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Abstract

Numerical indices are commonly used as tools for assisting in wildfire management and haz-

ard assessment. While the usage of such indices is widespread, assessment of these indices in

their respective regions of application is rare. We evaluate the effectiveness of the Burning Index

(BI) for predicting wildfire occurrences in Los Angeles County, California using space-time point

process models. The models are based on an additive decomposition of the conditional intensity,

with separate terms to describe spatial and seasonal variability as well as contributions from the

BI. The models are fit to wildfire and BI data from the years 1976–2000 using a combination

of nonparametric kernel smoothing methods and parametric maximum likelihood. In addition

to using AIC to compare competing models, new multi-dimensional residual methods based on

approximate random thinning and rescaling are employed to detect departures from the models

and to ascertain the precise contribution of the BI to predicting wildfire occurrence. We find

that while the BI appears to have a positive impact on wildfire prediction, the contribution is

relatively small after taking into account natural seasonal and spatial variation. In particular,

the BI does not appear to take into account increased activity during the years 1979–1981 and

can overpredict during the early months of the year.

Keywords: Point process residual analysis; Random thinning; Random rescaling; Conditional

intensity model; Model evaluation; Wildfire risk

1 Introduction

Fire departments all over the world often use numerical indices to aid in wildfire management.

These indices are designed to summarize local meteorological and fuel information and provide an

estimate of the current risk of fire. The Burning Index (BI) is part of the U.S. National Fire-

Danger Rating System, a collection of numerical indices designed to be used for fire planning and

management. In Los Angeles County, California, the Fire Department uses the BI for creating

short-term wildfire hazard maps of the County which help managers make decisions involving the

allocation of resources and the coordination of presuppression activities.
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While the BI is already in common use by Los Angeles and other fire departments, there have

been relatively few attempts to assess the Index’s performance in predicting wildfires. In the general

area of index evaluation, there has been some work in evaluating elements of the U.S. system (e.g.

Haines et al., 1983), various national (non-U.S.) systems (Viegas et al., 1999), and in using indices

for prediction (Westerling et al., 2000). However, the BI’s ability to adapt to particular regions

such as Los Angeles County has yet to be fully scrutinized. Mandallaz and Ye (1997) have noted

that in general, wildfire hazard indices are developed on the basis of experience in a given area.

Therefore, one must take caution when adapting indices to other areas.

The aim of this paper is to evaluate the performance of the BI in predicting wildfires in Los

Angeles County. Our approach is to evaluate the best-fitting conditional intensity model both with

and without the BI and other information, in order to determine not only the optimal use of the BI

in point process prediction, but also to assess the increase in prediction performance using the BI as

compared to other information. The various conditional intensity models are compared using the

Akaike Information Criterion (AIC) as well as multi-dimensional residual analysis methods based on

approximate random thinning and rescaling. While the AIC proves to be useful for finding the best

model in a set of possibilities, residual analysis can identify specific areas where the performance

is poor and suggest directions for improvement.

In the Sections to follow we briefly describe the U.S. National Fire-Danger Rating System

and provide a summary of the data used for this analysis. We then outline the point process

methodology used for evaluating the performance of the BI. Finally, the results of applying these

methods to the wildfire data from Los Angeles County, California are discussed.

2 A Brief Summary of the National Fire-Danger Rating System

The U.S. National Fire-Danger Rating System (NFDRS) was developed by the U.S. Department

of Agriculture Forest Service in 1972 (Deeming et al., 1972) and was revised in 1978 (Deeming

et al., 1977; Bradshaw et al., 1983). Since then there have been some adjustments (see e.g. Burgan,
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1988). The NFDRS actually consists of multiple components which can be combined to form three

different indices, of which the BI is one. Although this is a “national” system, there are many

parameters which can be calibrated to adapt the system to local environments. In particular, a

fire manager must choose a fuel model (from a set of 20 available models) which corresponds to

the available fuel in the region. The fuel model is then incorporated into the index computations

to produce an index for a specific region (Bradshaw et al., 1983).

