
 Open access Journal Article DOI:10.1137/S1064827595294691

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems
— Source link

Michele Benzi, Miroslav Tuma

Institutions: Los Alamos National Laboratory

Published on: 01 May 1998 - SIAM Journal on Scientific Computing (Society for Industrial and Applied Mathematics)

Topics: Incomplete LU factorization, Preconditioner, Conjugate gradient method, Sparse matrix and Matrix (mathematics)

Related papers:

 Iterative Methods for Sparse Linear Systems

 Parallel Preconditioning with Sparse Approximate Inverses

 Factorized sparse approximate inverse preconditionings I: theory

 A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method

 Approximate Inverse Preconditioners via Sparse-Sparse Iterations

Share this paper:

View more about this paper here: https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-
1pljusijoa

https://typeset.io/
https://www.doi.org/10.1137/S1064827595294691
https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa
https://typeset.io/authors/michele-benzi-dix1y7ctcu
https://typeset.io/authors/miroslav-tuma-36kdwyf11e
https://typeset.io/institutions/los-alamos-national-laboratory-2kt0qt5l
https://typeset.io/journals/siam-journal-on-scientific-computing-162j53kf
https://typeset.io/topics/incomplete-lu-factorization-45vjh55q
https://typeset.io/topics/preconditioner-1t36hez6
https://typeset.io/topics/conjugate-gradient-method-18pee2nu
https://typeset.io/topics/sparse-matrix-1i49otqb
https://typeset.io/topics/matrix-mathematics-11qhlpiv
https://typeset.io/papers/iterative-methods-for-sparse-linear-systems-34ozhpwq89
https://typeset.io/papers/parallel-preconditioning-with-sparse-approximate-inverses-4syznco41a
https://typeset.io/papers/factorized-sparse-approximate-inverse-preconditionings-i-4g0af24jve
https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-the-1zic37nv8j
https://typeset.io/papers/approximate-inverse-preconditioners-via-sparse-sparse-4h6uyo0mda
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa
https://twitter.com/intent/tweet?text=A%20Sparse%20Approximate%20Inverse%20Preconditioner%20for%20Nonsymmetric%20Linear%20Systems&url=https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa
https://typeset.io/papers/a-sparse-approximate-inverse-preconditioner-for-nonsymmetric-1pljusijoa

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR

NONSYMMETRIC LINEAR SYSTEMS∗

MICHELE BENZI† AND MIROSLAV TŮMA‡

SIAM J. SCI. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 968–994, May 1998 012

Abstract. This paper is concerned with a new approach to preconditioning for large, sparse
linear systems. A procedure for computing an incomplete factorization of the inverse of a non-
symmetric matrix is developed, and the resulting factorized sparse approximate inverse is used as
an explicit preconditioner for conjugate gradient–type methods. Some theoretical properties of the
preconditioner are discussed, and numerical experiments on test matrices from the Harwell–Boeing
collection and from Tim Davis’s collection are presented. Our results indicate that the new precon-
ditioner is cheaper to construct than other approximate inverse preconditioners. Furthermore, the
new technique insures convergence rates of the preconditioned iteration which are comparable with
those obtained with standard implicit preconditioners.

Key words. preconditioning, approximate inverses, sparse linear systems, sparse matrices,
incomplete factorizations, conjugate gradient–type methods

AMS subject classifications. 65F10, 65F35, 65F50, 65Y05

PII. S1064827595294691

1. Introduction. In this paper we consider the solution of nonsingular linear
systems of the form

Ax = b,(1)

where the coefficient matrix A ∈ R
n×n is large and sparse. In particular, we are con-

cerned with the development of preconditioners for conjugate gradient–type methods.
It is well known that the rate of convergence of such methods for solving (1) is strongly
influenced by the spectral properties of A. It is therefore natural to try to transform
the original system into one having the same solution but more favorable spectral
properties. A preconditioner is a matrix that can be used to accomplish such a trans-
formation. If G is a nonsingular matrix which approximates A−1 (G ≈ A−1), the
transformed linear system

GAx = Gb(2)

will have the same solution as system (1) but the convergence rate of iterative methods
applied to (2) may be much higher. Problem (2) is preconditioned from the left,
but right preconditioning is also possible. Preconditioning on the right leads to the
transformed linear system

AGy = b.(3)

Once the solution y of (3) has been obtained, the solution of (1) is given by x = Gy.
The choice between left or right preconditioning is often dictated by the choice of the

∗Received by the editors November 10, 1995; accepted for publication (in revised form) June 25,
1996.

http://www.siam.org/journals/sisc/19-3/29469.html
†Scientific Computing Group (CIC-19), MS B256, Los Alamos National Laboratory, Los Alamos,

NM 87545 (benzi@lanl.gov). The work of this author was supported in part by a grant under the
scientific cooperation agreement between Italy’s CNR and the Czech Academy of Sciences.

‡Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou
věž́ı 2, 182 07 Prague 8 - Libeň, Czech Republic (tuma@uivt.cas.cz). The work of this author
was supported in part by grants GA CR 201/93/0067 and GA AS CR 230401 and by NSF grant
INT-9218024.

968

APPROXIMATE INVERSE PRECONDITIONING 969

iterative method. It is also possible to use both forms of preconditioning at once (split
preconditioning); see [3] for further details.

Note that in practice it is not required to compute the matrix product GA (or AG)
explicitly, because conjugate gradient–type methods only necessitate the coefficient
matrix in the form of matrix–vector multiplies. Therefore, applying the preconditioner
within a step of a gradient-type method reduces to computing the action of G on a
vector.

Loosely speaking, the closer G is to the exact inverse of A, the higher the rate of
convergence of iterative methods will be. Choosing G = A−1 yields convergence in
one step, but of course constructing such a preconditioner is equivalent to solving the
original problem. In practice, the preconditioner G should be easily computed and
applied, so that the total time for the preconditioned iteration is less than the time
for the unpreconditioned one. Typically, the cost of applying the preconditioner at
each iteration of a conjugate gradient–type method should be of the same order as
the cost of a matrix–vector multiply involving A. For a sparse A, this implies that the
preconditioner should also be sparse with a density of nonzeros of roughly the same
order as that of A.

Clearly, the effectiveness of a preconditioning strategy is strongly problem- and
architecture-dependent. For instance, a preconditioner which is expensive to compute
may become viable if it is to be reused many times, since in this case the initial cost
of forming the preconditioner can be amortized over several linear systems. This sit-
uation occurs, for instance, when dealing with time-dependent or nonlinear problems,
whose numerical solution gives rise to long sequences of linear systems having the
same coefficient matrix (or a slowly varying one) and different right-hand sides. Fur-
thermore, preconditioners that are very efficient in a scalar computing environment
may show poor performance on vector and parallel machines, and conversely.

A number of preconditioning techniques have been proposed in the literature
(see, e.g., [2], [3] and the references therein). While it is generally agreed that the
construction of efficient general-purpose preconditioners is not possible, there is still
considerable interest in developing methods which will perform well on a wide range
of problems and are well suited for state-of-the-art computer architectures. Here we
introduce a new algebraic preconditioner based on an incomplete triangular factor-
ization of A−1. This paper is the natural continuation of [8], where the focus was
restricted to symmetric positive definite systems and to the preconditioned conjugate
gradient method (see also [5], [7]).

The paper is organized as follows. In section 2 we give a quick overview of implicit
and explicit preconditioning techniques, considering the relative advantages as well
as the limitations of the two approaches. In section 3 we summarize some recent
work on the most popular approach to approximate inverse preconditioning, based on
Frobenius norm minimization. In section 4 we introduce the new incomplete inverse
triangular decomposition technique and describe some of its theoretical properties.
A graph-theoretical characterization of fill-in in the inverse triangular factorization is
presented in section 5. In section 6 we consider the use of preconditioning on matrices
which have been reduced to block triangular form. Implementation details and the
results of numerical experiments are discussed in sections 7 and 8, and some concluding
remarks and indications for future work are given in section 9. Our experiments
suggest that the new preconditioner is cheaper to construct than preconditioners
based on the optimization approach. Moreover, good rates of convergence can be
achieved by our preconditioner, comparable with those insured by standard ILU-type
techniques.

970 MICHELE BENZI AND MIROSLAV TŮMA

2. Explicit vs. implicit preconditioning. Most existing preconditioners can
be broadly classified as being either of the implicit or of the explicit kind. A precon-
ditioner is implicit if its application, within each step of the chosen iterative method,
requires the solution of a linear system. A nonsingular matrix M ≈ A implicitly
defines an approximate inverse G := M−1 ≈ A−1, and applying G requires solving a
linear system with coefficient matrix M . Of course, M should be chosen so that solv-
ing a system with matrix M is easier than solving the original problem (1). Perhaps
the most important example is provided by preconditioners based on an incomplete
LU (ILU) decomposition. Here M = L̄Ū , where L̄ and Ū are sparse triangular matri-
ces which approximate the exact L and U factors of A. Applying the preconditioner
requires the solution of two sparse triangular systems (the forward and backward
solves). Other notable examples of implicit preconditioners include the ILQ, SSOR,
and ADI preconditioners; see [3].

In contrast, with explicit preconditioning a matrix G ≈ A−1 is known (possibly as
the product of sparse matrices) and the preconditioning operation reduces to forming
one (or more) matrix–vector product. For instance, some polynomial preconditioners
belong to this class [37]. Other explicit preconditioners will be described in subsequent
sections.

