by them. Let M be a manifold
and let D ⊂ M be a union of codim 1 submanifolds which dissects M into convex
polytopes (chambers). The collection of hyperplanes {xi = 0 | i = 1, . . . , n} of R

n

generates the coordinate arrangement. A crossing (of D) in M is normal if it is locally

1 2

3

4

1 2 3 4 1 2 3

2 3 4

2 3

1 2

3 4

Fig. 6. Truncation of simplex to K5.
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isomorphic to a coordinate arrangement. If every crossing is normal, then M is right-
angled.2 A construction which transforms any crossing into a normal crossing involves
the algebro-geometric concept of a blow-up.

Definition 2.2.1. For a linear subspace X of a vector space Y , we blow-up PY along
PX by removing PX , replacing it with the sphere bundle associated to the normal bundle
of PX ⊂ PY , and then projectifying the bundle.

A general collection of blow-ups is usually non-commutative in nature; in other
words, the order in which spaces are blown up is important. For a given arrangement, De
Concini and Procesi [6] establish the existence (and uniqueness) of a minimal building
set, a collection of subspaces for which blow-ups commute for a given dimension, and
for which the resulting space is right-angled. We use the definition found in Section 3
of [5].

Definition 2.2.2. A codim k minimal element mk of the minimal building set of PV n

is the subspace indexed by a connected subdiagram of An with k nodes.

The Deligne–Knudsen–Mumford moduli space Mn
0 of marked points on the sphere

is one of the central objects in mathematical physics. It is due to Kapranov that the
connection between the braid arrangement and the real points Mn

0(R) of this moduli
space is made.

Theorem 2.2.3 [11, Section 4]. The iterated blow-up of PV n−2 along the cells {mk} in
increasing order of dimension yields Mn

0(R), with a tiling by 1
2 (n − 1)! copies of Kn−1.

Example 2.2.4. Figure 5(b) and (c) shows PV 3 before and after blowing up. The
minimal elements of codim 2 turn out to be four points of triple intersection; blowing up
along these components yield hexagons with antipodal identifications. Figure 5(b) has
RP

2 tiled by 12 simplices; Fig. 5(c) is the connected sum of five real projective planes,
tiled by 12 K4 pentagons.

2.3. We move from spherical geometry coming from linear hyperplanes to Euclidean
geometry arising from affine hyperplanes. Let Ãn denote the affine root system of type
An . The Coxeter diagram of Ãn is n+1 vertices arranged on a circle and its Coxeter group
is the semi-direct product S̃n+1 = Z

n
�Sn+1, where the n +1 generators (transpositions)

satisfy (si sj )
3 = 1 when adjacent on the diagram and commute otherwise. Similar to

above, let the nodes of the Coxeter diagram of Ãn correspond to the top dimensional
faces of the n-simplex.

Proposition 2.3.1. Truncating faces of the n-simplex which correspond to connected
subdiagrams of Ãn in increasing order of dimension results in Wn+1. Furthermore, the
cyclohedron is a simple polytope.

2 The dual cellulation of M is a cubical cell complex: its cells are combinatorially equivalent to cubes.
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Fig. 7. Truncation of simplex to W4.

The proof follows from the cyclohedron construction given in Appendix B of [19].
Figure 7 shows an example from Ã3, with the truncation of vertices and edges, resulting
in W4.

Definition 2.3.2. An affine hyperplane of V is a subset of the form x + H , where x ∈ V
and H is a linear hyperplane of V . An affine reflection group W is a locally finite group
of affine isometries of V generated by reflections over a set of affine hyperplanes.

We follow the construction given in Section 6 of [3]. Let V n ⊂ R
n be the hyperplane

defined by � xi = 0. The affine braid arrangement is the set {xi = xj + k | i =
j, k ∈ Z} of affine hyperplanes in V n , having S̃n as its affine reflection group. This
arrangement gives V n a CW-cellular decomposition into an infinite collection of open
(n − 1)-simplices. The left side of Fig. 8 gives the example when n = 3 generated by
the reflections {(12), (23), (13)}.

