Control Strategy for a Dual-Arm Maneuverable Space Robot

P.K.C. Wang
University of California, Los Angeles Los Angeles, CA 90024

A-yntict: A simple strategy for the attitude control and arm coordination of a maneuverable space robot with dual arms is proposed. The basic task for the robot consists of the placement of marked rigid solid objects with specified pairs of gripping points and a specifled direction of approach for gripping. The strategy consists of three phases each of which involves only elementary rotational and translational collision-free maneuvers of the robot body. Control laws for these elementary maneuvers are derived by using a bodyreferenced dynamic model of the dual-arm robot.

1. INTRODUCTION

in the design of orbital maneuvering vehicles (α (iv) with multiple robot arms for spacecraft servicing, space station assembly and maintenance, and satellice retrieval, it is required to develop onboard feedback control systems for vehicle attitude and arm coordination [1]-[3]. In contradistinction with earth-based fixed robots, the control systems for omb robots must take into consideration the interaction between the vehicle attitude and robot arm motions.

In this paper, we propose a simple strategy for attitude control and arm coordination of ar oMS with dual robot arms whose basic task involves the placement of marked/rigid solid objects. We begin with a description of the robot and its basic task to be performed. This is followed by a discussion of the basic requirements and constraints associated with the control problem. Then, the proposed control strategy for performing the basic task is presented. The paper concludes with a brief description of the work in progress.

2. ROBOT AND TASK OESCRIPTIONS

Figure 1 shows the basic configuration of the om v dual-arm robot under consideration. for simplicity, the main frame of the OMV is represented by a maneuverable rigid body which provides a base for the robot arms. We assume that the arms have only rotary joints and their motions with respect to the base are planar.

The basic task for the OMV robot consists of placement of marked rigid objects. By a "marked object", we mean an object having a pair of specified gripping points form which the object can be grasped by the end-effectors of the dual-arm robot. Moreover, the object has a single jpecified direction of approach for dual -arm ripping. The gripping points are marked so that they can be viewed by a vision system. Here, we do not consider the problem of determining the optimal gripping points and direction of approach for an arbitrary shaped (problem for a slender rigid rod with a uniform rectangular cross-section and length l. Evidently, for such a rod, it is desirable, in most situations, to choose the gripping points pinfish are symmetrically located about the center of mass along the rod. Constraints on the admissible locations of p may be imposed by considering he end -effector size and the mode of gripping. Figure 2 shows two different modes for gripping the rod by a lunar dual-arm the first mode, a single direction of approach for both end -effectors is specified. In the second mode, the end-effectors may approach the rod from opposite directions. The choice of the gripping mode should depend on the placement objective and gripping stability (ie. small offset in the relative orientand the object during the approach does not result in the loss of ability 0 grasp the object).

3. basic requirement and constraints

Before discussing the problem of deriving suitable control strategies for the MV robe to perform the basic task, we first consider the basic requirements and physical constraints associated with the problem.

Let $\ddot{Z}_{o}(t), F_{j}(t), \tilde{i}_{f}(t)$ and $\because(t)$ denote respectively the compact connected spatial domains in the Euclidean space $O \mathbb{R}^{3}$ occupied $b j$ the marked object, isth joint, goth link and the omb base at time t. Their boundaries are denoted by $\partial \bar{L}(t)$. $s=0, j i, j j, B$. The spatial domain of the entire robot at time t is denoted by ${ }^{\prime}(t)=(t)$
 which are time-invariant with respect to any fixed body-frame of $\Sigma_{0}(t)$. We assume that the line segment $i_{0}(t)=$
 specified direction of approach for gripping by the end-effectors of both robot arms.

Since the $O M V$ is to be an autonomous or jelf-contained system, it is notus, to introduce a body coordinate system C which serves as the basic reference frame for the arm motions and the vision system. for convenience, the origin of C_{g} is fixed at the root of one of the arms. [et $e_{x}(t)$, $e_{y}(t)$, es (t) dante the time-dependent

Let $\mathbb{R}_{4}^{1}(t)$ and $\mathbb{R}_{R}^{2}(t)$ denote the base points O and O^{\prime} of links 1 and $l^{\prime \prime}$ at time t respectively. The line segment $\left.\left.L_{R}(t)=\operatorname{col} \mathcal{R}_{R}^{R}(t), R_{R}^{2}(t)\right\}\right)$ and normal $\eta_{R}(t)=e_{1}(t)$ define a plane $\eta_{R}(t)$, where $\eta_{R}(t)$ specifies the heading of the $R_{\text {OMV }}$ sobot at time $t_{\text {. }}$. The position of the end-effector of arm i^{R} (may be taken as the tip of the second link of anm i) is denoted by $\underline{f}_{E}^{1}(t)$, and the deviations $\mathbb{R}_{E}^{i}(t)-p_{g}^{i}(t)$ and $n_{R}(t)-\eta_{0}(t)$ by $\Delta p^{i}(t)$ and $\Delta \eta^{\prime}(t)$ respectively.

