
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.  9,  NO.  5,  MAY  1998 497

A Spanning Multichannel Linked Hypercube:
A Gradually Scalable Optical Interconnection

Network for Massively Parallel Computing
Ahmed Louri, Senior Member, IEEE, Brent Weech, Student Member, IEEE,

and Costas Neocleous, Student Member, IEEE

Abstract—A new, scalable interconnection topology called the Spanning Multichannel Linked Hypercube (SMLH) is proposed. This
proposed network is very suitable to massively parallel systems and is highly amenable to optical implementation. The SMLH uses
the hypercube topology as a basic building block and connects such building blocks using two-dimensional multichannel links
(similar to spanning buses). In doing so, the SMLH combines positive features of both the hypercube (small diameter, high
connectivity, symmetry, simple routing, and fault tolerance) and the spanning bus hypercube (SBH) (constant node degree,
scalability, and ease of physical implementation), while at the same time circumventing their disadvantages. The SMLH topology
supports many communication patterns found in different classes of computation, such as bus-based, mesh-based, and tree-based
problems, as well as hypercube-based problems. A very attractive feature of the SMLH network is its ability to support a large
number of processors with the possibility of maintaining a constant degree and a constant diameter. Other positive features include
symmetry, incremental scalability, and fault tolerance. It is shown that the SMLH network provides better average message distance,
average traffic density, and queuing delay than many similar networks, including the binary hypercube, the SBH, etc. Additionally,
the SMLH has comparable performance to other high-performance hypercubic networks, including the Generalized Hypercube and
the Hypermesh. An optical implementation methodology is proposed for SMLH. The implementation methodology combines both the
advantages of free space optics with those of wavelength division multiplexing techniques. A detailed analysis of the feasibility of the
proposed network is also presented.

Index Terms—Interconnection networks, scalability, massively parallel processing, optical interconnects, wavelength division
multiplexing, product networks.

——————————   ✦   ——————————

1 INTRODUCTION

ROGRESS in VLSI technology, combined with the esca-
lating demands for more processing power and speed,

have recently produced a technological environment in
which Massively Parallel Processors (MPPs), with hundreds
or even thousands of processing elements (PEs), are be-
coming commonplace (examples include Intel Paragon,
Cray T3D and T3E, IBM SP-1 and 2, MasPar MP-1 and 2,
Stanford Dash, etc.). The interconnection network, not the
PEs or their speed, is proving to be the decisive and deter-
mining factor in terms of cost and performance [1], [2], [3],
[4]. Ideally, a network topology intended for massively par-
allel computation should have the following characteristics:

1)� small or bounded degree (a small degree implies low
design complexity and low cost, a bounded or fixed
degree implies scalability and fixed PE complexity),

2)�ability to incrementally add PEs to an existing net-
work with minimal or no changes at all to the existing
configuration,

3)� a large number of PE-disjoint paths between any two
pairs of PEs for increased reliability and fault tolerance,

4)� the message routing should be simple to implement
and flexible to route around faulty PEs in the network,

5)� the diameter should be small to minimize communi-
cation delays,

6)�must have a large communication bandwidth, and
7)�must possess good embedding capabilities (ability to

efficiently emulate a large number of commonly re-
quired interconnection patterns).

We should note that the diameter of a network remains an
important criterion in characterizing the network delay
(latency) even with the wide use of wormhole routing [5],
[6]. Wormhole routing does not reduce the time required for
intermediate PEs to process small packets (flits). Larger
diameter networks must therefore keep a larger number of
PEs busy for a single packet transfer, which leads to a re-
duction in throughput for the entire system [7].

To this end, several topologies have been proposed to fit
different styles of computation. Examples include crossbars,
multiple buses, multistage interconnection networks, and
hypercubes, to name a few. Unfortunately, most of the
presently known network topologies do not satisfy all the
above characteristics. Among these, the hypercube has
received considerable attention, due mainly to its good
topological characteristics (small diameter, regularity,
high connectivity, simple control and routing, symmetry,
and fault tolerance) and its ability to efficiently permit
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the embedding of numerous topologies, such as rings,
trees, meshes, and shuffle-exchange, among others [8].
However, a drawback of the hypercube is its lack of scal-
ability, which limits its use in building large size systems
out of smaller size systems. The lack of scalability of the
hypercube stems from the fact that the node degree is not
bounded and varies as log2 N, where N is the total number
of nodes. This property makes the hypercube cost prohibi-
tive for large N. Most hypercube-based interconnection
networks proposed in the literature [9], [10], [11], [12], [13],
[14], [15] suffer from similar size scalability problems.

Recently, some networks have been introduced that are a
product of hypercube topology with fixed degree networks
such as the mesh, the tree, and the deBruijn [4], [14], [16] in
the quest of preserving the properties of the hypercube
while improving its scalability characteristics. In a previous
study, the authors introduced the Optical Multi-Mesh Hy-
percube (OMMH) [17], [18], [19]. The OMMH is a network
that combines the positive features of the hypercube (small
diameter, regularity, high connectivity, simple control and
routing, symmetry, and fault tolerance) with those of a
mesh (constant node degree and size scalability). The
OMMH can be viewed as a two-level system: a local con-
nection level representing a set of hypercube modules and a
global connection level representing the mesh network
connecting the hypercube modules. The OMMH network
has been physically demonstrated using a combination of
free-space and fiber optics technologies, and has shown
good performance characteristics [20] for a reasonable size
network. However, for very large networks (greater than
1,000 PEs), the OMMH experiences a logarithmic increase
in diameter and requires a large amount of fiber, which
makes the implementation complicated and expensive.

In this paper, we propose a novel network that im-
proves the topological characteristics, as well as the im-
plementation and performance aspects, of the OMMH
network. The new network topology proposed is called
Spanning Multichannel Linked Hypercube (SMLH), and
possesses a constant degree and a constant diameter
while preserving many properties of the hypercube. The
SMLH, similar to the OMMH, employs the hypercube
topology at the local connection level. The global con-
nection level connecting the hypercube modules is called
a Spanning Multichannel Network (SMN) and resembles a
Spanning Bus Hypercube (SBH) network [21], where
each bus is replaced with a multichannel link. The SBH is
a D-dimensional lattice of width w in each dimension.
Each node is connected to D buses, one in each of the
orthogonal dimensions; w nodes share a bus in each di-
mension which permits only one data transfer at a time.
The spanning bus hypercube offers small node degree,
small diameter, and scalability. It can be scaled up by
expanding the size of the spanning buses [21]. However,
expanding the size of the buses leads to an O(w) increase
in traffic density [21] which in turn leads to bus conges-
tion problems [22]. In the SMN, each multichannel link
spanning a dimensional axis represents w distinct logical
channels allowing up to w simultaneous data transfers.
The advantages of the SMLH network are that it utilizes
both the hypercube local interconnection level and the

SMN multiple logical channels to decrease traffic density,
which alleviates the bus congestion problems encoun-
tered in pure SBH networks. This feature allows larger
systems to be built, since it allows the SMLH multichan-
nel links to support a larger number of processors than
the SBH network. Another attribute of the SMLH is in-
cremental scalablilty with a high degree of connectivity
and a low diameter. Additionally, we propose an optical
implementation of such a network. Optical interconnects
offer many desirable features, such as very large com-
munication bandwidth, reduced crosstalk, immunity to
electromagnetic interference, and low power require-
ments [3], [4], [23], [24], [25], [26], [27], [28], [29], [30].