Previously, we looked to the projective sphere PV n to give a compact space. In the
affine case, the natural candidate is the quotient LV n = V n/Z

n−1, which is homeo-
morphic to the (n − 1)-torus. Note that each chamber of V n corresponds to an infinite,
cyclically repeating chain of inequalities

· · · < xin +kn−1 < xi1+k1 < xi2+k2 < · · · < xin +kn < xi1+k1+1 < xi2+k2+1 < · · · ,
where ki ∈ Z. Quotienting by Z

n−1 amounts to only remembering the cyclic ordering
i1i2 · · · in . Therefore, there are (n − 1)! chambers in LV n , each with a particular (cyclic)

{13}

{12} {23}

Fig. 8. Tiling of R
2 and LV 3.



68 S. L. Devadoss

ordering. The right side of Fig. 8 shows the resulting LV 3 tiled by two simplices. The
affine braid arrangement also has the notion of a minimal building set. Recall that each
face of an (n − 1)-simplex tiling LV n is indexed by a subdiagram of Ãn−1.

Definition 2.3.3. A codim k minimal element mk of the minimal building set of LV n

is the subspace indexed by a connected subdiagram of Ãn−1 with k nodes.

Remark. There is an alternate, combinatorial formulation for mk . A connected, length
k subdiagram of Ãn−1 is the Coxeter diagram Ak having Sk+1 as its Coxeter group. It

follows that exactly
(

k + 1
2

)
hyperplanes intersect at mk , with the transpositions of Sk+1

generating reflections across these hyperplanes.

Definition 2.3.4. Let Zn be the iterated blow-up of LV n along the cells {mk} in in-
creasing order of dimension.

Corollary 2.3.5. Zn is a manifold of dimension n − 1 and is without boundary. Fur-
thermore, Zn is tiled by (n − 1)! copies of Wn and is right-angled.

Proof. These properties are immediate from the construction of Zn above and Propo-
sition 2.3.1. An alternate proof of Zn being right-angled is given below.

Example 2.3.6. The left side of Fig. 9 shows the result after blowing up the minimal
vertex of LV 3. We see a tiling by two W3 hexagons, illustrated in detail on the right of
the figure. The resulting Z3 manifold is homeomorphic to RP

2#RP
2#RP

2.

Fig. 9. Hexagons tiling Z3.

3. Tilings and Compactifications

3.1. It was the combinatorial construction ofMn
0(R) in Section 3 of [7] which prompted

Simion to wonder about a space of cyclohedra. Although we use her definition of the
cyclohedron, our results are independent of her work.
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Fig. 10. Twist along a diagonal.

Definition 3.1.1. The twist of a 2n-gon G along a (pair of centrally symmetric) diag-
onal d , denoted by ∇d(G), is the polygon obtained by separating G along d, twisting
(reflecting) both pieces symmetrically, and gluing them back (Fig. 10).

Label the edges of a 2n-gon with {1, 2, . . . , n} such that antipodal edges have the
same label. Identify two such labeled polygons by a rotation action, yielding (n − 1)!
distinct polygons.

Theorem 3.1.2. Two centrally symmetric labeled 2n-gons G1, G2 with k sets of di-
agonals (representing codim k faces of cyclohedra) are identified in Zn if there exist
diagonals d1, . . . , dr of G1 such that

(∇d1 · · · ∇dr )(G1) = G2.

Proof. Recall that there are (n − 1)! chambers in LV n , each with a particular cyclic
ordering i1i2 · · · in . We encapsulate this information by assigning to each chamber a
centrally symmetric 2n-gon, with sides labeled by the ordering i1i2 · · · in . The iterated
blow-up of LV n gives a tiling by cyclohedra, where the faces of Wn correspond to labeled
2n-gons with diagonals. It remains to be checked that the gluing of these cyclohedra from
minimal blow-ups is the same as using the twist operation. Without loss of generality,
look at the fundamental chamber of LV n defined by the ordering 12 · · · n. Each node of
the Coxeter diagram of Ãn−1 indexes a codim 1 face of this simplex, which belongs to
a hyperplane of the form xj = xj+1. Let mk be a minimal cell in the boundary of this
chamber. Since the subdiagram associated to mk is connected, this cell occurs at such
intersections xi = xi+1 = · · · = xi+k of hyperplanes.3 Indeed, blowing up the cell seeks
exactly to resolve the order in which collisions occur at such intersections. Crossing
from the fundamental chamber through mk into its antipodal one in the arrangement
corresponds to reflecting the element i(i +1) · · · (i + k) in the (cyclic) ordering 12 · · · n.
Blowing up the minimal cell mk identifies cyclohedral faces across the antipodal cham-
bers. Indeed, our notation of labeled polygons with twisting along diagonals mimics
gluing antipodal faces after blow-ups.

