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ABSTRACT With the explosive growth of image big data in the agriculture field, image segmentation
algorithms are confrontedwith unprecedented challenges. As one of themost important images segmentation
technologies, the fuzzy c-means (FCMs) algorithm has been widely used in the field of agricultural image
segmentation as it provides simple computation and high-quality segmentation. However, due to its large
amount of computation, the sequential FCM algorithm is too slow to finish the segmentation task within
an acceptable time. This paper proposes a parallel FCM segmentation algorithm based on the distributed
memory computing platformApache Spark for agricultural image big data. The input image is first converted
from the RGB color space to the lab color space and generates point cloud data. Then, point cloud data
are partitioned and stored in different computing nodes, in which the membership degrees of pixel points
to different cluster centers are calculated and the cluster centers are updated iteratively in a data-parallel
form until the stopping condition is satisfied. Finally, point cloud data are restored after clustering for
reconstructing the segmented image. On the Spark platform, the performance of the parallel FCMs algorithm
is evaluated and reaches an average speedup of 12.54 on ten computing nodes. The experimental results
show that the Spark-based parallel FCMs algorithm can obtain a significant increase in speedup, and
the agricultural image testing set delivers a better performance improvement of 128% than the Hadoop-
based approach. This paper indicates that the Spark-based parallel FCM algorithm provides faster speed of
segmentation for agricultural image big data and has better scale-up and size-up rates.

INDEX TERMS Fuzzy C-means, image segmentation, image big data, Apache Spark, parallel algorithm.

I. INTRODUCTION

With the development of mobile devices, sensor networks,
Internet of things (IoT), remote sensing, cloud computing
and big data, attention is increasingly paid to big data, and
the agricultural image big data era has arrived [1]–[5]. As the
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basis of agricultural image analysis and image understanding,
agricultural image segmentation algorithms play a crucial
role in agricultural product detection, crop disease and insect
pest identification [6], [7], crop nutrient deficiency analysis
[8], [9], seed quality inspection [10], precision spraying [11],
fruit picking [12], [13], etc. However, due to the high volume,
complexity and fast-changing characteristics of agricultural
image big data, traditional image segmentation algorithms for
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small image data are not applicable [2], [14]–[18]. Therefore,
developing image segmentation algorithms for image big data
is a research focus.
Image segmentation is the process of partitioning an image

into a number of specific, unique areas and extracting the
objects of interest in the image by computer [19]. Cluster-
ing algorithms, such as K-means [21] and FCM [22], are
the most important image segmentation techniques used to
group the image data into clusters based on similarities [20].
The FCM algorithm is the most widely used algorithm in
clustering [22], which groups similar features of an image
without a prior knowledge of data elements. Furthermore,
because agricultural images have more complicated back-
grounds and pixel ambiguity in a different category, FCM
algorithm, as a type of fuzzy clustering analysis, associates
each data element with a membership degree to the cluster
to which it belongs, making clustering results more flexi-
ble and accurate. Although recent researches have proposed
novel FCM algorithms for improving the computational
efficiency [23], the cluster process is still a computation-
intensive task, where the membership degree must be com-
puted on each pixel point. To overcome the challenge,
the FCM algorithm needs to be executed in parallel for
quickly obtaining the results of the clustering. In recent years,
researchers have implemented a variety of parallel FCM algo-
rithms on multicores [24], [25] and graphic processing unit
(GPU) platforms [26]–[28] and obtained certain speedups.
However, the existing approaches with more complex parallel
programming models show problems of higher communica-
tion overhead and lower scalability. With the rapid devel-
opment of computer architecture, many iterative algorithms
are successfully ported to the Apache Hadoop [29]–[31],
which is a distributed computing platform for processing
big data. But Hadoop reads and writes data from the HDFS
for each iteration, which consumes considerable time, and
all iterative algorithms didn’t obtain a significant increase
in speedup. In recent years, Apache Spark is a specially
designed distributed in-memory computing platform and
caches frequently used data and intermediate results in the
distributed memory for iterative computing, eventually, some
iterative algorithms obtain significant performance improve-
ment [49]. However, there are almost no efficient and paral-
lel FCM segmentation algorithms for agricultural image big
data on Apache Spark. Therefore, designing and implement-
ing a Spark-based parallel FCM segmentation algorithm for
agricultural image big data becomes more urgent and very
essential.
In this paper, a Spark-based parallel FCM segmenta-

tion algorithm for agricultural image big data is proposed.
The main contributions of this paper are summarized as
follows:

• The Spark-based parallel fuzzy C-means algorithm is
first employed to segment agricultural image. In order to
solve the storage problem of agricultural image big data,
the agricultural image big data are firstly partitioned

into point cloud data on Spark and stored in different
computing nodes. Then, the FCM algorithm with
a flexible fuzzy partitioning feature is selected to
segment agricultural big images with complex back-
ground. Finally, the parallel fuzzy C-means algorithm
is implemented on Spark using Spark MapReduce pro-
gramming model and achieves a significant increase in
speedup.

• A novel parallel fuzzy C-means algorithm based on
Apache Spark is proposed. The parallelism of conven-
tional FCM algorithm is firstly identified by the expert
in this field. Then, the working mechanism and com-
putation model of Apache Spark are studied, and the
parallel FCM algorithm is designed based on Apache
Spark. At last, the parallel FCM algorithm is mapped
to the Spark platform for improving its performance and
speedup.

The parallel fuzzy C-means algorithm is implemented on
the Apache Spark platform. Experimental results show that
the proposed algorithm can fully exploit the inherent paral-
lelism of the FCM algorithm and accelerate the segmentation
speed of agricultural image big data. Finally, the Spark-
based parallel FCM algorithm achieves an average speedup
of 12.54 on 10 computing nodes and provides a performance
improvement of 128% for an agricultural image testing set
compared to the Hadoop-based approach.

The remainder of this paper is organized as follows.
In Section II, image segmentation, the sequential FCM algo-
rithm and the Apache Spark platform are briefly described.
In Section III, based on an image preprocessing technique,
the point cloud data are first generated, and then the par-
allel design and implementation of the FCM algorithm are
described in detail. Finally, the image reconstruction tech-
nique is presented. Section IV analyzes experimental results.
In Section V, related work is introduced and summarized.
Finally, this paper is concluded in Section VI.

II. PRELIMINARY

A. IMAGE SEGMENTATION AND THE FCM ALGORITHM

With the development of agricultural modernization pro-
cesses, image segmentation algorithms have been widely
used in agricultural product detection, crop pest diagnosis and
identification, crop defect analysis, seed quality inspection,
precision spraying and fruit picking, etc., and these algo-
rithms have achieved spectacular research results.

The FCM algorithm is one of the best known unsupervised
fuzzy clustering algorithms [32], which is classified as a con-
strained soft clustering algorithm. The main idea of the FCM
algorithm is to classify different clusters by the membership
degree of the samples to cluster centers. The FCM algorithm
minimizes the objective function Jm shown in Equation (1)
by searching for the best cluster centers that achieve good
partitioning results. To find the center of a cluster, the sum
of the distances from points in different clusters to their
centers is used as criteria. The criteria are represented by an
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objective function Jm.
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where X =
{

x1, x2, · · · , xn
}

is the dataset, and V =
{

v1, v2, · · · , vn
}

is the cluster set. m is the real number that
controls clustering fuzziness and denotes the membership
degree of each data element to the cluster. In general, m takes
the value of 2. uij is the membership matrix with a size of
c× n, where c is the number of clusters and n is the data size.
dij = ‖xj− vi‖2 measures the closeness of the data element
xj to the cluster center vi.