2 STRUCTURE OF THE SPANNING MULTICHANNEL
LINKED HYPERCUBE NETWORK

In this section, we formally define the structure of the
SMLH network and discuss its properties.

2.1 Topology of the SMLH Interconnection Network
The topology of the SMLH can be described as an undi-
rected graph, GSMLH = (V, E), where V represents a set of
nodes and E represents a set of edges. The SMLH can also
be viewed as a product hybrid graph because it combines a
D-dimensional spanning multichannel graph and a binary
hypercube graph in such a way that if G = G1 ¥ G2, where
G1 represents the spanning multichannel graph and G2 the
Binary Hypercube (BHC) graph, then the Cartesian product
of their vertices is V1 ¥ V2 = [(u2, u1)|u2 Œ V2 and u1 Œ V1]
[14]. This resultant graph relationship and other perform-
ance properties for product networks are shown in Table 1
[31]. The SMN resembles the SBH topology introduced by
Wittie [21], with a major improvement in performance and
complexity. Each multichannel link with w PEs represents w
distinct logical channels which allow up to w simultaneous
data transfers. In contrast, in the SBH, each bus can only
allow one data transfer at a time.

The SMLH can be characterized by a three-tuple (w, n, D),
where w, n, and D are positive integers. The first parameter, w,
defines the number of nodes attached to each multichannel
link. The second parameter, n, is the degree of the point-to-
point n-cube (hypercube). The third parameter, D, identifies
the number of dimensions spanned by a node in the SMN. To
this end, the SMLH can be viewed as a product hybrid net-
work combining two subnetworks: a D-dimensional SMN and
a hypercube.

For an SMLH(w, n, D), the number of nodes, |V|, is
equal to w

D
 2

n
. A node address in the SMLH is denoted by a

(w + 1)-tuple (a1, a2, L, aw, aw+1) using a mixed radix system,
where, for i = 1 to i = w, 0 £ ai < w, and 0 £ aw+1 < 2

n
.

TABLE 1
PROPERTIES OF PRODUCT NETWORKS

Network Property Relationship

Resultant Graph G1 ¥ G2

Size (N) N1 ¥ N2

Degree (k) k1 + k2

Diameter (d) d1 + d2

Number of Links (L) N1 L2 + N2 L1
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Given the set of nodes (V), the set of edges (E) is con-
structed as follows: For two nodes (a1, a2, L, aw, aw+1) and
(b1, b2, L, bw, bw+1) where, for i = 1 to i = w, 0 £ ai < w, for j = 1
to j = w, 0 £ bj <w, 0 £ an < 2

n
, and 0 £ bw+1 < 2

n
:

1)�The two nodes span the same SMN if
a)� aw+1 = bw+1, and
b)� if, for i = 1 to i = w, there are only two components,

aj and bj, that are different, while all the other com-
ponents are identical.

2)�There is a link (called a hypercube link) between two
nodes if and only if, for i = 1 to i = w,
a)� ai = bi, and
b)�aw+1 and bw+1 differ by one bit position in their bi-

nary representation (Hamming distance of one).

Fig. 1 shows an SMLH(w = 2, n = 3, D = 2) interconnec-
tion where the bold, thin lines represent point-to-point hy-
percube links and thick lines represent SMNs. Small, dark
circles represent nodes of the SMLH network which are, in
this paper, abstractions of processing elements, memory
modules, or switches. Note that, because D = 2, each node
spans two SMNs, one along each dimension. Furthermore,
there are three bidirectional point-to-point links attached to
a node which corresponds to the hypercube links. A careful
observation of Fig. 1 shows that the node addresses satisfy
the connection rules outlined earlier.

In this paper, we only consider SMLH networks with D = 2
and leave higher dimensioned SMLH network analysis for
future work. Therefore, in the notation, the third parameter,
D, will be dropped. Consequently, an SMLH(w, n, D = 2)
network will be referred to as SMLH(w, n). As can be seen
in Fig. 1, the SMLH(w = 2, n = 3) consists of 2

2
 ¥ 2

3
 = 32

nodes, and it can be viewed as eight concurrent 2D SMNs.
Note that w horizontal multichannel links and w vertical
multichannel links are needed to form one w ¥ w, 2D SMN.
Fig. 2 shows one such 2D SMN formed by nodes with the
same hypercube addresses and belonging to different
hypercube modules. Similar considerations take place for
the other seven 2D SMNs in Fig. 1. The SMLH(w = 2, n = 3)
network can also be viewed as four concurrent three-
dimensional hypercubes in which four nodes, having identi-
cal hypercube addresses, form a 2 ¥ 2 SMN. The SMLH(w = 2,
n = 3) in Fig. 1 looks like a hypercube-clustered, spanning
multichannel network. In general, there are 2

n
 2D SMNs

and w
2
 hypercube modules. Note that when w is equal to one,

the SMLH becomes a pure hypercube network, while when n
is equal to zero, it becomes a pure spanning bus network if the
multichannel link is constrained to operate on a single chan-
nel. This implies that both the hypercube and the SBH can be
thought of as special cases of the SMLH network.

The choice of two parameters, w and n, completely de-
termines the size of the network, the resources and imple-
mentation requirements, and the scaling complexity. The w
parameter determines the size of the multichannel link lat-
tice, while the n parameter defines the size of the hyper-
cubes. From a scaling viewpoint, two scaling rules can be
applied for an SMLH(w, n) network. The first rule, which
we call “fixed-w” rule, keeps the size of the multichannel
links constant and increases the size of the network by in-
creasing n. The second rule, which we call “fixed-n” rule,
keeps the size of the hypercube constant and increases the
size of the network by increasing w. Clearly, the advantage
of the SMLH(w, n) network is its flexibility to scale up using
either, or a combination of, the two scaling rules.

Fig. 1. An example of the spanning multichannel linked hypercube network: An SMHL(w = 2,n = 3) (32 nodes) interconnection is shown. Thick
lines represent SMN connections, while bold, thin lines represent point-to-point hypercube connections.
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For instance, the size of the SMLH can grow without al-
tering the number of links per node by expanding the size of
the multichannel links. For example, three-dimensional hy-
percubes can be added on the perimeter of the 2D SMN of
Fig. 1. Fig. 3 illustrates an SMLH(w = 3, n = 3), which is con-
structed by expanding the SMLH(w = 2, n = 3) network by
adding hypercube modules along an outer row and an outer
column. The existing configuration of the nodes of the
SMLH(w = 2, n = 3) network did not change because each
node still spans two multichannel links and still has three
bidirectional point-to-point links for the hypercube connec-
tions. This option allows the SMLH to be size scalable. Some
discussion of the relationship between the two scaling rules
and tradeoffs in performance are discussed in Section 2.3.

2.2 Message Routing in the SMLH Interconnection
Network

Due to the regularity and symmetry of the SMLH archi-
tecture, a distributed routing scheme can be implemented
without global information. At the source node, the mes-
sage is formatted with the source address, the destination
address, message length, and a few control bits, such as
semaphore bits. The interprocessor message traffic of a
node gets redistributed into two categories, i.e., the hyper-
cube communication and the spanning multichannel
communication. If the source and the destination of the
message are within the same hypercube subnetwork of the
SMLH network, the routing procedure is exactly the same
as that of the regular hypercube network. Similarly, if the
source and the destination of the message are within the
same SMN of the SMLH network, the routing procedure is
exactly the same as that of a regular bus connected net-
work [18].