Now, the basic requirements and constraints associated with the control of amv robot can be stated as follows:
(a) Befcre the end-effectors are in contact with the specified gripping points of the object, any orv maneuvers and arm movements must be collision-free. This implies that
(i) $3 \Sigma_{R}(t) \cap \partial r_{0}(t)=\varnothing$ (no robot-object collisions):
(ii) $\left[\bigcup_{i=1,2}\left(\partial \Sigma_{J i}(t) \cup \partial \Sigma_{L i}(t)\right)\right] \cap\left[\bigcup_{j=1^{\prime}, 2^{\prime}}\left(\partial \Sigma_{J j}(t) \cup \partial \Sigma_{L j}(t)\right)\right]=\varnothing$ (no arm-arm collisions);
(iii) $\partial \Sigma_{L i}(t) \cap \partial \Sigma_{B}(t)=\varnothing$ and $\partial \Sigma_{J i}(t) \cap \partial \Sigma_{B}(t)=\varnothing, j=2,2^{\prime} \quad$ (no second link(joint)-base collisions)
at any time $t \in\left[0, E_{1} l\right.$, where t_{1} corresponds to the first time when $\Delta p^{i}\left(t_{1}\right)=\underline{0}, i=1,2$ and $\Delta \eta_{1}\left(t_{1}\right)=\underline{0}\left(o r\left\|\Delta \eta_{1}\left(t_{1}\right)\right\|\right.$ $+\sum_{i}| | \mathbb{Q}^{i}\left(t_{1}\right) \| \leq i$, a given positive number). The foregoing conditions may be relaxed by allowing point contacts $\sum_{\text {with }}{ }^{i}$ zero velocity. In the case where a specified clearance between any two components of the robut must be with zero velocity. enclose each member by a boundary layer with prescribed thickness, and impose conditions (i)(iii) to the outside boundary of the layers.
(b) Each end-effector should tend to its designated gripping point in a smooth non-oscillatory manner during its final approach. This can be rulfilled by requiring $\left\|\Delta \mathrm{p}^{i}(\cdot)\right\|$ and $\left\|\Delta r_{1}(\cdot)\right\|$ to be smooth strictly monotone decreasing functions of t over some. .hinterval $\left[t^{\prime}, t_{1}\right] \subset\left[0, t_{1}\right]$, and $\left\|\Delta \mathbb{R}^{2}(t),\right\| \leq \varepsilon_{i}, i=1,2$ and $\left\|\Delta n\left(t_{1}\right)\right\| \leq \varepsilon_{i}$, where ε_{0} ε_{1} and ε_{2} are specified nonnegative nu bers. To ensure acceptable relative velocities between the end-effectors and the gripping points of the object when they are within the gripping range, additional velocity constraints: $\left\|i \dot{\underline{e}}^{\dot{2}}(t)\right\| \leqslant \widetilde{\varepsilon}_{i}, i=1,2$ and $\left.\| \Delta \underline{\underline{n}}^{\left(t t_{1}\right.}\right) \| \leqslant \widetilde{\varepsilon}_{0}$ may be introduced.
(c) To achieve complete autonomy of the $O M V$ robot, the control strategies or control laws should depend only on on-board sensor data. Moreover, they should be sufficiently simple so as to permit on-board real-time implementation.

Evidently, the incorporation of the foregoing requirements and constraints into the formulation of any control problem leads to formidable difficulties. A basic difficulty is that the characterization of the class of controls which generate the collision-free maneuvers and monotone approach is not readily obtainable. In what fulirs's, in $^{\text {p }}$ propose a simple approach which bypasses the abovementioned difficulty.

4. PROPOSED STRATEGY

The basic idea i: to decompose the robot control problem into three phases:
(P1) Aliynment phase: The objective is to maneuver the CMV so that its heading η is digned with the object's mipping direction . Moreover, the arms are prepositioned to achieve the required end-effector orientation and position so that the object can be grasped by a subsequent straight-line translational motion of the OMV. Since it is diffi-ult to achieve collision-free OMV maneuvers and arm movements when the object is close to the CMV robot, we propose to move the cmv sufficiently far away from the object before initiating any alignment maneuver and arm prepositioning.
(P2) Acquisition phase: with the arms' joint angles locked in the preset values, the oMV moves along a colli-sion-free straight-line path to rendez-vous with the object in a monotone manner. The attitude and translational motion control systems at the OMV base maintain the deviations $\|\Delta n(t)\|,\left\|\Delta \tilde{n}^{(t)}\right\|,\left\|\Delta \underline{p}^{i}(t)\right\|,\left\|\Delta \dot{p}^{i}(t)\right\|, i=1,2$ within the acceptable values at all times during the rendez-vous.
(pi) Task phase: After graspping the object by means of the end-effectors, the joint angles are again locked. then the UMV moves to the required destination and places the object there with the specified orientation. Finally, the MV backs dway from the object along a straight-line path.