Algorithm 1 FCM Algorithm

Input: Clusters c, the membership degree m and the data
size n
Output: Clustering results
1 Set these variables c, m, ε, where ε is the stop threshold;
2 Initialize the center vector V randomly;
3 while ‖Vnew − Vold‖ > ε do

4 Calculate and update U using Equation (2);
5 Calculate and update V using Equation (3);
6 end while

7 Output clustering results.

Algorithm 1 shows the main steps of the FCM algorithm.
The first step is the initialization of these variables regarding
the FCM algorithm. The values of c and m are set, and the
center values vij are randomly initialized. Then, the algorithm
iteratively updates the values of the membership matrix uij
using Equation (2) and the values of the center vector V
using Equation (3). The final step is to check for the stopping
condition, which is the difference between the current and the
previousmembership values. If this value is less than a certain
thresholdε, then the computation ends or stops. Otherwise,
the computation continues until the stopping condition is
satisfied.

B. APACHE SPARK COMPUTING PLATFORM

Apache Spark is an open source cluster computing platform
based on memory computing that was developed at Berke-
ley’s AMP Lab [33]. Different from other computing clusters
such as Apache Hadoop, Apache Spark adopts a distributed
memory model and, in order to achieve high performance,

it allows frequently used data and intermediate results to be
cached for iterative computation. Apache Spark also encom-
passes a classic master/workers mode, so that the first step in
every Spark application is to construct a reusable thread pool
by the working nodes, and all tasks will run in the thread pool.

FIGURE 1. Spark’s framework.

Figure 1 is a typical Apache Spark cluster with two worker
nodes, in which each working node has one or more executor
processes. In addition, the running environment that Apache
Spark offers is a temporary resource pool composed of these
executor processes in all working nodes, and inside each
process, there exist some threads that indicate how many
tasks (the smallest work units in Spark) can be executed con-
currently in one executor. When a program runs on Apache
Spark, the threads in all working nodes form a thread pool,
and the tasks of the program will run on this thread pool in
parallel.

The RDD (resilient distributed dataset) is the most impor-
tant abstraction in Spark, which is a read-only, partitioned
collection of elements that can be operated on in parallel.
By splitting records into logical partitions that are distributed
across computing nodes in the Spark cluster, the RDD allows
Spark to hide data partitions and provide a higher-level pro-
gramming interface. Partitions are the units of parallelism.
Spark supports two kinds of operations to operate these par-
titions for iterative computation: transformations (e.g., map),
which create a new dataset from an existing one, and actions
(e.g., reduce), which return a value to the driver program
after running a computation on the dataset. The new RDDs
are created by transformations, and dependencies are conse-
quently formed between the old RDDs and the new RDDs.
Figure 2 shows the two kinds of dependencies.

III. PARALLEL DESIGN AND IMPLEMENTATION OF FCM

A. GENERATING POINT CLOUD DATA

Most of the existing agricultural image big data are saved
in the RGB color space. As shown in Fig. 3 [34], the RGB
color space is an additive color space, in which red, green and
blue lights are added together in various ways to reproduce
a broad array of colors. The space sets an RGB value for
each pixel of the image to represent the color, and each
parameter (RGB) defines the intensity of the color as an
integer between 0 and 255.
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FIGURE 2. Dependencies of RDD.

FIGURE 3. RGB color space.

FIGURE 4. Lab color space.

However, the color distribution in the RGB color space
is not balanced. The transitional colors between blue and
green are too much, and there are no yellow or other colors
between green and red. Lab color space is a 3-axis color
system with dimension L, a and b. Figure 3 shows the Lab
color space [35], where L is the lightness, a is the red/green
coordinate, and b is the yellow/blue coordinate. The lab color
space is one of the most exact means of representing color,
and working with the Lab color space includes all colors
in the spectrum. Thus, in this paper, the RGB color space
of an agricultural image is first converted to the Lab color
space before processing. Equation (4), (5) and (6) are used to
implement the conversion.
Because Spark 1.x does not support directly processing

the image data, the image data need to be preprocessed into
point cloud data, and then these data are stored in the Hadoop
distributed file system (HDFS).
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FIGURE 5. The procedure of generating point cloud data.
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Figure 5 shows the procedure of generating point cloud
data. The input image is first read into memory and its length
and width are obtained, which are used during image recon-
struction. Then, traverse and read all RGB values and their
coordinates in the image. Furthermore, using Equation (4),
(5) and (6), all RGB values of image data are converted to
Lab values to generate strings that are stored in a text file. The
values of each line in the text file, including coordinates of
each pixel, and their RGB and Lab values, represent a pixel.
The text file will be uploaded to the HDFS as point cloud
data and stored in a distributed way, which is the input of the
parallel fuzzy C-means algorithm based on Apache Spark.