If the source and the destination of the message share
neither a hypercube nor a 2D SMN, the routing scheme uses
the hypercube routing scheme until the message arrives at
the same hypercube node as the destination and, then, uses
the SMN routing scheme for the message to arrive at the
destination. Or, the SMN routing scheme can first be applied
to forward the message to the same hypercube where the
destination resides and, then, the message can reach the des-
tination using the hypercube routing scheme. We can also
mix the hypercube and the SMN routing until the message is
forwarded to the same hypercube or to the same SMN where
the destination resides and, then, we can forward the mes-
sage to the destination using the hypercube or the SMN
routing scheme, respectively.

2.3 Properties of the SMLH Interconnection Network
2.3.1 Diameter and Link Complexity
The diameter of a network is defined as the maximum dis-

tance between any two processors in the network. Thus, the
diameter determines the maximum number of hops that an
average message may have to take. The diameter of a 2D

SMN is two, as it is for a 2D SBH, and the diameter of a binary

hypercube with NBHC nodes is n = log2 NBHC. Therefore, the

diameter of SMLH(w, n) is (n + 2). For the SMLH(w, n) net-

work with N nodes, N = w
2
 2

n
, therefore, n N

w
= log2 2 . Con-

sequently, the diameter of the SMLH(w, n) network can be

written as log2 2 2N

w
+ . Using the fixed-w scaling rule, the

diameter of the SMLH(w, n) network experiences a loga-

rithmic increase (O(log2 N)) when the network size in-

creases. However, using the fixed-n scaling rule would make

the diameter constant, n + 2, for any network size.
Link complexity or node degree is defined as the num-

ber of physical links per node. For a regular network, where

all nodes have the same number of links, the node degree of
the network is that of a node. The node degree of a hyper-

cube with NBHC nodes is n = log2 NBHC and that of a 2D

SMN is two, since there are only two physical SMNs links

connected to each node. A node of an SMLH(w, n) network
possesses links for both the hypercube connections and the
SMN connections. Consequently, the node degree of the

SMLH network is (n + 2) or log2 2 2N

w
+e j . Again, when us-

ing the fixed-w scaling rule, the SMLH network experiences

a logarithmic increase in degree (O(log2 N)); however, when

the network is expanded using the fixed-n scaling rule, the

degree becomes constant, n + 2.

2.3.2 Bisection Width
The bisection width of a network is defined as the mini-
mum number of links that have to be removed to partition
the network into two equal halves [32]. The bisection width
indicates the volume of communication allowed between
any two halves of the network with an equal number of
nodes. The bisection width of a n-dimensional hypercube is
2

n-1
 = NBHC/2 since that many links are connected between

two (n - 1)-dimensional hypercubes to form an n-dimensional
hypercube. The equation of bisection width for the SMLH

Fig. 2. An example of a 2D SMN within an SMHL(w = 2, n = 3) net-
work. Note that the nodes that construct the 2D SMN belong to differ-
ent hypercube modules but they possess the same binary hypercube
address representation within their corresponding hypercube modules.
Eight such 2D SMNs coexist in the SMLH(w = 2, n = 3) interconnection.
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varies depending on whether w is even or odd, since w odd
dictates cutting at least one hypercube in half. For w even,
there are w such n-dimensional hypercubes connecting 2

n
 2D

SMNs, the bisection width of an SMLH(w even, n) is equal to
w ¥ 2

n
 = N/w. For w odd, there is one such n-dimensional

hypercube that must be cut in half in addition to cutting all
multichannel links in one dimension and 2

n-1
 multichannel

links in the second dimension. Therefore, the bisection
width of an SMLH(w odd, n) is equal to w ¥ 2

n
 + 2

n
 + 2

n-1
 =

N/w + 3N/2w
2
.

2.3.3 Granularity of Size Scaling
The granularity of size scaling is the ability of the system to

increase in size with minor or no change to the existing con-
figuration, and with an expected increase in performance
proportional to the extent of the increase in size. For a 2D

SMN, the granularity of size scaling is only 2w + 1 since, at
a minimum, one multichannel link per dimension could be

added to the network in order to increase its size. Therefore,

the granularity of the size scaling in a w ¥ w 2D SMN of

NSMN = w
2
 nodes is 2 11 2NSMN + . However, the size of a

hypercube can only be increased by doubling the num-

ber of nodes; that is, the granularity of size scaling in an

n-dimensional hypercube is 2
n
. When the fixed-w scaling

rule is applied, the granularity of size scaling follows the

hypercube size scaling. Therefore, the granularity of size

scaling for the SMLH, using the fixed-w rule, is w
2
 ¥ 2

n
 = N.

When the fixed-n scaling rule is used, the granularity of
size scaling follows that of the SMN. Therefore, the granu-

larity of size scaling following the fixed-n rule is 2
n
(2w + 1)

= 2(N/w) + 2
n
. Note that the granularity of size scaling us-

ing the fixed-w rule is O(N) while, for the fixed-n rule, it is
O(N/w). SMLH is competitive with other networks in this

smooth scalability property [33].

Fig. 3. An SMLH(w = 3, n = 3) (72 nodes) interconnection. This SMLH network can be constructed by adding hypercube modules along a row and
a column.
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2.3.4 Average Message Distance
The average message distance in a network is defined as the
average number of links that a message should travel between
any two nodes. Let Ni represent the number of nodes at a dis-
tance i, then the average distance l  is defined as [12]:

l
N

iNi
i

n

=
-

=
Â

1

1
1

,        (1)

where N is the total number of nodes, and n is the degree.
Since the SMLH is a product network of the BHC and SMN,
the average message distance can be derived from the indi-
vidual average message distances for the BHC and SMN.
For the BHC, the number of nodes at a fixed distance,
Ni,BHC, is given as [12]:

N
n
i wi BHC

i
, = F

H
I
K - 1a f ,         (2)

since, for i differing digits which are each able to vary in

(w - 1) ways, the enumeration is (w - 1)
i
. Substituting the

equation into (1) and computing the summation yields
the common form of the BHC average message distance

lBHC  [12]:

l
n N

NBHC
BHC

BHC

=
-

F
HG

I
KJ2 1
.          (3)

For a 2D SMN, the number of nodes at distance 1, N1,SMN

is 2(w - 1) since there are w - 1 nodes in each direction, not
including the source node. Since the diameter of the 2D SMN
is two, the number of nodes at distance 2, N2,SMN, is equal to
all nodes not at distance 1, minus the source node, i.e.,

N2,SMN = w
2
 - 2(w - 1) - 1.           (4)

Since the SMLH network is not required to use time divi-
sion multiple access (TDMA), as the SBH is, to access a
shared medium, the above equations for Ni,SMN will result
in an average message distance for a 2D SMN, lSMN , which
differs from the traditional average message distance equa-
tion for a SBH of [21]:

l
D w N

NSMN
SMN

SMN

=
-

-
F
HG

I
KJ

1

2 1

a f
.             (5)

