
RESEARCH Open Access

A spanning tree construction algorithm for
industrial wireless sensor networks based
on quantum artificial bee colony
Yuanzhen Li* , Yang Zhao and Yingyu Zhang

Abstract

In industrial Internet, many intelligent applications are implemented based on data collection and distribution. Data

collection and data distribution in the wireless sensor networks are very important, where the node topology can

be described by the spanning tree for obtaining an efficient transmission. Classical algorithms in graph theory such

as the Kruskal algorithm or Prim algorithm can only find the minimum spanning tree (MST) in industrial wireless

sensor networks. Swarm intelligence algorithm can obtain multiple solutions in one calculation. Multiple solutions

are very helpful for improving the reliability of industrial wireless sensor networks.

In this paper, we combine quantum computing with artificial bee colony and design a spanning tree construction

algorithm for industrial wireless sensor networks. Quantum computations are introduced into the onlooker bees

search. Food source replacement strategy is improved. Finally, the algorithm is simulated and evaluated. The results

show that the new proposed algorithm can obtain more alternative solutions and has a better performance in

search efficiency.
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1 Introduction
WSN (wireless sensor networks) [1, 2] is an autono-

mous measurement and control network system that

consist of a large number of ubiquitous, small sensor

nodes with communication and computing capabilities

that are densely deployed in unattended monitoring

areas [3]. WSN is a new information acquisition and

processing technology [4]. Due to its advantages of

low communication cost, flexible networking, and

ease of use, it has a wide application prospect in the

industry, military, environment, medical, and other

fields [5]. IWSN (industrial wireless sensor networks)

[6–8] is used to control and monitor various indus-

trial tasks and is an emerging application of WSN.

Due to its high flexibility, low node cost, no wiring,

and relatively easy maintenance, IWSN has been fa-

vored by more and more companies [9]. A large

number of wireless sensors are deployed in industrial

parks [10]. These sensor nodes form a multi-hop net-

work in the form of ad hoc networks, which are very

sensitive to the equipment, production lines, and en-

vironmental information of the industrial site and

transmitted to the control center in real time [11].

Through the calculation and analysis of data, the con-

trol center can monitor the operating conditions of

the equipment, find problems in a timely manner,

issue control commands, and reduce safety problems

in the production process.

IWSN faces more challenges than ordinary wireless

sensor networks [12], which have the following fea-

tures: (l) The sensor node deployment of the IWSN

is related to the industrial environment. It needs to

be manually installed on the plant equipment that

needs to be monitored [13], emphasizing reliable

monitoring of designated points [14]. The nodes of

the WSN are generally deployed in a random and
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dense manner, focusing on the overall coverage of the

monitoring area. (2) In IWSN, once the sensor node

is installed, it is generally no longer moving, unless

the node failure needs to be replaced or the plant

equipment is moved [15]; in contrast, the WSN node

mobility is strong. (3) In addition to sensor nodes in

IWSN, there are routers, handheld devices, and other

nodes [16]. Different types of nodes perform different

functions, forming a heterogeneous network. The

WSN generally refers to homogeneous networks, and

the status of nodes is equal. (4) The factory environ-

ment is complex, and the interference is severe [17].

Therefore, the IWSN wireless network protocol de-

sign aims at high reliability and real-time perform-

ance. WSNs generally work in unattended areas.

Node energy is limited, so the protocol design focuses

on energy saving.

Field equipment production process data and net-

work status data are collected periodically [18].

IWSN analyzes and processes this data to monitor

factory equipment and networks. In the production

process, it is often necessary to obtain some statis-

tical information, such as the total number of net-

work nodes and the temperature of the production

site [19]. At present, the data collection of industrial

wireless networks is basically centralized. That is,

the original data is uniformly collected and proc-

essed by the central node. This is generally called

the data collection protocol [20, 21]. The control in-

formation such as commands for monitoring the in-

dustrial field devices is performed through another

protocol. This is generally referred to as data distri-

bution protocol [22]. The data distribution process is

one-to-many communication, and the data collection

process is many-to-one communication. The above

two processes are preferably implemented using trees

to save network resources, especially the minimum

spanning tree. Therefore, in industrial wireless sen-

sor networks, how to construct an effective mini-

mum spanning tree (MST) is a critical issue [23].