B. IDENTIFYING THE PARALLELISM OF FCM

According to the FCM algorithm, K points are first selected
as the initial cluster centers, and each pixel point is assigned
to the nearest center, forming K clusters. The membership
degree of each pixel point is calculated based on the initial
K centers. The process above is iterated until the amount of
the variation of the cluster centers is smaller than a specified
threshold. In this process, each iteration calculation contains
a large number of parallel subprocesses, showing consider-
able parallelism in the FCM algorithm. Figure 6 shows the
parallelism of the FCM algorithm.

Parallelism 1: During the processes of calculating the
membership degrees of pixel points to the K cluster centers,
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FIGURE 6. The parallelism of FCM.

each pixel point is not associated with others. Therefore,
the dataset can be partitioned into different subsets; then,
the membership degree in the different subsets between each
pixel and the center of each cluster can be calculated in
parallel.
Parallelism 2: During the processes of updating new cluster

centers using Equation (3), different pixel points in different
subsets are independent data; hence, the membership cal-
culation of each pixel point in different subsets to different
clustering centers is a good fit for parallel execution.

FIGURE 7. The flow of the parallel FCM algorithm.

C. SPARK-BASED PARALLEL FCM ALGORITHM

DESIGN AND IMPLEMENTATION

Figure 7 shows the parallel algorithm design of the FCM
algorithm based on Spark. The point cloud data are first read

into the distributed memory for generating the distributed
RDD subsets by the Spark program. Next, the RDD is stored
in the distributed memory by executing the Cache opera-
tor. After that, the cluster centers are initialized into broad-
cast variables, which can be shared by different distributed
computing nodes, and then the Map operation in the Spark
MapReduce programming model is used to compute the
membership degree from the pixels to the different cluster
centers in parallel. Then, the sum of the membership degrees
of all pixels from the same cluster in different computing
nodes is computed by the mapPartitions operation in parallel,
and finally the sums of the membership degrees of the same
cluster center, which come from different computing nodes,
are added up using the Reduce operation to generate a new
cluster center V . The cluster center is then placed again in a
global variable so that it is easily passed to the Map opera-
tion for the next iteration. Finally, the clustering criterion is
calculated to determine whether the convergence condition is
satisfied.

On the basis of designing and analyzing the parallel
FCM algorithm based on the Spark platform, this paper
implemented a Spark-based parallel FCM algorithm in
Scala programming language. The pseudocode is shown
in algorithm 2.

Algorithm 2 Parallel FCM Algorithm Based on Apache
Spark

Input: Point cloud data
Output: Cluster membership
1 Set the variables k , m,ε;
2 Read point cloud data and generate RDD;
3 while(‖Vnew − Vold‖ > ε) do
4 Initialize randomly or update the cluster center V , and

broadcast V to different computing nodes;
5 Compute and update the membership degree U in

parallel by the Map operation using Equation (2)
across the distributed cluster;

6 Compute and update concurrently the cluster centers
Vi, which are part of V , from the ith computing nodes
by the mapPartitions operation using Equation (3);

7 Collect and summarize the cluster centers Vi that come
from different nodes using the Reduce operation
to generate a new cluster center V ;

8 end while

9 Store the cluster information and output the clustered
point data.

D. OPTIMAL NUMBER OF CLUSTERS K

As described in Section III C, the FCM algorithm needs to
determine the optimum number of cluster centers K before
clustering in order to obtain the best image segmentation
effect. As shown in Equation (7), the MPC index, proposed
by Dave [36] in 1996, is used to compute the optimal
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clustering number K.

VMPC = 1 −
c

c− 1



1 −
1

N

c
∑

i=1

n
∑

j=1

uij2



 (7)

where c is the number of clusters, uij is the membership
matrix with a size of c× n, and n is the data size.

