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Abstract

A new higher-order accurate space-time discontinuous Galerkin (DG) method using the
interior penalty flux and discontinuous basis functions, both in space and in time, is pre-
sented and fully analyzed for the second-order scalar wave equation. Special attention is
given to the definition of the numerical fluxes since they are crucial for the stability and
accuracy of the space-time DG method. The theoretical analysis shows that the DG discre-
tization is stable and converges in a DG-norm on general unstructured and locally refined
meshes, including local refinement in time. The space-time interior penalty DG discre-
tization does not have a CFL-type restriction for stability. Optimal order of accuracy is
obtained in the DG-norm if the mesh size /& and the time step At satisfy h =~ CA¢, with C a
positive constant. The optimal order of accuracy of the space-time DG discretization in the
DG-norm is confirmed by calculations on several model problems. These calculations also
show that for pth-order tensor product basis functions the convergence rate in the L* and
L?-norms is order p + 1 for polynomial orders p = 1 and p = 3 and order p for polynomial
order p = 2.

Keywords Wave equation - Space-time methods - Discontinuous Galerkin methods -
Interior penalty method - A priori error analysis

Mathematics Subject Classification 65M60 - 65M12 - 65M15

1 Introduction

The second-order scalar wave equation provides an important model for many hyperbolic
wave problems in physics, engineering and life sciences. Direct applications are in acous-
tics and in the modeling of elastic wave propagation in mechanics and geophysics, but the
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scalar wave equation also serves as a model for more complicated wave phenomena in elec-
trodynamics, fluid mechanics and quantum mechanics. This has resulted in a huge body
of literature describing finite difference, finite volume and finite element discretizations of
the second-order scalar wave equation. Many of these numerical discretizations follow the
method of lines approach, where the wave equation is first discretized in space, after which
the resulting system of ordinary differential equations is discretized with a suitable, often
explicit, time integration method. This has resulted in many accurate and efficient numeri-
cal discretizations of the wave equation that can be found in nearly any text book on the
numerical analysis of partial differential equations.

The need to be able to efficiently solve increasingly more complicated wave problems,
however, still presents important challenges to the numerical solution of the second-order
wave equation. Examples are highly heterogeneous materials and rapidly moving fronts,
which require locally strongly refined unstructured meshes and local time stepping. Also,
obtaining stable higher-order accurate conservative discretizations on general meshes that
allow local mesh refinement, both in space and in time, without strong time step limita-
tions is challenging. An interesting approach to deal with this type of problems is presented
by space-time methods, which currently receive significant attention. In space-time meth-
ods time is treated as an extra dimension, for instance, a three-dimensional time-depend-
ent problem is a four-dimensional problem in space-time, and the problem is then directly
discretized in space-time. The space-time approach is particularly useful for problems on
time-dependent domains, but is also very suitable for ip-adaptation, both in space and in
time, and provides a conservative alternative to local time-stepping methods.

Several discretization approaches are possible in space-time. If one considers a fully
unstructured mesh in space-time, then a “tent pitching algorithm” can be used [10, 30], and
if the mesh is constructed properly, this can result in an explicit space-time discretization.
Examples of the tent pitching approach and explicit in time space-time discretizations can
be found in, e.g., [11, 13, 22, 23, 26]. For three-dimensional time-dependent spatial prob-
lems, the resulting four-dimensional unstructured polytopic mesh generation problem pre-
sents, however, significant challenges and still is an active area of research [10]. Also, the
mesh “tent pitching algorithm” can result in locally very small time steps and/or poor mesh
quality that are non-trivial to deal with in 4D space-time. The alternative is to subdivide
the space-time domain into space-time slabs, that are possibly locally refined in space and/
or in time, and use a tensor product structure in time for the basis functions. This alleviates
the meshing problem and allows for unstructured meshes in space, but the numerical dis-
cretization will then in general be implicit in time. If the basis functions are discontinuous
in time at the connection of two space-time slabs, then a time marching algorithm, where
the solution is computed one space-time slab at a time, is possible, which greatly facilitates
computational efficiency.

For the second-order wave equation and related wave equations space-time discretiza-
tions that are discontinuous in time, but continuous in space, were presented and analyzed in,
e.g., [1, 3, 12, 14-17, 29]. Both formulations that first rewrite the second-order equations as a
first-order system and formulations that directly discretize the second-order formulation have
been considered. Space-time discontinuous Galerkin discretizations of the wave equation,
which use basis functions that are discontinuous both in space and in time, and therefore allow
optimal flexibility for sip-adaptation in space and in time, were introduced in [4, 11, 22, 26].
Recently, also Trefftz space-time discontinuous Galerkin discretizations of the second-order
wave equation using non-polynomial basis functions were presented [6, 9, 19, 23, 24]. Trefftz
methods incorporate local solutions of the partial differential equation into the test and trial
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spaces. The main benefit of this approach is that a discretization with less degrees of freedom
can be obtained, which might result in improved computational efficiency.

In this article, we will present a new space-time interior penalty discontinuous Galerkin
(IP-DG) discretization. The space-time IP-DG discretization uses tensor product basis func-
tions that are discontinuous in space and in time. This provides a very natural way to construct
an arbitrary higher-order accurate conservative discretization of the wave equation that allows
for local mesh refinement and local time stepping. Following Johnson [17], we first rewrite
the second time derivative as a first-order system and impose a special compatibility condition
between the primary variable and its time derivative. This condition is useful to provide the
necessary coupling in the DG discretization between the equations for the primary variable
and its time derivative and is also beneficial in the stability analysis. For the spatial discretiza-
tion, we use a similar approach to derive a space-time DG discretization as we presented in
[27] for the parabolic advection diffusion equation, but instead of using local and global lifting
operators as in [27] we now use an internal penalty method. In addition, we need to provide
stable discretizations for mixed spatial-temporal derivatives. Special attention is, therefore,
given to obtain a stable formulation of the time derivatives using the compatibility condition
proposed in [17] and properly defined numerical fluxes. Since elements in the space-time DG
discretization are only coupled through fluxes at the element faces local refinement in space
and in time does not affect the discretization in neighboring elements and we will automati-
cally obtain a conservative discretization of the second-order wave equation that is completely
flexible in the choice of meshes and the polynomial order in each element [31].

After the derivation of the space-time IP-DG discretization, the main part of this article is
devoted to a detailed error and stability analysis. The key components in the error analysis are
several stability bounds given by Theorems 1 and 2 and Corollary 1, which are used then in
a backward in time error-analysis as outlined in [28, Chapter 12]. This allows us to prove in
Theorem 3 stability, convergence and optimal order accuracy of the space-time IP-DG discre-
tization in a DG-norm for general locally refined space-time meshes and arbitrary order tensor
product basis functions in space and in time and without a CFL constraint for stability.

The remainder of this work is as follows. In Sect. 2, we present the model problem and
define several function spaces, followed by the definition of the space-time mesh, elements
and faces and some standard DG notation in Sect. 3. In Sect. 4, the space-time IP-DG discre-
tization is derived, including the definition of the numerical fluxes. Section 5 first proves the
consistency of the space-time IP-DG discretization, followed by several stability bounds that
are crucial for the a priori error analysis, which is discussed in Sect. 6. Numerical experiments
to verify the theoretical analysis are presented in Sect. 7.

2 Model Problem

Given the open domain 2 C RY, d=1,2,3, with Lipschitz continuous boundary I';,:=0£2.
We consider the wave equation for u,

— -V-AVuw) =f inQx(0,T), (1a)

0%u
or?

u=gp atl'yx(0,7), (1b)
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ou

u=h0, E

=h  at2x{0}, (1c)
where V is the nabla operator on R,  represents time and 7 the final time. The source term
/. Dirichlet boundary data g;,, and initial conditions A, i, are given functions. The matrix
A € R is a symmetric positive definite matrix satisfying

coxTx XTAx € clex, vx e R?  with c;=2cg=zc>0,
where the superscript T denotes the transpose and ¢, ¢, and ¢ are positive constants. We
assume that the domain £ can be subdivided into subdomains .Q in which A(x) is continu-
ous. If we denote u; :=u| ) and w1 =ul g , and similarly for A, we have the following trans-
mission conditions at I = d€2; N d€:

u=u, n ‘Ajﬁuj =i -Akguk )

with 71 the external normal vector at £2; or £2,.

We denote by LP(£2), with 1 < p < oo, the standard Lebesgue spaces on the domain £2
with norm ||v]|, o < oo for any Lebesgue measurable function v. We denote by W"?(£2)
the Sobolev spaces of index m > 0 with norm

1

Wl : _< ZlD“v|de> for 1 < p < oo,

2 |a|<m (3)
”V”mooQ:: Sup |Dav('x)| forpz o0
o xXEQ,|al<m
with D* the weak derivative with multi-index symbol a = (a;, -, ;) € R?. The W"P(Q)

seminorm is denoted as |v/|,, .o For p=2 we denote H"(£2): =W"2(Q), with H 0'(£2)
the space H™(£2) with zero trace at 0. For p =2, m = 0, we have L*(Q) = HO(.Q) w1th
IVllg:=lIvllgs.o and similarly [|v]],, o:=[Vll,,o. We define the L*(£2) inner product as
M, v)g:= / o v dx. The negative order Sobolev norm is defined as

IWil_ppo:= sup W, g, Ywe W' (Q),m>0
¢ #0.Yp € CT(9), )
I dllnpo 1
Here, W(')" P(£) denotes the space W™”(2) with zero trace at 02 and Cy(£2) is the space
of infinitely many times differentiable functions with compact support on . For time-
dependent problems, we use the Bochner spaces L'((0,T), W"P(£2)), 1 < r < co with
norms defined on the space-time domain &= Q X (0, T) as

T :
VIl s :=</ ||V(‘>t)”;:1,p,9 dt) withl1 <r< oo, 1 <p< oo,
0

”V“oo,m,p,g:: sup ”v(Wt)”m,p,.Q with 1 <p < ®©
1€(0,T)

where forr = p = 2, m = 0, we use the simplified notation ||v|| o = [|[V|l5,0.s-
Given f € L*((0,T);L*(R)), hy € H)(R2), h) € L*(2) and g, =0, then (1) has a
unique solution # on a bounded domain 2 with
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2
we O.THY@)., St e POTA@). S e 12T @),
see [20, Chapter 3, Theorem 8.1]. Furthermore, see [20, Chapter 3, Theorem 8.2], the solu-
tion is continuous in time with
we ORI, 2 e 0. D), )
where C? denotes the space of continuous functions. If in addition 3—{ € L*((0, T);L*(R)),
u satisfies the Dirichlet boundary condition (1b), and the initial conditions (1c) satisfy
hy € H*(Q) and h €H (), and h is compatible with the Dirichlet boundary condition
(1b) and the interface condition (2), then

u € L*((0, T);H*(£2)), % € L*((0, T:L*(Q)), (6)

see [21, Chapter 5, Theorem 2.1].