Assuming a collision free environment, an average mes-

sage can use the hypercube routing scheme until the mes-
sage arrives at the same hypercube position and then use
the SMN routing scheme to arrive at the destination, as de-

scribed in Section 2.2. Or, the SMN routing scheme can first
be applied to forward the message to the same hypercube
where the destination resides and, then, use the hypercube

routing scheme. Therefore, an average message has the po-

tential of encountering any of the (NBHC - 1) nodes in a

given hypercube and any of the (NSMN - 1) SMN nodes,

where NBHC is the total number of nodes in a single binary

hypercube and NSMN is the number of nodes in the SMN

network. Therefore, the average message distance in the

SMLH, lSMLH , can be calculated as:

l
N N

iN iNSMLH
BHC SMN

i BHC
i

n

i SMN
i

=
- + -

+
F
HG

I
KJ= =

Â Â
1

1 1
1 1

2

c h c h , , , (6)

which can be rewritten using the above equations as:

l
w w n

w
SMLH

n

n
=

- +

- + -

-2 1 2

1 2 1

1

2

( )
.

e j e j
(7)

2.3.5 Fault Tolerance
Due to the concurrent presence of SMNs and hypercubes in
the SMLH, rerouting of messages in the presence of a single
faulty link or a single faulty node can easily be done with little
modification of existing fault-free routing algorithms. In the
SMLH, any single faulty link or any single faulty node can be
side stepped by only two additional hops as long as that par-
ticular node is not involved in the communication, namely, the
node is neither the source nor the destination for any message.
This can be shown as follows: A message in the SMLH is
routed using a SMN routing function if both the source and
the destination of the message are in the same 2D SMN, or a
hypercube routing function if they are in the same hypercube
module, or a combination of these two routing functions if
they are neither in the same SMN nor in the same hypercube
module. Consider the rerouting scheme in the presence of a
single faulty link when the SMN routing function is being ap-
plied. When we refer to a faulty link, we mean that a PE can-
not access the SMN due to a failure. In such a case, the PE
would not be able to communicate with other PEs that share
the same SMN. The problem can be solved by forwarding the
data to the neighboring SMN via one hop of the hypercube
link (n such neighboring two-dimensional multichannel links
exist in SMLH(w, n)). By using the neighboring SMN, the mes-
sage arrives at a node which is one hop away from the desti-
nation, since the message has been routed in the neighboring
SMN to detour the faulty link. Similarly, a single faulty link
when the hypercube routing function is being applied can be
side stepped by forwarding the message to the neighboring
hypercube via a SMN operation, as shown in Fig. 3. In general,
for an SMLH(w, n) network, n two-hop rerouting schemes are
available to bypass a faulty link which is competitive with
other networks [12], [33].

3 COMPARISONS OF SMLH WITH POPULAR
NETWORKS

In this section, we compare the SMLH network with ex-
isting, well-known topologies. These include the Binary
Hypercube (BHC) [8], the Generalized Hypercube (GHC)
[12], the Torus [34], the Spanning Bus Hypercube (SBH)
[21], the Hierarchical Cubic Network (HCN) [9], the
Cube-Connected-Cycle (CCC) [35], the Hyper-deBruijn
(HdB) [36], the Folded Peterson (FPT) [37], the Hyper-
mesh (HM) [33], and the Optical Multi-Mesh Hypercube
(OMMH) [17]. The comparison parameters include di-
ameter, degree, number of links, average message dis-
tance, average traffic density, and queuing delay. The
topological characteristics of the above networks are in-
dicated in Table 2. The results of the comparison are
shown in Figs. 4, 5, 6, and 7.

In the figures, the SMLH(w = 32, n) notation denotes that
the network is expanded following the fixed-w (w = 32)

rule; that is, the size of the multichannel links is kept constant
(32 PEs each) and the size of the hypercube module is changed
to have the same network size for comparison purposes. The
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SMLH(w, n = 4) notation denotes that the network is ex-
panded following the fixed-n rule, which means that the size

of the hypercube module (4) is kept fixed and the size of the
multichannel links are increased. Note that when expanding
the SMLH network, some mathematical constraints exist. In

Section 2.3, the degree and diameter of the SMLH network

were derived; they are both equal to log2 2 2N

w
+ . The first

term of the equation is a factor of both the number of nodes
in the entire network (N) and the size of the multichannel

links (w). The constraint is that N ≥ w
2
 because, otherwise, the

log2 2
N

w
 factor of the degree/diameter equation will give a

negative number, which would be unacceptable. The nota-
tion Torus(w = 3, n) means the number of nodes per ring is
fixed while the hypercube dimension varies. The notation

SBH(w, D = 3) means that the dimension of the SBH network
is kept constant and the size of the buses is changed. The

notation GHC(w, n = 4) denotes that the diameter of the net-
work is fixed while the number of nodes per dimension is

varied. Similarly, the notation HM(w, n = 2) means that the
node dimension is fixed, while the number of nodes per di-
mension is varied. The notation OMMH(l = 16, l = 16, n)

denotes that the size of the mesh network in the OMMH is
fixed while the size of the hypercube is varied. Similarly, the
OMMH(l, l, n = 4) notation denotes that the size of the hyper-

cube is fixed and the mesh size is varied. The notation used
for the other networks is similarly given.

3.1 Degree and Diameter
Figs. 4a and 4b show the graph comparisons in terms of de-
gree and diameter as network size is increased. At the key
mark of 10,000 nodes (desirable for MPPs), SBH(w, D = 3),
HM(w, n = 3), HM(w = 16, n), SMLH(w = 32, n), SMLH(w,
n = 4), and SMLH(w = 16, n) exhibit very good performances
in terms of diameter and degree with values 3, 3, 3.3, 5.3,

TABLE 2
TOPOLOGICAL CHARACTERISTICS OF SEVERAL POPULAR NETWORKS

Network Size (N) Degree (k) Diameter (d) Number of Links (L)

BHC 2
n

log2 N log2 N N N
2 2

loga f
Torus(w, n) w

n
2 logw N w

w
N

2
log N logw N

GHC(w, n) w
n

(w - 1) logw N logw N N w

w
N

( 1)

2
log

-

SBH(w, D) w
D

logw N logw N N

w w
Nlog

HCN 2
2n 1

2 2
log 1b ga fN + log2 N N NN

4 2 2
logb ga fb g+

CCC(c, n) c 2
n

3 5 2

2

c -( ) 3

2
N

HdB(c, n) 2
(n+c)

log2 N - c + 4 log2 N N N c
2 2

log 4- +a f
FPT 10

n
3 log10 N 2 log10 N 3

2 10
logN N

HM(w, n) w
n

logw N logw N N logw N

OMMH(l, l, n) l 
2
2

n
4 log

2 2
+ N

l
l N

l
+ log

2 2

N N

l2 2
4 + log

2e j
SMLH(w, n) w

2
2

n
2 log

2
+ N

w
2

2 log
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w

N
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4
2

log
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(a)       (b)

Fig. 4. Network comparisons for (a) degree (b) diameter.
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6, and 7, respectively. The CCC(c, n) and HCN reveal good
degree values (3 and 7.6), but they also exhibit fairly large
diameters (17 and 13). The OMMH(l, l, n = 4) experiences
the worst diameter (29) and the GHC(w, n = 3) the worst de-
gree (61). Even though at 10,000 nodes the SMLH(w = 32, n)
reveals better characteristics than the SMLH(w, n = 4), the
latter is more desirable because it possesses constant degree
and diameter, features that allow it to be scalable. The
SMLH(w = 32, n), on the other hand, experiences a loga-
rithmic increase in degree and diameter, features that make
it difficult to scale up to a larger number of processors. In
general, from Fig. 4a, the hybrid networks show a loga-
rithmic increase in their degree which makes them difficult
to scale them up in size.