2.1 Computing the Burning Index

The BI is computed from the Spread Component (SC) and the Energy Release Component (ERC) of

the NFDRS. Both the SC and the ERC are computed using meteorological and fuel data gathered

by Remote Automatic Weather Stations (RAWS). The SC is simply the unmodified fire spread

model of Rothermel (1972) which is a function of wind, slope, and various fuel properties. The

ERC is a function of the loading-weighted reaction intensity and the surface area to volume ratio

of the fuel bed. Given values for the SC and the ERC, the BI itself is computed via the relation

BI = 10 × 0.45 × [(SC/60)(25 × ERC)]0.46 (Bradshaw et al., 1983). It is important to emphasize

that the BI is to be interpreted as summarizing and integrating information from a variety of

meteorological and fuel variables. That is, one would expect the index to reflect the current fuel

conditions (such as fuel age or fuel moisture) in addition to the usual meteorological conditions.

3 Data

3.1 Wildfire Data

The wildfire data analyzed here were collected and compiled by various agencies, including the Los

Angeles County Fire Department (LACFD), the Los Angeles County Department of Public Works,

the Santa Monica Mountains National Recreation Area, the Ventura County Fire Department, and

the California Department of Forestry and Fire Protection. The full dataset consists of origin dates

and polygons mapping the areas burned by wildfires between January 1878 and September 2000.
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LACFD officials have indicated that only fires burning greater than 100 acres were consistently

mapped before 1950, though since 1950 the Department has mapped some fires as small as 1 acre.

Fires prior to 1976 were excluded from the present analysis (due to the unavailability of BI data)

and based on Fire Department guidance, a lower threshold of 10 acres was chosen for inclusion of

post-1976 fires.

Figure 1(a) shows the spatial distribution of wildfires larger than 10 acres in Los Angeles County

for 1976–2000. The locations are represented with a (scaled) state-plane coordinate system using

the NAD 83 datum so that one spatial unit corresponds to approximately 18.9 miles. Much of the

wildfire activity occurs in the Angeles National Forest and parts of the Los Padres National Forest

(eastern and northern areas) as well as the Santa Monica Mountains area (the protrusion in the

western part of the County). Figure 2 shows the times and areas burned (in acres) for each of the

fires in the dataset. In the years 1979–1981, there appears to be some intense temporal clustering

of points, especially for fires in the 50–500 acre range. In addition, there is a decreased level of

activity around the years 1990–1991. We will return to these particular features of the data in

Section 5.

3.2 Meteorological and Burning Index Data

Daily meteorological observations for eight RAWS around Los Angeles County were obtained from

the USDA Forest Service. The locations for each of the RAWS are shown in Figure 1. The RAWS

collect data on precipitation, wind direction, wind speed, air temperature, fuel temperature, and

relative humidity (Warren and Vance, 1981). Collection of the data occurs at approximately 1:00

PM when conditions for fire are considered to be most severe.

For each of the 8 stations, daily values of the BI were then computed using the FireFamily Plus

software (freely available from the Forest Service). Not all of the stations contained data covering

the entire 25 year span from 1976 to 2000. Of the eight stations, only Stations 3 and 4 had data

going back to 1976. However, each of the stations had at least five years of daily data.

The data from each of the RAWS exhibit the natural seasonal patterns for weather in Los
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Angeles County. Figure 3 shows the average computed BI value (averaged over all available years)

for each day in the year. There is a general increase in BI from July through September, followed by

a decrease from October through March. Station 1 did not have any observations for the months of

January, February, and March. However, in the entire 25 year interval of interest, only 10 fires ever

occurred in the months of January, February, and March, representing less than 2% of the total

number of fires. Therefore, for Station 1, the BI values were set to zero during that three month

span. The other stations also contained days with missing weather records. In this situation we

filled in a missing BI value on a given day with the average of that day across all the other available

years. The percentages of missing data are shown in Table 1 for the off-season (January–April), the

fire season (May–December) and overall. In Section 6 we discuss the possible impacts of missing

data on the analysis.

4 Methodology

In evaluating the BI our approach considers the times and centroids of each fire as points of a

space-time point process. A space-time point process N is a σ-finite counting measure on the

spatial-temporal domain S ×R
+. Given a Borel set B ⊂ S ×R

+, N(B) is the number of points in

B. Let Ft be a filtration, that is, an increasing family of σ-algebras, and take N(S × [0, t]) to be

Ft-adapted for each Borel set S ∈ S. In applications, S is usually taken to be a subset of R
2.