The inolee of traichtine paths for transiational motions is motivated from the fact that complex mancuvers of the OMV in space should be avoided, since such maneuvers could be catastrophic in case of control system failure. The proposed locking of all joints during any base attitude alignment and translational maneuvers a\%.. \because; he possibility of undesirable arm motions induced by the inertial forces and moments.

In what follows, we shall present a control strategy for each phase. For simplicity, only the case with planar motion will be considered here.

4.1 Maneuvering Strategy for Alignment and Acquisition Phases

 given set of angles and a specified res (position of the centroid of the omv base relative to the inertial

To simplify the ensuing development, we assume that the object Σ is stationary with respect to the incrtial

 inf $\left\{\left\|x-x^{\prime}\right\|: x \in \Gamma\left(\underline{r}_{c o}\right), x^{\prime} \in \Sigma_{0}\right\} \geqslant \varepsilon_{A}>0$, where ϵ_{A} is a given nonnegative number. To avoid a complex col-lision-free maneuvering problem, we restrict the maneuvers to straight-line translations without robot-boly rotations and with locked foint angles. Now, we give a simple collision-free maneuvering strategy by representing the robot arms Σ and E by line segments and the base $\sum_{\text {g }}$ by a closed rectangle as shown in Fig. 3 . Moreover,
 instead of \sum_{0}^{0}. We also impose the following geonetric constraints:
(C1) Link-length Constraints: $\ell_{1}>\ell_{2} ; \ell_{1},>\ell_{2}$, and $\ell_{1}+\ell_{2}<w_{\text {, }}$ where w is the distance between the rotation axes of joints $\frac{1}{}$ and 1^{*}. The later condition implies that ${ }^{1}$ a collision between links 1 and i^{\prime} is impossible.
(2) Joint-angle Constraints: Let \bar{E} be a specified small positive angle and

$$
\begin{equation*}
\hat{\theta}_{1}=\cos ^{-1}\left(\ell_{2} / \ell_{1}\right), \hat{\theta}_{1}=\cos ^{-1}\left(\ell_{2}, / \ell_{1},\right), \quad \check{\theta}_{1}=2 \tan ^{-1}\left(\frac{\gamma}{s-\ell_{2}}\right), \quad \hat{\theta}_{1},=2 \tan ^{-1}\left(\frac{y^{\prime}}{s^{\prime}-\ell_{2}}\right) . \tag{1}
\end{equation*}
$$

where

$$
s=\left(\ell_{1}+\ell_{2}+h\right) / 2, s^{\prime}=\left(\ell_{2},+\ell_{2}, h\right) / 2, \gamma=\left[\left(s-\ell_{1}\right)\left(s-\ell_{2}\right)(s-h) / s\right]^{\frac{1}{2}}, \gamma^{\prime}=\left\{\left(s^{\prime}-\ell_{1},\right)\left(s^{\prime}-\ell_{2}\right)\left(s^{\prime}-h\right) /\left.s^{\prime}\right|^{\frac{1}{2}}\right.
$$

We require:

$$
\begin{equation*}
\check{\theta}_{1}-\bar{\varepsilon} \leqslant \theta_{1} \leqslant \pi+\hat{\theta}_{1}+\bar{\varepsilon}_{1} \quad-\check{\theta}_{1}+\bar{\varepsilon} \leqslant \theta_{1} ; \pi-\hat{\theta}_{1},-\bar{\varepsilon}_{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\theta_{i}\right| \leqslant \pi-\vec{\varepsilon}_{,} \quad i=2.2^{\prime} \tag{4}
\end{equation*}
$$

Condition (3) along with constraint (Cl) imply that a collision between arm 1 or arm 2 with the base is impossible. Condition (4) avoids the possibility of link 2 (link $2^{\prime \prime}$) folding back onto link 1 (link $1^{\prime \prime}$).

Let 9° and $\frac{r}{c}^{\circ}$ denote the initial set of angles $\left(\theta_{1}^{\circ}, \theta_{2}^{\circ}, \theta_{1}^{\circ}, \theta_{2}^{\circ}, \theta_{0}^{\circ}\right.$ and the position of the base-centroid respectively. Evidently, $\operatorname{co}\left(\mathcal{L}_{\mathrm{B}}\left(\Theta^{\circ}, r_{0}^{\circ}\right)\right)$ is a closed convex polygon. o The straight-line collision-free maneuver-
 such that $\Sigma_{R}\left(Q^{\circ}, E_{C O}^{\circ}+a n\right) \cap \Sigma_{0}=\emptyset$ for all real numbers $\alpha \geqslant 0$.