Implicit preconditioners have been intensively studied, and they have been suc-
cessfully employed in a number of applications. In spite of this, in the last few years an
increasing amount of attention has been devoted to alternative forms of precondition-
ing, especially of the explicit kind. There have been two main reasons for this recent
trend so far. In the first place, shortly after the usage of modern high-performance ar-
chitectures became widespread, it was realized that straightforward implementation
of implicit preconditioning in conjugate gradient–like methods could lead to severe
degradation of the performance on the new machines. In particular, the sparse trian-
gular solves involved in ILU-type preconditioning were found to be a serial bottleneck
(due to the recursive nature of the computation), thus limiting the effectiveness of this
approach on vector and parallel computers. It should be mentioned that considerable
effort has been devoted to overcoming this difficulty. As a result, for some architec-
tures and types of problems it is possible to introduce nontrivial parallelism and to
achieve reasonably good performance in the triangular solves by means of suitable
reordering strategies (see, e.g., [1], [38], [54]). However, the triangular solves remain
the most problematic aspect of the computation, both on shared memory [33] and
distributed memory [10] computers, and for many problems the efficient application of
an implicit preconditioner in a parallel environment still represents a serious challenge.

Another drawback of implicit preconditioners of the ILU type is the possibility
of breakdowns during the incomplete factorization process, due to the occurrence of
zero or exceedingly small pivots. This situation typically arises when dealing with
matrices which are strongly unsymmetric and/or indefinite, even if pivoting is ap-
plied (see [11], [49]), and in general it may even occur for definite problems unless
A exhibits some degree of diagonal dominance. Of course, it is always possible to
safeguard the incomplete factorization process so that it always runs to completion,
producing a nonsingular preconditioner, but there is also no guarantee that the re-
sulting preconditioner will be of acceptable quality. Furthermore, as shown in [23],
there are problems for which standard ILU techniques produce unstable incomplete
factors, resulting in useless preconditioners.

Explicit preconditioning techniques, based on directly approximating A−1, have
been developed in an attempt to avoid or mitigate such difficulties. Applying an

APPROXIMATE INVERSE PRECONDITIONING 971

explicit preconditioner only requires sparse matrix–vector products, which should be
easier to parallelize than the sparse triangular solves, and in some cases the con-
struction of the preconditioner itself is well suited for parallel implementation. In
addition, the construction of an approximate inverse is sometimes possible even if
the matrix does not have a stable ILU decomposition. Moreover, we mention that
sparse incomplete inverses are often used when constructing approximate Schur com-
plements (pivot blocks) for use in incomplete block factorization and other two-level
preconditioners; see [2], [3], [12], [15].

Of course, explicit preconditioners are far from being completely trouble-free.
Even if a sparse approximate inverse G is computed, care must be exercised to ensure
that G is nonsingular. For nonsymmetric problems, the same matrix G could be a
good approximate inverse if used for left preconditioning and a poor one if used for
right preconditioning; see [36, p. 96], [45, p. 66], [48]. Furthermore, explicit precon-
ditioners are sometimes not as effective as implicit ones at reducing the number of
iterations, in the sense that there are problems for which they require a higher number
of nonzeros in order to achieve the same rate of convergence insured by implicit pre-
conditioners. One of the reasons for this limitation is that an explicit preconditioner
attempts to approximate A−1, which is usually dense, with a sparse matrix. Thus,
an explicit preconditioner is more likely to work well if A−1 contains many entries
which are small (in magnitude). A favorable situation is when A exhibits some form
of diagonal dominance, but for such problems implicit preconditioning is also likely
to be very effective. Hence, for problems of this type, explicit preconditioners can be
competitive with implicit ones only if explicitness is fully exploited. Finally, explicit
preconditioners are usually more expensive to compute than implicit ones, although
this difference may become negligible in the common situation where several linear
systems with the same coefficient matrix and different right-hand sides have to be
solved. In this case the time for computing the preconditioner is often only a fraction
of the time required for the overall computation. It is also worth repeating that the
construction of certain sparse approximate inverses can be done, at least in principle,
in a highly parallel manner, whereas the scope for parallelism in the construction of
ILU-type preconditioners is more limited.

3. Methods based on Frobenius norm minimization. A good deal of work
has been devoted to explicit preconditioning based on the following approach: the
sparse approximate inverse is computed as the matrix G which minimizes ‖I − GA‖
(or ‖I − AG‖ for right preconditioning) subject to some sparsity constraint (see [4],
[2, Chap. 8], [16], [43], [44], [32], [31], [11], [30]). Here the matrix norm is usually
the Frobenius norm or a weighted variant of it, for computational reasons. With this
choice, the constrained minimization problem decouples into n independent linear
least squares problems (one for each row or column of G), the number of unknowns
for each problem being equal to the number of nonzeros allowed in each row (or
column) of G. This immediately follows from the identity

‖I − AG‖2
F =

n
∑

i=1

‖ei − Agi‖
2
2,

where ei is the ith unit vector and gi is the ith column of G. Clearly, there is
considerable scope for parallelism in this approach. The resulting sparse least squares
problems can be solved, in principle, independently of each other, either by direct
methods (as in [44], [31], [30]) or iteratively [11], [42].

972 MICHELE BENZI AND MIROSLAV TŮMA

In early papers (e.g., [4], [32], [43]) the sparsity constraint was imposed a priori,
and the minimizer was found relative to a class of matrices with a predetermined
sparsity pattern. For instance, when A is a band matrix with a good degree of
diagonal dominance, a banded approximation to A−1 is justified; see [18]. However,
for general sparse matrices it is very difficult to guess a good sparsity pattern for
an approximate inverse, and several recent papers have addressed the problem of
adaptively defining the nonzero pattern of G in order to capture “large” entries of
the inverse [31], [30]. Indeed, by monitoring the size of each residual ‖ei − Agi‖2 it
is possible to decide whether new entries of gi are to be retained or discarded, in a
dynamic fashion. Moreover, the information on the residuals can be utilized to derive
rigorous bounds on the clustering of the singular values of the preconditioned matrix
and therefore to estimate its condition number [31]. It is also possible to formulate
conditions on the norm of the residuals which insure that the approximate inverse
will be nonsingular. Unfortunately, such conditions appear to be of dubious practical
value, because trying to fulfill them could lead to a very dense approximate inverse
[16], [11].

A disadvantage of this approach is that symmetry in the coefficient matrix cannot
be exploited. If A is symmetric positive definite (SPD), the sparse approximate inverse
will not be symmetric in general. Even if a preset, symmetric sparsity pattern is
enforced, there is no guarantee that the approximate inverse will be positive definite.
This could lead to a breakdown in the conjugate gradient acceleration. For this reason,
Kolotilina and Yeremin [43], [44] propose to compute an explicit preconditioner of the
form G = GT

LGL where GL is lower triangular. The preconditioned matrix is then
GLAGT

L, which is SPD, and the conjugate gradient method can be applied. The
matrix GL is the solution of a constrained minimization problem for the Frobenius
norm of I − LGL, where L is the Cholesky factor of A. In [43] it is shown how this
problem can be solved without explicit knowledge of any of the entries of L, using only
entries of the coefficient matrix A. The same technique can also be used to compute a
factorized approximate inverse of a nonsymmetric matrix by separately approximating
the inverses of the L and U factors. As it stands, however, this technique requires
that the sparsity pattern of the approximate inverse triangular factors be specified in
advance, and therefore is not suitable for matrices with a general sparsity pattern.

There are additional reasons for considering factorized approximate inverses.
Clearly, with the approximate inverse G expressed as the product of two triangu-
lar factors it is trivial to insure that G be nonsingular. Another argument in favor
of this approach is given in [11], where it is observed that factorized forms of general
sparse matrices contain more information for the same storage than if a single product
was stored.

The serial cost for the construction of this type of preconditioner is usually very
high, although the theoretical parallel complexity can be quite moderate [44], [30].
The results of numerical experiments reported in [44] demonstrate that factorized
sparse approximate inverse preconditioners can insure rapid convergence of the pre-
conditioned conjugate gradient (PCG) iteration when applied to certain finite element
discretizations of three-dimensional PDE problems arising in elasticity theory. How-
ever, in these experiments the preconditioning strategy is not applied to the coefficient
matrix directly, but rather to a reduced system (Schur complement) which is better
conditioned and considerably less sparse than the original problem. When the ap-
proximate inverse preconditioner is applied directly to the original stiffness matrix A,
the rate of convergence of the PCG iteration is rather disappointing.

APPROXIMATE INVERSE PRECONDITIONING 973

A comparison between a Frobenius norm–based sparse approximate inverse pre-
conditioner and the ILU(0) preconditioner on a number of general sparse matrices has
been made in [30]. The reported results show that the explicit preconditioner can in-
sure rates of convergence comparable with those achieved with the implicit ILU-type
approach. Again, it is observed that the construction of the approximate inverse is
often very costly but amenable to parallelization.

Factorized sparse approximate inverses have also been considered by other au-
thors, for instance, Kaporin [39], [40], [41], whose approach is also based on mini-
mizing a certain matrix functional and is closely related to that of Kolotilina and
Yeremin. In the next sections we present an alternative approach to factorized sparse
approximate inverse preconditioning which is not grounded in optimization, but is
based instead on a direct method of matrix inversion. As we shall see, the serial cost
of forming a sparse approximate inverse with this technique is usually much less than
with the optimization approach, while the convergence rates are still comparable, on
average, with those obtained with ILU-type preconditioning.