The conditional intensity function of a point process is defined as a non-negative Ft-predictable

process λ(t, x, y) such that for each Borel set S ∈ S

N(S × [0, t]) −

∫∫

S

t
∫

0

λ(t, x, y) dtdxdy

is an Ft-martingale. It is well known that for point processes with simple ground processes (i.e.

with no two points at exactly the same time), the conditional intensity (when it exists) uniquely

characterizes all of the finite-dimensional distributions of the point process. For a more thorough

treatment of conditional intensities we refer the reader to Jacod (1975), Brémaud (1981), and Daley

and Vere-Jones (2003). Intuitively, one may consider the conditional intensity function as describing
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the conditional expected rate of occurrence of points at time t and location (x, y). In particular, a

version of the conditional intensity may be given by the process

λ(t, x, y) = lim
u↑t

lim
∆u∆x∆y↓0

E [N((u, u + ∆u) × (x, x + ∆x) × (y, y + ∆y))|Ft]

∆u∆x∆y

for (t, x, y) ∈ S × R
+, provided the limit exists (Schoenberg et al., 2002).

In prescribing a model for λ, we use a spatial background component m(x, y) which takes into

account the spatial inhomogeneity of the wildfire occurrences. This component can be thought of

as incorporating previous knowledge about where wildfires are more or less likely to occur. For

example, it would be undesirable for the model to predict a wildfire occurrence in downtown Los

Angeles. For this component a simple two-dimensional kernel smoother is used,

m(x, y) =
1

n0

n0
∑

j=1

1

φx φy

K

(

x − x0j

φx

)

K

(

y − y0j

φy

)

.

where K is a suitable kernel function. In estimating the spatial background m(x, y), the smoother

is not computed using the 1976–2000 data. Rather, the spatial locations of the wildfires occurring

before 1976 are smoothed, guaranteeing that the estimate of the conditional intensity at time t is

based strictly on information from before time t. Here, n0 is the number of wildfires in the full

dataset occurring before 1976 and (x0j , y0j) represents the spatial coordinates of the jth fire in that

subset. Of legitimate concern is the similarity between the spatial configurations of the wildfires

before and after 1976. Figure 1(b) shows the locations of wildfires occurring before 1976. One can

see that the spatial distribution is quite similar between the two eras. A notable difference is the

presence of about 25 wildfires in the far northeast corner of the county which appear after 1976 but

not before. While this difference reflects a slight change in the spatial distribution over time, it is

unlikely to reflect a major shift in the overall wildfire regime. Other authors have commented on

the lack of evidence to suggest any major change in the Southern California regime over the past

century (see Keeley et al., 1999; Keeley and Fotheringham, 2001). In addition, since this difference

affects all of the models under consideration here, the effect on any comparison between models

should be minimal.
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A seasonal component S(t) is used to describe the overall seasonal variation of the wildfire

activity. Here we smooth the times within each year of the pre-1976 fires,

S(t) =
1

n0

n0
∑

j=1

1

φseas

K

(

t∗ − t∗0j

φseas

)

where t∗ indicates the time since the beginning of the year and t∗0j is the time since the beginning

of the year for the jth wildfire occurrence before 1976.

Finally, a BI component B(t, x, y) describes, for an arbitrary point (t, x, y), the contribution to

the conditional intensity from the values of the BI at each station. Since the BI values are only

observed at fixed locations in the County, some form of interpolation is required to compute values

at other locations. We consider a BI component of the form

B(t, x, y) =
1

C

∑

s∈St

{

γsK

(

x − xs

βs

)

K

(

y − ys

βs

)

BI(t, s)

}

where BI(t, s) is the BI value recorded at time t from the sth station, (xs, ys) represents the location

of the sth station, and St is the index set of stations in use at time t. The values γs are scaling

coefficients for the BI values and are in units of events / (spatial unit2 × day); the BI itself is

dimensionless. The normalization constant C is simply the sum of the kernel weights. For each of

the three components, the kernel function used is the standard normal density function.

One may consider as a basis of comparison simple baseline models such as a homogeneous

Poisson model

λH(t, x, y) = µ (1)

and the following Spatial+Seasonal model,

λ0(t, x, y) = ν m(x, y) + α S(t) (2)

where µ, ν and α are parameters to be estimated. The model in (2) does not include any infor-

mation from the BI and serves as a model against which we can compare models incorporating BI

information from each station. We take

λ(t, x, y) = ν m(x, y) + α S(t) + B(t, x, y) (3)

7



as our “BI model” and inspect the usefulness of the BI by comparing the performance of both λ

and λ0.