3.2 Number of Links
Fig. 5a shows the graph comparisons in terms of the number
of links as the networks scale up in size. The SBH(w, D = 3),

CCC(c, n), SMLH(w, n = 3), SMLH(w = 32, n), HM(w, n = 2),
SMLH(w, n = 4), SMLH(w = 16, n), and SBH(w = 3, n) reveal
the best performance characteristics in terms of number of
links, while the GHC(w, n = 4), and Torus seem to require a
larger number of links. We should note that, of the SMLH
links, 2N/w of them are actually multichannel links.

3.3 Average Message Distance
Fig. 5b illustrates graph comparisons between the BHC, SBH,
SMLH, GHC, and HM networks in terms of average message
distance. The average message distance of the SMLH is given
in (7), the BHC in (3), and the SBH in (5), while equations for
the other topologies of interest are [12], [33]:

l
n w

w

N

NGHC
GHC

GHC

=
-

-
F
HG

I
KJ

1

1

a f
            (8)

l n
N

NHM
HM

HM

=
-

F
HG

I
KJ1
.     (9)

At 10,000 nodes the SMLH(w = 16, n), SMLH(w = 32, n),
SMLH(w, n = 3), SMLH(w, n = 4), SMLH(w, n = 5), HM(w,
n = 2), and GHC(w, n = 2) exhibit the best average message
distances with values close to two. The SBH(w, D = 3),
SBH(w = 3, D), and BHC experience the worst average mes-
sage distances with values close to 31, 13, and 6.6, respec-
tively. Fig. 5b indicates the average message distance of the
SMLH and GHC, both having fixed size hypercubes, as
well as the HM(w, n = 2) approach a constant value for
large N. However, the other networks (excluding the SBH
with fixed size hypercubes) grow logarithmically with re-
spect to the network size.

3.4 Average Traffic Density
As emphasized in Section 2, the advantages of the
SMLH(w, n) network over the SBH network is its ability to
use the multichannel links and point-to-point hypercube
links to alleviate the spanning bus congestion. A very good
measure of that is the average traffic density. The average
traffic density is defined as the product of the average dis-
tance and the total number of nodes, divided by the total
number of communication links [26]. Using the definition

(a)

(b)

Fig. 5. Network comparisons for (a) number of links and (b) average
message distance.

Fig. 6. Network comparisons for average traffic density.
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stated above, the average traffic density of the SMLH(w, n)
network can also be calculated:

r =
+

l N

n

SMLH

N
w2
4c h

. (10)

Therefore, the average traffic density can be rewritten as

r =
+

2
4

l

n

SMLH

wc h
,              (11)

where lSMLH  can be obtained from (7). Equation (11) re-

veals that, when the fixed-n rule is followed to expand the
network, the average traffic density of the SMLH(w, n) is
essentially independent of w. This feature allows the net-
work to utilize a much large number of nodes along the
multichannel links.

Fig. 6 presents the average traffic density comparisons
between the BHC, SBH, SMLH, GHC, and HM networks.
The HM, BHC, GHC with fixed w, and the SMLH with
fixed sized hypercubes, have low traffic density and exhibit
no sensitivity to size for larger networks. As the size of the
hypercubes within the SMLH is increased, the traffic den-
sity approaches zero, as it also does for the GHC with fixed
n. On the other hand, the SBH network with fixed dimen-
sion (SBH(w, D = 4)) shows an increase in traffic density.
Therefore, for larger networks, the SBH network would
most likely experience severe bus congestion problems,
which would lead to large message delays.

3.5 Queuing Delay Analysis
For an exact analysis of the queuing delay of the SMLH
network, we based our model on similar analysis of hyper-
cubes [12] and optical hypercubes, meshes and hypermeshs
[33]. The model is a communication net with the ith channel
represented as an M/M/1 system with Poisson arrivals at a
rate li and exponential service time of mean 1/mci. 1/m is the
average packet size and ci is the capacity of the ith channel.
Additionally, the following assumptions are made [38]:

•� Each node is equally likely to send a message to every
other node in a fixed time period.

•� The routing algorithm traverses dimensions in a static
order.

•� The load is evenly distributed, i.e., li is the same for all i.
•� The link capacities of the network have been optimally

assigned.
•� The cost per capacity per link is unity.

Under theses assumptions, an exact expression for the
queuing delay is an M-channel N-node network is given by [38]

T

l

C l

i

i

M

=

F
HG

I
KJ

-
=
Â

l

l

m g

1

2

1d i
,   (12)

where M = total number of directed links,

l l l= =
=
Â i i
i

M

M ,
1

g = the utilization factor, and C cii

M
= =

=Â 1
 aggregate

bandwidth of the topology. Removing constants m, C, and
N, the above delay can be normalized to

T
lM

l
=

-1 g
.      (13)

Figs. 7a, 7b, and 7c graph the average queuing delay in terms
of increasing utilization for the BHC, SBH, SMLH, GHC, and
HM with 256, 1,024, and 4,096 nodes, respectively. The delay
increases exponentially with increasing utilization and

(a)

(b)

(c)

Fig. 7. Queuing delay for networks of size (a) N = 256, (b) N = 1,024,
and (c) N = 4,096.
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saturates at a particular load, given by g sat l= 1 . The

graphs illustrate the maximum traffic capability of each
topology, with the SMLH, GHC with fixed n, and HM with
fixed n having higher utilization and lower queuing times
than the other networks.

The graphs further prove that the SBH network, despite
its better topological characteristics (diameter, degree, etc.),
has severe bus saturation problems for large numbers of PEs.
The advantage of the SMLH network is that, in addition to
its good topological characteristics, it demonstrates insensi-
tivity to traffic density when the network scales up in size.
This feature allows the SMLH network to grow up in size
while maintaining good traffic capability. Nevertheless, even
if saturation problems appear, the SMLH network does not
experience the same message delays as the SBH because it
can utilize the point-to-point hypercube links to redirect the
packets from another path. In the SMLH network, the satu-
rated multichannel link can be side stepped by only two ad-
ditional hops as long as that particular saturated multichan-
nel link is not involved in the communication. Fig. 3 demon-
strates a rerouting scheme assuming a multichannel link
saturation problem. Assume that, in Fig. 3, node (0, 0, 0)
wants to send a package to node (0, 2, 0) via the horizontal
multichannel link a. In case of a multichannel link saturation
problem, the package will need to follow a different routing
path. Three different routing paths are available and are all
shown in Fig. 3 with thick dotted lines. The packet can utilize
three hypercube links to access multichannel link b or mul-
tichannel link d or multichannel link f. By using one of the
three multichannel links, the packet will arrive at a PE, which
is one hop away from the destination link. Note that in each
of the three rerouting paths, two additional hops were neces-
sary to bypass the saturated multichannel link.