3 Mesh and DG Notation
3.1 Space-Time Mesh

We aim to discretize the second-order wave equation by a new space-time interior penalty
DG method (Fig. 1). For this purpose, the space-time formulation requires the introduction
of a space-time slab, space-time elements and faces. We define the space-time domain as
&:=0x(0,T) with 2 c R?, d =1,2,3, and (0, 7) a time interval with 7 > O the final
time. The space-time domain & has boundaries £(0):=Q X {0}, 2(T):=2 x {T} and
Q:=08\ (£2(0) U (T)). For the space-time discretization we introduce space-time slabs.
First, we partition the time interval [0, 7] by an ordered series of N + 1 time levels
0=ty <t <--<ty=T. Then a space-time slab is defined as &":=&n (R x ), with

t
Kt c yh"‘*‘luT
"E} Se FMYFnP N —
: \ e yh"f
Q" . I

K e F"

Se FpIUFP

Fig.1 Space time slab &" and the definition of space-time faces of a space-time element .#" in the space-
time mesh .7}
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I, = (t,,t,.1)- The length of I, is At, = t,,, —t,. The space-time slab & is approximated
with a non-overlapping tessellation ﬁ;’ of (d + 1)-dimensional open hypercube space-time
elements .#'C R%!, and is denoted as gh" The meshes in each space-time slab can be gen-
erated independently from one another, which allows local mesh refinement and coarsen-
ing in each space-time slab. Combining the space-time slabs &' for n=0,1,--,N -1

gives an approximation &), to the space-time domain & with tessellation .7, '=U9”' Each

space-time element %" is connected to the reference element 7 =(-1 1)‘1’rl using the
isoparametric mapping ¢, : H— He ). A space-time element .Z'€ .7} has bounda-
ries K" C Q(t,):=0 X {t LK ¢ Q(tn+1) =Qx {t,,,) and Q", -—am (K" U K™,
with exterior unit normal vector n , . The spatial Component of n , is denoted as 7i . The
space-time element faces K" are collected into the set .7, T representing the time faces at
time 7 = 1, of the space-time elements .2’€ .7,". These faces are also indicated with / if
we want to emphasize that they constitute the spatial mesh at time #,. The domain .Q is
independent of time, but in case of time-dependent spatial-temporal meshes, the interface
of two connecting space-time slabs must be subdivided into subfaces such that each face
connects to only one space-time element on each side of the interface. For notational sim-
plicity, we also denote this set as 9‘" The spatial domain €2 is approximated as
Q,:={UK: VK € 7 T}, which is the union of the spatial elements and does not depend on
time. We assume that £, — Q as the mesh size h goes to zero.

For the space-time element faces Q"A He 3” we define the following sets: ﬁ"' d
the set of all internal faces, 32” the set of faces with a Dirichlet boundary condl-
t10n and 7" LD =7y Ty Fr D We will also use the trace of faces 1n ﬂ" at times
—hme wt +e,n=0,1,- N These traces will be denoted by ﬁ" for 1nternal faces,

? for Dirichlet faces and J : J QZ P,

In case of local time steppmg, a space-time element .2’€ .7, n =0, 1, - — 1in the
space-time slab & " is split in the temporal direction into multiple space-time sub- elements H,
i=1,,n,. Snmlarly, faces S € 5‘"}1 D connected to the space-time element .”#" must be sub-
divided into sub-faces S;,i = 1, ---, n, such that each sub-face S; connects on at least one side
to only one space-time element in the space-time slab. The same applies for faces in ?f"h’l'D
At the intersection of two space-time sub-elements, the faces S = JZ/ N Jij , I # j are treated
in the same way as faces in ﬂZT For details on the use of local refinement in a space-time
DG discretization, where there is no fundamental difference between refinement in space or
in time, see [31]. Finally, we merge the contrlbutlons of all subdivisions in time due to local
time stepping into the sets 7, 7’ ,ﬁ"h] D and 32’1 , which provides the most straightfor-
ward way to deal with the local mesh refinement and local time stepping in a space-time DG
discretization.

h

3.2 Finite Element Spaces

Given the space-time tessellation .7, we define for 1 < p < oo the following broken Sobolev
spaces and norms:

WP () :={v € IP(&): v| € W™(KH ), VA€ T},
V0= D Il

HE T,

with an equivalent formulation for the spatial tessellations ?’; ,n=0,1,---,N—1. For
p=2,m =0, we use the notation ||v|| ; = [[v|ly, 5. We denote H™(Z,):=W"2(7,). The
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broken spatial gradient will be denoted by V,, and is defined as ghv |y =V | ¢ for all
A € T, For the space-time discontinuous Galerkin discretization we define the polyno-
mial spaces Q’; .1 (%) as the d + 1 tensor product of the one-dimensional Legendre polyno-
mials P¥(—1, 1), with d = dim(£2) > 1 and k the order of the polynomial basis functions.
The dimension of Q% () is (k+1)**!. The space-time finite element spaces in each
space-time slab &', n =0, 1, ---, N — 1, are defined as

Vi =(v € LA(E™): voG € Q8 (), Y € T},
Wi =(w € LHE): woG", € (O, , OO, Ve T,
U=V x v,
The space-time finite element spaces on the space-time domain &), are then defined as
VEi=(ve X(&:ve V" ,n=0,-,N-1},
We={we LX(&:we W, " ,n=0,- ,N -1},

k. __yk k
Uk:=VEx V.

3.3 Definition of Jump and Average Operators

Since the space-time discretization uses basis functions that are discontinuous both in space
and in time at element faces we need to define jump and average operators to deal with the
multi-valued traces at the space-time element faces. For scalar quantities v € R we define at
interior and boundary faces jump and average operators that are, respectively, denoted as

v ::%(VL +vF) at 9’2’1; v} :=vE at f/\Z’D,
< v =yt 4Rk at 7 <> =tk at FP,

and for vector quantities ¢ € R’ as

gl :=2(g" + 4" at 7% (g i=q" at 7,7,
<g>:=¢-it+qt-i* a7, <g>:i=q-at a 7P

Here, the L and R superscripts refer to the left and right traces at a face S € ﬂ"h’l . When
considering a space-time element .# € .7}, the L-trace is always the trace taken from inside
the element and the R-trace is the outside trace. At the space-time domain boundary L
refers to the internal trace. The jumps in time for faces S € ﬁ"h’T are defined as

[V"] ::Vn,+ _ Vn,—’ [qn] ::qn,+ _ qn,—
with
n

ViEi=limv(, 1, +€), ¢"F:=limg(-t, £e).
€l0 el0

We will denote the spatial mesh size by h, defined by h:=max;_ ?,,.rdiam(S).
n h
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4 Space-Time Discontinuous Galerkin Formulation

In this section, we will derive a space-time DG interior penalty discretization for the wave
equation. First, we need to rewrite the scalar wave equation (1) as a first-order system. Intro-
duce the primary variables

uy(x, ) 1 =u(x, 1),  uy(x, 1):=ilx, 1), N
and the auxiliary variables

60 =AVu,, (8a)

o, :=AVu,, (8b)

where an overdot represents differentiation with respect to time. The scalar wave equation
(1) can then be written as in [17]

i, =V-oy=f inQx(0,T), ©)

V-6,=V-0, inQx(0,T), (10)

where we used the compatibility condition i, = u,;, which follows from (7), and the aux-
iliary variables (8) to obtain (10). The use of the compatibility condition (10), instead of
using i, = u,, which was proposed by Johnson [17], is important in the proofs of the stabil-
ity results presented in Sect. 5.2 and also provides, after integration by parts of the weak
formulation of the space-time IP-DG discretization, a coupling between i, and u, at ele-
ment faces. The Dirichlet boundary condition and initial conditions for (9)—(10) are

Uy =gp atI'y, x (0,7),
uy=hy and u; =h at 2 x {0}.

4.1 Space-Time DG Formulation for Primary Variables

We approximate now u;,0;,1 =0, 1, respectively, as u;, € Vﬁ, oin € W,’;, multiply (9) and
(10) with test functions v; € V¥, i=0,1, and integrate over the space-time domain &),. This
results, after subtracting the weak formulation for (10) from (9), into the space-time for-
mulation for the scalar wave equation. Find u,u, , € V;f, with 6,0, € W;’f, such that
for allvy, v, € V;:’ we have

/{@ ((ul,h - vh SOV Vo(vh X i 6}: : Gl,h))d5= . ndé. a1

Next, we rewrite (11) into a more suitable format to obtain the space-time DG discretiza-
tion. As a first step, we will use the following relation for the time derivative of u, ;, € V,’;:

N-1 N-1
/u]’hvld£’=2/ i v dE+ Y Y /[u';h]v';’*ds, Wi EVL (12
& n=0 J & s ’

n=0 seg"
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which is obtained by twice integrating by parts in time and using at the time levels

t,,n="0,--- N —1, the causality conditions & = u},, &/*' = u’l’J;l for the numerical
fluxes of ul > Wthh were introduced to account for the multivalued traces at time #,, and
”1 2r=uy (1), i = 0,1, with ££:=1im, 7, + . We also need the following well-known

relation between sums of integrals over element boundaries and faces [5], but now used in
the space-time context [27]. For v € Vi, w € Wy,

/(w~r‘z)vdS= D /{{w}}~<<v>>dS
){/e7” o S

Seg—;n.l,l)

13)
/<< w > {{v}}dS.

SE?’”
This relation can be directly verified by introducing the jump and average relations defined
in Sect. 3.3.

After integration by parts in space and using (12)—(13) the space-time DG for-
mulation (11) can be expressed as: find ug ), u; ;, € VZ:, with 6,0, € WII;, such that
for all vy, v, € V§ we have

Z '/{w (ulqhvl + 00, Vv + 60, Vivg— 01 tho)déo
“h

_Z / (6,)) < v, > +{6, 1} < vy > -6, )} < v, > )ds
n=0 e 7>
(14)

—2 D /(<<80>> v 1+ < Gy > {v)}= <6, > {{v,}})dS

n=0 sez!
/ "’+dS = / fvdé,

where the numerical fluxes 6;,i = 0, 1, and the numerical flux for the time derivative go
account for the multivalued traces of o;,,i =0, 1, at the faces ﬁ"h’l Dof each space-time
slab. For a stable and accurate space-time DG discretization, these numerical fluxes need to
be carefully considered, which will be discussed in the next sections.

n= OSe?‘T

4.2 Space-Time DG Formulation for Auxiliary Variables

The space-time DG formulation (14) contains the auxiliary variables o, € W}’f,i =0,1,
which approximate 6;,i = 0, 1, defined in (8), and the time derivative 6, ,. In this section,
we will derive DG formulations for these auxiliary variables and define their numerical
fluxes.