4.1 Parameter Estimation

All parameters for each of the models were estimated by maximizing the log-likelihood function

ℓ(θ) =
n

∑

i=1

log λ(ti, xi, yi; θ) −

T2
∫

T1

∫∫

S

λ(t, x, y; θ) dxdydt

where θ is a vector of free parameters and n is the total number of events (ti, xi, yi) in the dataset,

observed in the time interval [T1, T2] over the area S. The parameters to be estimated are ν, α,

φx, φy, and φseas, as well as the BI parameters γs and βs (s = 1, . . . , 8). Under fairly general condi-

tions, maximum likelihood estimates (MLE) have been shown to be consistent and asymptotically

normal (Ogata, 1978; Rathbun and Cressie, 1994; Rathbun, 1996).

When optimizing the log-likelihood some restrictions must be placed on the parameters in order

to maintain a positive conditional intensity function and numerical stability of the optimization

procedure. We restricted the parameters in each of the models to be positive. In addition, the

bandwidth parameters in the spatial and seasonal components were bounded away from zero. The

inclusion of the βs parameters in the BI component increased the complexity of the likelihood

surface considerably and created some difficulty with the numerical optimization. Ogata et al.

(1982) and Ogata and Akaike (1982) handled a similar problem with a single bandwidth parameter

by restricting that parameter to a finite grid and repeating the maximum likelihood procedure for

each value of the bandwidth parameter on the grid. Unfortunately for our situation, with 8 separate

parameters (one for each weather station), constructing a reasonable grid over which to optimize

the log-likelihood was computationally infeasible. Rather, we chose to restrict the βs parameters

to be less than 3.0 spatial units (about 56 miles). This upper limit seemed reasonable in the sense

that a particular weather station should not have influence over points more than 50 miles from the

station (see e.g. Haines et al., 1983). An alternative modelling approach which could circumvent

some of the problems mentioned above would be to model log λ(t, x, y) and use pseudo-likelihood
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methods, though this approach would not likely solve the problems associated with the inclusion

of the BI parameters.

4.2 Residual Analysis and Approximate Random Thinning

Various methods for constructing a multi-dimensional residual point process have been proposed

based on random rescaling (Merzbach and Nualart, 1986; Nair, 1990; Schoenberg, 1999) and random

thinning (Schoenberg, 2003). One-dimensional residual analysis via the rescaling method has been

successfully applied in a wide variety of applications (e.g. Berman, 1983; Ogata, 1988; Diggle,

1990; Rathbun, 1993; Brown et al., 2001). However, rescaling can be awkward to use for multi-

dimensional residual analysis. In practice, when the points are rescaled the domain of observation

is also rescaled and can become uninterpretable or irregular (see Schoenberg, 1997, for examples).

Schoenberg (2003) proposed a method based on approximate random thinning of the observed

points which has the advantage that the resulting residual process lies in the same domain as the

observed point process.

The algorithm for approximate random thinning is straightforward and easy to implement:

1. Choose a positive integer K such that K < n, where n is the total number of points observed.

2. For i = 1, . . . , n, compute pi = λ(ti, xi, yi; θ̂)−1/
∑n

j=1 λ(tj , xj , yj ; θ̂)−1 where λ(t, x, y; θ̂) is

the estimated conditional intensity function.

3. Using probability weights p1, . . . , pn, take a subsample of size K from the original points

{(ti, xi, yi)} to produce the residual process {(t∗j , x
∗
j , y

∗
j )} (j = 1, . . . , K).

The algorithm attempts to “thin out” points in areas with high intensity and retain points in areas

of low intensity. Although points are deleted from the original dataset, one can repeat the algorithm

many times to produce multiple random realizations of approximate thinned residuals.

If K is chosen to be relatively small compared to n and the fitted conditional intensity approx-

imates closely the true conditional intensity governing the point process, then the residual process
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should resemble a homogeneous Poisson process with rate K/(‖S‖(T2 − T1)) over the original do-

main of the process. The primary advantage of generating a residual process is that the problem of

evaluating the fit of a possibly complex model is reduced to examining whether the residual process

is similar to a homogeneous Poisson process, a task for which there are many tests and diagnostics.

Once the residuals have been produced one can simply display them in residual plots or compute

summary statistics. For example, one may wish to test for residual clustering or inhibition via a

statistic such as the K-function (Ripley, 1981). In Section 5.1.1 we use a spatial-temporal version

of the K-function to quantify the clustering in the approximate thinned residual processes.