Classical algorithms in graph theory, such as Kruskal

algorithm and Prim algorithm, utilize greedy strat-

egies to generate only one MST. In IWSN, a series

of spanning trees are required to improve reliability

and deal with network changes [24]. Even if the

found spanning tree is not optimal, but suboptimal,

the found suboptimal spanning tree has important

practical significance for responding to the dynamic

changes of the network.

In the evolutionary process of swarm intelligence

algorithm [25–27], a series of solutions are gener-

ated, which is very suitable for the solution of the

spanning tree problem in Industrial Wireless Sensor

Networks environment. At the same time, the swarm

intelligence optimization algorithm can search

without prior knowledge to find a solution to the

optimization problem [28, 29]. Artificial bee colony

algorithm is a kind of swarm intelligence algorithm,

which was put forward by Karabogay in order to

solve the problem of multivariable function

optimization. Artificial bee colony algorithm is an

optimization method proposed to imitate bee behav-

ior. It is a specific application of swarm intelligence

thought. Its main characteristic is that it does not

need to know the special information about the

problem, but only needs to compare the pros and

cons of the problem. Through the local optimization

behavior of individual artificial bees, the global opti-

mal value is finally emerging in the group, and it

has a faster convergence speed. Quantum computa-

tion is a new computational model that follows

quantum mechanics regulation to regulate quantum

information units. From the point of view of compu-

tational efficiency, due to the existence of the super-

position of quantum mechanics, some known

quantum algorithms are faster than conventional

general-purpose computers when dealing with certain

problems. In this paper, quantum computation and

artificial bee colony algorithm are combined and a

quantum artificial bee colony algorithm is proposed

to solve multicast tree construction problem in indus-

trial wireless sensor networks.

This paper is organized as follows: In Section 2, we

first describe IWSN architecture and the minimum

spanning tree problem in IWSN. We then present the

proposed algorithm in Section 3. Sections 4 and 5

report the simulation results and discussion. Finally,

Section 6 concludes the paper.

2 IWSN architecture and minimum spanning tree
problem
Figure 1 shows the common IWSN architecture [30].

In IWSNs, sensor nodes are used as field devices to

form industrial wireless networks. Nodes have the

dual functions of data collection and routing. Sensor

nodes distributed in the factory transmit the col-

lected field data to servers through multi-hop rout-

ing. The access router is responsible for connecting

the wireless network and the wired network and for-

warding the field data from the wireless network to

the wired network. There can be one or more access

routers in the IWSNs. The gateway is responsible

for the protocol conversion between the IWSNs and

the existing factory network, so that both networks

can send packets to each other. The management

server is responsible for managing all network de-

vices and in charge of storing topology information,
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node information, and neighbor relationships, as well

as the link status of the entire network. In addition,

the management server is also responsible for

processing network information, managing network

communication processes, and interacting with industrial

applications. The security server [31] is responsible for the

security management of the network and supports data

integrity verification, data encryption, identity authentica-

tion, and replay protection. The data server stores field de-

vice configuration data, process flow data parameters, and

data generated during the production process [32].

Gateways, management servers, security servers, and

file servers are logically differentiated and can actually

be deployed on the same network device as IWSNs

controllers [33]. Finally, IWSN may need to connect

to the Internet, depending on the specific conditions

and needs of the factory.

A very important area of IWSN is data distribution

and data collection. The effective implementation of data

distribution and data collection is to use a minimal

spanning tree. The minimum spanning tree problem is a

basic problem in the areas of graph theory, optimization,

and network optimization. Let graph G = (N,E,W) be a

connected undirected weighted graph, where N is the

set of nodes, E is the set of edges, and W is the weight

defined on the edge. W ¼
X

e∈E

we is the weight function.