A solution to this problem is given by the following maneuvering strategy:
Case 1: If \sum_{g} and $\operatorname{co}\left(\sum_{2}\left(0^{0}, r_{0}^{0}\right)\right)$ have no common interior points, then we move the robot along atraight-line path in the direction 1 until

$$
\begin{equation*}
\inf \left\{\left\|\underline{x}-\underline{x}^{\prime}\right\|: \underline{x} \in \Gamma\left(\underline{r}_{0}^{*}\right), \underline{x}^{\prime} \in \sum_{0}\right\}=\varepsilon_{A^{\prime}} \tag{5}
\end{equation*}
$$

 and r^{-}is the new position of the base-centroid Goee Fiq. 4a).
 "exit edge" E of the polygon $\operatorname{co}\left(\Sigma_{R}(0)^{0}, \underline{C}_{0}^{0}\right)$) (i.e E is an edge which does not correspond to any link or edge of the base) such that $E \cap \Sigma \neq \emptyset$. $R \sim C O$ Let $L(E)$ denote the line containing E, and Projection operator from \mathbb{R}^{2} onto $L(E)$ in the direction V. The maneuvering strategy for this case is to move the robot along a straight-line path in the direction $-\underline{\tilde{v}}$ until condition (s) is satisfied, where \tilde{v} is any direction such that

$$
\begin{equation*}
P_{\underline{v}}\left(E_{0} \cap \operatorname{co}\left(E_{R}\left(Q^{0}, r_{c o}^{0}\right)\right) C \text { int }(E)\right. \tag{6}
\end{equation*}
$$

where int (E) denotes the interior of $E(s e e f i g .4 b)$. In general, there may exist a cone of directions \tilde{y} which satisf7 (6).
 the exit edge associated with the closed domain $D \subset \operatorname{co}\left(\Sigma_{R}\left(9^{\circ}, r^{\circ}\right)\right)$ containing "o, whose boundary iD is composed of E and one or more links and base-edges) (see Fiq. 4 c). Rsuppose there exists a direction $\underset{\sim}{v}$ such that

$$
\begin{equation*}
P_{\underset{\sim}{x}}\left(\because_{0}: E \operatorname{int}(E)\right. \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{co}\left(\bar{i}_{0} \cup P_{\mu}\left(\Sigma_{0}\right)\right) \cap \pi_{R}\left(\underline{\theta}^{\circ} \cdot \underline{r}_{\mathrm{Co}}^{0}\right)=\varnothing \tag{8}
\end{equation*}
$$

are satisfied. Then we move the robct along a straight-line path in the direction $-\tilde{v}$ until condition (5) is satisfied. Here, condition (8) implies that \ddot{F}_{0} can be projected into $L(E)$ in the direction \tilde{J} without any obstructions from any part of the robot.

Case 4: Suppose that $\Sigma_{0} \subset \subset\left(F_{p}\left(9^{\circ}, r_{0}^{\circ}\right)\right)$ and there does not exist a direction \tilde{U} such that (7) and (8) are satisfied simultaneously (see Fig. 4di ${ }^{2}$ Then it is impossible to achieve a collision-free straight-line maneuver for the given set of angles ${ }^{\circ}=\left(\theta^{0}, \theta^{0}, \theta_{1}^{0}, \theta_{2}^{\circ}, \theta^{\circ}\right)$. In this case, it is necessary to change 9 until both conditions (7) and (B) are satisfied for some direction $\underset{\sim}{2}$. We propose to accomplish this by altering the joint ancles only without introducing a base rotation. The joint angles should be adjusted such that the sequence of
domains ($D_{j}, i j=1,2 \ldots$) (defined in Case 3) generated by a sequence of joint-angle settings satisfy $D_{i} \subset D_{i+1}$. $i=1,2, \ldots$,

Having moved the robot sufficiently far away fram the object, the next step is to perform a rotational maneuver to align the ar heading η_{p} with the object's gripping direction η_{0} while holding all the joint angles at their initial value (see Fig. 5a) This is followed by translational maneuver along a line parallel to the line containing the gripping points p^{\prime} and p^{2} until a reference point on the robot base is aligned with a corresponding point on the object (see Figs 5 b and ${ }^{9} 5 \mathrm{c}$). Finally, the joint angles are adjusted so that the object can be grasped by the end-effectors after a straight-ilne translational motion of the onv while holding the attitude of the amv base stationary (see Fig. 5d). This completes the alignment phase.

In the acquisition phase, the control system guides the owv along a collision-free striaght-line path toward the object while keeping all the joint angles at their preset values. The translation control law should have the property that $\left\|\Delta p^{2}(t)\right\|_{0} i=1,2$ decrease toward zero monotonically with t as $t \rightarrow t$. Since the elementary maneuvers in both the alignment and acquisition phases require controlling at most two variables at a time, the control problem is greatly simplified. This aspect will be discussed in the following section.