After multiplying, respectively, (8a) and (8b) with arbitrary test functions
T = ?hvj S W,’:, v; € V,’l‘, j=0,1, integrating by parts over each space-time element
A€ J,, using A = AT and forn=0,1, ---, N — 1 the numerical fluxes
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fu,}  at SeF fori=0,1,

a,=1 &p at SGQZ’D fori =0, 15)
uéh at Seﬁ"h’[’ fori=1,

and finally summing over all space-time elements '€ .7, we obtain analogously to [27]

the DG formulation for the auxiliary variables o, ,: find ¢, ), € W,’;, such that for allv; € V,’;,
fori,j=0,1,

N-1

2/ 0 VyydE= Z/ AV, - Vv, dE

n=0
N-1

- z Z {AV, )} <y, > dS

=0 se o I

(16)
N-1
EO sz JsAY Yk - ibgpds, ifi=0,
+ N-1
E Tsemn JyAWV v - atig, ds, ifi=1.

The DG formulation for &, can be obtained analogously to the DG formulation for oy,
given by (16), but great care needs to be taken to account for the discontinuities in time at
t,=0,1,--,N — 1. Following the same steps as for (16), we obtain

/00,1 V,vodé = Z/ AthOh V,vodé
n=0

n=0
- Z D / HAV, o1} < iy, > dS (17)
R

/ ALY,V - Rt dS.

n= OSGN‘D

Next, we twice integrate by parts in time the first two terms on the right-hand side of

(17). To ensure causahty, we use for the multlvalued time traces at the faces S € & m T th

e
numerical fluxes i ”0 “forn=0,1,-

The DG formulation for 6y, then becomes: find 6, € W,]; , such that for all v, € V*
N-1
Z/ Gop Vypvodé= Z/ AVh”O/z V,vodé&
n=0 !’(h’

+ 2 Y /AVh [i5,] - Vavias

= US'E%

Mol
-y / ({AV, v ))- < i, > dS

— N
n=0 SE,?Z’I’D

(18)

N-1
> /AV vt < ]>>d§
n=0S€7uII) S
h
+Z D /A Vv - ik, dS.
n=_ USEQ’”D S

h
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The numerical fluxes for the auxiliary variables 6,7 = 0, 1, and &0 in (14) are defined for
n=0,1,---,N—1,as

AV, atse Y,

ALV uk, ats € 7, (19

S
>
1]
—
S S

S

AV, ) atSe Y
'ALvh_”"é,h ats &€ La};i?é (20)
(IAV,up, 1)} atSe Z

S
Q
(=}
Il
S

N

Note that in (20), the numerical flux at faces S € EZZJ’D contains a time jump, which is
important to link the stabilization in between space-time slabs. In addition to (19)—(20), we
also need to add to (14) the following stabilization terms:

N

2 Ho /{{A}} <ug, > <vyT > ds

n=1 5 7P
N

- Z % /ALn g5 -ﬁng’_’LdS‘
n=1 SE%:'D N
N-1

+ Z % /{{A}} < [ug’h] > <yt > dS
n=0 ge b = 48 2D
N-1

+ % /({{A}} LUy > <KLy >
n=0 gg gl S

+ {AY < uyy =g, > <<y =g > )dS
< U

- Z Z -1 /ALnLgD i deS
n=0 se 7" h s

with positive stabilization coefficients y, and ;. In Sect. 5, we will prove that the choices
of the numerical fluxes (19)—(20) and stabilization terms (21) result in a stable and consist-
ent space-time DG discretization.

4.3 Interior Penalty Space-Time DG Formulation for the Wave Equation

In this section, we will first introduce some definitions that allow a more compact defi-
nition of the space-time DG formulation and will also be beneficial for the error analy-
sis. For all v,w € V}’:’” we define the following bilinear forms on the space-time slabs gh",
n=0,1,---,N—1,

(v, w)' 1= ) /vwdS (22a)

Sez;
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a'(v,w):= ) WT/Ath V,wds, (22b)
(SH
P'vw)i= ) /{{Ath}} < w> dS, 220)
seg"’
by(v, w):=b"(v, w) + b"(w,v), (22d)
E‘Z(V, w):= 2 /{{A}} <Kv> - -<Kw> dS. (22¢)
5e7’”’

The restriction of ¢ (v w) to the set S € ﬁz with Dirichlet boundary faces is denoted as
E}’M Next, we 1ntr0duce for all v,w € Vk the following bilinear forms over the space-time

domain &

N-1
((v,w))::Z Z /vwd%’ (23a)

n=0 #eJ;

N-1

a((v,w))::Z 2 /A?hv-ghwd%{ (23b)

n=0 eJ; A

N-1
brwy:i=Y / {AV, V) < w > dS, (23¢)

n=0 ge yz,I,D N

bg(v, W) :=b(v, w) + b(w, V), (23d)

N-1
=Y Y £ / H{A) <v> - <w>ds. 23¢)
N

n= ()SeﬁnlD

The restriction of b((v, w) to the set S € J D is denoted as bp(v,w) and the restriction of
c,(v,w)totheset S € 5”[) is denoted as cD H((v w)) . After introducing (16) and (18)-(21)
mto (14), and using the notatlon introduced in (22)—(23), the space-time interior penalty
method for the wave equation on the space-time domain &), can be formulated as: find
u, € U} such that for all v € Uy,

B, (u,,v) = F,(v), (24)

where u;, 1 =(ug , u; ;) and v:=(vy, v,). The bilinear form B, : U’h‘ X Uz — Ris defined as
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N-1
By, v):=((ty 1, vy)) + Z ([u’llh],v’l“f) + (M(I);’ 0+)0

n=1
+a((u0v1)) +al(itg, = w1 v9))
N-1
+ Z an< [”g,h]’ V8’+> O(ug,f’ 8+)
n=1
= by ((uo,h’ Vl)) — by ((%h - h’Vo)) (25)
N-1
_Zl_’;([“g,h]’vg’Jr) 871r 0+)+Z & W Vo
n=1
N-1
+) 5ﬁ0<[ug’h] ) 0 gy
n=1

+ Cy, ((’/‘o,h’ Vo)) + Cy, ((ulyh - L'toyh, v — \'zo)).

The linear form F,(v): Uf — R is defined as

Fy):=((f.vy)) + (g V0 + @ (o, v ) = o, v ™) = b (v1. 8p))

-0 0.+ u _n non— (26)
+ Cﬂo(ho’ Vo )+ Z CD,uo(gD’ Vo )+ Co,y, ((gD’VO))'
n=1

The space-time DG formulation over the complete space-time domain &), is important for
the stability and a priori error analysis, which will be discussed, respectively, in Sects. 5 and
6, but actual computations are conducted by subsequently solving for n =0, 1, - -1
the space-time DG discretization for each space-time slab @“” Using the causahty in time
resulting from the choice of the numerical fluxes at the tlme faces S € Jh in Sect. 4.1,
the space -time DG dlscretlzatlon in the space-time slabs (g’” can be expressed as: for

n=0,1,- —lﬁnduhEU suchthatforallveU"
By (u;,,v) = F;(v).

The bilinear form B! : U;" x Uy" — R s defined as

BZ(Mh, V):=/ ((ul,h’ Vl)n + El"(uo,h, Vl) + L_ln(lﬁto’h - ul,h’ Vo)
I

— By(ug, v1) = Bty , — 1y 5, v)) dt
+ Wy VY a gy v ) = By v (27)
+ Cn+1(un+1 , n+1 —) 4 (MOh’ )

Lh>

+ /1 (EZI(MO,I” V()) + E:lll(ul’h - 1;107/1, Vl - Vo))dl

n

The linear form F’ Z(v): U}’;’" — Ris defined as
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Fg(v):=/(f,v,)"dz+(u"* VI +a" vy
In

_/ 0y gp)dr = BT V) (28)

n

+ T (VT H T ) + / Zppy (@D Vo).

In

Note that after summation of (27)—(28) over all space-time slabs, we immediately obtain
the relation

N-1

Y (Biw,v) = F(v)) = By, v) — F, (). (29)

n=0
For the backward in time error analysis with ¢ replaced by ty — ¢, which is discussed in
Sect. 6, we also need the discrete dual problem: find z;, € U’; such that for allv € U’Z,
B,(v,z,) = F(v), (30)

using the following integrated by parts expression for the bilinear form (25):

N-1

B = =(win) = X, (Wi )

n=

+ v N a((wouvi = v9)) = al(wie o))

N-1
- Z a" (w(';;, [vS]) + ﬁN(wgv',:, vgl’*) —bg ((Wo,h» v, — \'/0))
N-1 3D

N N~ N
+ by (w0 0)) + ( Wi ) BY w0
n=1
N-1

-n n,+ P + N.— N - =n n n—
+ Z &, 0 6 )+ 8, 05 D = 2T, < [Woyh]’ Yo )
n=0 n=1

+ ¢y ((wosvo)) + Cpy (w1 + W v + 7)),

and the linear form (26)

MWWWHWWW @yt vg ) = Bt vg ) = bp (v 8p)

+ E]/:,o(wg;’ W+ Z 10800 ™)+ ¢py, (80 v0))-
n=0

(32)
5 Stability and Consistency of Interior Penalty Space-Time DG
Discretization
5.1 Consistency

The first step in the analysis of the space-time DG discretization for the wave equation is
to verify its consistency. Based on the properties of the exact solution, as stated in (5), we
assume that
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Uy € Vo :=C°(0, T);H' (2)) n H*(F,) + V¥,
uy € V,:=C°((0, T):L*(Q)) N HX(F,) + V*
with u; = it,. The initial solutions satisfy &z, € H'(Q), h, € L*(£2). This implies, together

with the interface condition (2), that the exact solutions u; fori =0,land n =0, - ,N — 1
satisfy the following jump and average relations:

<u!'>=0, {W")=u' aSeF, 33)
[g]=0  aseF’ (34)
<hy>=0 atse 77, (35)
<AVUp>»=0 atSe.F (36)

Introducing the relations u; = iy, Uylyo = &p» Up(-» ty) = hy and hy|,o = g([)) for the exact
solution into (25), together with the jump and average relations (33)—(35), we obtain for
(up,uy) € Vy X'V,

07U,

By (Gt 1), v) = <<%vl>> + (o)) = b(1.))

+ (hy VP + @ (g, v) ) = B, v)H) = by (v1. 81)

N
-0 0,+ - = = k
+ cﬂn(ho,vo )+ Z c’l’)’ﬂo(g'l‘) ,vg )+ Cp ((gD,vo)), v € U,.
n=1

(37
Next, we use the following integration by parts formula:
N-1 _ _
a((ug,v;)) = — 2 z / vV, - (AV,ug)d A+ b((ug,vy)), Vv, € V}]:,
n=0 #e.J; A

where we used (36). Combined with (1a), namely % -Vv. (A?uo) = f on each space-
time element JZ'€ .7, we immediately obtain for (i, u;) € V;, X V| the relation
B, ((ug,uy),v) = F,(v), Vv e U (38)

Hence, the space-time DG discretization is consistent, which implies the following Galer-
kin orthogonality: for (1, u;) € Vo X V}, u;, € U5,

B ((ug, uy) — uy,v) =0, Vv € UF. (39)
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5.2 Stability of Interior Penalty Space-Time DG Discretization

In this section we will prove the main result, Theorem 1, which states that the bilinear form
By, (u,, u,) is bounded from below and above. This result is crucial for the a priori error
analysis discussed in Sect. 6. We start with the following lemma.