In graph theory, a tree is defined as an acyclic connected

graph. If a subgraph of a connected graph G is a tree

and contains all vertices of G, the subgraph T is called a

spanning tree of G. If G has n vertices, its spanning tree

has n vertices and n − 1 edges. WT ¼
X

e∈ET

we is the

weight function of the tree T. The spanning tree of a

graph G is not unique. A graph can have many different

spanning trees. Among these trees, the spanning tree

with the least sum of edge weight is the minimum span-

ning tree (MST).

Because the minimum spanning tree problem is

very important in network optimization, researchers

have conducted a detailed study of this problem. At

present, there are already some classical algorithms

for solving the minimum spanning tree in graph the-

ory, such as Kruskal algorithm or Prim algorithm.

These algorithms can only get one solution at a time.

The characteristic of industrial wireless sensor

networks determines that multiple solutions are also

necessary and meaningful. These different solutions

are mutually complementary and backup. Swarm

intelligence algorithm to obtain multiple solutions at

a time just can effectively solve this requirement of

industrial wireless sensor networks. This paper will

use the artificial bee colony algorithm and use the

idea of quantum computing to solve this problem.

3 Quantum artificial bee colony
3.1 Standard artificial bee colony

The artificial bee colony (ABC) algorithm [34],

originally proposed by Karaboga in 2005, is based on

the bee family’s foraging behavior. The bee is a

social insect. Although the behavior of individual

Fig. 1 The architecture of IWSN and minimum spanning tree problem. The figure is used to describe the architecture of industrial wireless sensor

networks and the minimum spanning tree problem in industrial wireless sensor networks
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insects is extremely simple, the group of individuals

shows extremely complex behavior. Bees can collect

nectar from food sources with great efficiency in any

environment; at the same time, they can adapt to

changes in the environment. As a group organism of

nature, the bee colony has a more rigorous foraging

system within its organization. The artificial bee

colony algorithm is based on the division of labor

and cooperation of different types of work groups in

the bee colony, thereby more effectively searching

for the global optimal solution.

The minimum search model for swarms that generate

swarm intelligence includes the basic three components

[35]: food sources, employed bees, and unemployed

bees. There are also two basic behavioral models:

recruiting bees for food sources and giving up food

sources. (1) Food sources: the value of food sources is

determined by many factors, such as the distance from

the hive, the richness of the nectar, and the ease of

obtaining nectar. (2) Employed bees: for each food

source, there is only one employed bee, that is, the num-

ber of employed bees is equal to the number of food

sources. The employed bee stores information about food

sources and shares this information with other bees with a

certain probability.(3) Unemployed bees: their main task is

to find and mine food sources. There are two types of

unemployed bees: the scout bees and the onlooker bees.

Scout bees search for new food sources nearby. The

onlooker bees wait inside the hive and find food sources

by sharing information with the employed bee.

The ABC algorithm randomly generates initial popula-

tions containing PS solutions (food sources). The

employed bee conducts a neighborhood search on the

corresponding food source, compares the new food source

with the original food source, and selects a solution with a

high degree of fitness as a candidate solution. When

searching work finished, the employed bees share the food

source information with the onlooker bees. The onlooker

Fig. 3 Example of binary coding. Binary coding is used to illustrate the coding techniques used in this paper

Fig. 2 Graph G. This figure is used to illustrate the coding technique used in this paper. This figure and Figs. 3 and 4 together illustrate the

coding technique used in this article
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bees choose the food source according to probability pi.

The higher the food source’s fitness value, the greater the

probability of being selected.

pi ¼
f i

X

PS

i¼1

f i

ð1Þ

where fi is the fitness value of the i-th solution xi.

Then, the onlooker bees also conduct a neighborhood

search and choose a better solution. If a solution is not

improved for consecutive NC cycles, it is discarded and

a random solution is randomly generated by the scout

bee. The main steps of the artificial bee colony algorithm

are as follows.