5 Application to Wildfire and Burning Index Data

Each of the models in (1)–(3) were fit to the Los Angeles County data by maximum likelihood. The

MLE’s for the parameters in the spatial and seasonal components of each of the models are shown

in Table 2. The estimate for µ̂ in the homogeneous Poisson model was 0.0041 events/(spatial unit2

× day), indicating an average of 24 fires per year in the County. The bandwidth parameters for

the spatial background component of the Spatial+Seasonal model were estimated as φ̂x = 0.0440

spatial units (0.83 miles) in the x direction (east-west) and φ̂y = 0.0259 spatial units (0.49 miles)

in the y direction (north-south) for the Spatial+Seasonal model. For the best-fitting BI model,

the estimates for the spatial bandwidth parameters were similar, although somewhat smaller. The

estimate for the bandwidth parameter of the seasonal component was approximately 8 days for

both models. The estimates of the station multiplier coefficients (γs, s = 1, . . . , 8) and the βs values

in the BI component are shown in Table 3. Many of the coefficients are estimated to be zero,

likely resulting from the high correlation of the BI values between different stations. The stations

receiving non-zero weight are Stations 1, 4, 5, and 7.

To compare the overall fit of each of the models we used the Akaike Information Criterion (Akaike,

1973), or AIC, defined as −2ℓ(θ̂) + 2p, where ℓ(θ̂) is the log-likelihood of the model evaluated at

the MLE θ̂ and p is the number of free parameters in the model. Not unexpectedly, there is a
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dramatic decrease in AIC from 7693.9 for the homogeneous Poisson model to 6741.1 for the Spa-

tial+Seasonal model. The addition of the weather stations in the BI model decreases the AIC to

6704.6. The decrease in AIC between the Spatial+Seasonal and BI model indicates that the BI

component is in fact improving the fit of the model, even with the addition of 16 parameters (2

for each station). However, the relative decrease in AIC is considerably smaller than the decrease

between the homogeneous Poisson and the Spatial+Seasonal models, suggesting that the impact of

the BI component is very subtle. One can obtain a sense of the individual contributions of the com-

ponents by examining a BI-only model (no seasonal or spatial components), a Seasonal+BI model

(no spatial component), and a Spatial+BI model (no seasonal component). The AIC values for

these models were 7358.2, 7062.7, and 6857.9, respectively. While the BI component alone captures

some seasonal and spatial variability, much can be gained by adding separate seasonal and spa-

tial components. Furthermore, none of the smaller BI models fits as well as the Spatial+Seasonal

model.

One can test the significance of the added BI component with a likelihood ratio test. Since

the additive BI and Spatial+Seasonal models are nested, the test statistic has an asymptotic χ2
k

distribution under the null hypothesis that the BI model provides no improvement (Ogata, 1988).

For these two models, the difference in number of parameters is 16 and the log-likelihood ratio test

statistic has a value of 35.2, which is significant at the 5% level (p-value of 0.0037).

For comparison, we also fit models where the different components are multiplied instead of

added. The results were similar in that the model incorporating BI did not appear to provide

a dramatic improvement in fit to the data. In this case, the BI model produced a conditional

intensity that was quite smooth and did not accurately represent the spatial-temporal clustering in

the data. The values of AIC for the Spatial×Seasonal model and the full (multiplicative) BI model

were 6831.6 and 6680.5, respectively. It should be noted that while the multiplicative full BI model

has a slightly lower AIC than the additive version, differences in AIC between non-nested models

should be interpreted with caution. In particular, those differences can be subject to substantial

sampling fluctuations (Ripley, 1996; Stone, 1977).
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Figure 4 shows the estimated conditional intensity function for the additive BI model on the

15th of each month in 1999. The year 1999 is a typical year in the dataset, containing a total of

21 fires. For this year the intensity reaches its lowest point around March and increases through

August. The conditional intensity is generally high in the northwest region of the County where

much of the wildfire activity takes place.

5.1 Residual Analysis

While AIC is useful for determining the relative improvement of fit for competing models, one

may be interested in a more refined analysis of a particular model. Residual analysis of the Spa-

tial+Seasonal and BI models was conducted using both approximate random thinning and the

rescaling method in order to identify possible departures of the models from the data.

5.1.1 Approximate Thinned Residuals

For the approximate random thinning procedure we chose a subsample size of K = 50 for each

thinning and generated 1000 thinnings from each model. In each realization the residuals appear

to be spread uniformly across the County. Recall that in Figure 1(a) the data were highly clustered

in the northwest region near weather stations 1 and 2 and there were relatively few points in the

northeast corner. This clustering is not apparent in the thinned residuals, indicating adequate

treatment of this clustering effect in the BI model.