4 OPTICAL IMPLEMENTATION OF THE SMLH
NETWORK

Obviously, an electronic implementation of the proposed
SMLH network is feasible. One methodology would be to
use multiprocessor board technology (e.g., Multichip Mod-
ule technology) for the hypercube module connections and
backplanes for the multichannel link connections. To limit
the number of boards required, k hypercube modules can
be clustered together on a single multiprocessor board.
However, for a large number of PEs and a greater band-
width and interconnection density, conventional back-
planes have major limitations [3], [4], [39]. These include
signal skew, wave reflection, impedance mismatch, skin
effects, interference, and many others. A possible alterna-
tive is the use of optical interconnects. Optical interconnects
offer many communication advantages over electronics,
including gigahertz transfer rates in an environment free
from capacitive loading effects and electromagnetic inter-
ference, high interconnection density, low power require-
ments, and, possibly, a significant reduction in design com-
plexity through the use of multiple access techniques and
the third dimension of free-space optics. The effectiveness
of optical interconnects has been extensively examined [3],
[4], [23], [24], [25], [26], [27], [28], [29], [30], [40]. In the fol-
lowing, we propose an all optical implementation of the

SMLH(w, n) network, where the hypercube modules are
implemented using free-space, space-invariant optics [17]
and the multichannel link modules are implemented using
Wavelength Division Multiple Access (WDMA) techniques.

4.1 Optical Implementation of the Hypercube
Modules Using Holographic Optical Elements
(HOEs)

The free space optical implementation of the hypercube
network has been rigorously studied and analyzed [4], [17],
[18]. The main objective is to exploit the third dimension
and the communication advantages of free-space optics to
provide efficient and adequate implementation of the hy-
percube network. This implementation is for illustration
only and may not handle the simultaneous transfer of mul-
tiple, different packets, as a pure hypercube can. However,
optics is quite capable of handling this function and a sub-
sequent paper will address this in more detail.

The design methodology is based on an observation that
PEs in a bipartite interconnection network can be parti-
tioned into two different sets of PEs such that any two PEs
in a set do not have a direct link. This is a well-known
problem of bipartitioning a graph if the interconnection
network is represented as a graph. For a binary n-cube, PEs
whose addresses differ by more than one in Hamming dis-
tance can be in the same partition, since no link exists be-
tween two PEs if their Hamming distance is greater than
one. Besides bipartitioning the graph, we arrange the PEs in
each partition onto the plane such that interconnection
between two planes becomes space-invariant (the connec-
tion pattern is identical for every PE in the plane). This self-
imposed requirement reduces the design complexity of the
optical setup [41]. The two partitions of PEs are called planel

and planer. Optical sources and detectors are assumed to be
resident on processor-memory boards located on planel and
planer. Free-space holographic optical elements (HOEs) are
used to implement the connection patterns required be-
tween PEs of the two planes [4], [17], [18].

Fig. 8 depicts the conceptual 3D free-space, space-
invariant optical implementation of a three-cube network.
A three-cube network consisting of eight PEs is biparti-
tioned into planel and planer. Each plane consists of four PEs
which are arranged in a two by two square configuration.
The HOE provides the connection patterns required for the
three-cube. The hypercube modules have been experimen-
tally implemented in the lab [20]. Issues relating to actual
fabrication of the hologram, size, misalignment, power
budget, components used, actual BER, and more can be
found in [20]. We should note that this is one way of im-
plementing the Hypercube module in free space and sev-
eral other means exist that are currently under study.

4.2 Implementation of the Spanning Multichannel
Network Using WDMA Techniques

In this subsection, the implementation of the spanning
multichannel network using WDMA techniques is pre-
sented. To exploit the large communication bandwidth of
optics, WDMA techniques that enable multiple multiaccess
channels to be realized on a single physical channel can be
utilized. In a WDMA system, the optical spectrum is di-
vided into many different logical channels, each channel
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corresponding to a unique wavelength. These channels are
carried simultaneously on a small number of physical
channels, e.g., a fiber. Additionally, each network node is
equipped with a small number of transmitters and receiv-
ers, some of which are dynamically tunable to different
wavelengths.

The SMLH(w, n) network consists of w
2
 hypercube mod-

ules and 2
n
 w ¥ w 2D SMNs. From the discussion above,

every hypercube module is bipartitioned into two planes
called planel and planer. In the SMLH network, all planel s are
grouped together to form a plane called PlaneL while all
planer s are grouped to form another plane called PlaneR. The
multichannel links can be implemented by interconnecting
the individual planel s of PlaneL and planer s of PlaneR. The
hypercube modules are implemented using free space op-
tics to provide the connectivity between planel s and planer s.
Additionally, 2

n-1
 2D spanning multichannel networks per

plane (PlaneL or PlaneR) need to be implemented. Each 2D
SMN consists of 2w multichannel links, therefore, a total of
2w ¥ 2

n-1
 multichannel links per Plane are required.

A trivial implementation of the SMN is to assign a dis-

tinct wavelength for every PE in PlaneL and PlaneR and then

perform WDMA techniques to implement the multichannel
links. However, such a straightforward method requires a
prohibitively large number of different wavelengths and
fibers. For example, for an SMLH(w = 4, n = 3) consisting of
128 PEs, a total of 64 wavelengths would be necessary. A
wavelength assignment technique [17], [27] can be em-
ployed to reduce the number of wavelengths used in the
system. Let’s take a running example, an SMLH(w = 4, n = 3).
Fig. 9 shows how wavelengths are assigned for each PE of

PlaneL. The following wavelengths are assigned to the first

row: l1, l2, L, l8. Then, l2, L, l8, l1 are assigned as wave-

lengths in the second row. In general, wavelength assign-
ment in a row is achieved by rotating the wavelength as-
signment of the previous row by one column. This wave-
length assignment results in no two PEs in the same row or

column of PlaneL having an identical wavelength. Similar

considerations take place for PEs of PlaneR. With this

wavelength assignment technique, the total number of
wavelengths required to implement the SMLH(w = 4, n = 3)
network is reduced from 64 to 8. In general, for an

SMLH(w, n) the following wavelength assignment for the
first row must be performed: l l l1 2

2
1 2

, , ,K

w
n

¥
-a f , and

then, l l2
2

1 2
, ,K

w
n

¥
-a f , are assigned to the PEs of the sec-

ond row and so on. Thus, an implementation of an
SMLH(w, n) with the above wavelength assignment re-

quires no more than w ¥ 2
È(n-1)/2˘

 wavelengths.

Referring to Fig. 9, the wavelengths assigned to the PEs
of the first row are divided into two groups of four wave-
lengths each. The groups are: (l1, l3, l5, l7) and (l2, l4, l6, l8).
Each of these groups correspond to the implementation of a
row-wise multichannel link. Every PE in the group should
be capable of tuning in to any of the wavelengths assigned
to that group. For example, the node of group 1 with
wavelength l1 must be able to tune to wavelengths l3, l5, l7

which correspond to wavelengths that were assigned to the
other PEs of that group. Rotating the wavelength assign-
ments of the previous rows will form the new wavelength
groups that correspond to every row. Similarly, each col-
umn of Fig. 9 must be divided into two groups of four
wavelengths each. For example, for the second column of
Fig. 9, the following groups are formed: (l2, l4, l6, l8) and
(l3, l5, l7, l1). Each of these wavelength groups correspond
to the implementation of a column-wise multichannel link.
Again, rotation of the column-wise wavelength assignment
will result in the formation of the wavelength groups for
the other columns.