The MPC index means that when the sum of the mem-
bership degrees of all pixels to their cluster centers reaches
the maximum value, the corresponding segmentation effect
of the image is at its best, and the maximum value of Vmpc
is also obtained. At the moment, the corresponding K is the
optimal number of clusters. The pseudocode to find optimal
K is shown in algorithm 3.

Algorithm 3 Finding the Optimal Number of Clusters

Input: The number of cluster centers K
Output: Optimal number of cluster centers K
1 Initialize VMPC = 0, K = 2;
2 foreach i ∈ (2− >

√
N) do // where N is number of

pixels
3 Obtain membership degree U by calling Algorithm 2;
4 Calculate VMPC by Equation (9), and set it as a variable

temp;
5 if temp > VMPC then

6 VMPC = temp;
7 K = i;
8 end if

9 end foreach

10 Output K .

E. IMAGE RECONSTRUCTION

When the parallel FCM image segmentation algorithm is exe-
cuted, the point cloud data, including coordinate information,
the RGB values and class information of pixels are stored in
the HDFS. This paper proposed a method to reconstruct the
segmented image by point data, as shown in Fig. 8.
The main steps are as follows. First, the width and length

of the original image and the number of clusters from the
clustered point data are read in order to create K image
skeletons. Then, the RGB values and the pixel coordinate
positions of the cluster i (2<i ≤ K ) are loaded by line, and
the RGB values at the corresponding coordinate positions in
the ith image skeletons are set to reconstruct the ith image.
Finally, the above process is repeated until K segmented
image files are generated.

IV. EXPERIMENTAL EVALUATION

In this section, the experimental setup is first introduced,
and then testing images are provided. Finally, experimental
results are analyzed and discussed.

A. EXPERIMENTAL SETUP

Using the Spark MapReduce programming model, the paral-
lel FCM segmentation algorithm for agricultural image big

FIGURE 8. The flow chart of the image reconstruction.

TABLE 1. Experimental setup (per node).

data is implemented in the Scala programming language and
runs on the Spark cluster computing platform. The experi-
mental cluster described in this paper is comprised of one
master node and twelve worker nodes, interlinked with giga-
bit Ethernet, and each node in the cluster has the same con-
figuration. As shown in Table 1, each node has an Intel Xeon
E7-4820 v4 processor equipped with 8 cores and 16 threads,
an 8 G memory and a 600 G disk. In addition, the operating
system CentOS 6.5, JDK 1.8.0, Spark 1.6.1, Scala 2.10.4 and
Hadoop 2.6.0 are installed on each node to support the exe-
cution of the proposed parallel FCM algorithm.

To make full use of Spark’s parallelism, the cluster is
configured manually. The detailed environment variables are
shown in Table 2.

B. THE IMAGE TESTING SET

In this paper, 6 different sizes of pictures in the JPEG format
are used as a testing set. These images and their related infor-
mation are shown in Table 3. These images are all agricultural
images captured by Nikon COOLPIX P310.

42174 VOLUME 7, 2019



B. Liu et al.: Spark-Based Parallel FCMs Segmentation Algorithm

FIGURE 9. The segmentation result of the serial algorithm. (a) Original drawing. (b) Background segmentation. (c) Apple segmentation.

FIGURE 10. The segmentation result of the parallel algorithm on hadoop. (a) Original drawing. (b) Background segmentation. (c) Apple
segmentation.

FIGURE 11. The segmentation result of the parallel algorithm on spark. (a) Original drawing. (b) Background segmentation. (c) Apple
segmentation.

TABLE 2. Spark’s environment variables.

C. EXPERIMENTAL RESULTS AND ANALYSES

In this paper, the testing set was evaluated using a traditional
serial approach [37], Hadoop-based approach [30] and our
proposed approach.We first focus on the image segmentation

TABLE 3. Description of the testing set.

effect and the speedup of the proposed parallel FCM algo-
rithm, and then its scaleup and sizeup are also analyzed and
discussed.
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TABLE 4. MPC index.