4. A method based on inverse triangular factorization. The optimization
approach to constructing approximate inverses is not the only possible one. In this
section we consider an alternative procedure based on a direct method of matrix inver-
sion, performed incompletely in order to preserve sparsity. This results in a factorized
sparse G ≈ A−1. Being an incomplete matrix factorization method, our procedure
resembles classical ILU-type implicit techniques, and indeed we can draw from the
experience accumulated in years of use of ILU-type preconditioning both at the im-
plementation stage and when deriving theoretical properties of the preconditioner G.
This paper continues the work in [8], where the symmetric positive definite case was
studied (see also [5], [7]).

The construction of our preconditioner is based on an algorithm which computes
two sets of vectors {zi}

n
i=1, {wi}

n
i=1, which are A-biconjugate, i.e., such that wT

i Azj =
0 if and only if i 6= j. Given a nonsingular matrix A ∈ R

n×n, there is a close
relationship between the problem of inverting A and that of computing two sets of
A-biconjugate vectors {zi}

n
i=1 and {wi}

n
i=1. If

Z = [z1, z2, . . . , zn]

is the matrix whose ith column is zi and

W = [w1, w2, . . . , wn]

is the matrix whose ith column is wi, then

WT AZ = D =









p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn









,

where pi = wT
i Azi 6= 0. It follows that W and Z are necessarily nonsingular and

A−1 = ZD−1WT =
n

∑

i=1

ziw
T
i

pi

.(4)

974 MICHELE BENZI AND MIROSLAV TŮMA

Hence, the inverse of A is known if two complete sets of A-biconjugate vectors are
known. Note that there are infinitely many such sets. Matrices W and Z whose
columns are A-biconjugate can be explicitly computed by means of a biconjugation
process applied to the columns of any two nonsingular matrices W (0), Z(0) ∈ R

n×n.
A computationally convenient choice is to let W (0) = Z(0) = In×n: the biconjugation
process is applied to the unit basis vectors. In order to describe the procedure, let aT

i

and cT
i denote the ith row of A and AT , respectively (i.e., ci is the ith column of A).

The basic A-biconjugation procedure can be written as follows.

THE BICONJUGATION ALGORITHM

(1) Let w
(0)
i = z

(0)
i = ei (1 ≤ i ≤ n)

(2) for i = 1, 2, . . . , n

for j = i, i + 1, . . . , n

p
(i−1)
j := aT

i z
(i−1)
j ; q

(i−1)
j := cT

i w
(i−1)
j

end

if i = n go to (3)
for j = i + 1, . . . , n

z
(i)
j := z

(i−1)
j − (

p
(i−1)
j

p
(i−1)
i

)z
(i−1)
i ; w

(i)
j := w

(i−1)
j − (

q
(i−1)
j

q
(i−1)
i

)w
(i−1)
i

end

end

(3) Let zi := z
(i−1)
i , wi := w

(i−1)
i , and pi := p

(i−1)
i for 1 ≤ i ≤ n.

Return Z = [z1, z2, . . . , zn], W = [w1, w2, . . . , wn], and D =











p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn











.

This algorithm is essentially due to Fox; see Chap. 6 of [25]. Closely related
methods have also been considered by Hestenes and Stiefel [35, pp. 426–427], Hestenes
[34], and Stewart [52]. A more general treatment is given in the recent paper [14].
Geometrically, the procedure can be regarded as a generalized Gram–Schmidt orthog-
onalization with oblique projections and nonstandard inner products; see [6], [14].

Several observations regarding this algorithm are in order. In the first place we
note that the above formulation contains some redundancy, since in exact arithmetic

pi = wT
i Azi = zT

i AT wi = qi.

Therefore, at step i the computation of the dot product q
(i−1)
i = cT

i w
(i−1)
i may be

replaced by the assignment q
(i−1)
i := p

(i−1)
i . Another observation is the fact that the

procedure, as it stands, is vulnerable to breakdown (division by zero), which occurs

whenever any of the quantities p
(i−1)
i (= q

(i−1)
i) happens to be zero. It can be shown

that in exact arithmetic, the biconjugation algorithm will not break down if and only
if all the leading principal minors of A are nonzero (see below). For any nonsingular
matrix A there exists a permutation matrix P (or Q) such that the procedure applied
to PA (or to AQ) will not break down. As in the LU decomposition with pivoting,
such permutation matrices represent row (or column) interchanges on A which can
be performed, if needed, in the course of the computation.

If the biconjugation process can be carried to completion without interchanges,
the resulting Z and W matrices are upper triangular,1 they both have all diagonal

1Note that this is not necessarily true when a matrix other than the identity is used at the outset,
i.e., if Z(0), W (0) 6= In×n.

APPROXIMATE INVERSE PRECONDITIONING 975

entries equal to one, and they satisfy the identity

A = W−T DZ−1.(5)

We recognize in (5) the familiar LDU decomposition A = LDU , where L is unit
lower triangular, U is unit upper triangular, and D is the diagonal matrix with the
pivots down the main diagonal. Because this factorization is unique, we have that the
biconjugation algorithm explicitly computes

W = L−T , Z = U−1,

and the matrix D, which is exactly the same in (5) and in A = LDU . Hence, the pro-
cess produces an inverse triangular decomposition of A or, equivalently, a triangular
decomposition (of the UDL type) of A−1. The pi’s returned by the algorithm are the
pivots in the LDU factorization of A. If we denote by ∆i the ith leading principal
minor of A (1 ≤ i ≤ n) and let ∆0 = 1, the identity (5) implies that

pi =
∆i

∆i−1
(i = 1, . . . , n),

showing that the biconjugation algorithm can be performed without breakdowns if
and only if all leading principal minors of A are nonvanishing. In finite precision
arithmetic, pivoting may be required to promote numerical stability.

Once Z, W , and D are available, the solution of a linear system of the form (1)
can be computed, by (4), as

x = A−1b = ZD−1WT b =
n

∑

i=1

(

wT
i b

pi

)

zi.(6)

In practice, this direct method for solving linear systems is not used on account of
its cost: for a dense n × n matrix, the biconjugation process requires about twice
the work as the LU factorization of A. Notice that the cost of the solve phase
using (6) is the same as for the forward and backward solves with the L and U

factors.
If A is symmetric, the number of operations in the biconjugation algorithm can

be halved by observing that W must equal Z. Hence, the process can be carried out

using only the rows of A, the z-vectors, and the p
(i−1)
j . The columns of the resulting

Z form a set of conjugate directions for A. If A is SPD, no breakdown can occur (in
exact arithmetic), so that pivoting is not required and the algorithm computes the
LT DL factorization of A−1. This method was first described in [26]. Geometrically,
it amounts to Gram–Schmidt orthogonalization with inner product 〈x, y〉 := xT Ay

applied to the unit vectors e1, . . . , en. It is sometimes referred to as the conjugate

Gram–Schmidt process. The method is still impractical as a direct solver because it
requires about twice the work of Cholesky for dense matrices. However, as explained
in [5] and [6], the same algorithm can also be applied to nonsymmetric systems,
resulting in an implicit LDU factorization where only Z = U−1 and D are computed.
Indeed, it is possible to compute a solution to (1) for any right-hand side using just Z,
D, and part of the entries of A. This method has the same arithmetic complexity as
Gaussian elimination when applied to dense problems. When combined with suitable
sparsity-preserving strategies the method can be useful as a sparse direct solver, at
least for some types of problems (see [5], [6]).

976 MICHELE BENZI AND MIROSLAV TŮMA

For a sparse symmetric and positive definite A, the matrix Z produced by the
algorithm tends to be dense (see the next section), but it can be observed experi-
mentally that very often, most of the entries in Z have small magnitude. If fill-in in
the matrix Z is reduced by removing suitably small entries in the computation of the
z-vectors, the algorithm computes a sparse matrix Z̄ and a diagonal matrix D̄ such
that

G := Z̄D̄−1Z̄T ≈ A−1

(i.e., a factorized sparse approximate inverse of A). Hence, G can be used as an
explicit preconditioner for the conjugate gradient method. A detailed study of this
preconditioning strategy for SPD problems can be found in [8], where it is proven
that the incomplete inverse factorization exists if A is an H-matrix (analogously to
ILU-type factorizations). The numerical experiments in [8] show that this approach
can insure fast convergence of the PCG iteration, almost as good as with implicit
preconditioning of the incomplete Cholesky type. The construction of the precondi-
tioner itself, while somewhat more expensive than the computation of the incomplete
Cholesky factorization, is still quite cheap. This is in contrast with the least squares
approach described in the previous section, where the construction of the approximate
inverse is usually very time consuming, at least in a sequential environment.

In the remainder of this paper we consider an explicit preconditioning strategy
based on the biconjugation process described above. Sparsity in the Z and W factors
of A−1 is preserved by removing “small” fill in the z- and w-vectors. A possibility
would be to drop all newly added fill-in elements outside of a preset sparsity pattern
above the main diagonal in Z and W ; however, for general sparse matrices it is very
difficult to guess a reasonable sparsity pattern, and a drop tolerance is used instead. A
trivial extension of the results in [8] shows that the incomplete biconjugation process
(incomplete inverse factorization) cannot break down, in exact arithmetic, if A is an
H-matrix. For more general matrices it is necessary to safeguard the computation in
order to avoid breakdowns. This requires pivot modifications and perhaps some form
of pivoting—we postpone the details until section 7. The incomplete biconjugation
algorithm computes sparse unit upper triangular matrices Z̄ ≈ Z, W̄ ≈ W, and a
nonsingular diagonal matrix D̄ ≈ D such that

G := Z̄D̄−1W̄T ≈ A−1

is a factorized sparse approximate inverse of A which can be used as an explicit
preconditioner for conjugate gradient–type methods for the solution of (1).