4.2 Control Laws for Elementary Maneuvers

To derive suitable control laws for the elementary maneuvers, it is necessary to nbtain first the equations of otion for the OMV robot. Here, we use the Newton-Euler formulation to obtain the equations of motion for each link. The ouv base is regarded as a rigid link betwpen the two arms. This approach is adopted here instead of the usual Laqrangian approach because it reveals the interacting forces and moments between the arms and the arv base.

Let the links of arm 1 (resp. arm 2) be labelled by 1 and 2 (resp. 1' and 2'). The cmv base is labelled as link 0 (see Fig. 3). Adopting the notations of Asada and slotine [3], the equations of motion for each link are given by

Link 1:

Link 2:

$$
\underline{f}_{1,2}-m_{2} \dot{\underline{\dot{v}}} \mathrm{c} 2=\underline{o},
$$

Link 1':

$$
\underline{f}_{0,1}-\underline{\varepsilon}_{1}, 2_{2}-m_{1}, \dot{\underline{x}}_{-1},=\underline{0},
$$

Link 2':

$$
\underline{E}_{1},,_{2}, m_{2}, \dot{x}_{2},=\underline{0}
$$

$$
\begin{equation*}
N_{1,2},-\underline{r}_{1}, c_{2}, \times \underline{\varepsilon}_{1},, 2,-I_{2}, \dot{山}_{2},-\underline{w}_{2}, \times\left(I_{2}, \underline{w}_{2},\right)=0 \tag{:2b}
\end{equation*}
$$

where y is the felocity of the centroid of link i referenced with respect to the inertial frame \{x ${ }^{\circ} y^{\circ}$, z°; m is the mass of link i, f and $-f$ are the coupling forces applied to link i by link i-l and itl resperively,

 $\frac{N}{a}$ control force acting at the centroid of ink 0 .

For the case of planar oMV robot, all the joint axes are alonq the z or z° axis. Let Tid and denote fie
 nating the forces $\underline{E}_{i, j}$ in (9b)-(13b) usinq (9a)-(13a), and adding (9a)-(13a) qit:e the following equations:

$$
m_{1-c 1}^{\dot{\underline{i}}_{c 1}}+m_{2} \dot{v}_{c 2}+m_{1} \cdot \dot{v}_{c 1}^{\prime}+m_{2} \cdot \dot{v}_{c 2}+m_{o c c} \dot{v}_{c c}=f_{c}
$$

where $\psi_{i}=\omega_{i} e_{2}$. Equations (14)-(19) constitute a complete doscription of the motion of the plariar owv dual-arm
To obtain explicit forms for (14)-(19), we choose the body coordinate system C_{B} with basis B_{t} ($e_{-x}(t)$, $e_{0}(E)$,
 This choice of origin 0 is preferred over that at the base-centroid, since the latter is usally not precisely known. Now, we introduce the joint angles $0, i=1,2,1^{\prime}, 2^{\prime}$, and the arv base attitude angle 0_{0} as shown in Fig. 3. Thus, the angular velocities ω_{i} are related to the $\dot{\theta} ; s$ by

$$
\begin{equation*}
\omega_{1}=\dot{\theta}_{0}+\dot{\theta}_{1}, \quad \omega_{2}=\dot{\theta}_{0}+\dot{\theta}_{1}+\dot{\theta}_{2}, \quad \omega_{1},=\dot{\theta}_{0}+\dot{\theta}_{1}, \quad \omega_{2},=\dot{\theta}_{0}+\dot{\theta}_{1},+\dot{\theta}_{2}, \tag{20}
\end{equation*}
$$

Note that all the angles θ_{1}, with the exception of θ, are body referenced. Thus, they can be measured by means of body-reference sensors. The base attitule angle θ_{0}° must be measured by means of an inertial-roference sensor.

Since the CMV robot is autonomous, it is natural to use the hody coordinate system C_{B} as the basie reference frame for the arm motions and for observations of the environment from the oMv robot. Expressing the positicn vectors $\underline{E}_{i, c j}$ with respect to the basis B_{t}, wo have
 ed that the centrold (markad by "o" in Fig. $)^{i}$ tof dny link i of arm t or ${ }^{j}$ is located inside link i along the iane segment connecting the joints 1 and $i+1$. The centroid of link 0 (omb base) specified by \underline{g}_{0}, co has the timeinvariant representation $\left(x_{0, c o} \gamma_{0, c o}, 0\right)$ with respect to the time dependent basia B_{t}.