Figure 5 shows two realizations of thinned residuals for the time and y-coordinates. Here we

see that there is a cluster of points around the years 1979–1981 (other realizations demonstrated

a similar pattern). This residual non-stationarity indicates that the BI model is not adequately

taking into account the non-stationarity in the data around this specific time period. One possible

explanation for this lack of fit is that the increased activity was not due to purely meteorological

phenomena or changes in fuel properties. Indeed, the BI model for those years appears close to the

Spatial+Seasonal model (this is discussed further in Section 5.1.2). Some of the wildfires observed

during this period occur in the far northeast region mentioned in Section 4. However, in the three
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year period of 1979–1981, only 8 wildfires occur in this area, while the total numbers of fires for

these years are 56, 57, and 44 — double the average number of fires per year. Therefore, it is

difficult to attribute the residual non-stationarity to a change in spatial distribution alone. The

thinned residuals appear to indicate a failure in the BI to detect conditions associated with the

prevalence of fires between 1979 and 1981.

While visual inspection of the residuals can be a useful method of model evaluation, it may be

desirable to have a more systematic test available. Existing second-order methods for analyzing

point patterns are largely two-dimensional, although there have been some extensions (e.g. Baddeley

et al., 1993; Diggle et al., 1995). In order to test the homogeneity of the residual process, we used

a simple space-time version of the K-function. The general K-function evaluated at distance h is

the expected number of pairs of points per unit area that are within distance h of each other, i.e.

K(h) =
1

n

‖S‖

n

∑

i6=j

1{d(xi, xj) < h}

where xi, xj are points of the process, S is the domain of observation, and d is a distance function.

In order to evaluate the K-function, a distance function must be specified, which in purely spa-

tial settings is typically Euclidean distance. For our application, we chose the following distance

function, which is defined for two points (t1, x1, y1) and (t2, x2, y2) as

d{(t1, x1, y1), (t2, x2, y2)} =
√

(x1 − x2)2 + (y1 − y2)2 + δ|t1 − t2|. (4)

Given a point xi and distance h, we count the number of points xj in the cone of radius h and

height h (centered at xi) and then average over all points in the pattern.

The value of δ in (4) was chosen so that the temporal and spatial scales were commensurate.

Here this corresponds to δ = 1/5475 days, which sets a spatial distance of 5 miles roughly equivalent

to a temporal distance of 4 years. Previous research in Los Angeles County has suggested that the

occurrence of a wildfire tends to inhibit the occurrence of another wildfire in the same location.

The risk of fire then slowly increases for approximately 20 years, after which the risk of fire is nearly

constant (Peng and Schoenberg, 2002; Schoenberg et al., 2003). Therefore, fires occurring within
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4-5 years of each other (in the same location) would be considered “nearby” in a similar sense that

fires ocurring within 5 miles of each other (at the same time) would be considered “nearby”. The

precise choice of δ does not affect the actual computation of the K-function, which is invariant to

rescalings of the data. Finally, rather than plot the raw K-function, we use a normalized version

(sometimes called the L-function) which is centered around zero for a homogeneous Poisson process.

Figure 6 shows the mean estimated K-functions for the 1000 approximate thinned residuals from

both the Spatial+Seasonal model and the BI model. The K-function does not enter the negative

range in this case, indicating a lack of inhibition in the residuals. Therefore, to show greater detail,

the figure omits the negative range of the K-function. The estimated K-function for residuals of

the BI model appears to decrease to zero faster than that of the Spatial+Seasonal model. However,

there is significant clustering for smaller distances from 0.25 to 1.0, which corresponds to a range

of 4–18.9 miles in the spatial domain and 4–15 years in the temporal domain. As shown in the

following Section, the clustering we observed in the residuals is most likely due to a multi-year

period of increased wildfire activity that is not being captured by the BI model.

5.1.2 Rescaled Temporal Residuals

The fit of the BI model in the temporal domain can be assessed using the rescaling method (Meyer,

1971) to create a residual process on the line. Each original event time ti (i = 1, . . . , n) is mapped

to a new time

τi =

ti
∫

T1

∫∫

S

λ(t, x, y; θ̂) dxdydt.

where T1 is equal to January 1, 1976 and S is the spatial observation window. We can then check

whether the residuals τ1 < · · · < τn appear as a homogeneous Poisson process of rate 1 on the

line. A histogram of the rescaled residuals (not shown) appeared to have a larger than expected

number of points in the period 50–150 in transformed time. On the original time scale the interval

50–150 corresponds approximately to the years 1978–1982. This result along with the clustering

in the thinned residuals (observed in Figure 5) confirms that the increased wildfire activity during
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the years 1979–1981 is not captured by the BI model.