We conclude this section with a few remarks on properties of the approximate
inverse preconditioner G just described. If A is not an H-matrix, as already mentioned,
the construction of the preconditioner could break down due to the occurrence of zero
or extremely small pivots. However, following [46], we note that there always exists
α > 0 such that A + αI is diagonally dominant, and hence an H-matrix. Therefore,
if the incomplete biconjugation algorithm breaks down, one could try to select α > 0
and re-attempt the process on the shifted matrix A′ = A + αI. Clearly, α should
be large enough to insure the existence of the incomplete inverse factorization but
also small enough so that A′ is close to A. This approach has several drawbacks:
for ill-conditioned matrices, the quality of the resulting preconditioner is typically
poor; furthermore, the breakdown that prompts the shift may occur near the end of
the biconjugation process, and the preconditioner may have to be recomputed several
times before a satisfactory value of α is found. A better strategy is to perform diagonal

APPROXIMATE INVERSE PRECONDITIONING 977

modifications only as the need arises, shifting pivots away from zero if their magnitude
is less than a specified threshold (see section 7 for details).

If A is an M-matrix, it follows from the results in [8] that G is a nonnegative
matrix. Moreover, it is easy to see that componentwise the following inequalities
hold:

D−1
A ≤ G ≤ A−1,(7)

where DA is the diagonal part of A. Furthermore, if G1 and G2 are two approximate
inverses of the M-matrix A produced by the incomplete biconjugation process and the
drop tolerance used for G1 is greater than or equal to the drop tolerance used for G2,
then

D−1
A ≤ G1 ≤ G2 ≤ A−1.(8)

The same is true if sparsity patterns are used to determine the nonzero structure in
Z̄ and W̄ and the patterns for G2 include the patterns for G1. This monotonicity
property is shared by other sparse approximate inverses; see, for example, Chap. 8 in
[2]. We note that property (7) is important if the approximate inverse is to be used
within an incomplete block factorization of an M-matrix A, because it insures that
all the intermediate matrices produced in the course of the incomplete factorization
preserve the M-matrix property (see [2, pp. 263– 264]).

Finally, after discussing the similarities, we point to a difference between our
incomplete inverse factorization and the ILU-type factorization of a matrix. The
incomplete factorization of an M-matrix A induces a splitting A = L̄Ū −R which is a
regular splitting, and therefore convergent: ρ(I − Ū−1L̄−1A) < 1, where ρ(B) denotes
the spectral radius of a matrix B (see [47], [55]). The same is not true, in general,
for our incomplete factorization. If one considers the induced splitting A = G−1 − S

(where S = G−1 − A) this splitting need not be convergent. An example is given by
the symmetric M-matrix

A =





2 −1 0
−1 2 −1
0 −1 1



 .

For this matrix, the incomplete inverse factorization with a drop tolerance T = 0.5
(whereby intermediate fill-in is dropped if smaller than T in absolute value) produces
an approximate inverse G such that ρ(I − GA) ≈ 1.215 > 1. This shows that the
approximate decomposition

A ≈ W̄−T D̄Z̄−1

cannot be obtained, in general, from an incomplete factorization of A. In this sense,
the incomplete inverse factorization is not algebraically equivalent to an incomplete
LDU factorization performed on A.

5. Fill-in in the biconjugation algorithm. In this section we give a char-
acterization of the fill-in occurring in the factorized inverse obtained by the bicon-
jugation algorithm. These results may serve as a guideline to predict the structure
of the factorized approximate inverse and have an impact on certain aspects of the
implementation.

It is well known that structural nonzeros in the inverse matrix A−1 can be char-
acterized by the paths in the graph of the original matrix A (see [24], [29]). The

978 MICHELE BENZI AND MIROSLAV TŮMA

following lemma states necessary and sufficient conditions for a new entry (fill-in) to
be added in one of the z-vectors at the ith step of the biconjugation algorithm. A
similar result holds for the w-vectors. We make use of the standard no-cancellation
assumption.

LEMMA 5.1. Let 1 ≤ i < j ≤ n, 1 ≤ l ≤ n. Then

z
(i−1)
lj = 0 ∧ z

(i)
lj 6= 0

if and only if l ≤ i, z
(i−1)
li 6= 0, and, at the same time, at least one of the two following

conditions holds:

• aij 6= 0,

• (∃ k < i)(aik 6= 0 ∧ z
(i−1)
kj 6= 0).

Proof. Suppose that z
(i−1)
lj = 0 ∧ z

(i)
lj 6= 0. Directly from the update formula for

the z-vectors we see that z
(i−1)
li 6= 0 and l ≤ i, since z

(i−1)
pi = 0 for p > i. Also, if z

(i)
lj

becomes nonzero in the ith step, then clearly p
(i−1)
j must be nonzero. But

p
(i−1)
j = aT

i z
(i−1)
j = aij +

∑

k<i

z
(i−1)
kj aik

and we get the result. The opposite implication is trivial.
Figures 5.1–5.4 provide an illustration of the previous lemma. Figure 5.1 shows

the nonzero structure of the matrix FS760 1 of order n = 760 from the Harwell–Boeing
collection [21]. Figures 5.2–5.3 show the structure of the factor Z at different stages
of the biconjugation algorithm. These pictures show that in the initial steps, when
most of the entries of Z are still zero, the nonzeros in Z are induced by nonzeros in
the corresponding positions of A. A similar situation occurs, of course, for the process
which computes W . In Figure 5.4 (left) we show the entries of Z which are larger (in
absolute value) than 10−10 and in Figure 5.4 (right) we show the incomplete factor
Z̄ obtained with drop tolerance T = 10−10. It can be seen how well the incomplete
process is able to capture the “large” entries in the complete factor Z. The figures
were generated using the routines for plotting sparse matrix patterns from SPARSKIT
[50].

A sufficient condition to have a fill-in in the matrix Z after some steps of the
biconjugation algorithm is given by the following lemma.

LEMMA 5.2. Let B = (R, C, E) be a bipartite graph with |R| = |C| = n and such

that for 1 ≤ j, k ≤ n

{rj , ck} ∈ E ⇐⇒ (ajk 6= 0 ∨ j = k).

If for some indices il, 1 ≤ l ≤ p, 0 < i1 < · · · < ip < j ≤ n, there is a path

(cj , ri1 , ci1 , . . . , rip
, cip

) in B, then z
(ip)
ipj 6= 0.

Proof. We use induction on p. Let p = 1. Since {ri1 , cj} ∈ E then ai1j 6= 0. Of

course, z
(i1−1)
i1i1

= 1 6= 0 and from Lemma 5.1 we get z
(i1)
i1j 6= 0.

Suppose now that Lemma 5.2 is true for all l < p. Then, z
(ip−1−1)
ip−1j 6= 0. But also

aipip−1
6= 0 since {rip

, cip−1
} ∈ E. Then z

(ip−1)
ipj 6= 0, and using the no-cancellation

assumption, we also have z
(ip)
ipj 6= 0.

The following theorem gives a necessary and sufficient condition for a nonzero
entry to appear in position (l, j), l < j, in the inverse triangular factor.

APPROXIMATE INVERSE PRECONDITIONING 979

FIG. 5.1. Structure of the matrix FS 760 1 (left) and of the factor Z (right) after 20 steps of
the biconjugation process.

FIG. 5.2. Structure of Z after 70 steps (left) and 200 steps (right) of the biconjugation process.

THEOREM 5.3. Let 1 ≤ l < j ≤ n. Then zlj 6= 0 if and only if for some p ≥ 1
there are indices ik, lk, 1 ≤ k ≤ p, such that 1 ≤ i1 < · · · < ip ≤ j − 1, lq < iq, for

1 ≤ q ≤ p − 1, lp = l, ai1j 6= 0, aik+1lk 6= 0 for 1 ≤ k ≤ p − 1 and zlkik
6= 0 for

1 ≤ k ≤ p.

Proof. We first show that the stated conditions are sufficient. By Lemma 5.1,

the nonzeros ai1j and zl1i1 imply that z
(i1)
l1j is also nonzero. If p = 1 we are done.

Otherwise, z
(i2−1)
l1j 6= 0 and ai2l1 6= 0 imply p

(i2−1)
j 6= 0. Taking into account that

zl2i2 6= 0 we get that z
(i2)
l2j is nonzero. Repeating these arguments inductively we

finally get z
(ip)
lpj 6= 0. Consequently, z

(i)
lj 6= 0.

980 MICHELE BENZI AND MIROSLAV TŮMA

FIG. 5.3. Structure of Z after 400 steps (left) and 760 steps (right) of the biconjugation process.

FIG. 5.4. Structure of entries in Z larger than 10−10 (left) and structure of incomplete factor
Z̄ with drop tolerance T = 10−10 (right).

Assume now that zlj 6= 0. Lemma 5.1 implies that at least one of the following
two conditions holds: either there exists i′, 1 ≤ i′ ≤ i, such that ai′j 6= 0 and zli′ 6= 0,

or there exist indices i′′, 1 ≤ i′′ ≤ i and k < i′′, such that ai′′k 6= 0, z
(i′′−1)
kj 6= 0, and

zli′′ 6= 0. In the former case we have the necessary conditions. In the latter case we

can apply Lemma 5.1 inductively to z
(i′′−1)
kj . After at most j inductive steps we obtain

the conditions.
Clearly, the characterization of fill-in in the inverse triangular factorization is less

transparent than the necessary and sufficient condition which characterizes nonzeros
in the nonfactorized inverse.