Lemma 1 For all ujj, € V;:’", n=1,2,---,N—1, and any ¢ > 0 the following inequality
holds: ’

1 =n n 7 n = 8 =n n,— -
74 ([uo,h]’ [“0,h]> b ([uo,h]’ [“ghD + CZ()([”g,h]’“g;) + Cy()(uO,h gh)
2
1)1 1 |2
2, ()il <=1,

<« znlD
F

(40)
1
with C,, g the trace constant for faces S € ﬁ"h’T and {{A}}2 the matrix square root of the
average of matrix A.

Proof Using the definition of the bilinear forms (22b), (22¢), (22¢) and the average of
A, the Schwarz inequality and the arithmetic-geometric mean inequality, we obtain for
n=1,-,N—-1,

37 ([t [1]) =7 ([s]: [162]) 2 (i) + 250750

L i [n ? 1 g [ L : 1rg [ nr :
> Z 5114° h[“o,h] - Z _h€2( Az Vh[“o,h] AT Vh[”o,h] )
seaT 2 N Se7P 2 N N
T 7
- 3 gl s o <=
4h A2 ,h ks 0,h ks
Se/

h

R e I [ e
+ 3, Bt <=+ Juant < >

(4D
with € > 0, arbitrary. The superscripts L and R denote, respectively, the left and right traces

at facgs S € Z," o Using the definition of the average we obtain the following relation for
Se y,l andn—l,Z,---,N—l,

2 2
“Az < u”+ >>|| + “Az <uy >>||S = cS”{{A}ﬁ <uyy >>||3 (42)

with ¢ = 2 for faces 5 € .Z," and cg = 1 for faces 5 € .Z,". Since the (d — 1)-dimen-
sional faces S € 371 P are boundary faces of the d-dimensional faces S € ﬁZ’T we can
use the dlscrete trace theorem, as stated, e.g., in [8] (Lemma 1.46), to bound the norms at
Se ,/ P Wwith norms at § € 5‘;’17. Combined with (42) estimate (41) then gives (40) for
n=1, 2 - ,N—1.
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Lemma2 Forallu)~ € Vllj’N and any € > 0 the following inequality holds:

0,h
%_N(uow Uy bN(”ow Oh)+ (”(Jh’ g,;
> 3 g0-ec AT+ 3 (m- g )luant <y =]
Seﬂﬁ’\h/ T S‘E.?;’NJ'D €

(43)
with C,, s the trace constant for faces S € ﬁhT An identical relation holds with N replaced
by 0 and the superscript N, — replaced by 0, +.

The proof of Lemma 2 is completely analogous to the proof of Lemma 1.
For the analysis, we also need the following discrete Sobolev inequality, which is a
slight modification of [7] (Theorem 2.1).

Lemma 3 There exists a constant c;, depending on k, |2,,| and the tessellation .9, such
that for all v, € th

Y lli<e] X a0 thhH + %”{{A}}% <, >>||z. (44)

sezy” Seﬂ‘" ej//‘,"’

The discrete Sobolev inequality, stated in Lemma 3, immediately gives the following
estimate.

Lemma4 Foralluy, € V}l’(’", n=0,1,---,N,the following bound holds:

l% s [Oh] +§0 L:l | < |A S
w2l < >>|| ) szh[mr

se7," n=l se "

N-1 1 1 5
+ Z Z ;l” {A}): < [ugh] >

n=1 ge 0P 5
g ; |45V + z, Ulgant <y >

h

(45)
Next, we provide lower and upper bounds for the bilinear form B,(u,,u,), with B,
defined in (25).

Theorem 1 Given a zero Dirichlet boundary condition g, = 0 and a zero source term
f=0. For uh € U there exists a constant a >0, with
a: =% min(1, —)mln(4 5;40 Cfr, 1), Mo, M, sufficiently large and trace constant
Cy1=MaX, (0 1,... N—1) MAXge gnr Cyp 5, such that the bilinear form B, (w,, uy,) satisfies the
bounds
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1 N2 N2 = v 1 1 v I
1 : : 3 : 1 3 :

5@ (” i I+ |+ HA Vs 9) DI ‘{{A}} <uly >>H§
Se *?2”- : SefihN"'D
N1 2 2 1 2
+ Z < [“g.h] + [“7./1] + H A2V, [”gh] )
=l ge g7 $ il
h
N1 1 2 1 2
+ - H 2 <y >>H7 + “{{A}} I <up, > )
n=1 e ID h ’ S S
h
2 1 1 o 2
D (o ot R0 WD W (CVERSE | (46)
sesOT 5e7%D s
h h
N-1 1 1 2 1 1 2
0y (EH{{A}}f <y, >>H + ZH{{A}}i <ty = iy, > )
n=0 ¢_ znl.D s N
se

“h

< B, (uy,, up,)

1 2 1— 2
<4+ 3 <||h1||S+HA2thU

SE,;’ZO'T Se F01.D
h h

z 1 1
S) * Y zH{[A}}z < hy> |

Proof A. Lower bound for B,,(u,, u,). Choose v = u,, in (25), after integrating in time the

contributions containing a time derivative and rearranging terms, we obtain

N-1
1
wiewni= 3 (sl st 3 2 Gl
T S n=l g
Se?'::"
U, ts1. 10
+3|asmli]])

RC e )

- Z /{{AV,I u)i N <y > dS

S‘efﬁhN‘l'D $
N-1
- /{{Avh [ug,,] < [uOh] > dS
n=l geznlD /5 Y
“h
-y /;“AV" 04 <t > a
5e7%1D
h
1 2
+Z Z % {{AN? <uy, >
n=1 Se 2}41.117
h
N-1
+ / Ay <[] > <t >
=l gz A0

N-1 2

2
H
+y - H{A I <uy, >

)

o “{{A}}% <ty ity >

Using Lemmas 1 and 2, we obtain then the estimate
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> 3, (Yl o)

sezy"

A R

+Nz_:1 (% [u';’h] g (l—e |43 u| 2)
n=1 SE./;Z,T N
£ 1\ 1 2 Ll P

+> <;40 > h<||{{A}}z <upy |+ 1Ay <, >>||S>
n=1 3¢5

+ 3 (il o)

+Se_7210<;40— ;)“‘{{A}}z«u >>H

FY 3 (it <+ At <o, 5]).
n=0 gg. g

47
Choose €, = % in (47). Define a': =§ min(1, —) mm(— —,uo tzr, H,), with trace constant

C, given by Cy,i=max, (g ,... y—1) MAXge gu7 Cms We obtain then after using Lemma 4,
and choosing the constants u, and yu, large enough, the lower bound

ninn»3( 3 (145 o5l o sl
sez "

+ Z,D 1”{{A}}% <y >>||2

N.

SeZ,
N-1 i -~ 2
+ z [uo;,] [“’1’,/4] +HAEV/1[”8,;L] )
n=l sezn? s s
+N1 Z ]%(H{{A}}i <<u >>|| +||{{A}} <<u"7>>|| >
n=1 S'E?ZID
v 3 (Pl ot + il
seF"

+ Y ||{{A}}2<<u >>H23

Sef,:m
+A§ ) %(“{{A}}% <), >>||2s ]| ans <uy =i, >>||25)>
n=0 sezHP

(48)

@ Springer



Communications on Applied Mathematics and Computation (2022) 4:904-944 923

B. Upper bound for F,(u;,). Choose v, = u;, in (26). Using the Schwarz, Holder and arith-
metic geometric mean inequalities and the trace inequality, we obtain

LN G TS el el B RS E ER A
2

se)"

15
+ Z €2CtrS

+22 LrS

se)"

|A th

il z L ant <m»|;
2

| A3, + 2 s ans <y

+ Y ’2‘—2(65”{{/;}}% <uli >>||§+é||{{A}}l <hy >>(|z)

SEE,%ALD

Choose €2 = ud

2 = TEhay then we obtain the bound

1_ 0.+ s o4 1 0.+ 2
rl <53 B ([l 47l + Z gleant <=
SeF Sez,"

+ %(1 + )1+ C2)? Z},M (s + ||A%W’0||§>

SeFy

+ “{{A}} < hy >>|)
Se. 70 P
(49)
Using (24), we can connect the lower bound (48) and the upper bound (49). The terms
with norms containing u, and u, ; in (49) can be directly balanced with the corresponding
terms in (48).

For the a priori error analysis in Sect. 6, we also need bounds on the time derivative

of uy;, and u, ;,, which are given by Theorem 2. Before we state these results we first give
some definitions that we need in the subsequent analysis.

Definition 1 The conforming finite element space Vlljc on &), is defined as
Vici={ye C%EH.n=0,1,- ,N—1|vePHVAe J} CVf

Forn=0,1,---,N, the conforming finite element space V,’j‘"’c is the restriction of V}':’C to £2,,
at time ¢ = ¢, and is defined as

veei={ve %R, | ve PK)LVK e F'  c V" 7
We denote with V7 the space V}"** with zero trace at 92,
We assume that \7}1:’”’” satisfies on shape and contact regular meshes for all

s € {0, ,k+ 1} and for all v € H*(£2),) the optimal polynomial approximation
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inf |v—vh|mg Ch™v] g Vm € {0, ,s}.

vhevnkt

Definition 2 The spatial L>-interpolation operator 7, LR, — Vk "¢ is defined as
#w(-, 1), V)g, = W1, V)g . Vv E V™ (50)

Correspondingly, we have

Apw = Zw(t), tel,n=0,1,---,N-1. (51)
Lemma 5 (Karakashian and Pascal [18], Thms. 2.2 and 2.3) Let Z be a conforming
quasi-uniform polyhedral mesh satisfying the angle condition, namely, there exists a con-
stant 0, > 0 s.t. hy/px = 0y, VK € T, where hy and py denote, respectively, the diam-
eters of the ctrcumscrtbed and inscribed balls to K. Then for any v, € V there exists a
#yv, € V “ satisfying

Z “A%V(vh - ;%th)“ Z || (AN <, >>|| (52)
Ker" Se7P

where C is independent of h and v,,, but may depend on the minimum angle 6,y in the mesh.

Remark 1 Since the interpolant 7}'v, constructs a conforming Lagrangian interpolant
using at each mesh point the average value of the DG solution of all elements connected to
that mesh point this procedure can also be used for hexahedral elements. For instance by
subdividing each hexahedral element into polyhedra, or by directly generating a polyhedral
mesh based on the vertices in the mesh. If necessary extra mesh points can be added in this

procedure.