Let ${\underset{r}{o}}(t)=x_{p}(t) e_{x}(t)+y_{p}(t) e_{y}(t)$ denoto the vector directed from the oriqin oo of the inertial frame to the origin \bar{O} of the Body conctinate sytem C_{B}. Thus,

$$
\begin{equation*}
\ddot{\underline{r}}_{0}=\left(\ddot{x}_{0}-y_{0} \ddot{\theta}_{0}-2 \dot{\theta}_{0} \dot{y}_{0}-x_{0}^{\dot{y}_{0}}\right)_{-x}(t)+\left(\ddot{y}_{0}+x_{0} \ddot{i}_{0}+2 \dot{x}_{0}^{\dot{\theta}_{0}}-y_{0} \dot{\theta}_{0}^{2}\right)_{y_{1}}(t) \tag{22}
\end{equation*}
$$

The accelerations of the link-centroidn $\dot{v}_{\text {fit }}, i=0,1,2,1^{\prime}, 2^{\prime}$ gan be obtained by differentiating (2l) (see Appent: x
 equations of motion for the cuv robot:

$$
H(q) \ddot{\underline{q}}+\underline{v}(q, \dot{q})=\underline{u},
$$

 $\underline{v}=\left(V_{1} \ldots . . V_{7}\right)^{T}$ is a vector-valued function of I and i representing the contrifugal and coriolis forces and amon ments, and $\mathrm{H}(\mathrm{q})$ is a 7×7 matrix of the form:

$$
H=\left[\begin{array}{lllllll}
h_{11} & h_{12} & 0 & 0 & h_{15} & h_{16} & h_{17} \\
h_{12} & h_{22} & 0 & 0 & h_{25} & h_{26} & h_{17} \\
0 & 0 & h_{33} & h_{34} & h_{35} & h_{31} & h_{17} \\
0 & 0 & h_{34} & h_{44} & h_{45} & h_{46} & h_{47} \\
h_{5,1} & h_{52} & h_{53} & h_{54} & h_{5,5} & h_{1,1} & h_{177} \\
h_{16} & h_{26} & h_{16} & h_{46} & h_{65} & h_{16,} & 0 \\
h_{17} & h_{27} & h_{37} & h_{47} & h_{95} & n_{77} & h_{77}
\end{array}\right]
$$

The explicit expressions for the elements of 11 and the components of v are fiven in the Apremit.
Now, we consider the problem of deriving sutiable control laws for the elementary manemera usith the marhematical model described by (22). Since these problems tor all the elomentary manemers are intrinsicalif infotical, we shall discuss only a specific case to bllystrate the basir isfeas.

Consider the problem of deriving a control law for alignam the rmv heating n with a specified ariftima di-

$\ddot{q}(t)=\left(0,0,0,0, \ddot{0}_{o}(t), 0,0\right)^{\mathrm{T}} \hat{\tilde{\tilde{q}}}(t)$,
where $\bar{x}_{0}, \bar{y}_{0} \bar{\prime}_{i}, 1=1,2,1,2^{\prime}$ arc specified constants. Thus, equation (23) reduces to

$$
\begin{align*}
& h_{55}(\tilde{q}) \ddot{u}_{0}=-v_{5}(\tilde{\underline{I}}, \dot{\tilde{q}})+c_{c} \tag{26}\\
& h_{i 5}(\tilde{q}) \ddot{\theta}_{0}=-v_{i}(\tilde{d} \cdot \dot{\tilde{y}})+\dot{u}_{i} \quad i \neq 5 \tag{27}
\end{align*}
$$

Let θ_{0}^{d} denote the base angle such that $\ddot{H}_{0}=\eta_{R}$, and $\Delta \theta_{0} \hat{O}_{0}^{d}-\theta_{0}^{0}$. Equation (26) can be rewritten as:

$$
\begin{equation*}
h_{55}(\tilde{q}): \ddot{H}_{0}=v_{5}(\tilde{\underline{u}} \cdot \dot{\tilde{j}})-t_{c} \tag{28}
\end{equation*}
$$

A simple control law for (24) is given by

$$
\begin{equation*}
r_{c}=v_{5}(\tilde{\mathcal{L}}, \dot{\tilde{q}})+h_{r_{5}, ~}(\tilde{q})\left(k_{p} \epsilon_{0}+k_{r} \cdot \dot{q}_{0}\right) \tag{29}
\end{equation*}
$$

where K_{p} and K_{r} are constant feedback gains. Evidently, from (27), the required joint torques ${ }^{\prime} i, i=1,2,1^{\prime \prime}, 2^{\prime \prime}$

$$
\begin{equation*}
u_{i}=v_{i}(\tilde{I}, \dot{\tilde{T}})+h_{i s}(\tilde{T})\left(k_{p} \dot{B}_{0}+k_{r} \dot{\theta}_{0}\right), i \neq 5 \tag{30}
\end{equation*}
$$

The foreqoing control laws (29) and (30) tepend on the nominal values of the system parameters. It can be shown that by choosing K and K_{r} proper 1%, such control laws remain effective in the presence of small parameter perturbations (see [3]. Ehapter ${ }^{5} 6$). To ensure that all the joint angles and the base-centroid position remain at their spectfied values during the heading alignment maneuver, a suitable linear control law depending on the instantaneous deviations of the joint angles and base-centrond position from their specified values may be used.