One can further examine the original data using the temporal intensity function,

r(t) =

∫∫

S

λ(t, x, y; θ̂) dxdy.

Figure 7 shows r(t) over two different time intervals for the Spatial+Seasonal and BI model. Fig-

ure 7(a) shows r(t) for the years 1979–1981, the period in which we observe an unusually high

level of wildfire activity. One might expect the BI model to have a higher intensity during this

time period, given the dependence of the BI on local weather and fuel properties. However, the BI

model appears to be quite close to the Spatial+Seasonal model and significantly underestimates

the rate of activity during these three years. Figure 7(b) shows the period 1990–1991, a period

which contained a larger than expected residual interevent time observed in a plot of the empirical

log-survivor function. The two vertical dotted lines indicate the two events which generated the

large residual interevent time. These two events correspond to the last fire in 1990 and the first

fire in 1991. The first fire in 1991 comes on August 23rd, which is much later in the year than is

typical for the first fire. Figure 7(b) shows that the conditional intensity of the BI model is much

lower than that of the Spatial+Seasonal model in the months between May and September and

is possibly reflecting a local change in weather or fuel conditions which is different from the usual

seasonal pattern. However, it would appear that the BI model is not compensating enough, thus

creating the larger than expected residual interevent time.

5.2 Model Predictions

Given a model for the conditional intensity of a point process, the process can be simulated via

the random thinning algorithm of Lewis and Shedler (1979). We simulated one year’s worth of

events to see if features of the simulations matched those of the observed events. The BI model

was re-fit using the wildfire and BI data from 1976 through 1998 and the Lewis-Shedler algorithm

was applied to generate random realizations of wildfire events for 1999. The spatial distribution

of the simulations appeared to match the configuration of the observed fires fairly well. However,
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we found that the BI model tends to predict more fires during the period between January and

April than were actually observed. The first observed fire of 1999 was on January 3rd followed

by a fire on April 23rd. However, in each simulation the BI model predicted, on average, 7 fires

in the intervening months. In the entire 23 year period of 1976–1998, the average number of fires

between January and April was less than 1. Figure 3 shows that on average many of the stations

do not reach their lowest point until the middle of March or even April. Therefore, the BI model

will produce a higher intensity because of the high BI values. This indicates a failure in the BI

to characterize adequately the low risk of fire associated with the meteorological and vegetative

conditions during the winter and early spring.

6 Summary and Discussion

In this article we have developed an approach for evaluating a wildfire hazard index using space-time

conditional intensity models. This approach has allowed for a detailed analysis of the performance

of the Burning Index in predicting wildfire occurrence in Los Angeles County. Our conclusions

about the BI are based on an assessment of conditional intensity models which incorporate spatial,

seasonal, and BI information. We find that the best-fitting model that incorporates BI information

does not perform substantially better than a simple model which only takes into account natural

spatial and seasonal variation.

Two point process residual analysis techniques were employed to supplement a standard like-

lihood based model evaluation criterion (AIC). The random thinning method enabled us to check

for residual space-time clustering on the same temporal and spatial scales as the data, while the

rescaling method allowed for the closer inspection of temporal clustering in the residuals. Together,

the methods provided greater insight into precisely where the BI model fit poorly and where it was

making some (minimal) improvement.

It is important to note the possible biases that may result from the missing data and the

procedure used to fill in missing BI values. In Section 3 we replaced a missing value on a given day
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with the average of the non-missing values for that day across all years. If the non-missing values do

not accurately represent the missing data, then the resulting estimated conditional intensity could

be biased. In our initial examination of the BI data we found that stations with relatively low

percentages of missing data had very regular seasonal patterns from year to year. While one would

expect some natural variation between stations, we see no reason why the other stations should not

exhibit the same strong seasonal patterns. Therefore, the biases resulting from the missing data

are likely to be small. Determining the optimal use of station data, including developing methods

for imputing missing values, is an important subject for future work.

Another area for future investigation is the examination of the performance of other hazard

indices in Los Angeles County, having already identified some specific deficiencies with the BI.