(1) Initialize the colony population;

(2) Employed bees search for new honey source near

their associated food sources;

(3) The onlooker bee to select the food source using

formula (1) and search for a new honey source near the

selected food source;

(4) Scout bees to search for new honey sources

(5) Memorize the best food source found so far

(6) If the maximum number of iterations is not

reached, repeat the above steps (2–5). The final best

honey position is the global optimal solution to be

searched.

Artificial bee colony algorithm has shown good

performance [36, 37] in the solution of complex

optimization problems due to its advantages of simple

principles, convenient implementation, good applicability,

and favorable cooperation between population division

and labor [38]. The original artificial bee colony algorithm

is mainly aimed at solving the problem of continuous

space function optimization. In order to solve many com-

binatorial optimization problems in practical engineering,

many discrete artificial bee colony algorithms are pro-

posed. The flow of the discretized artificial bee colony

algorithm is the same as the artificial bee colony

algorithm.

3.2 Quantum artificial bee colony algorithm

Quantum computing is a new cross discipline com-

bining information science and quantum mechanics.

Quantum computations represented by quantum algo-

rithms have a high degree of parallelism, exponential

storage capacity, and exponential acceleration of clas-

sical heuristic algorithms. It has great superiority and

contains great vitality.

Quantum computing has become a frontier field for

scholars from all over the world. By using quantum

computing in traditional intelligent optimization,

quantum computing and intelligent computing are com-

bined. This will change the traditional optimization

Fig. 5 Flow chart of QABCST algorithm. The flow chart of the QABCST algorithm

Fig. 4 Tree structure represented by a binary string as in Fig. 3. This figure is used to illustrate the coding technique used in this paper. Tree

structure represented by a binary string as in Fig. 3
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methods of intelligent computing and improve the

performance of search optimization and convergence

speed. Using quantum computing to improve the par-

ticle swarm algorithm, Sun et al. proposed quantum

particle swarm optimization (QPSO) algorithm [39]. It

is assumed that the particle’s behavior has quantum

characteristics. Under the role of quantum mechanics,

particles no longer have limitations on the trajectory

and velocity, and the ability of particles to find the

optimal solution is greatly improved. Regarding the

specific implementation of the algorithm, QPSO uses

(Eqs. 2–7) to update the entire population.

mb ¼

X

N

i¼1

pbi

N
ð2Þ

a ¼ rand 0; 1ð Þ ð3Þ

p ¼ a � pbi þ 1−að Þ � gb ð4Þ

b ¼ 1−
t

2 � tmax
ð5Þ

u ¼ rand 0; 1ð Þ ð6Þ

pi ¼
p−b� j mb−pi j � ln

1

u

� �

; u≥0:5

pþ b� j mb−pi j � ln
1

u

� �

; u < 0:5

8

>

>

<

>

>

:

ð7Þ

Here, N is the population size; pbi is the individual

optimal position of the i-th particle; gb is the

optimal location of the entire population; mb is the

mean of best position, which is the average of the

individual optimal positions of all particles; rand(0,1)

is a function whose return value is a random deci-

mal between [0, 1]; t is the current evolutionary gen-

eration; tmax the maximum evolutionary generation

of the algorithm; b is called the contraction expan-

sion coefficient, which gradually decreases with the

iteration of the algorithm; pi is the position of the i-

th particle.

Inspired by the QPSO algorithm, we use a similar

approach in the QABC (quantum artificial bee

colony) algorithm. We only use the idea of quantum

computing in the onlooker stage. A quantum repre-

sentation of solutions is used to enhance the diversity

of the basic ABC. In addition, the exploitive capability

of the ABC is boosted through the use of the

quantum interference concept.