Theorem 2 Ifu,,.u,, € V}’: satisfy (24) with a homogeneous Dirichlet boundary condi-
tion, namely g, = 0, and zero source term f = 0, then the time derivatives of uy,,, u, , sat-
isfy the inequalities

N-1
s = oull, <Y Y, %l”{{A}}% <Ly — ity >>||§ , (53)

n=0 g 7P

N—
||”1,h||1,—1,2,g C(+h) ”A vh”OhH + Z Z hH{{A}}2<< Up p, >>”2,

n=0 5740
(54)

with C a constant independent of uy ;,, u; ,, and h.

Proof A. Define the bilinear form @, (v,w) : Vk"C X Vk"c — R  with
a,(v,w): —(AVv Vw)!2 for n=0,1,---,N — 1. Consider the aux111ary prob]em given
Ug Uy ), € V0/ , find VO,h( RS Vk"” such that
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T2 0.W) = (0 = )Gy = Dty — 1y )W), . Vw € VEr €1, (55
Define
Vo = VO,h(" t), te In! VO,h('$ t) I= Vk,n,c

0h °

and set v; = 0. The space-time DG discretization (24) then reduces to: find u;, € U],; such
that

. X ke
By (uy,v) = al(itg, — g s vo)) = b((vos ttgs — 1)) =0, ¥vg € V. (56)
Next, we use the spatial L2-interpolator 7,, given by (51), to write (56) as

a((# it = ur ) vo)) + a((itgp =ty = (it = 1y ). Vo))

! ¢ (57
- b((VO’MO,h - Ml,h)) =0, Wy € V,’l" .

Using (55) with w = 7 (it ;, — u; ;) and (50)~(51) we can express the first term on the left-
hand side of (57) as

N-1 fust
a((#yitgy, = 1), v0)) = / (t = 1)ty = D|ito — u1,h||_2ohdt. (58)
n=0

Next, using the Schwarz inequality, Lemma 5 we can estimate the second term on the left-
hand side of (57) as

“((”O,h — Uy, = By (g — Uy ), Vo))

N-1 tast
<y [ X
n=0 71 Se

) Hant <o, —us > |

1

2

AWVOHQ dt
h

N-1 1 i 2 : Nl 2 :
< Z Z E”{{A}}E Ly — Uy, >>||S (Z / llitg.1 = ulﬂhHQndt) ’
n=0 71

n=0 Seﬂ;nh.l.u
(59)
where in the last step we used (55) with w = v, (-, ) and Poincare’s theorem, resulting in

|

Using the discrete trace theorem, as stated, e.g., in [§] (Lemma 1.46), and (60), we have for
vy € V3 the bound

>

eZ

Aﬁvongh = (0= 1, =ty )it — 1] - (60)

AV, < €| 42Ty

o < C(t = 1)t = Do = w14l -

The third term on the left-hand side of (57) then can be estimated as

@ Springer



926 Communications on Applied Mathematics and Computation (2022) 4:904-944

b((vo-itg, — 1y1,))

N-1 | | 2 o sl 2 :
C 2 Z E”{{A}}a <ty — Uy, >>“S <Z/ [t — ul,h”Q,’dl‘) .
n=0 Y1

n=0 Seyﬂil,[)
(61)
Introducing now (58), (59) and (61) into (57), using the standard inverse estimate

1 g1 ) 2 Tyl ] 2
C_/ l|éto., = ”1,h||9hdt < / (t = 1,)(t,41 = D|itg, — Ml,h“!zhdt
0 Ji, I,

since ity — Uy, € V" (see, e.g., Thm. 2.2 in [2]), and division of all terms by
lliton — ulh”,rh = ||”0h ulh”g()z/a then gives (53).

B. Choose for each space-time slab &', n =0, 1, - — 1, the test functions as v, = 0,
v ==t )t — OV, with §(x,1) € C°°(.Qh)><P"(1) and g, =0, f=0. Note, this
implies < v1 >=0, forall S € ﬁ”” n=0,1,---,N — 1. The function space C 0 (£2;) is
dense in W' (£2;,), and also in the broken Sobolev space W P (ﬂh) with zero trace at 082,
hence we can define the negative order Sobolev norm || vll_m 2.7, for W”’ (ZL) analogously
to (4).

For this choice of test functions, we obtain from (24)

((#t1v1)) + (20,0 1)) = B((v1:40,)) = 0.

Applying the Schwarz inequality and using ¥, (x, -) € C;°(£2,,), we obtain then the estimate

/ = 1) — D0y . V1) g, dt
n=0

N-l Tny1
<o X/
n=0 71

+1120/ Z hi

qulD

ol 971

(62)

” h%“{{A}}% <1y, >>||Sdt .
!

Next, we use the continuous trace inequality, e.g., [8, Lemma 1.49], to estimate the ¥, (x, -)
contribution in the second term on the right-hand side as

>

Sez,”

5\71”3 <G <h|‘71|2,9h + ”6‘71”9)'

Since ¥, (x, ) € C°(£2;,) and |£2,| < C we have |v1| < C,. Taking the supremum of (62)
for all ¥,(x,-) € C(£2;), with || 7, ||1 o, < land usmg a standard inverse estimate in time
then gives
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N-1

1
5;/ i1l
N-1
/ =)ty — 1) sup (ity s V1), dt
= By # 0,0, (x, ) € C2(82,),
I71ll1.q, <1

N-1 (] | — 2 2
< C,C (1 +h) Z/ AEthO,h“?dt
n=0 71 “h

Z Y h“{{A}} <<u0,1>>H

n=0 ge gz’"”)

Finally, multiplying both sides with C, gives (54).

Corollary 1 If uy,.u,, € V,i‘ satisfy (24) with a homogeneous Dirichlet boundary con-
dition, namely g, = 0, and zero source term f =0, then the time derivatives of uy, u;
satisfy the inequalities

[ty 5, = L"o,h”gh <G, (63)

it ally 210 < CA+h) (64)

with C a constant independent of uy ;,, uy ;, and h.

Proof Using the upper bound for the right-hand side in (53), provided by Theorem 1,
immediately gives (63). The same applies for the second term on the right-hand side of
(54). For the first term on the right-hand side define

o= |

2
-,I)HK witht €1,.
KeZ,

Theorem 1 then gives the following upper bounds:

;) <C, and g1, )< C, forn=0,1,- ,N—1

n

with constants C;, C,. Here, we used that ﬂ;’T - Zf’ and the fact that Theorem 1 is valid
for any time level 1 =1,, n=0,1,---,N. Since u,, € V;,‘ is a polynomial in space and in
time in each space-time element .%'€ .7, this implies that ¢;(r) € P*(I,). This, together
with the bounds on qi(t) at times t = t: andt=r_, implies that qi(t) is continuous and

bounded on I,. Hence,

/1+]

“A Vh”Oh

t)” di = Z / FADdr <

which completes the proof of the bound (64).
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6 A Priori Error Analysis

In this section, we will provide an a priori error analysis of the space-time IP-DG dis-
cretization of the second-order wave equation (24). The main tool we use is the back-
ward in time error analysis and the bounds stated in Theorems 1, 2 and Corollary 1.
Before we state our main result, we first give some definitions.

Definition 3 (Riesz projection) For n =0, 1, ---, N, the spatial H'-interpolation operator
@ Hé(_Qh) - Vg’Z"' is defined as

ﬁﬁgw(-,t),?v)gh = (§W(.,1),§v)gh, Vv e VS:Z"'. (65)
Correspondingly, we have
mnw=mwt fortel,n=0,1,--,N-1. (66)

In the a priori error analysis, we will use the following bounds on the error in the
Riesz projection.

Lemma 6 Let Zln, n=0,1,---,N, be shape and contact regular meshes. Then for
w e H"“(Qh) N H(l)(.Qh) with k 2 1, the Riesz projection &, w, given by (65), satisfies

[|w— 7I'Zw||g‘x + h”%(w - ﬁZw)“Qh < CHH! Wlles1.0,- 67)
1
) ;ID ”W - ﬁZW”S S Chk+§ “W”k+l,Qh’ (68)
sez"
= _1
7 Z {(Vw - ﬁ;‘w}}ug < CH 3 Wl )
Sez™

“h

A proof for error estimate (67) can be found in, e.g., [28, Lemma 1.1]. Error esti-
mates (68)—(69) are a direct consequence of (67) using the continuous trace inequality,
see, e.g., [8, Lemma 1.49 and also Lemma 1.59].

Definition 4 For »n=0,1,---,N—1, the temporal interpolation operator
Jy Co(in) - P"(in) is defined as

/I(JhW) vdt = /1 wvde, Vv e PN, (70a)
(Jhw)n+l,— — W’H—l’_. (70b)

Lemma 7 Forw € H*\(I ) with k > 1the temporal projection J,w satisfies
| w =Tl , < C(AD ! w kLo, (71)

A proof for error estimate (71) can be found in [28] in the proof of Theorem 12.1.
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Definition 5 Foru, € Uﬁ’N_l, with ug’_ = u|,~-, the DG norm at time ¢ = t,, is defined as

1= 3 (s e )
o (72)
n ;1,0 %”{{A}}% <y >>H;.

SeZ,

Next, we state our main result, which provides an error estimate for the space-time
IP-DG discretization (24).

Theorem 3 Letr ue C0, T);Hé(.Q)) N H*(T,), with  time  derivative
it € CO((0, T);Hé ) n Hk“(ﬂh), solve the second-order wave equation (1) with a homo-
geneous Dirichlet boundary condition. The error at time t = ty in the solution of the space-
time IP-DG discretization of the second-order wave equation (24), given by u;, € U}’j with
k > 1, can be bounded as

N~ _ N k
w0 =7 < CO% + 4l
with mesh size h = maxye 7 hy and time step At = max, (... y—1} AL,

Proof A. Split the error into two parts p;, = J,z,u — u and 6, = u;, — J,x,u. Next, using
(30), we define the discrete dual problem

By(v.z,) = 07,0 N +@V ()7, 6057) — By ()T, 60) + a V)00 (73)

Choose v = 6, in (73) then, analogously to Lemma 2 and using Lemma 3, we obtain for
0.7, € Uﬁ X Uﬁ the estimate

mowa> | 3 (1o ol o)

SG-,J‘/’
! e (74)
o (R
- ol

with f = %min(%, po — 2CY)y min(1, Ci) > fy > 0, with CY:=maxg 17 Cy g the maxi-

»
mum trace coefficient for the faces S € 9‘2’ ~IT Next, we use the orthogonality relation for
B, (39)

B,(0,.2,) = B,(w, — J,myu,z,) = By(u — J,myu,z,),  Vz, € Uk x UF,

and also the relation u — J,m,u = u — m,u + z,u — J,m,u to obtain the estimate

ﬂ| | |92’"| | )2 < By = my,2) + By — Jymnz,), Yz, € USX UL (75)
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B. Using the time integrated by parts form of B), (31) the upper bound in (75) can be writ-
ten in terms of the interpolation errors and the discrete dual solution z;, as