6. Preconditioning for block triangular matrices. Many sparse matrices
arising in real-world applications may be reduced to block triangular form (see Chap. 6

APPROXIMATE INVERSE PRECONDITIONING 981

in [20]). In this section we discuss the application of preconditioning techniques to
linear systems with a block (lower) triangular coefficient matrix, closely following [30].

The reduction to block triangular form is usually obtained with a two-step pro-
cedure, as outlined in [20]. In the first step, the rows of A are permuted to bring
nonzero entries on the main diagonal, producing a matrix PA. In the second step,
symmetric permutations are used to find the block triangular form [53]. The resulting
matrix can be represented as

Q(PA)QT =









A11 0 · · · 0
A21 A22 · · · 0
...

...
. . .

...
Ak1 Ak2 · · · Akk









,

where the diagonal blocks Aii are assumed to be irreducible. Because A is nonsingular,
the diagonal blocks Aii must also be nonsingular.

Suppose that we compute approximate inverses of the diagonal blocks A11, . . . , Akk

with the incomplete biconjugation algorithm, so that A−1
ii ≈ Gii := Z̄iiD̄

−1
ii W̄T

ii ,
1 ≤ i ≤ k. Then the inverse of A is approximated as follows (cf. [30]):

A−1 ≈ G = QT









G−1
11 0 · · · 0

A21 G−1
22 · · · 0

...
...

. . .
...

Ak1 Ak2 · · · G−1
kk









−1

QP.

The preconditioning step in a conjugate gradient-type method requires the eval-
uation of the action of G on a vector, i.e., the computation of z = Gd for a given
vector d, at each step of the preconditioned iterative method. This can be done by a
back-substitution of the form

z̄i = Gii



d̄i −
i−1
∑

j=1

Aij z̄j



 , i = 1, . . . , k,

where

d̄ =





d̄1
...

d̄k



 , z̄ =





z̄1
...

z̄k



 , z = QT z̄, d̄ = QPd,

with the partitioning of z̄ and d̄ induced by the block structure of Q(PA)QT . The
computation of y = GT c, which is required by certain preconditioned iterative meth-
ods, is accomplished in a similar way.

With this approach, fill-in is confined to the approximate inverses of the diagonal
blocks, often resulting in a more sparse preconditioner. Notice also that the approxi-
mate inverses Gii can be computed in parallel. The price to pay is the loss of part of
the explicitness when the approximate inverse preconditioner is applied, as noted in
[30].

For comparison purposes, we apply the same scheme with ILU preconditioning.
Specifically, we approximate A as

A ≈ M = PT QT









L̄11Ū11 0 · · · 0
A21 L̄22Ū22 · · · 0
...

...
. . .

...
Ak1 Ak2 · · · L̄kkŪkk









Q,

982 MICHELE BENZI AND MIROSLAV TŮMA

where each diagonal block Aii is approximated by an ILU decomposition L̄iiŪii. Ap-
plying the preconditioner requires the solution of a linear system Mz = d at each step
of the preconditioned iteration. This can be done with the back-substitution

L̄iiyi =



d̄i −
i−1
∑

j=1

Aij z̄j



 , Ūiiz̄i = yi, i = 1, . . . , k,

where

d̄ = QPd, z = QT z̄,

with the same partitioning of z̄ and d̄ as above. The use of transposed ILU precondi-
tioning is similar.

With this type of ILU block preconditioning we introduce some explicitness in
the application of the preconditioner. Again, note that the ILU factorizations of the
diagonal blocks can be performed in parallel.

We will see in the section on numerical experiments that reduction to the block
triangular form influences the behavior of the preconditioned iterations in different
ways depending on whether approximate inverse techniques or ILU-type precondi-
tioning are used.

7. Implementation aspects. It is possible to implement the incomplete inverse
factorization algorithm in section 4 in at least two distinct ways. The first implemen-
tation is similar in spirit to the classical submatrix formulation of sparse Gaussian
elimination as represented, for instance, in [19], [57]. This approach relies on sparse
incomplete rank-one updates of the matrices Z̄ and W̄ , applied in the form of outer
vector products. These updates are the most time-consuming part of the computa-
tion. In the course of the updates, new fill-in elements whose magnitude is less than a
prescribed drop tolerance T are dropped. In this approach, dynamic data structures
have to be used for the matrices Z̄ and W̄ . Note that at step i of the incomplete
inverse factorization, only the ith row aT

i and the ith column cT
i are required. The

matrix A is stored in static data structures both by rows and by columns (of course,
a single array is needed for the numerical values of the entries of A).

For this implementation to be efficient, some additional elbow room is necessary.
For instance, in the computation of the incomplete Z̄ factor the elbow room was twice
the space anticipated for storing the nonzeros in the factor itself. As we are looking
for a preconditioner with about the same number of nonzeros as the original matrix,
the estimated number of nonzeros in Z̄ is half the number of nonzeros in the original
matrix A. For each column of Z̄ we give an initial prediction of fill-in based on the
results of section 5. Thus, the initial structure of Z̄ is given by the structure of the
upper triangular part of A. Of course, W̄ is handled similarly. If the space initially
allocated for a given column is not enough, the situation is solved in a way which is
standard when working with dynamic data structures, by looking for a block of free
space at the end of the active part of the dynamic data structure large enough to
contain the current column, or by a garbage collection (see [57]). Because most of the
fill-in in Z̄ and W̄ appears in the late steps of the biconjugation process, we were able
to keep the amount of dynamic data structure manipulations at relatively low levels.
In the following, this implementation will be referred to as the DDS implementation.

Despite our efforts to minimize the amount of symbolic manipulations in the
DDS implementation, some of its disadvantages such as the nonlocal character of

APPROXIMATE INVERSE PRECONDITIONING 983

the computations and a high proportion of non-floating-point operations still remain.
This is an important drawback of submatrix (right-looking, undelayed) algorithms
using dynamic data structures when no useful structural prediction is known and
no efficient block strategy is used. Even when all the operations are performed in-
core, the work with both the row and column lists in each step of the outer cycle is
rather irregular. Therefore, for larger problems, most operations are still scattered
around the memory and are out-of-cache. As a consequence, it is difficult to achieve
high efficiency with the code, and any attempt to parallelize the computation of the
preconditioner in this form will face serious problems (see [57] for a discussion of the
difficulties in parallelizing sparse rank-one updates).

For these reasons we considered an alternative implementation (hereafter referred
to as SDS) which only makes use of static data structures, based on a left-looking,
delayed update version of the biconjugation algorithm. This amounts to a rearrange-
ment of the computations, as shown below. For simplicity we only consider the Z

factor, and assume no breakdown occurs:

(1) Let z
(0)
1 = e1; p

(0)
1 = a11

(2) for i = 2, . . . , n

z
(0)
i = ei

for j = 1, . . . , i − 1

p
(j−1)
i := aT

j z
(j−1)
i

z
(j)
i := z

(j−1)
i − (

p
(j−1)
i

p
(j−1)
j

)z
(j−1)
j

end

p
(i−1)
i := aT

i z
(i−1)
i

end

This procedure can be implemented with only static data structures, at the cost of
increasing the number of floating-point operations. Indeed, in our implementation

we found it necessary to recompute the dot products p
(j−1)
i = aT

j z
(j−1)
i if they are

used more than once for updating subsequent columns. This increase in arithmetic
complexity is more or less pronounced, depending on the problem and on the density of
the preconditioner. On the other hand, this formulation greatly decreases the amount
of irregular data structure manipulations. It also appears better suited to parallel
implementation, because the dot products and the vector updates in the innermost
loop can be done in parallel. Notice that with SDS, it is no longer true that a single
row and column of A are used at each step of the outer loop. It is worth mentioning
that numerically, the DDS and SDS implementations of the incomplete biconjugation
process are completely equivalent.

The SDS implementation is straightforward. Suppose the first j − 1 steps have
been completed. In order to determine which columns of the already determined
part of Z̄ play a role in the rank-one updates used to form the jth column of
Z̄ we only need a linked list scanning the structure of the columns of A. This
linked list is coded similarly to the mechanism which determines the structure of
the jth row of the Cholesky factor L in the numerical factorization in SPARSPAK
(see [27], [13]).

In addition to the approximate inverse preconditioner, we also coded the stan-
dard row implementation of the classical ILU(0) preconditioner (see, e.g., [50]). We
chose a no-fill implicit preconditioner because we are mostly interested in comparing
preconditioners with a nonzero density close to that of the original matrix A.

984 MICHELE BENZI AND MIROSLAV TŮMA

On input, all our codes for the computation of the preconditioners check whether
the coefficient matrix has a zero-free diagonal. If not, row reordering of the matrix is
used to permute nonzeros on the diagonal. For both the ILU(0) and the approximate
inverse factorization, we introduced a simple pivot modification to avoid breakdown.
Whenever some diagonal element in any of our algorithms to compute a preconditioner
was found to be small, in our case less in absolute value than the IEEE machine
precision ǫ ≈ 2.2 · 10−16, we increased it to 10−3. We have no special reasons for this
choice, other than that it worked well in practice. It should be mentioned that in the
numerical experiments, this safeguarding measure was required more often for ILU(0)
than for the approximate inverse factorization.

For the experiments on matrices which can be nontrivially reduced to block tri-
angular form, we used the routine MC13D from MA28 [19] to get the block triangular
form.