1) IMAGE SEGMENTATION EFFECT

To validate the segmentation quality of the proposed parallel
FCM algorithm, picture 1003 is selected randomly as an
example for analysis, and the segmentation results are shown
in Fig. 9, 10, 11. Figure 9 shows the result of image segmenta-
tion of the serial FCM algorithm. Specifically, Figure 9(a) is
the original image, including an apple and a background with
apple leaves, branches, soil and sky. Figure 9(b) and (c) are
the segmentation results of the serial FCM algorithm. As seen
in Fig. 9, apples and their background are completely and
precisely segmented out from the image, with a clear contour.
Figure 10 and Figure 11 also show the results of image seg-
mentation of Hadoop-based and Spark-based parallel FCM
algorithm, respectively. Compared with Fig. 9, intuitively, we
can see that there is almost no difference in the segmentation
effects in the serial and parallel FCM algorithms.
In addition, in order to quantitatively evaluate the seg-

mentation effects of serial and parallel algorithms, the MPC
index is introduced to evaluate the image segmentation effect.
Generally speaking, once given k, which is the optimal num-
ber of clusters, the execution results of these algorithms
should have the same MPC indexes. However, in this paper,
K different points are chosen randomly in the FCM initial-
ization, and their MPC indexes will be slightly different.
Therefore, MPC values obtained by running these algorithms
5 times are selected as the experimental result. As shown
in Table 4, the second, third and fourth columns are MPC
indexes of serial, Hadoop-based and Spark-based FCM algo-
rithms, 1m1 and 1m2 are, respectively, the difference of
MPC indexes between serial and Hadoop-based FCM algo-
rithms and between the serial and Spark-based FCM algo-
rithms in the sixth and seventh columns. From Table 4 we
can see that1m1 and 1m2 are both less than 1 × 10−4,
which indicates that the Spark-based parallel FCM algo-
rithm for agricultural image segmentation has the same
segmentation effect as the serial and Hadoop-based FCM
approaches.

2) SPEEDUP PERFORMANCE

In this section, the speedup is introduced to evaluate the
performance of the Spark-based parallel FCM algorithm,
compared with the serial FCM and the Hadoop-based parallel
FCM algorithms. The speedup refers to how much faster a

FIGURE 12. The speedup comparison of the hadoop-based and
sparkbased fcm algorithms on 10 nodes.

parallel algorithm is than a corresponding serial algorithm.
The speedup is defined by the following Equation (8):

Speedup =
T1

Tp
(8)

where p is the number of nodes, T1 is the execution time of
the serial algorithm on a single node, and Tp is the execution
time of the parallel algorithm.
A higher speedup denotes that less time is consumed by

the parallel algorithm. Table 5 shows the speedup of the
Spark-based parallel FCM algorithm on different computing
nodes. As shown in Table 5, the speedup does not increase
linearly with the increased computing nodes. This result is
because when the number of nodes increases, the amount of
parallel tasks on each node will vary, and the communication
cost between nodes changes dynamically, which leads to a
fluctuation in speedup. From Table 5, we can clearly see that
pictures 1001, 1002 and 1003 obtain the max speedup on 9,
8 and 7 computing nodes, respectively, while pictures 1004,
1005 and 1006 reach the maximum value on 10 computing
nodes. As shown on the last line in Table 5, the experimental
result also indicates that 10 is the optimal number of nodes,
and the Spark-based parallel FCM algorithm achieves the
best speed performance. In a similar way, from Table 6,
we can reach the same conclusion that the speedup reaches
a maximum when the number of nodes is 10 on Hadoop
platforms.
To compare the speedup between the Hadoop-based and

Spark-based parallel FCM algorithms, testing sets of agri-
cultural images are validated by using these two parallel
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TABLE 5. The speedup statistics of spark-based parallel fcm algorithm on different computing nodes.

TABLE 6. The speedup statistics of hadoop-based parallel fcm algorithm on different computing nodes.

TABLE 7. The performance improvement.