N-1

ﬂma}[:/’_”’z < _((”1 - ”hul’zl,h)) - Z <(H1 = )", [Zih] )n
n=1

N
N— _N,—
+ ((u1 — mU;) 20 )

+ a((”o = Tplhgs 2y Zo,h)) - a((”L - ”hul’zo,h))

_ Nz:lj a ((uo — mug)" ", [Zgh] >

+a@" (g — mue)™ ™, 205) = bs (g — w0, 205 = 201)

N-1
+ bS ((ul - ”hul’z(),h)) + Z E;((”O - ”huO)n,_’ I:Zg,h:l )
n=1

N-1

N N,— _N,— —n n+ _n+
— By (g = myute)™ ™ 2 )+ D 8 (g = myutg)™, 250
n=0
N-1

=N N,— N—\ _ —n _ n] n—
+¢,, (g = myug)™", 2, ) Zc%([(uo ﬂhuo)],zo,h>

n=

+ Cﬂl ((MO — T,Ugy, ZO,I’L)) + C”] ((u1+’/l0 - ﬁh(u1+u0), Zl,h+20,h))

— ((zpy = Jymptay 214)

N-1
n
- Ne— NN
- Z ((ﬂhul = Jymuuy) T, [Z’th + ((zyuy — J,myuy) 20 )

+

Q

1
Tty — Uy, 2y gy — Zo,h)) - “((”h“l - Jh”hul’zo,h))
1

=

|
M

_ - N N N~
an((zrhuo — J,muug)t, [zgh]) +a ((myug — Jpmyuo) ™" 25),)

B

S

s (”huo — g, 2y — Zo,h)) + by ((”h”l - Jh”h”l’zo,h))

_— —

=

+ Eg((ﬂhuo = )" [Zgh] ) — By (ptg = )"~ 207)

T

_ 4 ot =N N N
+ CZo <(”h”0 = Ihmyg)" ", 20, ) + C#o((”huo ~Iimitto) ), )

= 3
| Il
- o

-0 ( [Gryuug = Tymyug)']. Zg;) +c,, ((mpuo = Jymyitgs 29))

=
1l

2
tc, (7 Cuy+itg) = Ty, (g +itg), 2y y+20,)) =1 2 E;.
i=1

(76)
Many terms in (76) are zero due to the interpolants (66) and (70b).

@ Springer



Communications on Applied Mathematics and Computation (2022) 4:904-944 931

(i) Since /1,,(Jhw —w)vdt =0, forallv € P<"1(I,) we have E,; = 0.

(i) From condition (70b), (U w)*~ =w"" for n=1,---,N we obtain
E\g=Eg=Ey = Ey = Ey; = Ey; = Ex =0. _

(i) Since uy(-,0),u,(-, 1) € H(l)(.Qh) and  muuy(-, ), muuy (-, 1) € V/f’"’c we have
< Uy — myuy >= 0and < u; — mu, >= Oatfaces S € ZSE,?;,LD,n =0,1,---,N-1
and at faces S € ZSE%‘/,D, n=0,1,--,N. This implies that in Eg, Eq and E,,, E,5 we
can replace bg(u, v) with b(u, v). Similarly, in E\, £}, we have b(u, v) = b"(u,v)
for n=1,---,N. Also, we have E,=E3=E,=E;5=E,=Ey
= Ey = E3 = E3 = E3; =0.

Collecting the non-zero terms in (76) gives

N-1

A <= =2~ 3 (- 5]
n=1
+ () — muy)™ ,zl W

+ a((“o = TpUo> 2y Zo,h)) - a((”l - ”h”l’zo,h))

N-1
- Z Ez”((uo — muug)" T, [ZShD
n=1
+ " (g — mue) ™, 250 = b((g — w40, 205 = 20)) (77)
+ b((ul - ﬂhul’ZO,h»
N-1
+ 2 b”((uo — U™, [Zg,h] ) — bV ((uy — ﬂhuo)N'_,z([;{’h_
n=1

+a((7rhu0 Jhﬂhuo,zlh _Z()h))
- “((”h”l - Jh”hul’zo,h)) b((”huo — p g, 2y — Zo,h))

+ b((n’hul - Jh”hul’zo,h))'

C. Next, we provide estimates for some of the terms in (77). The remaining terms are sim-
ple applications of the Schwarz and Holder inequalities.

i) Assume that [[u; — myu ||, , > 0, then using the fact that ¢ € C*(£2,) is dense in
H(l)(Qh) we obtain

et (U = Uy, 2 h).Qh
- Z - d
(e = mn214)) = /t Ty = mn g, min ||y g, I = mit g,

n+l

< Z/ sup (b, 211)q, || 1 — rrhul”l’gh dr

e ¢ #0,Y¢ € CT(2),
Illq, <1

< zially ing = w12,

ii) Using the L? interpolation (66), the term a((uo = Tylos 25 — 2o )) can be split into
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a((ug — myugr 20 — zon)) = al(uo — mptgr #4215 — Z0)))

. . . (78)
+ a((”o = Tplhos 21 — Zop — Zp21 — ZO,h)))'

Since #,(zy;, — Zo;) € V:’C the Riesz projection (66) implies that the first term on
the right-hand side of (78) is zero. For the second term on the right-hand side we use
Lemma 5, resulting in the estimate

|a((u0 — TpUgs 2y — Zo,h))|

[SIE

cqaTin-m [3 T Huan! <ol
"\ =0 sezp'P

Analogously, we obtain

‘a((ul - ”hul’zo,h))|

<A -m | X T Huant <=
"\ =0 sezP

—N N-1 _N,—
| Gy = myue) 20|

[SIE

< C”Aégh(uo—;rhuo)lv’_”z,v h” HAN: <2y >>H
. SE./
5 - )
(ZHA 5V, (g — 710" —“ ) Z 3 ‘{{A}} < [zo,,] > z
7=0 50 (*"’D

iii) The term a((7,uy — J4myttg, 21, — Zo,,)) is estimated as
’a((”huo — Dy, 2y )y — Zo,h))|
< )a((”huo = Ty, (21 g — Zo,h)))|
+ |a((”h"‘o = In Tty 2y — Zo g — Bp(2y — Zo,h)))|

< ”§h . (Agh(”huo - Jhﬂ'huo))”g, ”Zl,h - Zo’h”éa/’

+ CNZ_:I ”ﬂ(nhuo }ll” (A} < n = Zon >>“§
n=0

Here, the first term on the right-hand side is integrated by parts in space and we used
mu(x, ), B2y — Z04) € Vg’l';"' and the Schwarz inequality. For the second term, we

used Lemma 5.
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D. Combining all terms we obtain the following estimate for |||0hN - ) | |2:
ooy

N
(s = m ez, + 2 M= I

n=1

2 — 2
=)+ 43 =
“h Zh

I Ol [/ (S S JT( [ R |
h n=0 Seﬂ:“)

n=1

+ ||{ﬁh(u1 ~mu[;)

+ZZ

"l.SE

| (V) (g — 741)"™ " }} Hz + |Wh . (Aégh(”h“o - Jh”huo))”;

2 = 2
(ﬂ'huo - Jhﬁhuo)”(p + |A2 V,(mu, — Jh”h”l)”g
h “h

+ IE Z h<||{{§h(7rhu0 - thrh“o)}}“z * “{{gh(”h”l - J"””ul)}}”z>> E
2

n=0 gL
h
2 N-1
n N2 1T [
], * I, + X Ja7wila)
2, b =1 2,

+ Nz_‘: D (%”{{A}}% <z = Zon >>||L29 + %”{{A}}% <Zy >>H§>

n=0 Se,ﬂ"‘D

N-1

. 2 ; 2
S CHEECYEENAS)
n=1

N-1

1 2 1 2 %

> %H{{A}}E < e >>”_ + Y uan: <2y >>)|§> .
n=l g 710 5 sezMe

(719)

All terms in (79) containing norms of z;, can be bounded using Theorem 1 and Corollary 1,

applied to the backward problem (30). Using the interpolation error estimates given by

Lemmas 6 and 7, it is straightforward to bound the different interpolation error terms in

(79), which then gives a bound for |||9N ’H For the bound on |th |H, we use that
(zyu — J,mu)(x, V") = 0, which follows directly from the definition of J, in (70b), and
also the continuity of 7, u(x, ), resulting in

2
= 2% (oo = s + s =
KG’

_ 2
# 450 = m )

which can be estimated using Lemma 6. Combining the bounds for | | ‘02’ ’_ | H and ||| o~

gives the error estimate in Theorem 3.
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Remark 2 The space-time DG discretization for the scalar wave equation (24) has no
CFL-type restriction for stability or convergence. As long as h = Ct, with a constant C, the
discretization has optimal convergence in the DG-norm (72).

7 Numerical Experiments

In this section, we will provide results of numerical experiments aimed to verify the order
of accuracy obtained from the a priori error analysis discussed in Sect. 6. This analysis
provides bounds for the error at time ¢ = T and the order of accuracy of the space-time DG
discretization in the DG-norm ||| -|||. In addition, we will also compute the error at time
t = T and the order of accuracy in the L*(£2) and L?(£2)-norms. We will consider solutions
of the wave equation (1) on a domain with a constant material coefficient matrix A, with a
smoothly varying material coefficient matrix A(x), and on a domain with a discontinuous
material coefficient matrix A(x).

7.1 Constant Material Coefficients

In the first set of computations, we use the square domain 2 = [0, 2z]%. The second-order
wave equation (1) on the domain £2 with homogeneous Dirichlet boundary conditions at
0£2 and zero source term f is solved with the space-time IP-DG discretization presented
in Sect. 4. The matrix A in (1) is the 2 X 2 identity matrix. The exact solution of this test
problem is given by

uo(x, y, 1) = cos( \/Et) sinxsiny, (80)

u,(x,y, 1) = —V/2 sin(V/20) sin x sin y. 81)

Apart from the scaling to the domain £ = [0, 1]%, this test case is the same as in [6,
Section 7.2].

The space-time slab &" is tessellated with a uniform N X N hexahedral mesh, with
N the number of elements in each spatial direction. Each space-time element has length
h =2z /N in the spatial directions and length A in the temporal direction. In the computa-
tions of the order of accuracy the CFL number is close to one. For the details, see Tables 1,
2 and 3. In the space-time DG discretization tensor product polynomial basis functions,
both in space and in time, are used with polynomial order p in each direction. The polyno-
mial orders are, respectively, p = 1,2 and 3. Hence, the tensor product basis functions have
the same polynomial order in space and in time. The stabilization coefficients y, and y, in
the space-time IP-DG discretization are chosen as y, = ; = Cp?, with the constant C = 10
in all computations. The element and face quadrature is done using a tensor-product of 1D
Gauss-Legendre quadrature rules. The order of the product Gauss quadrature rules is suf-
ficient such that all integrals with polynomial integrants are computed exactly.