5. CONCLUDING REMARKS

The key idea in the proposed control stratedy for the dual-arm maneuverable space robot is to decompose the maneuvers into a sequence of elementary maneuvers involving at most two degrees of freedom. These elementary maneuvers are simple to perform, and they are particularly suitable for operations in a space environment in wh:ch safety is a major factor. Although the results presented here pertain only to planar motions, they are being extended presently to thu general three-dimensional case. Al experiment involving a planar dual-arm maneuverakie robot which is levitated above ground by an air bedring is in the planning stage at this time.

ACKNOHLEDGMENT

This work was supported by the fet propulision laboratory, California Institute of technology, under contrac: to the National hermadtics and Space maministration, and the National Science Foundation Grant ECS $85-09145$.

references

 ings of the 1986 IEEE International Conference on Rohotics and Automation, San Francisco, April 7-10.1986. pr.667-672.
[2] B.A.Logan fr.. "Space jtation kemote Manpulator kequirements definition", presented at the Aim 23 rd nerospace Sciences hecting, reno, Nevada, Jan. 1985.
(3) "Spacecraft Serviciay Demustration Plan", National Aeronautacs and Space Administration, Marshall space Flight Center, MCR 84-186f, NASt-154 35 , Jiy 1944.
14) H. Asada and J.E.slotine, Rohot Nalyishami Control, wiley-interscience, N. \% 1986.

APPENDIX

 link-centroids are given by

$$
\begin{align*}
& +\ell_{c 2}{ }^{\prime}\left(\ddot{\theta}_{0}+\ddot{\theta}_{1},+\ddot{\theta}_{2},\right)^{2} \operatorname{cs} 1^{\prime} 2^{\prime} \underline{l}_{e_{y}}(t) \text {. } \tag{0-5}
\end{align*}
$$

where $\dot{I}_{0}(t)$ is given by (22).
The elements $h_{i j}(q)$ of $H(g)$ are given by
$n_{11}=I_{1}+I_{2}+m_{1} l_{c 1}^{2}+m_{2}\left(l_{1}^{2}+2 l_{1}^{l} l_{c 2} \operatorname{cs} 2+l_{c 2}^{2}\right)$,
$\left.h_{12}=h_{21}=I_{2}+m_{2}^{\ell} c_{c 2}^{(\ell}{ }_{c 2}+\ell_{1} c s 2\right)$,

$h_{22}=I_{2}+m_{2} l_{c 2}^{2}, \quad h_{25}=I_{2}+m_{2} l_{c 2}\left(\ell_{c 2}+\ell_{2} \operatorname{cs} 2+x_{0} \operatorname{cs} 12+y_{0} \operatorname{sn} 12\right), \quad h_{26}=-m_{2} l_{c 2} \operatorname{sn} 12=h_{62}, h_{27}=m_{2} \ell_{c 2} \operatorname{cs} 12=h_{72}$,

$\left.+y_{0}\left(\ell_{1}, \operatorname{sn} l^{\prime}+\ell_{c 2}{ }^{\prime} \operatorname{sn} 1^{\prime} 2^{\prime \prime}\right)\right]$,

$h_{46}=h_{64}=-m_{2}, l_{c 2}, \operatorname{sn} 1^{\prime \prime} 2^{\prime}, \quad h_{47}=h_{74}=m_{2},{ }_{c 2}, \operatorname{cs1} 1^{\prime \prime}$,
(A-15)

$\left.-y_{o, c o}\left(2_{1} \operatorname{sni}+\lambda_{c 2} \operatorname{sn} 12\right)\right\}$,
$h_{52}=I_{2}+m_{2} \ell_{c 2}\left(\ell_{c 2}+i_{1} \operatorname{cs2}-x_{0, c o} \operatorname{cs12-y_{0,cos}^{\operatorname {sn}12}),~}\right.$

$+\left(x_{0}+w\right)\left(w-x_{0, c 0}\right)-y_{0} y_{0, c 0}{ }^{1}$,

 - $x_{0, c 0^{\prime}}$

$h_{66}=h_{77}=m_{T}$

where $I_{T}=I_{0}+I_{1}+I_{2}+I_{1}+I_{2}, m_{T}=m_{0}+m_{1}+m_{2}+m_{1}+m_{21}$, and all the remaining $h_{i j}$'s are zero.