8. Numerical experiments. In this section we present the results of numerical
experiments on a range of problems from the Harwell–Boeing collection [21] and from
Tim Davis’s collection [17]. All matrices used were rescaled by dividing their elements
by the absolute value of their largest nonzero entry. No other scaling was used. The
right-hand side of each linear system was computed from the solution vector x∗ of all
ones, the choice used, e.g., in [57].

We experimented with several iterative solvers of the conjugate gradient type.
Here we present results for three selected methods, which we found to be sufficiently
representative: van der Vorst’s Bi-CGSTAB method (denoted BST in the tables), the
QMR method of Freund and Nachtigal, and Saad and Schultz’s GMRES (restarted
every 20 steps; denoted G(20) in the tables) with Householder orthogonalization [56].
See [3] for a description of these methods and the report [9] for experiments with
other solvers.

The matrices used in the experiments come from reservoir simulation (ORS*,
PORES2, SAYLR*, and SHERMAN*), chemical kinetics (FS5414), network flow
(HOR131), circuit simulation (JPWH991, MEMPLUS, and ADD*), petroleum en-
gineering (WATT* matrices), and incompressible flow computations (RAEFSKY*,
SWANG1). The order N and number NNZ of nonzeros for each test problem are
given in Table 1, together with the number of iterations and computing times for the
unpreconditioned iterative methods. A † means that convergence was not attained in
1000 iterations for Bi-CGSTAB and QMR, or 500 iterations for GMRES(20).

All tests were performed on an SGI Crimson workstation with RISC processor
R4000 using double-precision arithmetic. Codes were written in standard Fortran 77
and compiled with the optimization option -O4. CPU time is given in seconds and it
was measured using the standard function dtime.

The initial guess for the iterative solvers was always x0 = 0. The stopping criterion
used was ||rk||2 < 10−8, where rk is the (unpreconditioned) updated residual. Note
that because r0 = b = Ax∗, we have that 1 ≤ ||r0||∞ ≤ nzr, where nzr denotes the
maximum number of nonzeros in a row of A.

The following tables present the results of experiments with the ILU(0) precon-
ditioner and with the approximate inverse preconditioner based on the biconjugation
process (hereafter referred to as AINV). Observe that the number of nonzeros in the
ILU(0) preconditioner is equal to the number NNZ of nonzeros in the original matrix,
whereas for the AINV preconditioner fill-in is given by the total number of nonzeros
in the factors Z̄, W̄ , and D̄. In the tables, the number of nonzeros in AINV is denoted
by Fill. Right preconditioning was used for all the experiments.

APPROXIMATE INVERSE PRECONDITIONING 985

TABLE 1
Test problems (N= order of matrix, NNZ= nonzeros in matrix) and convergence results for the

iterative methods without preconditioning.

Its Time

MATRIX N NNZ BST QMR G(20) BST QMR G(20)

ADD20 2395 17319 378 362 † 7.11 11.7 †

ADD32 4960 23884 66 90 124 2.34 5.52 13.8

FS5414 541 4285 782 865 † 3.91 7.18 †

HOR131 434 4710 † † † † † †

JPWH991 991 6027 36 61 94 0.28 0.82 1.98

MEMPLUS 17758 99147 † 886 † † 270. †

ORSIRR1 1030 6858 † 807 † † 12.3 †

ORSIRR2 886 5970 798 571 † 6.01 7.19 †

ORSREG1 2205 14133 480 163 350 9.14 5.25 17.8

PORES2 1224 9613 † † † † † †

RAEFSKY1 3242 294276 229 276 † 55.4 106. †

RAEFSKY5 6316 168658 111 † 69 17.9 † 18.4

SAYLR3 1000 3750 364 479 † 2.46 5.55 †

SAYLR4 3564 22316 † † † † † †

SHERMAN1 1000 3750 † 361 † † 2.43 †

SHERMAN3 5005 20033 † † † † † †

SHERMAN4 1104 3786 96 133 † 0.73 1.65 †

SHERMAN5 3312 20793 † † † † † †

SWANG1 3169 20841 16 31 33 0.44 1.46 2.34

WATT1 1856 11360 35 125 74 0.56 3.44 3.07

WATT2 1865 11550 † 764 60 † 20.2 2.60

The comparison between the implicit and the explicit preconditioners is based
on the amount of fill and on the rate of convergence as measured by the number of
iterations. These two parameters can realistically describe the scalar behavior of the
preconditioned iterative methods. Of course, an important advantage of the inverse
preconditioner, its explicitness, is not captured by this description.

The accuracy of the AINV preconditioner is controlled by the value of the drop
tolerance T . Smaller drop tolerances result in a more dense preconditioner and very
often (but not always) in a higher convergence rate for the preconditioned iteration.
For our experiments we consider relatively sparse preconditioners. In most cases we
were able to adjust the value of T so as to obtain an inverse preconditioner with a
nonzero density close to that of A (and hence of the ILU(0) preconditioner). Due to
the scaling of the matrix entries, the choice T = 0.1 was very often the right one. We
also give results for the approximate inverse obtained with a somewhat smaller value
of the drop tolerance, in order to show how the number of iterations can be reduced
by allowing more fill-in in the preconditioner. For some problems we could not find a
value of T for which the number of nonzeros in AINV is close to NNZ. In these cases
the approximate inverse preconditioner tended to be either very dense or very sparse.

In Table 2 we give the timings for the preconditioner computation, iteration
counts, and timings for the three iterative solvers preconditioned with ILU(0). The
same information is given in Table 3 for the approximate inverse preconditioner AINV.
For AINV we give two timings for the construction of the preconditioner, the first for
the DDS implementation using dynamic data structures and the second for the SDS
implementation using only static data structures.

986 MICHELE BENZI AND MIROSLAV TŮMA

TABLE 2
Time to form the ILU(0) preconditioner (P-time), number of iterations, and time for Bi-

CGSTAB, QMR, and GMRES(20) with ILU(0) preconditioning.

ILU – Its ILU – Time

MATRIX P-time BST QMR G(20) BST QMR G(20)

ADD20 0.071 128 171 228 4.46 9.67 16.0

ADD32 0.030 26 44 51 1.61 4.61 6.90

FS5414 0.007 6 4 6 0.04 0.10 0.06

HOR131 0.008 40 63 80 0.36 0.88 1.06

JPWH991 0.009 11 20 18 0.17 0.49 0.43

MEMPLUS 0.551 242 257 † 76.1 134. †

ORSIRR1 0.009 23 39 39 0.39 1.04 1.22

ORSIRR2 0.008 23 38 39 0.34 0.89 1.04

ORSREG1 0.019 24 54 45 0.88 3.10 3.05

PORES2 0.013 25 41 78 0.56 1.46 2.99

RAEFSKY1 2.457 30 38 128 13.9 28.7 67.4

RAEFSKY5 0.293 2 4 4 0.69 2.06 1.59

SAYLR3 0.005 32 45 66 0.37 0.85 1.61

SAYLR4 0.030 30 41 63 1.79 3.90 7.10

SHERMAN1 0.005 32 46 65 0.89 0.37 1.59

SHERMAN3 0.134 66 82 325 5.02 8.75 46.7

SHERMAN4 0.006 24 34 56 6.93 0.69 1.49

SHERMAN5 0.034 27 32 52 1.38 2.65 5.02

SWANG1 0.031 6 13 10 0.33 1.12 0.77

WATT1 0.015 6 16 9 0.25 0.77 0.35

WATT2 0.016 87 56 54 2.58 2.68 4.99

It appears from these results that the ILU(0) and AINV preconditioners are
roughly equivalent from the point of view of the rate of convergence, with ILU(0)
having a slight edge. On many problems the two preconditioners give similar results.
There are a few cases, like PORES2, for which ILU(0) is much better than AINV, and
others (like MEMPLUS) where the situation is reversed. For some problems it is nec-
essary to allow a relatively high fill in the approximate inverse preconditioner in order
to have a convergence rate comparable with that insured by ILU(0) (cf. SAYLR4),
but there are cases where a very sparse AINV gives excellent results (see the ADD
or the RAEFSKY matrices). It follows that the timings for the iterative part of the
solution process are pretty close, on average, for the two preconditioners.

We also notice that using a more dense approximate inverse preconditioner (ob-
tained with a smaller value of T) nearly always reduces the number of iterations,
although this does not necessarily mean a reduced computing time since it takes
longer to compute the preconditioner and the cost of each iteration is increased.

Concerning the matrix PORES2, for which our method gives poor results, we
observed that fill-in in the W̄ factor was very high. We tried to use different drop
tolerances for the two factors (the one for W̄ being larger than the one used for Z̄)
but this did not help. It was observed in [31] that finding a sparse right approximate
inverse for PORES2 is very hard and a left approximate inverse should be approxi-
mated instead. Unfortunately, our method produces exactly the same approximate
inverse (up to transposition) for A and AT , therefore we were not able to cope with
this problem effectively. We experienced a similar difficulty with the W̄ factor for
the matrix SHERMAN2. On the other hand, for SHERMAN3 we did not face any

APPROXIMATE INVERSE PRECONDITIONING 987

TABLE 3
Time to form the AINV preconditioner (P-time) using DDS and SDS implementations, number

of iterations, and time for Bi-CGSTAB, QMR, and GMRES(20) with AINV preconditioning.