Fig. 6 An IWSN example with 16 nodes and 32 edges. An industrial wireless sensor network diagram for performance simulation. The diagram

contains 32 nodes with 16 nodes
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3.3 Quantum artificial bee colony algorithm for

constructing spanning trees

3.3.1 Encoding mechanism

The standard ABC algorithm for solving continuous

optimization problems is not directly suitable for solving

the minimum spanning tree problem. Because the mini-

mum spanning tree problem is an optimization problem,

binary representation is used. The number of edges in

the graph G is denoted as ∣E∣. ∣E∣ bit binary code is

used to represent a solution. Each binary bit corresponds

to an edge in the graph G and takes value 0 or 1, where

1 indicates that the corresponding edge is contained in

the spanning tree T, and 0 means the opposite. The

number of nodes in the graph G is denoted as ∣N∣. Ac-

cording to the characteristics of the spanning tree, the

spanning tree contains only ∣N ∣ ‐ 1 edges. In a feasible

solution, only ∣N ∣ ‐ 1 binary bit is 1. The other binary

bits are all 0. For example, given a graph, G = (N, E)

with |N| = 6 and |E| = 8 as shown in Fig. 2, where the

edges and nodes are numbered in order so that each bit

of a solution could be decoded to an edge. Figure 3

shows three coding schemes. The corresponding graphs

for the three coding schemes are shown in Fig. 4. The

number of 1 in code (b) is 4, and (b) is an infeasible

string. The number of 1 in code (a) and code (c) is 5. In

Fig. 4, after decoding (c), there is a loop (v1-v2-v4-v1)

and isolated node v5. Binary string (a) is a feasible code;

binary string (c) is not an infeasible code.

3.3.2 Search mechanism

In the initialization phase, for each food source, |N| − 1

position is randomly selected and set to 1 and other posi-

tions are set to 0. The calculation of fitness is calculated ac-

cording to formula (8). If the binary string is a feasible code

(Figs. 3a and 4a), the fitness value is fit ¼
X

e∈ET

we. If the bin-

ary string is infeasible (Figs. 3c and 4c), the fitness is ∞.

fit ¼

X

e∈ET

we; feasible

∞; infeasible

8

<

:

ð8Þ

Employed bees use the following techniques when

searching. A position is randomly chosen from the

elements with 1 and denoted as i1. Another position is

randomly chosen from the elements with 0 and denoted

as i2. The values of positions i1 and i2 are interchanged.

After such changes, the number of elements with 1 does

not change. This technique can guarantee that the num-

ber of 1 in the binary string is constant. The fitness of

the newly generated solution is calculated according to

Eq. (8). The replacement strategy, described in detail in

Section 3.3.3, is executed.

In the process of onlooker bee searching, the

quantum computing technique introduced in Section

3.2 is used and improved. For the calculation of the

average best position, we use the elite strategy. Food

sources are sorted in order of fitness value from

small to large. For the sorted food source, the mean

value of the front half food source is calculated (for-

mula (9)). Because the particle swarm algorithm and

the artificial bee swarm algorithm are essentially dif-

ferent, the meaning of the variable has also changed.

In order to apply to the artificial bee colony algo-

rithm, the previous formulas (2)–(7) are modified.

The new calculation methods are formulas (9)–(15).