We now consider the overall optical implementation of
an SMLH(w, n). For simplicity and without loss of general-
ity, we consider the implementation of an example network
of size SMLH(w = 4, n = 3). Fig. 9 shows an example PlaneL

of the SMLH(w = 4, n = 3) network. We assume that each PE
has three light sources: one fixed source, Sh, which illumi-
nates the HOE to generate the required hypercube links,
and the other two relatively tunable sources, Sr and Sc , cou-
pled into optical fibers to implement the two multichannel
links. It should be noted that full tunability is not required,
as explained above. In fact, each source should be tunable
for a single wavelength group only. This reduced range
increases the efficiency, the yield, and the tuning speed of
the light sources. Furthermore, each PE is equipped with
three receivers; one fixed receiver, Rh, receives light from
the free-space optics implementing the hypercube, and
the other two receivers, Rr and Rc  , receive light from fi-
bers coming from demultiplexers. The key component
that provides multichannel link connectivity here is the tun-
able-transmitter, fixed-receiver scheme. The wavelength as-
signment shown in Fig. 9 corresponds to the receiver wave-
length assignment of every PE. Other PEs can communicate
with a particular PE by simply tuning in to the wavelength
assigned to that PE. Rapid progress is being made in the
development of tunable devices, both in the range over
which they are tunable, and their tuning times [42], [43].
Current tuning ranges are in the 4-10 nm and the tuning
times vary from nanoseconds to milliseconds [42].

We also assume the availability of the following opti-
cal components: A k ¥ 1 passive optical star coupler and
a diffraction grating. The k ¥ 1 coupler acts as an optical
multiplexer by funneling light from k light beams with k

Fig. 8. Space-invariant optical implementation of a three-cube network
with a HOE.
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different wavelengths onto the same waveguide. The
diffraction grating acts as an optical demultiplexer by
separating and incoming combined optical signal into
many signals, each corresponding to a different wave-
length. Many examples that use a conventional lens,
GRIN rod lenses [44], and no lens have been reported as
optical demultiplexers. Recently, the idea of free-space
concave grating demultiplexers has been reported [45], [46].
These demultiplexers use a wavelength range of 16 nm
(40 channels) and channel spacing of 0.4 nm. The fiber-to-
fiber loss was 6-9 dB and channel crosstalk was better
than 25 dB. For clarity, in the rest of the paper, we denote
the k ¥ 1 star coupler as a multiplexer (MUX) and the
concave grating as a demultiplexer (DEMUX), bearing in
mind that these are passive devices.

We should note that the functionality of a MUX-DEMUX
pair can also be realized using a single k ¥ k passive optical
star coupler. The purpose of an k ¥ k star coupler is to cou-
ple light from one of its k input ports to all the k output
ports uniformly. Star couplers with 128 ¥ 128 ports and the
capability of handling more than one hundred different
wavelengths are feasible with currently available technol-
ogy. An experimental ISDN switch architecture using eight
128 ¥ 128 multiple star couplers to handle over 10,000 input
port lines has been reported [42].

In Fig. 9, MUXr and DEMUXr represent the MUX and DE-

MUX that implement row-wise multichannel links. Similarly,

MUXc and DEMUXc represent the MUX and DEMUX that

implement column-wise multichannel links. A MUXr mul-

tiplexes light signals from Sr sources emanating from PEs

belonging to the same row of PlaneL, and DEMUXr demul-

tiplexes a light beam into w ¥ 2
È(n-1)/2˘

 = 8 wavelengths that

are destined through other fibers to their corresponding

destinations. Similarly, light beams emanating from Sc

sources and belonging to PEs along the same column of

PlaneL or PlaneR are multiplexed by MUXc and demultiplexed

by DEMUXc. For clarity of Fig. 9, only the implementation of

the multichannel links for two rows and two columns is
shown. Similar connections exist for the other rows and col-

umns of PlaneL of the SMLH(w = 4, n = 3) network. Each row-

wise (or column-wise) multichannel link in Fig. 9 can be im-
plemented using one pair of MUX-DEMUX. Fig. 10 shows a
top view of both planes of the SMLH(w = 4, n = 3) network. In

the middle of the figure, the HOEs that implement the hyper-
cube modules are shown. Only two MUX-DEMUX pairs are
shown. The top MUX-DEMUX pair implements the two

Fig. 9. An optical implementation of PlaneL of an SMLH(w = 4, n = 3) network using WDMA. For an SMLH(w = 4, n = 3) network, 16 MUX-
DEMUX pairs are needed per plane. For clarity of the figure, we show only four of them.
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row-wise multichannel links of the first row of PlaneR while

the bottom MUX-DEMUX pair implements the respective

multichannel links of the first row of PlaneL.

Limitations on fan-out capabilities of MUXs and DE-
MUXs dictate the number of multichannel links and the
number of PEs attached to a multichannel link using this
implementation method. On the other hand, if one uses
optical star couplers for implementing the multichannel
links, the fan-out will no longer be a limitation, but power
losses associated with star couplers become the limiting
factor. These issues are analyzed in the next section.

In order to alleviate multichannel link collisions (e.g., dif-
ferent messages destined to the same PE at the same time),
the time domain along each subchannel can be utilized. Time
division multiple access techniques can be combined with
the proposed WDMA scheme. This issue is beyond the scope
of this paper and will not be treated any further.

5 POWER AND DELAY ANALYSIS OF THE OPTICAL
IMPLEMENTATIONS

5.1 Bit-Error Rate Estimation
In this section, we present some system noise calculations
to investigate the bit-error rate (BER) capabilities and the
delay of the proposed optical implementation of the SMLH
network. Calculation of BER of an optical system requires
estimation of the Signal-to-Noise ratio (SNR). Estimation of
total power losses leading into the receiver sensitivity cal-
culation is required for the SNR calculation. In what fol-
lows, the optical power loss of the implementation meth-
odology is calculated. Then, the receiver sensitivity is esti-
mated, and consequently the BER of the proposed imple-
mentation is evaluated.

The number of nodes that an optical system can support
is determined by the emitting power of the transmitter, the
required receiver sensitivity, and the losses incurred be-
tween the transmitter and the receiver. Let LMUX be the total
insertion loss of the WDMA multiplexers, and LDEMUX be
the total insertion loss of the WDMA demultiplexers. Let Lsf

be the source-to-fiber coupling loss, and Lfd be the fiber-to-
detector coupling loss. Assume that the fiber loss is Lf and that
all nodes are equidistant, meaning that if we denote d(i, i + 1)
as the fiber distance from node i to node i + 1, then d is the
same for all i’s. The total transmission loss using WDMA
techniques for the multichannel link implementation is then
given by the following equation:

Ltotal = LMUX + LDEMUX + dLf + Lsf + Lfd - 3.    (14)

To estimate the total loss of the optical system, values from

commercially available components were considered. We as-
sume laser diodes sources with characteristics of +7 dBm. A
dBm is defined as 10 times the logarithmic ratio of the power

with a reference power quantity of 1 mW. For example, for a

value of 5 mW, the ratio in dBm is 10 7
5

1
¥ = +log

mW

mWe j dBm .

Positive values in dBm indicate that the required power is
greater than the reference power (1 mW) and negative values
show that the required power is less than 1 mW.

The insertion loss for a commercially available fiber coupler

is taken as -1 dB, while fiber to detector losses are -0.46 dB.
The fiber loss is taken as 0.3 dB/Km, but since their lengths are
in the order of centimeters, the total fiber loss is negligible.