Example 3.1.3. Figure 11 demonstrates the construction of Z2 from one copy of W2

to form S1. The right side of Fig. 9 shows the gluing of two W3 hexagons resulting in Z3.

3 Therefore, each mk corresponds to choosing k + 1 elements from a set {x1, . . . , xn} of order n.
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Fig. 11. W2 and Z2.

Corollary 3.1.4. Zn is right-angled.

Proof. Fix a codim k face of some cyclohedron inZn , represented by a labeled centrally
symmetric 2n-gon with k diagonals. Each twist along a diagonal moves to another
cyclohedron adjacent to this face. There are 2k such possible combinations of twists,
giving a normal crossing at each face.

Remark. Faces of the associahedron are decomposed into the categories of dimension,
type, and class, where they are used to understand the structure of Mn

0(R) better (see
Section 2 of [8] for definitions and details). For example, the enumeration of faces
with respect to dimension leads to the Euler characteristic of Mn

0(R). Using methods
and results from [8], the initiated reader could easily carry out similar combinatorial
calculations for the cyclohedron to describe properties of Zn further.

3.2. Our motivation in further analyzing Zn comes from some observations in Fig. 9.
The minimal vertex after blow-up becomes a hexagon with antipodal identification. This
is essentially a triangle, which can be seen as M4

0(R). Note also that the three lines
on LV 3 become line segments with endpoint identifications in Z3, which is seen from
Fig. 11 as three copies of Z2. In general, we observe the following:

Theorem 3.2.1. There are
(

n
k + 1

)
copies of Mk+2

0 (R) × Zn−k in Zn .

Proof. We show that the blow-up of a minimal element mk of LV n results inMk+2
0 (R)×

Zn−k . As discussed above, each mk corresponds to choosing k + 1 elements from
a set {1, . . . , n}. Choose an arbitrary minimal cell and assign it such a choice, say
{p1, . . . , pk+1}. We view this as a centrally symmetric 2n-gon having a diagonal parti-
tioning it into a pair of symmetrically labeled sides {p1, . . . , pk+1}, with the sides of the
central polygon using the remaining labels. Note the correspondence of this dissected
2n-gon to the product Kk+1 × Wn−k .

As this minimal cell is blown-up, a system records the different ways points approach
it; this corresponds to keeping track of the order of labels placed on the polygon. Since
twisting is allowed along diagonals, there are 1

2 (k + 1)! ways to arrange labels on the
non-central polygons, each corresponding to a Kk+1. Indeed, this is exactly how one
gets Mk+2

0 (R), with the associahedra glued as defined above. Therefore, a fixed labeling
of the central polygon gives Mk+2

0 (R) × Wn−k , while allowing all possible labelings
yields the result.
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Fig. 12. Blow-ups leading to six W4 polytopes tiling Z4.

Example 3.2.2. We move to the n = 4 case to illustrate the theorem further. The
leftmost drawing of Fig. 12 shows the torus LV 4 as the fundamental cube tiling R

3 with
hyperplane cuts. Blowing up the minimal vertex (codim 3) and then the lines (codim 2)
yield the middle and right-hand pictures. The space Z4 is shown to be tiled by six
copies of W4. Notice the vertices of the cube (identified to form a single vertex of the 3-
torus) become M5

0(R) after blow-ups, tiled by 12 pentagons. The minimal lines become
triangular tori, that is, M4

0(R) × Z2. A face of the cube can be seen as a 2-torus with
blow-ups, resulting in Z3 tiled by two W3 hexagons.

3.3. The original definition of Wn describes it in terms of a compactified configuration
space of points on the circle [2, Section 3]. We extend this to Zn . A configuration space
of n labeled points on an m-manifold X is defined as

F(X, n) = Xn − 	, where 	 = {(x1, . . . , xn) ∈ Xn | ∃i, j, xi = xj }.
Compactifying F(X, n) enables the points to collide and a system is introduced to record
the directions points arrive at the collision. In the work of Fulton and MacPherson [9], this
method is brought to rigor in the algebro-geometric context.4 As points collide, they land
on a screen, viewed as RP

m , which is identified with the point of collision.5 Now these
points on the screen are themselves allowed to move and collide, landing on higher level
screens. However, they are free up to an action of PGlm+1(R), the affine automorphism
on each screen. Kontsevich describes the process in terms of a magnifying glass: on
any given level, only a configuration of points is noticeable; but one can zoom-in on a
particular point and peer into its screen, seeing the space of collided points. As mentioned
above, for an arrangement of hyperplanes, De Concini and Procesi develop a method to
compactify their complements by iterated blow-ups using a minimal building set. In the
case of the arrangement Xn − F(X, n), their procedure yields the Fulton–MacPherson
compactification of F(X, n) [6].