The components of $V(\underline{f}, \tilde{g})$ are given explicitily by:

$$
\begin{align*}
& \left.+\ell_{c 2} c s 12\right)-\left(2\left(\dot{\theta}_{0}+\dot{\theta}_{1}\right) \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right) \ell_{1} \ell_{c} 2^{\operatorname{sn} 2\}} \text {. } \tag{A-25}\\
& v_{2}=m_{2} q_{c 2}\left(q_{1}\left(\dot{\theta}_{0}+\delta_{1}\right)^{2} \sin 2+\left(2 \dot{y}_{0}^{\theta_{0}}+x_{0} \dot{\theta}_{0}^{2}\right) \sin 2+\left(2 \dot{x}_{0} \dot{\theta}_{0}=y_{0} \dot{\theta}_{0}^{2}\right) \operatorname{csi2}\right) \text {. } \tag{A-26}
\end{align*}
$$

$$
\begin{aligned}
& +\left(2 \dot{x}_{0} \dot{\theta}_{0}-y_{0} \dot{\theta}_{0}^{2}\right)\left(l_{1}, \operatorname{cs} 1^{\prime}+\ell_{c 2}, \operatorname{cs} 1^{\prime} 2^{\prime}\right)=\left(\dot{\theta}_{2}^{\prime \prime}+2\left(\dot{\theta}_{0}+\dot{\theta}_{1^{\prime}}, \dot{\theta}_{2^{\prime}}\right) \sin 2^{\prime}\right\} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& v_{5}=-m_{1}\left\{\left(x_{0, c o}-l_{c l} \operatorname{csi}\right)\left(2 \dot{x}_{0} \dot{\theta}_{0}-y_{0} \dot{\theta}_{0}^{2}-\ell_{c l}\left(\dot{\theta}_{0}+\dot{\theta}_{1}\right)^{2} \operatorname{snl}\right)+\left(y_{y, c o}-q_{c l} \operatorname{sn} 1\right)\left(2 \dot{y}_{0} \dot{\theta}_{0}+x_{0} \dot{\theta}_{0}^{2}+\ell_{c l}\left(\dot{\theta}_{0}+\dot{\theta}_{1}\right)^{2} c \sin \right)\right\} \\
& -m_{2}\left\{\left(x_{0, c o}-\ell_{1} \operatorname{csi}-l_{c 2} \operatorname{csi2}\right)\left(2 \dot{x}_{0} \dot{\theta}_{0}=y_{0} \dot{\theta}_{0}^{2}-\ell_{1}\left(\dot{\theta}_{0}+\dot{\theta}_{1}\right)^{2} \operatorname{snl}-\ell_{c 2}\left(\dot{\theta}_{0}+\dot{\theta}_{1}+\dot{\theta}_{2}\right)^{2} \operatorname{snl2}\right)+\left(y_{0, c o}-\ell_{1} \operatorname{snl}-\ell_{c 2} \operatorname{snl2}\right) \cdot\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\ell_{c 1}\left(\dot{\theta}_{0}+\dot{\theta}_{1}\right)^{2} \operatorname{sn} l^{\prime}\right)+\left(Y_{0, c o}-\ell_{c 1}, \operatorname{snl} l^{\prime}\right)\left(2 \dot{y}_{0} \dot{\theta}_{0}+x_{0}^{\theta_{0}^{2}}+\ell_{c l},\left(\dot{\theta}_{0}+\dot{\theta}_{1},\right)^{2} c \operatorname{si}+v \dot{\theta}_{0}^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -m_{2}, \ell_{c 2},\left(\dot{\theta}_{0}+\dot{\theta}_{1},+\dot{\theta}_{2}\right)^{2} \operatorname{snl} 2^{\prime}-m_{o} y_{0, c o} \dot{\theta}^{2} .
\end{aligned}
$$

Note that $H(g)$ is not the manipulator mass-inertia matrix. its nonsymmetry (i.e. $h(g)=h,(g), i \neq 5, i=1, \ldots$ 7) is partially due to the fact that the control force f and the acceleration of the \quad.
 by

$$
\mathbf{H}(\underline{q})=\left[\begin{array}{ll}
I_{4} & 0 \\
0 & Q
\end{array}\right] H(\underline{q})\left[\begin{array}{ll}
I_{4} & 0 \\
0 & p
\end{array}\right]
$$

where I_{4} is the 4×4 identity matrix, and

$$
Q=\left[\begin{array}{ccc}
1 & -1, x_{0}, c o & x_{0, c} \tag{A-33}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
y_{0} & \csc 0 & \operatorname{sno} \\
-x_{0} & -\operatorname{sno} & \operatorname{cs} 0
\end{array}\right]
$$

Fig. 1 sketch of a dual-arm maneuverable space robot.

(a)

(b)

Fig. 2 Modes for ripiping a rod by a planar dual-arm robot. (a) gripping with a single direction of approach for both end-effectors, (b) gripping with different directions of approach for the end-etfectors.

Fig. 4 Relative locstions of the robot and the object.

(a)

(b)

(c)

(d)

Fig. 5 Elementary maneuvers for the alignaent phase.