Also, it may be necessary to incorporate other variables into index computations or reexamine the

fuel models used to adapt the system to different locations.

While the incorporation of the BI into the models presented here is consistent with the way it

is used in practice by Fire Department officials, the usage here is in some disagreement with the

original motivation for the development of the BI, which was to predict flame length. With that

in mind, it is perhaps not surprising that the utility of the BI in predicting wildfire occurrence is

severely limited. One difficulty which applies to the development and usage of any index in Los

Angeles County is that wildfire occurrences exhibit very strong seasonal and spatial patterns which

already explain much of the variation in the data. Therefore, it will likely be challenging to develop

an index for Los Angeles County which does considerably better than a model which contains only

spatial and seasonal components.
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A Tables

Station # 1 2 3 4 5 6 7 8

Jan–Apr 99.8 49.2 34.3 60.8 33.3 32.5 23.3 26.1

May–Dec 46.4 36.3 17.8 32.0 14.5 18.6 6.7 14.2

Overall 64.0 40.5 23.2 41.5 20.7 23.2 12.2 18.1

Table 1: Percentage of missing values for each weather station during the off-season (Jan–Apr), the

fire season (May–Dec), and overall.

Model µ̂ ν̂ φ̂x φ̂y α̂ φ̂seas

H. Poisson 0.0041

Spatial+Seasonal 0.0348 0.0440 0.0259 0.7053 8.44

BI model 0.0293 0.0339 0.0200 0.5570 8.27

Table 2: Maximum likelihood estimates of parameters for non-BI components. “H. Poisson” refers

to the homogeneous Poisson model in (1).

s = 1 2 3 4 5 6 7 8

γ̂s (×10−5) 2.2 0.0 0.0 17.4 3.1 0.0 25.6 0.0

β̂s 0.001 3.000 3.000 0.387 0.001 0.442 0.520 0.816

Table 3: Maximum likelihood estimates for parameters in the BI component.
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B Figure Captions

1. (a) Spatial distribution of wildfires larger than 10 acres in Los Angeles County (1976–2000).

Locations of the 8 Remote Automatic Weather Stations in Los Angeles County are indicated

by the numbers above the solid cirlces. One spatial unit is approximately 18.9 miles; (b)

Locations of wildfires occurring in the dataset before 1976.

2. Dates of occurrence and areas burned for fires larger than 10 acres (1976–2000).

3. Average yearly BI pattern.

4. Estimated conditional intensity function for the BI model on the 15th of each month in 1999.

The units are in events / (spatial unit2 × day) where one spatial unit is approximately 18.9

miles.

5. Two random realizations of residuals for the BI model (time and y-coordinate).

6. Normalized K-function for the Spatial+Seasonal (solid gray line) and BI (solid black line)

models. The dotted line is the upper 95th percentile (pointwise) for the K-function applied

to 1000 realizations of a homogeneous Poisson process.

7. Temporal intensity functions r(t) for the Spatial+Seasonal (black line) and BI model (gray

line) for (a) 1979–1981; and (b) 1990–1991.
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C Figures
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Figure 1: (a) Spatial distribution of wildfires larger than 10 acres in Los Angeles County (1976–

2000). Locations of the 8 Remote Automatic Weather Stations in Los Angeles County are indicated

by the numbers above the solid cirlces. One spatial unit is approximately 18.9 miles; (b) Locations

of wildfires occurring in the dataset before 1976.
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Figure 2: Dates of occurrence and areas burned for fires larger than 10 acres (1976–2000).
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Figure 3: Average yearly BI pattern.
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Figure 4: Estimated conditional intensity function for the BI model on the 15th of each month in

1999. The units are in events / (spatial unit2 × day) where one spatial unit is approximately 18.9

miles.
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Figure 5: Residuals for the BI model (time and y-coordinate).

28



0.0 0.5 1.0 1.5

0.
00

0.
05

0.
10

0.
15

0.
20

Distance

S
pa

ce
−

T
im

e 
N

or
m

al
iz

ed
 K

−
F

un
ct

io
n

Figure 6: Normalized K-function for the Spatial+Seasonal (solid gray line) and BI (solid black

line) models. The dotted line is the upper 95th percentile (pointwise) for the K-function applied

to 1000 realizations of a homogeneous Poisson process.
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Figure 7: Temporal intensity functions r(t) for the Spatial+Seasonal (black line) and BI model

(gray line) for (a) 1979–1981; and (b) 1990–1991.
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