FCM algorithms on 10 computing nodes. The experimental
results presented in Fig. 12 show the overall performance
improvements for the Hadoop-based approach and the Spark-
based approach. From Fig. 12, we can clearly see that all
pictures gain higher speedups in different percentages, and
1005 and 1006 in particular have gained a significant per-
formance improvement. For further analysis, we define the
increase rate as:

rate_inc=
Spark_speedup− Hadoop_speedup

Hadoop_speedup
× 100% (9)

From the rightmost column in Table 7, we can see that
the rates of increase vary from 57.00% to 200.00%, and the
average rate of increase can reach 128.00%. Compared with
the Hadoop-based FCM algorithm, these experimental results
indicate that the Spark-based FCM algorithm can exploit
more parallelism and achieve better performance improve-
ment for all pictures. This result is because Spark is an
in-memory cluster computing platform developed for itera-
tive algorithms and allows the Spark-based FCM algorithm
to directly cache frequently used data and intermediate results
in the distributed memory for iterative operation. In contrast,
Hadoop reads and writes data from the HDFS for each itera-
tion, which consumes considerable time.

3) SCALEUP

The scaleup is the ability of an m-times larger system to
perform an m-times larger job in the same run-time as the

original system. The scaleup evaluates the scalability of the
algorithm to increase both the system and the dataset size.
Equation (10) is shown as follows:

Scaleup (data,m) =
T1

Tmm
(10)

where T1 is the execution time for processing data on one
node, and Tmm is the execution time for processing m∗ data
on m computing nodes.

With the increase of computing nodes, the scaleup experi-
ments are performed to verify the ability of the Spark-based
FCM algorithm to process larger datasets. In this section, all
testing pictures are selected as a dataset, and with the increase
of computing nodes, the dataset is replicated and scaled up
by factors of 2, 4 and 8 times. For these datasets, the sizes of
datasets are executed on 1, 2, 4 and 8 computing nodes.

FIGURE 13. The scaleup comparison.

Figure 13 shows the scaleup performance of the datasets.
Picture 1006 maintains up to 66% scalability while picture
1002 also maintains a 60% scaleup. Clearly, the Spark-based
1001 FCM algorithm scales very well. However, as the result
shows, for all the testing pictures, the scaleup of the Spark-
based FCM algorithm is gradually reduced when the number
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of computing nodes and the sizes of the datasets increase
proportionally. This finding is because when the number of
nodes increases, the communication costs between nodes
will gradually increase. Consequently, when the data size
increases in proportion to the number of computing nodes,
the execution time of the parallel algorithm based on Spark
will increase.

4) SIZEUP

Sizeup measures how much longer it takes on a given system
when the dataset size is m-times larger than the original
dataset. It is defined by the following formula.

Sizeup (data,m) =
Tm

T1
(11)

where Tm is the execution time for processing m∗ data, and
T1 is the execution time for processing data.

FIGURE 14. The sizeup of different size of photos running the sparkbased
fcm algorithm on different numbers of nodes.

The experiment tests different sizes of pictures running
the Spark-based FCM algorithm on different numbers of
computing nodes, using the same dataset as the experiment
of scaleup. As shown in Fig. 14, when the number of nodes
is kept constant, sizeup increases proportionally as the size
of the dataset becomes larger. When the image size is kept
constant, sizeup decreases as the number of nodes increases.
Experimental results show that the Spark-based parallel FCM
has a good size-up performance. An 32 times larger problem
needs about 40 times more time on one node, but only about
3 times more time on 10 nodes. The experiment indicates that
FCM algorithm is suitable for the Spark platform, and it can
be effectively segmented for agricultural image big data.

V. RELATED WORK

Currently, image segmentation plays an important role in
the field of understanding and analysis of image big data
such as in medical and agricultural research. In recent
years, many algorithms had been proposed for image
segmentation [38]–[44]. In [41] and [42], an FCM algorithm
is used for MRI image segmentation and local noise detec-
tion. In [45], a K-means clustering algorithm and a subtractive

clustering algorithm are proposed for image segmentation.
In [43], a normalized cuts algorithm is extended for the
segmentation of hyperspectral images. In [44], a fuzzy set
is used for agricultural image target segmentation. In [46],
a discrete wavelet transform is used to distinguish between
soil and green parts in agricultural image segmentation.