The insertion loss of the k ¥ 1 star coupler is taken as -2 dB
[26], while, for the concave grating demultiplexer, the inser-

tion loss is -9 dB. In addition, a -3 dB loss is being added for

engineering errors. The total power loss is -15.5 dB, which is

Fig. 10. Top view of an SMLH(w = 4, n = 3) network. The figure shows the implementation of the first row-wise multichannel links of PlaneL and
PlaneR. Similar connections exist for the other rows and columns of the SMLH(w = 4, n = 3).
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equivalent to an optical system efficiency of 2.8 percent. If
we consider the detectors to be GaAs Metal-Semiconductor
FET Transimpedance [47] with a quantum efficiency of 60
percent at 670 nm, and if the data rate is 2 Gbps and if the
required error probability after amplification is less than

10
-17

, then the receiver sensitivity required is determined to

be 12 mW or -19.2 dBm. Given the total power loss esti-

mated above (-15.5 dB), and considering optical sources of

5 mW, the receiver sensitivity should be 140 mW or -8.5 dBm.
This is well over the receiver sensitivity requirement for

10
-17

 BER. Therefore, the WDMA implementation proposed

for the SMN subnetwork is feasible with BERs better than

10
-17

. Depending on the optical components used, the size

of the multichannel links is bounded either by the fan-out
of the diffraction grating demultiplexers if the MUX-
DEMUX scheme is used, or by the power loss of the star
couplers if the optical star couplers are used. For the dif-
fraction grating components, a fan-out of up to 40 chan-
nels has been reported [45], [46]. Taking this value as an
upper limit, a fairly large SMLH network can be realized.
For example, an SMLH(w = 20, n = 3) network consisting
of N = 3,200 PEs and a total of 160 MUX-DEMUX pairs is
feasible. Larger networks are also feasible by implementing
every multichannel link in the network with a different
MUX-DEMUX pair instead of utilizing a single pair to im-

plement 2
È(n-1)/2˘

 multichannel links. This would increase the

number of PEs in the network, but it would also increase the
hardware complexity. For example, an SMHL(w = 40, n = 3)
network consisting of N = 12,800 PEs and a total of 320
MUX-DEMUX pairs is feasible. Therefore, when designing
the optical implementation of an SMHL network, trade-offs
between the number of PEs desired and the hardware cost
should be considered.

If a MUX-DEMUX pair were to be realized by a single

optical star coupler, then (14) would have to include the

excess (Le) and splitting(Lsp) losses of the star coupler. Let

Pin be the power entering the coupler from an input chan-

nel, and Pout be the power obtained from an output channel.

Then, Lsp

P

P
out

in
= -10 log , and the total transmission loss is

Ltotal = Le + Lsp + dLf + Lsf + Lfd - 3.              (15)

Pout is equal to Pin/k, where k is the fan-out of the star cou-

pler. For the SMLH, k is w ¥ 2
È(n-1)/2˘

 (number of PEs on a

row or column of PlaneL or PlaneR). Consequently, (15) can

be rewritten as

Ltotal = Le - 10log k + dLf + Lsf + Lfd - 3.   (16)

The excess losses of the star coupler are taken as -1 dB [48].
Rearranging (16) and using the above losses, the number of
PEs supported by the star coupler implementation method,
given a desirable BER, can be determined. For a BER of 10

-17

and for 5 mW sources, the total loss in the system should be
-26.2 dB, yielding a star coupler fan-out of k = 118. This
value is well within the capabilities of current star coupler
technology. The optical fanout of star couplers reported to

date is 128 ¥ 128 [42]. For k = 118, large SMLH networks are
feasible. For example, an SMHL(w = 30, n = 5) network
supporting about 28,800 PEs could be realized.

5.2 Communication Delay
The data transfer delay in the SMLH network is a function
of the transmitter, signal propagation, receiver delays,
packet collisions, and channel bandwidth. The signal
propagation delay includes the propagation time of the
signal through the medium (i.e., fiber or free-space) and the
delay when passing through optical components, such as
star couplers and free space optics. In this paper, we esti-
mate the communication delay without considering con-
tention and collisions. Estimating the delay including con-
tention and collisions would require the inclusion of access
protocols and conflict resolution schemes which is beyond
the scope of this paper.

Let ttx be the delay of the transmitter, trx be the delay of
the receiver, and tprop be the delay due to signal propaga-
tion. Therefore, the total delay of a single link can be ex-
pressed as

td = ttx + trx +tprop + W/B,       (17)

where W is the packet size in bits and B is the bandwidth of
the communication medium. The value for the ttx delay
includes driver turn on, laser turn on, and tuning delays,
while the value for the trx delay includes the photodetector
circuit delay and skew. The photodetector circuit delay con-
sists of the preamplifier delay, decision circuit delay, as well
as the decision circuit skew. The propagation delay of an
optical link (without any components) is

t
hprop

L

c
= ,   (18)

where L is the length of the link, and c/h is the speed of
light in the medium. Hence, the total delay of an optical link is

t t t
h

td tx rx m

L

c
W B= + + + + ,               (19)

where tm is the propagation delay through optical components.
Delays for commercially available optical fixed trans-

mitters and receivers are in the range of 1 ns and 1.8 ns,
respectively [49], [50], while those of tunable transmitters,
are 50 ns [51]. In SMLH, the optical star couplers and the
grating demultiplexers are all passive components and,
therefore, their time delays are very small and can be ig-
nored in this estimation.

The worst case scenario for a collisionless SMLH net-
work is when a packet travels through both multichannel
links and through n hypercube links in order to reach its
destination. In this case, the maximum collision free delay is:

t t t t t

t

d tx
tune

tx
fixed

rx prop
BHC

prop
SMN

n n n

W B

max

max min , ( )

= + + + +

+ +

2 2

2 20

a f

where t tx
tune  is the delay of the tunable transmitters in the

SMN subnetwork, t tx
fixed  is the delay of the fixed transmitters

in the hypercube subnetwork, trx is the delay of the receivers,

t prop
BHC  is the propagation delay through the hypercube links,
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t prop
SMN  is the propagation delay through the SMN links, W

max

is the maximum packet size in bits, and B
min

 is the minimum

bandwidth. Clearly, the communication delay using WDMA
techniques is dominated by the packet size more than by

any other delays.

6 CONCLUSIONS

In this paper, we proposed a novel hybrid network
which improves, or is comparable to, hypercube-based
topologies in general and, in particular, the spanning bus
hypercube (SBH) and the Optical Multi-Mesh Hypercube
(OMMH). The key, attractive features of the proposed
network include the possibility of a constant diameter
and a constant degree network while it is feasible to in-
terconnect thousands of processors at an adequate per-
formance level. Additionally, the network is incremen-
tally scalable and fault-tolerant. These features make
SMLH very suitable for massively parallel systems. The
topological characteristics of the proposed network were
compared with several other well-known networks and
it was shown that SMLH compares extremely well with
the SBH, the OMMH, the Binary Hypercube, the Torus
network, the Hierarchical Cubic Network, the Cube-
Connected Cycle, the Hyper-deBruijn, and the Folded
Peterson, and comparable performance with the Generalized
Hypercube and the Hypermesh. A WDMA technique has
been proposed for the optical implementation of the SMLH
network. While the structural properties of the proposed
network were fully analyzed in this paper, the optical im-
plementation was presented for illustration purposes only.
Detailed analysis of the optical feasibility of the proposed
network including device and optical setups is under study
and is subject of a subsequent paper.
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