The results are shown in Tables 1, 2 and 3 for, respectively, u = (ug, ;) in the DG-norm,
and u, and u, in the L® and L?-norms. The results in Table 1 show that the order of accu-
racy of u, = (uy,, uy ;,) in the DG-norm is order p, which confirms the theoretical analysis
given in Sect. 6 (Theorem 3). Tables 2 and 3 show that the order of accuracy of i ;, and u, ,
in both the L® and L*-norms is p + 1 for p = 1 and p = 3, which gives an optimal order of
accuracy, but for p = 2 the computed order of accuracy is p. A further theoretical analysis
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Table 1 Error inu = (ug, ;) at

time 7' = 3 and order of accuracy P NxN Al Il 7 — 1, D] Order
pipommetiense T oxio  owno  sestmo
second-order wave equation on 20 % 20 03000  2.086 210E—01 1.394 6
the domain 2= [0, 2712 with 40 X 40 0.1500  9.459 857E—02 1.1410
material coefficient matrix A 80 x 80 00750  4.602 898E—02 1.039 3
Zg;;l ;glglgofe(ggggf‘)tnx and 160X 160 00375  2.285445E-02 10101
320x320 00187  1.140 672E02 1.002 6
2 10x10 0.6000  6.767 988E—02 -
20 x 20 03000  8.868 485E-03 2.9320
40 x40 0.1500  1.942 308E-03 2.1909
80 % 80 00750  4.765 304E—04 2.027 1
160x 160 00375  1.186 240E—04 2.006 2
3 10%10 0.6000  1.717 659E—03 -
20 x 20 03000  1.976 279E—04 3.1196
40 x40 0.1500  2.458 385E-05 3.0070
80 x 80 00750  3.069 995E—06 3.001 4

would be necessary to explain this result. A comparison of the results in Table 1 with the
results for the Trefftz space-time DG method presented in [6, Table 7.3], whose error norm
is contained in the DG-norm used in Table 1, shows that the space-time DG discretization

Table 2 Error in u, at time T = 3 and order of accuracy in the L®- and L*-norms of the space-time IP-DG
discretization of the second-order wave equation on the domain Q= [0,27]* with material coefficient
matrix A equal to the identity matrix and exact solution (80)

P NXN At [ltg(-, T) — u (s Tl o, Order llug(-s T) — ug (-, Tl Order
1 10x 10 0.6000  8.595 303E-02 - 2.350 666E—01 -
20 %20 0.3000  1.972 859E—02 2.1233  5.282 080E—02 2.1539
40 x 40 0.1500  4.317 619E-03 2.1920 1.116 073E—02 2.24217
80 x 80 0.0750  9.300 060E—04 22149  2.340 323E-03 2.2537
160 x 160 0.0375  2.089 035E—04 2.1544  5.068 068E—04 22072
320 x 320 0.0187  4.988 226E-05 2.066 2 1.165 989E—04 2.1199
2 10x 10 0.6000  2.382 634E—-03 - 5.357 496E—03 -
20 %20 0.3000  2.595 137E-04 3.1987  5.928 S14E—-04 3.1758
40 x 40 0.1500  4.429 276E—05 2.5507 1.274 393E-04 22179
80 x 80 0.0750  1.086 493E—05 2.0274  2.995437E-05 2.0890
160 x 160 0.0375  2.674 616E—06 2.0223  7.274 026E-06 2.0419
3 10x 10 0.6000  6.966 799E—05 - 1.091 550E—04 -
20 x 20 0.3000  4.852 533E-06 3.8437  6.786 986E—06 4.007 5
40 x 40 0.1500  3.214 805E—07 39159  4.171 736E-07 4.024 1
80 % 80 0.0750  2.279 714E-08 3.8178  2.785 861E—08 3.904 5
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Table 3 Error in u, at time 7 = 3 and order of accuracy in the L®- and L?-norms of the space-time IP-DG
discretization of the second-order wave equation on the domain Q= [0,27]* with material coefficient
matrix A equal to the identity matrix and exact solution (81)

p  NXN At iy T) =y Dllog Order w7 —uy (- Dllg  Order
1 10x10 0.6000  9.339 632E-02 - 1.911 122E-01 -
20 x 20 03000  3.986 354E—02 12283 6.293 808E-02 1.602 4
40 x 40 0.1500  1.521 787E-02 13893 1.918 214E-02 17142
80 x 80 00750  5.035 022E—03 15957  5.346 373E-03 1.843 1
160X 160 00375  1.445 785E-03 1.800 1  1.429 745E—03 1.902 8
320x320 00187  3.775 549E-04 19371  3.759 800E—04 1.9270
2 10x10 06000  4.162 530E-02 - 5.918 999E—02 -
20 x 20 03000  4.297 455E-03 32759 4219 180E-03 3.8103
40 x 40 0.1500  4.467 894E—04 32658  4.315008E-04 3.289 5
80 x 80 00750  5.416 716E-05 30441  7.608 254E—05 25037
160x 160 00375  7.556 100E-06 28417  1.678 269E05 2.1806
3 10x10 0.6000  2.955 S00E-04 - 5.855 609E—04 -
20 x 20 03000  1.135 111E-05 47025  1.914 374E-05 49349
40 x 40 0.1500  8.293 469E—07 37747 1228 597E-06 3.9618
80 x 80 00750  6.209 340E-08 37395  7.871 654E08 3.964 2

(24) converges for the polynomial orders p = 1,2 and 3 at an optimal rate, whereas the
Trefftz space-time DG discretization in [6] does not converge at an optimal rate for p = 1.

7.2 Smooth Material Coefficients

In the second test case, we solve the second-order wave equation (1) with periodic bound-
ary conditions and zero source term f on the domain £ = (0, 1). The matrix A(x) in (1) has
smoothly varying coefficients, A(x) = diag(a®(x), a*(x)) with a?(x) =1 + % sin?(zx). The
initial conditions are

hy(x) = sin2zxx) and h(x) =0.

Except for the computational mesh, which now contains N-elements in the spatial direc-
tion, all numerical parameters are the same as in Sect. 7.1. Since we do not have an analyti-
cal solution that is suitable for error computations we use Richardson extrapolation [25] to
compute the order of accuracy of the space-time DG discretization at time ¢ = T, both in
the DG-norm and in the L®(£2) and L?(£2)-norms. In this procedure, we assume

u(x, T) — u,(x, T) = WE(x,u) + O(h**")
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with s the order of accuracy, /& the mesh size and E(x, u) the error term, which is independ-
ent of & for a sufficiently fine mesh and sufficiently regular solutions. Using three uniform
meshes with sizes h, h/2 and h/4 we can eliminate the exact solution u, and after neglect-
ing the residual term O(#**!) and taking the norm, we obtain the following estimate for the

order of accuracy:
et /o = upll
s = log <L>/log2.
ety pa =y ol

Note || - || can be any norm here, not just the L?> norm. This procedure will provide accurate
estimates of the order of accuracy provided that the mesh is sufficiently fine and the solu-
tion is regular. The orders of accuracy of the space-time DG discretization for the test case
with smoothly varying material coefficients are shown in Tables 4, 5 and 6 for, respec-
tively, u, = (g, ;) in the DG-norm, and u, and u, ;, in the L and L*-norms. For poly-
nomial orders p = 1,2, 3 optimal order of accuracy for, respectively, u;, in the DG-norm,
and for u,;, and u, ;, in the L* and L*-norm are obtained, except for uy, for p=2. The
results in these tables confirm the theoretical results stated in Theorem 3 and verify that a
smoothly varying material coefficient A(x) has no effect on the numerical accuracy of the
space-time DG discretization.

Table 4 Order of accuracy

of u, = (ug, uy ) in the
DG-norm of the space-time DG
discretization of the second-order

p N At |Huh/2(.’T>_uh(.’T)H| Order

6.666 667E—02  — -

wave equation on the domain 20 3.333 333E-02 1.552 426E+00 -
£ = (0, 1) with smoothly varying 40 1.666 667E-02  5.021 339E-01 1.628 4
?gfiagfgf;%mz;‘&gﬂgh 80 8333333E-03  1.542 846E01 17025
@) =1+ L sin’(ry) 160 4.166 667TE-03  5.686 230E—-02 1.440 0
320 2.083333E-03  2.521 798E—02 1.1730
640 1.041 667E-03  1.217 32902 1.050 7

210 6.666 66TE-02 - -

20 3.333333E-02  6.075 258E—02 -
40 1.666 667E—02  9.778 T44E-03 2.6352
80 8.333333E-03  2.290 333E-03 2.094 1
160 4.166 667TE-03  5.684 050E—04 20106
320 2.083333E-03  1.419 205E-04 2.0018

310 6.666 66TE-02 - -

20 3333333E-02  2.835 174E-03 -
40 1.666 667E-02  3.197 632E-04 3.1484
80 8.333333E-03  3.951 830E—05 3.0164
160 4.166 667E-03  4.931 235E-06 3.002 5

The order of accuracy is estimated using Richardson extrapolation

based on H

R |

for u;, at time T’ = 3
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Table5 Order of accuracy of u, in the L®- and L*norms of the space-time DG discretization of the sec-
ond-order wave equation on the domain 2 = (0, 1) with smoothly varying material coefficients A(x), with
A(x) = diag(a®(x), a®(x))and a*(x) = 1 + % sin’(7x)

p N Ar et 125 T) =t (s Dl 0,0 Order  lug o, T) — 14, (-, Tl g Order
1 10 6.666 667E—02 - - - -
20  3.333333E-02 1.847461E—01 - 1.155 498E-01 -
40 1.666 667E—02  7.884 740E—02 1.2284  4.374 305E—02 1.401 4
80  8.333333E-03 2.016 340E—02 1.9673 1.142 362E—02 1.9370
160 4.166 667E—03  5.009 961E—03 2.0089 2.864 434E-03 1.9957
320 2.083 333E—0 1.248 779E-03 2.0043 7.167 488E—04 1.998 7
640 1.041 667E—03  3.118 780E—04 2.0015 1.792 855E—04 1.999 2
2 10  6.666 667TE—02 - - - -
20  3.333333E02 6.886 089E—03 - 3.370 037E—03 -
40 1.666 667E—02  5.161 834E-04 3.7377 2.320 758E—04 3.860 1
80  8.333333E-03 3.931 571E—05 3.7147 1.682 145E—05 3.786 2
160 4.166 667E—03  3.421 960E—06 3.5222 1.472 208E—06 3.5142
320 2.083 333E—0 3.410 144E—07 3.3269  1.553 646E—07 3.2443
3 10 6.666 667TE—02 - - - -
20  3.333333E-02  9.865 425E-05 - 4.708 460E—05 -
40 1.666 667E—02  4.297 505E-06 4.5208 1.660 718E—06 4.8254
80  8.333333E—03 2.793 519E—-07 3.9433 9.765 012E—08 4.088 0
160 4.166 667E—03  1.886 200E—08 3.8885 6.096 515E—09 4.001 6

The order of accuracy is estimated using Richardson extrapolation based on “”(),h 72 T) = g T)” o for
uy,attime 7 =3 |

7.3 Discontinuous Material Coefficients

In the third test case, we solve the second-order wave equation (1) with homogeneous
Dirichlet boundary conditions and zero source term f on the domain Q2 = (—1,1). The
matrix with material coefficients A(x) is chosen such that A = diag(1, 1) if x <0 and
A= diag(i, 711) if x > 0. The initial conditions are

_J sin(z(x + 1)),
ho(0) = { 4sin(z(x + 1)),

ifx <0,

ifx> 0, and h(x) =0.