Theorem 3.3.1. Zn is a real Fulton–MacPherson compactification of F(S1, n) quo-
tiented by the action of S1.

Proof. The affine braid arrangement {xi = xj + k | i = j, k ∈ Z} decomposes
V n ⊂ R

n into (n − 1)-simplices. Let Hi denote the hyperplane x1 = xi and let Vi be

4 Fulton–MacPherson is over the complexes, but for our purposes the reals are more relevant.
5 These projective spheres have been dubbed bubbles, and the compactification process as bubbling.
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the one-dimensional subspace of V n defined by H2 ∩ · · · ∩ Ĥi ∩ · · · ∩ Hn , where the
symbol Ĥi means the hyperplane Hi is to be deleted from the intersection. If vi is a unit
vector in Vi emanating from the origin, then {vi | i = 2, . . . , n} forms a set of Z-basis
vectors for a lattice. Without loss of generality, obtain the (n − 1)-torus LV n from V n

by modding out by this lattice.
On the other hand, since S1 acts freely on F(S1, n), its quotient simply fixes one of

the n points, say x1 = 1 ∈ S1, resulting in (S1)n−1 − 	′, where

	′ = {(x2, . . . , xn) ∈ (S1)n−1 | ∃i, j, xi = xj or xi = 1}.
It follows that the hyperplane markings on LV n coincide with the arrangement 	′ on
the (n − 1)-torus. Therefore, from the discussion above, the Fulton–MacPherson com-
pactification of F(S1, n)/S1 coincides with the blow-ups of the minimal building set
of LV n .

Remark. To see this for n = 3, note that F(S1, 3)/S1, viewed as the front face of the
cube in Fig. 12, is identical to LV 3, the shaded region of Fig. 8.

The appearance of cyclohedra in the Fulton–MacPherson compactification above can
intuitively be seen as follows: The compactification distinguishes the base space S1 from
the bubbles RP

1 coming from collisions. We keep track of this information by shading
in the circle corresponding to the base space, shown in Fig. 13(a). There is a bijection
between these bubble-trees and partial bracketings of n points on S1, which can be
expressed in terms of 2n-gons with centrally symmetric diagonals (Fig. 13(b) and (c)),
demonstrating the appearance of Wn . Note how the collision of points is represented as
drawing a diagonal and its symmetric counterpart. There is a Z2 reflection in PGl2(R)

acting on each RP
1 bubble (coming from the affine automorphisms on each screen)

which corresponds to twisting along diagonals of the 2n-gons.

( a ) ( b ) ( c )

Fig. 13. Bubbles and centrally symmetric polygons.

4. Some Observations

4.1. We have shown the cyclohedron to be the Ãn affine analogue of the associahedron.
However, Simion thought of it as a type Bn associahedron. The reasoning behind this is
explained by looking at the combinatorial question that motivated her. We thank Reiner
for helpful insights into his work [16].
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Definition 4.1.1. A k-partition separates {1, . . . , n} into disjoint sets B1, . . . , Bk . A
partition is non-crossing if for elements x1, x2 ∈ Bi and y1, y2 ∈ Bj such that x1 <

y1 < x2 < y2, then i = j . Let NC(n, k) be the number of non-crossing k-partitions of
{1, . . . , n}.

The f -vector { fi } of a polytope P is a combinatorial invariant, where fk(P) equals the
number of k-dimensional faces. Another method of encapsulating this information is by
the h-vector {hi } (see [24] for details). Denoting K ∗

n as the combinatorial dual of the
associahedron, the following remarkable equivalence exists:

NC(n, n − k) = hk(K ∗
n+1).

The poset of partitions of {1, . . . , n} is isomorphic to the lattice of intersection sub-
spaces for the type An braid arrangement. For example, a partition {1, 2, 4}{3, 5} cor-
responds to the intersection subspace of x1 = x2 = x4 and x3 = x5. Similarly, by
replacing the set with {1, . . . , n, 1̄, . . . , n̄}, we can consider the hyperoctahedral hyper-
plane arrangement for type Bn . The barring is an involution denoting the sign change
coming from the hyperplanes xi = ±xj .