P-time AINV – Its AINV – Time

MATRIX Fill DDS SDS BST QMR G(20) BST QMR G(20)

ADD20 5900 0.48 1.35 66 64 74 2.09 3.45 4.94
9752 0.64 1.50 8 15 14 0.28 0.87 0.77

ADD32 8422 1.58 5.31 34 51 64 2.02 5.17 8.68
15525 1.65 5.29 6 11 11 0.41 1.24 1.39

FS5414 4199 0.30 0.15 37 42 35 0.35 0.64 0.56
5204 0.34 0.17 10 18 15 0.10 0.29 0.20

HOR131 6078 0.25 0.13 31 54 74 0.31 0.80 1.06
8394 0.34 0.20 28 45 57 0.32 0.78 0.95

JPWH991 7063 0.31 0.26 15 27 28 0.24 0.67 0.78
11981 0.37 0.31 12 24 23 0.23 0.71 0.74

MEMPLUS 59547 6.67 65.5 175 85 188 51.9 41.7 110.
151686 12.9 68.5 22 30 31 8.53 18.7 20.1

ORSIRR1 5219 0.25 0.24 27 46 48 0.42 1.14 1.38
13117 0.35 0.31 15 26 24 0.31 0.83 0.82

ORSIRR2 5284 0.23 0.20 26 47 47 0.36 1.05 1.21
12634 0.32 0.25 20 33 24 0.33 0.86 0.85

ORSREG1 11886 0.45 0.98 32 59 51 1.11 3.41 3.39
24454 0.60 1.07 22 45 37 0.97 3.17 2.89

PORES2 18691 0.55 0.50 84 102 † 2.33 4.47 †
23867 0.66 0.57 75 103 † 2.36 4.97 †

RAEFSKY1 56607 5.49 12.6 53 75 † 15.7 34.9 †
145951 16.5 25.1 38 52 † 13.9 29.3 †

RAEFSKY5 33740 4.51 10.1 4 7 7 0.88 2.43 1.94
104010 4.80 10.3 2 4 4 0.58 1.73 1.43

SAYLR3 3650 0.17 0.20 40 58 83 0.49 1.17 2.10
11002 0.24 0.24 25 35 44 0.42 0.93 1.30

SAYLR4 42768 0.67 2.57 33 44 74 2.44 5.21 9.63
48362 0.68 2.63 33 43 64 2.61 5.39 8.63

SHERMAN1 3650 0.17 0.20 40 58 80 0.49 1.16 2.07
8692 0.24 0.22 28 36 47 0.43 0.88 1.30

SHERMAN3 24439 0.76 5.11 97 120 345 7.01 14.4 52.7
36296 0.88 5.20 77 100 407 6.36 13.5 65.8

SHERMAN4 3936 0.20 0.25 35 50 133 2.88 1.09 3.76
4957 0.20 0.16 29 46 124 0.40 1.03 3.60

SHERMAN5 21387 0.77 2.36 37 56 151 1.94 4.83 15.7
26654 0.89 2.45 30 49 96 1.70 4.54 10.5

SWANG1 7723 0.51 1.94 8 13 13 0.38 0.99 0.89
13252 0.64 1.99 6 10 10 0.30 0.81 0.67

WATT1 10215 0.37 0.69 7 31 12 0.21 1.46 0.58
17998 0.46 0.76 7 19 10 0.26 1.05 0.43

WATT2 10148 0.41 0.78 92 71 13 2.63 3.34 0.54
13547 0.46 0.76 76 62 11 2.34 3.12 0.46

of the problems reported in [30] and convergence with the AINV preconditioner was
smooth.

As for the time required to compute the preconditioners, it is obvious that ILU(0)
can be computed more quickly. On the other hand, the computation of the AINV
preconditioner is not prohibitive. There are problems for which computing AINV is
only two to three times more expensive than computing ILU(0). More important,
our experiments with AINV show that the overall solution time is almost always
dominated by the iterative part, unless convergence is extremely rapid, in which case
the iteration part takes slightly less time than the computation of the preconditioner.

988 MICHELE BENZI AND MIROSLAV TŮMA

This observation suggests that our approximate inverse preconditioner is much
cheaper to construct, in a sequential environment, than approximate inverse precon-
ditioners based on the Frobenius norm approach described in section 3. Indeed, if we
look at the results presented in [30] we see that the sequential time required to con-
struct the preconditioner accounts for a huge portion, often in excess of 90%, of the
overall computing time. It is worth emphasizing that the approach based on Frobe-
nius norm minimization and the one we propose seem to produce preconditioners of
similar quality, in the sense that they are both comparable with ILU(0) from the point
of view of fill-in and rates of convergence, at least on average.

As for the different implementations of AINV, we see from the results in Table 3
that for larger problems, the effect of additional floating-point operations in the SDS
implementation is such that the DDS implementation is actually faster. Nevertheless,
as already observed, the implementation using static data structures may be better
suited for parallel architectures. Because in this paper we only consider a scalar
implementation, in the remaining experiments we limit ourselves to the timings for
the DDS implementation of AINV.

In all the experiments (excluding the ones performed to measure the timings
presented in the tables) we also monitored the “true” residual ||b−Axk||2. In general,
we found that the discrepancy between this and the norm of the updated residual
was small. However, we found that for some very ill-conditioned matrices in the
Harwell–Boeing collection (not included in the tables) this difference may be very
large. For instance, for some of the LNS* and WEST* matrices, we found that
||rk||2 < 10−8||b − Axk||2 for the final value of rk. This happened both with the
ILU(0) and with the approximate inverse preconditioner, and we regarded this as a
failure of the preconditioned iterative method.

We present in Tables 4 and 5 the results of some experiments on matrices which
have been reduced to block lower triangular form. We compared the number of
iterations of the preconditioned iterative methods and their timings for the block ap-
proximate inverse preconditioner and for the block ILU(0) preconditioner as described
in section 6. Since some of the matrices have only trivial block lower triangular form
(one block, or two blocks with one of the blocks of dimension one for some matrices)
we excluded them from our experiments.

In Table 4 we give for each matrix the number NBL of blocks and the results
of experiments with ILU(0). In Table 5 we give analogous results for the AINV
preconditioner. The amount of fill-in (denoted by Fill) for AINV is computed as the
fill-in in the approximate inverses of the diagonal blocks plus the number of nonzero
entries in the off-diagonal blocks.

It is clear that in general the reduction to block triangular form does not lead to
a noticeable improvement in the timings, at least in a sequential implementation. We
observe that when the block form is used, the results for ILU(0) are sometimes worse.
This can probably be attributed to the permutations, which are known to cause in
some cases a degradation of the rate of convergence of the preconditioned iterative
method [22]. A notable exception is the matrix WATT2, for which the number of
iterations is greatly reduced. On the other hand, the results for the block approximate
inverse preconditioner are mostly unchanged or somewhat better. Again, matrix
WATT2 represents an exception: this problem greatly benefits from the reduction to
block triangular form. In any case, permutations did not adversely affect the rate of
convergence of the preconditioned iterative method. This fact suggests that perhaps
the approximate inverse preconditioner is more robust than ILU(0) with respect to
reorderings.

APPROXIMATE INVERSE PRECONDITIONING 989

TABLE 4
Time to compute the block ILU preconditioner (P-time), number of iterations, and time for

Bi-CGSTAB, QMR, and GMRES(20) with block ILU(0) preconditioning.

Block ILU – Its Block ILU – Time

MATRIX NBL P-time BST QMR G(20) BST QMR G(20)

JPWH991 146 0.012 11 20 19 0.15 0.36 0.51

SAYLR3 318 0.008 40 65 73 0.45 0.95 1.61

SHERMAN1 318 0.008 40 65 73 0.46 1.00 1.62

SHERMAN3 2111 0.178 101 105 371 9.00 9.39 49.0

SHERMAN4 559 0.009 22 33 59 0.27 0.52 1.46

SHERMAN5 1675 0.048 22 37 60 1.20 2.59 5.57

WATT1 129 0.024 10 26 9 0.31 0.99 0.39

WATT2 65 0.023 5 32 7 0.16 1.20 0.29

TABLE 5
Time to compute the block AINV preconditioner (P-time), number of iterations, and time in

seconds for Bi-CGSTAB, QMR, and GMRES(20) with block AINV preconditioning.

Block AINV – Its Block AINV – Time

MATRIX Fill P-time BST QMR G(20) BST QMR G(20)

JPWH991 7063 0.46 15 † 25 0.31 † 0.82
11981 0.57 11 † 19 0.21 † 0.58

SAYLR3 3384 0.36 42 57 75 0.54 0.92 1.78
9892 0.42 20 33 38 0.33 0.65 1.04

SHERMAN1 5562 0.39 33 49 68 0.47 0.87 1.76
7842 0.46 23 35 42 0.37 0.67 1.11

SHERMAN3 21821 1.65 93 122 † 7.38 11.8 †
31540 1.85 80 100 487 6.94 10.5 71.8

SHERMAN4 4356 0.41 31 46 106 0.47 0.86 2.87
5770 0.42 27 41 93 0.43 0.79 2.58

SHERMAN5 29155 1.88 25 41 81 1.70 3.27 8.52
36764 2.16 24 38 63 1.77 3.22 6.88

WATT1 10158 0.73 7 18 11 0.22 0.68 0.49
17494 0.86 6 16 9 0.21 0.91 0.43

WATT2 9194 0.74 6 15 9 0.19 0.55 0.38
13006 0.76 5 11 8 0.16 0.44 0.34

To gain more insight into how permutations of the original matrix can influence
the quality of both types of preconditioners, we did some experiments where the
matrix A was permuted using the minimum degree algorithm on the structure of
A + AT (see [28]). We applied the resulting permutation to A symmetrically to
get PAPT , in order to preserve the nonzero diagonal. Tables 6 and 7 present the
results for the test matrices having trivial block triangular form. The corresponding
preconditioners are denoted by ILU(0)-MD and AINV-MD, respectively.