nmb j ¼

X

N=2

i¼1

fcij

N=2
ð9Þ

a ¼ rand 0; 1ð Þ ð10Þ

Table 1 The coordinates of the nodes

Node X Y Node X Y

V1 40.94 292.97 V9 309.2 1.1. 320.0

V2 75.53 226.48 V10 277.73 1.2. 55.13

V3 141.22 329.18 V11 308.81 1.3. 222.7

V4 230.90 377.83 V12 419.35 1.4. 254.59

V5 135.32 160.54 V13 343.43 1.5. 150.27

V6 189.61 272.43 V14 365.85 1.6. 43.24

V7 192.76 94.59 V15 464.2 1.7. 177.83

V8 244.29 204.32 V16 145.33 1.8. 93.51

Table 2 The weight of the edges

Edge Vertex Vertex Weight Edge Vertex Vertex Weight

E1 V1 V2 74.96 E17 1.9. V8 1.10. V10 1.11. 152.89

E2 V1 V3 106.65 E18 1.12. V8 1.13. V11 1.14. 67.09

E3 V2 V3 121.91 E19 1.15. V8 1.16. V13 1.17. 112.92

E4 V2 V5 89.01 E20 1.18. V9 1.19. V11 1.20. 97.3

E5 V3 V4 102.04 E21 1.21. V9 1.22. V12 1.23. 128.11

E6 V3 V5 168.74 E22 1.24. V10 1.25. V13 1.26. 115.62

E7 V3 V6 74.58 E23 1.27. V10 1.28. V14 1.29. 88.92

E8 V4 V6 113.1 E24 1.30. V11 1.31. V12 1.32. 115.05

E9 V5 V6 124.37 E25 1.33. V11 1.34. V13 1.35. 80.28

E10 V5 V7 87.46 E26 1.36. V12 1.37. V13 1.38. 129.02

E11 V5 V8 117.44 E27 1.39. V12 1.40. V15 1.41. 88.9

E12 V6 V8 87.34 E28 1.42. V13 1.43. V14 1.44. 109.35

E13 V6 V9 128.7 E29 1.45. V13 1.46. V15 1.47. 123.87

E14 V7 V8 121.23 E30 1.48. V14 1.49. V15 1.50. 166.69

E15 V7 V10 93.69 E31 1.51. V14 1.52. V16 1.53. 103.51

E16 V8 V9 132.65 E32 1.54. V15 1.55. V16 1.56. 84.69
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p ¼ a � fcij þ 1−að Þ � gb j ð11Þ

b ¼ 1−
t

2 � tmax
ð12Þ

u ¼ rand 0; 1ð Þ ð13Þ

q j ¼
p−b� j nmb−fcij j � ln

1

u

� �

; u≥0:5

pþ b� j nmb−fcij j � ln
1

u

� �

; u < 0:5

8

>

>

<

>

>

:

ð14Þ

p j ¼
1; q j≥0:5
0; q j < 0:5

�

ð15Þ

Here, N is the population size; fcij is the j-th component of

the i-th smallest food source according to fitness;gb is the

first small food source according to fitness; gbj is the j-th

component of gb; nmb is the mean after improvement;

Rand(0, 1) is a function whose return value is a random deci-

mal between [0, 1]; t is the current evolutionary generation;

tmax the maximum evolutionary generation of the algorithm;

b is called the contraction expansion coefficient, which grad-

ually decreases with the iteration of the algorithm.

If pj and the j-th component of the current food source

are equal, nothing is done. Otherwise, a location, denoted

as k, is randomly selected from the elements with (1 − pj).

Then, the elements of position k and position j are inter-

changed. That is, the element at position j is assigned pj,

and the element at position k becomes 1 − pj. The above

operation is the same as the operation of the employed bee,

and it also ensures that the number of elements with 1 does

not change. The search process for onlooker bees is shown

in Algorithm 1.

If no better food source is found in the search for

employed bees and onlooker bees, the food source is not

updated. If it is not updated after the set number of times,

the food source is discarded. The scout bee will randomly

generate a new food instead. The procedure is similar to

the initialization step.

3.3.3 Replacement strategy

In the previous part of this article, we have mentioned

that multiple solutions can be obtained in one calcula-

tion. Therefore, the first principle of our replacement

strategy is to ensure the diversity of food sources. Under

the guidance of such principles, if the newly found food

source is better than the original food source, but is the

same as any other food source, it will not be updated

and will be discarded. In addition, as described in Sec-

tion 3.3.1, the initial food source and new food source

search may be infeasible. Therefore, another principle of

our replacement strategy is to replace as much of the in-

feasible food source as possible.

After employed bee and onlooker bees search for

new food sources, the specific algorithm for food

source replacement is shown in Algorithm 2.