The initial condition A satisfies the interface condition (2). Satisfying this compatibility
condition is important since otherwise at # = 0t immediately a jump in the velocity at x = 0
will occur. It will then not be possible to compute the order of accuracy of the space-time
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Table 6 Order of accuracy of u, , in the L®- and L*norms of the space-time DG discretization of the sec-
ond-order wave equation on the domain 2 = (0, 1) with smoothly varying material coefficients A(x), with
A(x) = diag(a®(x), a®(x))and a*(x) = 1 + % sin’(7x)

p N At ety oo 1) =ty (o Dl o, Order uy o T) — 14y (-, Tl Order
1 10 6.666 667E—02 - - - -
20 3.333 333E—02 2.197 136E+00 - 1.184 621E+00 -
40 1.666 667E—02 2.881 823E—01 29306 1.809 098E—-01 27111
80 8.333 333E—03 9.284 320E—02 1.634 1 5.342 320E-02 1.759 7
160  4.166 667E—03 2.508 165E—02 1.8882 1.472 743E—02 1.8590
320 2.083333E0 6.396 477E—03 1.9713 3.783 301E-03 1.960 8
640 1.041 667E-03 1.608 650E—03 1.9914 9.542 030E—04 1.987 3
2 10 6.666 667E—02 - - - -
20 3.333 333E-02 5.799 435E—02 - 1.986 339E—02 -
40 1.666 667E—02 7.620 807E—03 29279 2.297 845E-03 3.1118
80 8.333 333E—03 1.062 344E—03 2.8427 2.814 035E-04 3.0296
160  4.166 667E—03 1.466 420E—04 2.8569 4.111 717E-05 2.774 8
320 2.083333E—0  2.096 264E—05 2.8064 7.005 976E—06 2.5531
3 10 6.666 667E—02 - - - -
20 3.333 333E-02 4.266 654E—03 - 1.247 253E-03 -
40 1.666 667E—02 1.983 365E—04 44271 6.071 673E-05 4.360 5
80 8.333 333E—03 9.832 203E—06 43343 3.344 010E—06 4.182 4
160  4.166 667E—03 6.535 017E—07 39113 2.039 363E-07 4.0354

The order of accuracy is estimated using Richardson extrapolation based on “u 12 T) = uy (s T)” o for
u,attime7 =3 |

discretization for this problem due to lack of regularity. Except for the computational mesh,
all numerical parameters are the same as in Sect. 7.1. The solution u of the wave equation
(1) and its time derivative both have a discontinuity in the spatial derivative at x = 0. The
regularity of the exact solution is given by (5)—(6). Note for higher-order discretizations,
this limited regularity will affect the order of accuracy of the numerical discretization.

The orders of accuracy of the space-time DG discretization for the test case with
a discontinuous material coefficient are shown in Tables 7, 8 and 9 for, respectively,
uy = (g, 1y ;) in the DG-norm, and u, and u, ;, in the L and L*-norms. The results in
Table 7 show that the order of accuracy in the DG-norm ||| -||| for p = 1and p = 2 is order
p, which confirms the theoretical analysis given in Sect. 6 (Theorem 3). For p = 3, the
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Table 7 Order of accuracy

of w, = (ugy, ;) in the PN Al |H”h/2(" T) = uy (s T)H‘ Order

DG-norm of the space-time DG

discretization of the second-order | 10 2.000 OE~01 - -

wave equation on the domain 20 1.000 OE-01 1.099 337E+00 -

£ = (=1, 1) with discontinuous 40 5000 0E-02  4.513 883E-01 1.2842

Ea:te;fg‘(“fef?;ﬁt 400, with 80 2.5000E-02  2.070 237E-01 11246

A =diag(L, D)if x>0 160 1250 0E-02  1.010 710E-01 1.034 4
320 6.250 0E-03  4.987 026E—02 1.019 1
640 3.1250E-03  2.470 113E-02 1.0136
1280  1.5625E-03  1.229 152E—02 1.006 9
2560  7.8125E-04  6.132 502E—03 1.003 1

210 2.0000E-01 - -
20 1.000 0E-01  1.444 122E-01 -
40 5.000 0E-02  3.504 549E—02 2.0429
80 2.500 0E-02  8.417 827E-03 2.0577
160 1250 0E-02  2.100 701E—03 2.0026
320 6250 0E—03  5.315 801E—-04 1.9825
640 3.1250E-03  1.355 984E—04 1.9709
310 2.0000E-01 - -

20 1.000 0E-01  2.582 876E—02 -
40 5000 0E-02  3.467 462E-03 2.897 0
80 2.500 0B—02  6.972 543E-04 23141
160 1250 0E-02  1.527 201E-04 2.190 8
320 6.250 0E-03  3.597 525E-05 2.085 8

The order of accuracy is estimated using Richardson extrapolation
based on ‘Huh/2(~, T) —u,(, T)‘ | ‘ for u; at time T = 3

order of accuracy in the DG-norm is 2, which is not optimal and caused by the lack in reg-
ularity, see Sect. 2, and is also visible in the order of accuracy for the velocity u,. For p = 1
the order of accuracy in the L® and L*-norms is approximately 2, which is the optimal
order. Just as for the constant coefficient case considered in Sect. 7.1, for p = 2 the order
of accuracy in the L*® and L?-norms is approximately 2. For p = 3, the order of accuracy in
the L® and L?>-norms is affected by the limited regularity of the exact solution.
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Table 8 Order of accuracy of u, in the DG-norm of the space-time DG discretization of the second-order
wave equation on the domain £ = (-1, 1) with discontinuous material coefficient A(x), with A = diag(1, 1)
if x < 0and A = diag(}, $)if x>0

p N At lug,py2 (5 T) = g (- Tl o, Order [l oG5 T) = 1 Dll g Order

1 10 2.000 0E-01 - - - -

20 1.000 OE—01 3.015 643E—01 - 1.907 044E—-01 -

40 5.000 0E—02 6.964 228E—02 2.1144  3.860 230E—02 2.304 6

80 2.500 0E—02 1.357 263E—02 23593  8.651 134E-03 21577

160 1.250 0E—02 3.623 416E—03 1.9053  2.820 617E—03 1.616 9

320 6.250 0OE-03 1.119 501E—03 1.6945  8.817 243E-04 1.6776

640 3.125 0E—03 3.029 074E—04 1.8859  2.535268E—04 1.798 2

1280 1.562 5E—03 9.359 529E—05 1.6944  6.982 001E—05 1.860 4

2560 7.8125E—04 2.636 046E—05 1.8281  1.847 202E-05 19183
2 10 2.000 OE-01 — - - -

20 1.000 OE—01 3.034 944E—02 - 1.299 348E-02 -

40 5.000 0E—02 3.676 613E—03 3.0452  1.619 355E-03 3.004 3

80 2.500 0E—02 5.356 847E—04 27789  3.259 189E—04 23128

160 1.250 0E—02 1.012 747E-04 24031  7.919 282E-05 2.0411

320 6.250 0E—03 2.630 166E—05 1.9450  1.979 433E-05 2.000 3

640 3.125 0E—03 6.755 287E—06 19611  4.966 333E-06 1.994 8
3 10 2.000 0E-01 - - - -

20 1.000 OE—01 4.703 992E—03 - 1.431 009E—03 -

40 5.000 0E—02 4.297 626E—04 3.4523  1.117 194E-04 3.6791

80 2.500 0E—02 6.841 987E—05 2.6511  1.300 030E—05 3.1033

160 1.250 0E—02 1.067 120E—05 2.6807  1.536 255E-06 3.0811

320 6.250 0E—03 1.735 577E—06 26202  1.937 976E—07 2.986 8

The order of accuracy is estimated using Richardson extrapolation based on “”0,11 72 T) = g (-, T)” o for
Uy, attime T =3 |
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Table 9 Order of accuracy of u, ;, in the DG-norm of the space-time DG discretization of the second-order
wave equation on the domain £ = (-1, 1) with discontinuous material coefficient A(x), with A = diag(1, 1)
if x < 0and A = diag(}, $)if x>0

p N At ety pyoCo T) = 1y (s Dl Order ety o T) = 1y - Tl g Order

1 10 2.000 0OE-01 - - - -
20 1.000 OE—01 7.949 356E—01 - 5.195 824E-01 -
40 5.000 0E—02 3.687 194E—01 1.108 3 1.759 222E-01 1.562 4

80 2.500 0E—02 1.057 332E—01 1.8021 5.073276 E-02 1.7939
160 1.250 0OE—02 8.185 902E—02 03692  1.651 508E—02 1.619 1
320 6.250 0E-03 4.681 266E—02 0.8062  5.382 507E—03 1.6174
640 3.125 0E—03 1.710 360E—02 1.4526  1.529 823E—03 1.8149
1280 1.5625E—03 4.923 062E—03 1.796 7  4.191 893E—04 1.867 7
2560 7.8125E—04 1.294 086E—03 1.9276  1.192 792E—04 1.8133
2 10 2.000 OE-01 - - - -
20 1.000 OE—01 3.603 271E—01 - 7.614 734E-02 -
40 5.000 0E—02 6.765 794E—02 24130 1.244 897E-02 26128
80 2.500 0E—02 1.032 655E—02 27119  2.181 448E—03 25127
160 1.250 0E—02 1.826 414E—03 24993 4914227 E-04 2.1502
320 6.250 0E-03 5.533 361E—04 1.7228  1.201 820E—04 2.0317
640 3.125 0E—03 1.910 510E-04 1.5342  2.999 337E—-05 2.0025
3 10 2.000 OE-01 - - - -
20 1.000 OE—01 2.924 378E—02 - 1.225 888E—02 -
40 5.000 0E—02 6.090 632E—03 22635 1.844 934E-03 27322
80 2.500 0E-02 1.627 436E—03 1.9040  3.729 545E-04 2.306 5
160 1.250 0E—02 5.230 329E-04 1.6376  8.834 949E—05 2.0777
320 6.250 0E—03 1.883 767E—04 14733  2.224 675E-05 1.989 6

The order of accuracy is estimated using Richardson extrapolation based on “”1,11 2 T) =y T)” o for
u,attime7 =3 |
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