With the increase in the amount of image big data to
be processed, many parallel image segmentation algorithms
have been proposed and are implemented on GPU platforms.
In [47], Al-Ayyoub et al. proposed a GPU-based implemen-
tation of FCM algorithms for medical image segmentation.
Compared with a CPU-based sequential implementation and
a traditional FCM algorithm, GPU-based parallel brFCM is
2.24 times faster than the former, and 23.43 times faster
than the latter. In [48], Shehab et al. proposed a parallel
hybrid CPU-GPU implementation for the FCM algorithm.
By executing the membership function and the ‘‘Do segmen-
tation function’’ on the GPU card, with the cluster centroids
computed and updated on the CPU side, the proposed parallel
FCM is 9 times faster than the sequential version. In [26],
Ali et al. proposed three parallel implementations of the
FCM algorithm for MRI image segmentation, in which the
first implementation consists mainly of an almost complete
data processing hosting at the GPU level through updating
the membership matrix, achieving the maximum speedup
of 21.16, and the other two implementations are hybrid GPU-
CPU methods, achieving the maximum speedup of 5.39 and
13.21, respectively.

With the rapid development of computer architecture,
many researchers have implemented parallel algorithms on
cluster computing platforms that are specially designed
for iterative computing, such as Hadoop and Spark.
In [30], Li et al. proposed a MapReduce-based fast FCM
(MRFFCM) algorithm for large-scale underwater image seg-
mentation, in which a two-layer distribution model is used to
group the large-scale images and adopt an iterative MapRe-
duce process to parallelize the FFCM algorithm. Compared
to the traditional nonparallel methods, the MRFFCM algo-
rithm can be expected to provide a more efficient segmen-
tation on images with at least 13% improvement. In [49],
Zhu et al. presented a Spark-based distributed parallel ker-
nel fuzzy C-means (S-KFCM) clustering algorithm for SAR
image change detection. Using the Map operation on RDDs,
the computation of memberships can be distributed to all
nodes in the Spark cluster, and thus the computation of
the classification of the change map can be transferred
to the Spark cluster. The experimental results show good
effectiveness and accelerating performance. Compared to the
Hadoop-based KFCM algorithm, the speedup can achieve a
maximum of 18.9. In [31], a scalable Fuzzy C-Means clus-
tering method named BigFCM is proposed and designed for
the Hadoop distributed data platform. Based on the MapRe-
duce programming model, the proposed algorithm exploits
several mechanisms, including an efficient caching design to
achieve a several orders of magnitude reduction in execution
time. Compared with Apache Mahout K-Means and Fuzzy
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K-Means, the BigFCM method shows great scalability while
it preserves the quality of clustering. These approaches show
some good effects in image segmentation and obtain a certain
speedup, but many of these approaches have not been imple-
mented in the field of understanding and analysis for image
big data. This paper proposes a parallel Spark-based FCM
segmentation algorithm for agricultural image big data and
obtains a significant increase in speedup.

VI. CONCLUSION

To solve the problem of image processing and analysis for
agricultural image big data, this paper proposes a parallel
FCM algorithm based on the Spark distributed computing
platform. The point cloud data are first generated from the
input image and stored in distributed computing platforms;
then, the membership degrees of pixel points to different
cluster centers and the cluster centers are calculated and
updated in parallel for iterative computing. The segmented
image is finally reconstructed based on the clustered point
cloud data.
The parallel FCM segmentation algorithm for agricultural

image big data is implemented on Apache Spark. The results
show that the Spark-based parallel fuzzy C-means algorithm
can obtain a significant increase in speedup and reaches an
average speedup of 12.54 on 10 computing nodes. From an
overall perspective, using an agricultural image testing set,
the results are satisfactory, and the parallel FCM algorithm
achieves an average of 128% performance improvement.
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