To this position in this paper, based on quantum com-

puting and artificial bee colony, the algorithm for solving

the spanning tree of industrial wireless sensor networks

has been introduced. We will use QABCST to represent

this algorithm later. The main steps of QABCST are simi-

lar to the ABC algorithm described in Section 3.1. The

flow chart of the QABCST algorithm is shown in Fig. 5.

The QABCST algorithm can generate multiple solu-

tions in one calculation, and these solutions are backups

of each other. The tree decoded from optimal solution

can be used for data distribution or data collection.

When the link failure causes the optimal tree to be un-

available, one of the backup solutions is used. Firstly, the

Table 3 Minimum spanning tree found by the Kruskal

algorithm

ST Weight Edge series

Optimal solution 1326.409668 1,2,4,5,7,10,12,15,18,20,23,25,27,31,32
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candidate solutions containing the failed link can be

marked as invalid. Then, choose the optimal one from

the remaining solutions.

4 Experimental
In this section, simulation experiments are conducted

on the newly proposed algorithm to verify the validity of

our proposed algorithm.

The industrial wireless sensor network shown in

Fig. 6 is used as an example to simulate. The

Fig. 7 Minimum spanning tree found by the Kruskal algorithm. The minimum spanning tree obtained by the Kruskal algorithm during

performance simulation

Table 4 Spanning tree found by BABC

ST Weight Edge series

1 1431.365601 1,7,8,10,11,15,18,20,24,25,27,28,29,31,32

2 1505.983398 1,3,5,7,10,12,13,15,18,23,24,28,30,31,32

3 1452.080566 1,4,5,7,8,10,13,18,23,24,25,26,27,28,31

4 1595.697266 2,4,7,8,9,10,12,16,17,19,20,21,22,23,32

5 1447.339722 1,2,5,7,9,10,18,19,20,23,25,26,27,28,31

6 1423.100586 1,2,5,7,8,10,12,15,18,20,21,23,27,28,31

7 1501.466919 1,7,8,9,10,15,17,18,20,23,24,26,27,28,32

8 1424.996460 1,5,7,10,15,18,19,20,21,23,24,25,26,27,32

9 1465.025146 2,4,8,9,10,12,13,14,15,18,23,25,27,31,32

10 1449.954712 1,2,4,5,7,10,12,16,19,22,25,27,28,31,32

Optimal solution 1326.409668 1,2,4,5,7,10,12,15,18,20,23,25,27,31,32

Table 5 Spanning tree found by QABCST

ST Weight Edge series

1 1647.062378 1,3,6,8,10,13,17,18,19,20,23,24,28,29,32

2 1668.069214 1,2,3,4,6,8,13,14,15,21,24,27,28,29,32

3 1411.012573 1,5,7,10,12,15,16,18,20,22,23,24,25,28,32

4 1463.207642 2,3,4,5,8,10,12,18,19,20,23,24,25,28,32

5 1424.814697 1,4,5,7,8,10,12,17,18,19,20,23,27,31,32

6 1435.052612 1,2,5,7,9,12,15,18,19,20,21,23,27,31,32

7 1442.719849 1,2,3,4,5,7,12,15,18,20,22,23,24,29,32

8 1452.438354 1,2,5,7,10,14,16,18,22,23,25,27,29,31,32

9 1525.517456 1,4,5,10,11,12,15,16,18,22,23,26,27,30,32

10 1346.926025 1,4,5,7,10,12,15,18,20,22,23,24,25,27,32

11 1396.752075 1,3,4,5,7,8,10,12,18,19,20,23,24,25,32

12 1432.078125 2,4,5,7,9,12,15,18,19,21,23,25,27,31,32

13 1476.490845 1,2,3,4,5,7,10,12,15,20,23,24,26,29,32

14 1383.834351 1,4,5,7,9,12,15,18,20,22,23,24,25,27,32

15 1360.906860 1,3,4,5,7,10,12,18,19,20,23,25,27,31,32

16 1443.100220 2,3,4,5,7,10,12,15,18,20,23,24,29,31,32

17 1495.755859 1,4,5,11,12,14,17,18,21,23,25,27,28,31,32

18 1576.713135 1,2,4,6,8,12,13,14,15,18,21,24,27,28,32

19 1455.923950 1,4,5,8,10,11,12,15,16,18,19,22,23,27,32

20 1372.569336 1,4,5,7,8,10,12,18,19,20,23,25,27,29,32

Optimal solution 1326.409668 1,2,4,5,7,10,12,15,18,20,23,25,27,31,32
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industrial wireless sensor network, represented as G,