Definition 4.1.2. A kB-partition separates {1, . . . , n, 1̄, . . . , n̄} into disjoint sets B0,

B1, . . . , Bk, B̄1, . . . , B̄k, where B̄i = {x̄ | x ∈ Bi } and Bi = B̄i only when i = 0.

Let NCB(n, k) be the number of non-crossing kB-partitions of {1, . . . , n, 1̄, . . . , n̄}.
Simion was able to show that the cyclohedron satisfies the equality

NCB(n, n − k) = hk(W ∗
n+1).

Remark. Combinatorially, Simion [17, Section 4] was able to construct a space tiled
by eight copies of W3 hexagons using the twist operation defined in [7]. We now see that
she had arrived at the fourfold cover of Z3 (in Fig. 8, choose a region four times that of
the shaded one). By labeling the antipodal sides of the polygons with i and ī , a 2n-fold
cover of the moduli space Zn is created.

Remark. Burgiel and Reiner discuss two more type Bn analogues of the associahedron,
both being different from the cyclohedron [4].

4.2. The cyclohedron made its debut in knot theory implicitly through the work of
Kontsevich [13] and explicitly by Bott and Taubes [2]. The embedding S1 → R

3 defining
a knot induces a map onto their compactified n point configuration spaces, thereby
introducing Wn . Roughly, one then “carefully” integrates certain pullbacks of volume
forms on S2 using the inclusion S1 → R

3 → S2; for a good topological understanding,
see the work of Thurston [20].

The cyclohedron also appears in the work of Bar-Natan in a different setting [1,
Section 4]. He gives a combinatorial approach of sketching some relations that arise in
computing certain Kontsevich-KZ invariants coming from braids and chord diagrams
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(note that chord diagrams come from 2n marked points on S1 with pairwise identifica-
tion). He introduces a multitude of relations and their corresponding polytopal structures,
including Wn and Kapranov’s permutoassociahedron KPn .

4.3. If a manifold is right-angled, its dual cellulation is a cubical cell complex. Gromov
beautifully relates a combinatorial condition of such spaces with non-positive curva-
ture [10]. A simplical complex M is a flag complex if any finite collection of pairwise
connected vertices spans a simplex in M .

Lemma 4.3.1 [Gromov]. The natural piecewise Euclidean metric on a cubical complex
is non-positively curved if and only if the link of every vertex is a flag complex.

Gromov has also shown that the universal cover of a non-positively curved space is
contractible. In other words, the homotopy properties of these spaces are completely
encapsulated in their fundamental groups. Davis et al. apply Gromov’s ideas to minimal
blow-ups of certain hyperplane arrangements, proving the following:

Theorem 4.3.2 [5, Section 5]. The moduli spaces Mn
0(R) and Zn are aspherical.

Recall that the Artin group of An is the classic braid group on n + 1 strings between
points on an interval (Fig. 14(a)) or on a circle (Fig. 14(b)); simply cut the circles open
and lay the strings flat to obtain an isomorphism. The affine analog of classical braids
is the Artin group of Ãn; this can be presented as braids with n + 1 strands restricted to
a cylindrical shell. The latter diagrams in Fig. 14 show two distinct elements of the Ã2

braid group. There is a close similarity between the fundamental group of Mn
0(R) and

the braid group, described from a combinatorial viewpoint in Section 6 of [7]. It should
be possible to extend this to the affine case.

(a) (b) (c) (d)

Fig. 14. Four braids, two coming from A4 and two from Ã2.

4.4. It seems quite natural to generalize what we have done. The motivation for the real
moduli space of pointsMn

0(R) comes from its complex counterpartMn
0. The importance

of Mn
0 can be seen, for example, as being a fundamental building block in the theory of

Gromov–Witten invariants, among numerous other appearances in literature. A reason-
able candidate for the complex analogue for Zn could be the Fulton–MacPherson com-
pactification of F(S2, n)/SO(3). Again, we would like to know the role this space would
play in mathematical physics and algebraic geometry. Similarly, we can generalize this
construction to other Coxeter groups. Much has been done in terms of the minimal blow-



A Space of Cyclohedra 75

ups in [5]. However, there have been a wealth of new compactifications that have been
studied recently and we discuss the interplay between these ideas in a forthcoming work.
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