has 16 nodes and 32 edges. These nodes are deployed

in a 500 × 400 rectangular area. Table 1 shows the

coordinates of the nodes.The weight function on each

edge is the Euclidean distance between two nodes.

Table 2 lists the correspondence between edges and

nodes, as well as the weight of the edges.

Our new proposed algorithm will be compared with

Kruskal algorithm and BABC [40] algorithm. BABC

uses the basic artificial bee colony algorithm to solve

the minimum spanning tree. It can also obtain mul-

tiple spanning tree construction schemes in one cal-

culation. The population size is 20, and the algorithm

loops 3000 times. All the algorithms have been coded

using C++ in VS 2010. We run all the configurations

on an Intel (R) Core (TM) i7-2600 CPU @ 3.40 GHz

with 8.00 GB RAM in the Windows 10 Operation

System.

5 Results and discussion
Each of the three algorithms runs one time, and the

experimental results are compared. First, the Kruskal

algorithm is used to handle this example. The Kruskal

algorithm can only obtain one solution. The obtained

ST (spanning tree) is shown in Table 3. The resulting

spanning tree has a weight of 1326.409668. The

resulting minimum spanning tree is shown in Fig. 7.

The Kruskal algorithm’s calculation time is about

0.05 s.

Tables 4 and 5 are the results obtained after the

BABC and QABCST algorithms are run once. As can

be seen from Tables 4 and 5, the QABCST algorithm

has got more solutions. This is due to the diversity of

our replacement strategies. The reason for this result

is the persistence of diversity in QABCST’s replace-

ment strategy. Figure 8 is an illustration of the other

one (10th in Table 5) of the solutions obtained by the

QABCST algorithm.

The following is a comparison of the average

performance of the QABCST and BABC algorithms

running multiple times. The algorithm is performed

10 times independently to obtain its average perform-

ance. Table 6 shows the average of the 10 minimum

spanning tree weights. The result of Table 6 about

Kruskal is the result of running once. As can be seen

from the table, the QABCST algorithm has better per-

formance than BABC.

Table 6 Average of the 10 minimum spanning tree weights

Kruskal BABC QABCST

1326.409668 1328.747522 1327.755135

Fig. 8 Another spanning tree found by the QABCST algorithm. Another spanning tree obtained by the QABCST algorithm during

performance simulation
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6 Conclusion
With the rapid development of wireless sensor networks,

wireless devices are increasingly deployed in industrial

environments. Compared with common wireless sensor

networks, industrial wireless sensor networks have

higher requirements for the determinism and reliability

of data communications. Therefore, it is particularly im-

portant to design reasonable mechanisms for the data

aggregation/distribution of IWSNs to ensure the cer-

tainty and reliability of the data transmission process.

Data collection and distribution in industrial wireless

sensor networks can be described using the spanning

tree problem in graph theory. Existing classical algo-

rithms such as Kruskal and Prim algorithm can only get

one solution at a time. In order to improve reliability, in-

dustrial application scenarios need to provide multiple

solutions for mutual backup. This paper improves the

artificial bee colony algorithm based on the idea of

quantum computing and proposes a spanning tree con-

struction algorithm for industrial wireless sensor net-

works based on quantum artificial bee colony. Finally,

our algorithm was verified by experiments. The experi-

mental results show that the algorithm can achieve bet-

ter performance and can obtain more solutions at the

same time. Future work includes increasing a priori

knowledge of the network structure to improve search

efficiency.
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