The results in Table 6 show that for some problems, especially those coming from
PDEs, minimum degree reordering has a detrimental effect on the convergence of the
iterative solvers preconditioned with ILU(0). In some cases we see a dramatic increase
in the number of iterations. This is in analogy with the observed fact (see, e.g., [22])
that when the minimum degree ordering is used, the no-fill incomplete Cholesky
decomposition of an SPD matrix is a poor approximation of the coefficient matrix,
at least for problems arising from the discretization of two-dimensional PDEs. The
convergence of the conjugate gradient method with such a preconditioner (ICCG(0))
is much slower than if the natural ordering of the unknowns was used. Here we

990 MICHELE BENZI AND MIROSLAV TŮMA

TABLE 6
Time to compute the ILU(0) preconditioner (P-time) for A permuted according to minimum

degree algorithm on A+AT , number of iterations, and time for Bi-CGSTAB, QMR, and GMRES(20)
with ILU(0)-MD preconditioning.

ILU-MD – Its ILU-MD – Time

MATRIX P-time BST QMR G(20) BST QMR G(20)

ADD20 0.043 21 30 30 0.73 1.71 1.97

ADD32 0.030 26 43 47 2.18 4.57 6.45

HOR131 0.008 35 59 94 0.31 0.80 1.24

MEMPLUS 0.182 196 254 † 61.3 131 †

ORSIRR1 0.011 128 180 197 2.12 4.65 5.92

ORSIRR2 0.009 138 175 215 1.96 3.92 5.64

ORSREG1 0.024 153 198 237 5.35 10.9 15.9

PORES2 0.015 177 220 † 4.00 8.14 †

RAEFSKY1 2.875 55 70 † 25.1 51.3 †

RAEFSKY5 0.337 2 4 4 0.68 2.04 1.56

SAYLR4 0.042 882 816 † 51.5 76.8 †

SWANG1 0.037 5 10 9 0.29 0.89 0.65

TABLE 7
Time to compute the AINV preconditioner (P-time) for A permuted by the minimum degree

algorithm on A+AT , number of iterations, and time for Bi-CGSTAB, QMR, and GMRES(20) with
AINV-MD preconditioning.

AINV-MD – Its AINV-MD – Time

MATRIX Fill P-time BST QMR G(20) BST QMR G(20)

ADD20 5173 0.38 27 35 40 0.85 1.93 2.73
8360 0.49 8 14 13 0.28 0.78 0.77

ADD32 10168 1.61 29 36 49 1.80 3.76 6.55
11994 1.77 6 12 12 0.38 1.30 1.45

HOR131 5632 0.24 38 50 77 0.37 0.73 1.11
7152 0.31 35 51 78 0.39 0.88 1.27

MEMPLUS 48375 6.35 16 28 27 4.71 13.5 14.9
76843 9.00 15 29 25 4.82 15.3 14.8

ORSIRR1 4058 0.30 24 43 48 0.38 1.23 1.38
10330 0.38 15 27 27 0.29 0.82 0.87

ORSIRR2 5185 0.26 33 41 42 0.47 0.92 1.10
10340 0.36 14 25 25 0.25 0.68 0.73

ORSREG1 10643 0.56 33 63 54 1.13 3.57 3.60
15585 0.61 31 51 49 1.17 3.13 3.43

PORES2 19192 0.56 98 97 † 2.75 4.27 †
19409 0.58 104 95 † 2.91 4.14 †

RAEFSKY1 80544 22.2 46 62 † 14.6 30.8 †
113160 19.6 41 54 † 14.1 28.8 †

RAEFSKY5 33435 3.74 3 7 6 0.67 2.43 1.67
98670 5.85 2 4 4 0.58 1.71 1.37

SAYLR4 22766 1.01 51 52 320 3.17 5.26 38.2
24196 1.02 41 57 412 2.60 5.85 49.3

SWANG1 7737 0.60 8 13 13 0.38 0.99 0.92
13421 0.94 6 10 10 0.31 0.83 0.67

observe a similar phenomenon for nonsymmetric linear systems. Note the rather
striking behavior of matrix ADD20, which benefits greatly from the minimum degree
reordering (this matrix arises from a circuit model and not from the discretization of
a PDE).

APPROXIMATE INVERSE PRECONDITIONING 991

It was also observed in [22] that the negative impact of minimum degree on the
rate of convergence of PCG all but disappears when the incomplete Cholesky fac-
torization of A is computed by means of a drop tolerance rather than by position.
It is natural to ask whether the same holds true for the approximate inverse pre-
conditioner AINV, which is computed using a drop tolerance. The results in Table
7 show that this is indeed the case. For most of the test problems the number of
iterations was nearly unaffected (or better), and in addition we note that the min-
imum degree ordering helps in preserving sparsity in the incomplete inverse factors.
While this is usually not enough to decrease the computing times, the fact that it is
possible to reduce storage demands for the approximate inverse preconditioner with-
out negatively affecting the convergence rates might become important for very large
problems.

We conclude this section with some observations concerning the choice of the
drop tolerance T . In all our experiments we used a fixed value of T throughout the
incomplete biconjugation process. However, relative drop tolerances, whose value is
adapted from step to step, could also be considered (see [57] for a thorough discussion
of the issues related to the choice of drop tolerances in the context of ILU). We
have observed that the amount of fill-in is distributed rather unevenly in the course
of the approximate inverse factorization. A large proportion of nonzeros is usually
concentrated in the last several columns of Z̄ and W̄ . For some problems with large
fill, it may be preferable to switch to a larger drop tolerance when the columns of the
incomplete factors start filling in strongly. Conversely, suppose we have computed
an approximate inverse preconditioner for a certain value of T , and we find that
the preconditioned iteration is converging slowly. Provided that enough storage is
available, one could then try to recompute at least some of the columns of Z̄ and
W̄ using a smaller value of T . Unfortunately, for general sparse matrices, there is
no guarantee that this will result in a preconditioner of improved quality. Indeed,
allowing more nonzeros in the preconditioner does not always result in a reduced
number of iterations.

Finally, it is worthwhile to observe that a dual threshold variant of the incomplete
inverse factorization could be adopted; see [51]. In this approach, a drop tolerance
is applied but a maximum number of nonzeros per column is specified and enforced
during the computation of the preconditioner. In this way, it is possible to control the
maximum storage needed by the preconditioner, which is important for an automated
implementation. This approach has not been tried yet, but we hope to do so in the
near future.

9. Conclusions and future work. In this paper we have developed a sparse
approximate inverse preconditioning technique for nonsymmetric linear systems. Our
approach is based on a procedure to compute two sets of biconjugate vectors, per-
formed incompletely to preserve sparsity. This algorithm produces an approximate
triangular factorization of A−1, which is guaranteed to exist if A is an H-matrix
(similar to the ILU factorization).

The factorized sparse approximate inverse is used as an explicit preconditioner
for conjugate gradient–type methods. Applying the preconditioner only requires
sparse matrix–vector products, which is of considerable interest for use on parallel
computers.

The new preconditioner was used to enhance the convergence of different iterative
solvers. Based on extensive numerical experiments, we found that our preconditioner
can insure convergence rates which are comparable, on average, with those from the

992 MICHELE BENZI AND MIROSLAV TŮMA

standard ILU(0) implicit preconditioner. While the approximate inverse factorization
is more time-consuming to compute than ILU(0), its cost is not prohibitive, and is
typically dominated by the time required by the iterative part. This is in contrast with
other approximate inverse preconditioners, based on Frobenius norm minimization,
which produce similar convergence rates but are very expensive to compute.

It is possible that in a parallel environment the situation will be reversed, since the
preconditioner construction with the Frobenius norm approach is inherently parallel.
However, there is some scope for parallelization also in the inverse factorization on
which our method is based; for instance, the approximate inverse factors Z̄ and W̄

can be computed largely independently of each other. Clearly, this is a point which
requires further research, and no conclusion can be drawn until parallel versions of this
and other approximate inverse preconditioners have been implemented and tested.

Our results point to the fact that the quality of the approximate inverse pre-
conditioner is not greatly affected by reorderings of the coefficient matrix. This
is important in practice because it suggests that we may use permutations to in-
crease the potential for parallelism or to reduce the amount of fill in the precondi-
tioner, without spoiling the rate of convergence. The theoretical results on fill-in
in section 5 provide guidelines for the use of pivoting strategies for enhancing the
sparsity of the approximate inverse factors, and this is a topic that deserves further
research.

Based on the results of our experiments, we conclude that the technique intro-
duced in this paper has the potential to become a useful tool for the solution of
large sparse nonsymmetric linear systems on modern high-performance architectures.
Work on a parallel implementation of the new preconditioner is currently under way.
Future work will also include a dual threshold implementation of the preconditioner
computation.

Acknowledgments. We would like to thank one of the referees for helpful com-
ments and suggestions, and Professor Miroslav Fiedler for providing reference [24].
The first author gratefully acknowledges the hospitality and excellent research en-
vironment provided by the Institute of Computer Science of the Czech Academy of
Sciences.

REFERENCES

[1] E. C. ANDERSON, Parallel Implementation of Preconditioned Conjugate Gradient Methods
for Solving Sparse Systems of Linear Equations, M.Sc. thesis and CSRD Report 805,
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, 1988.

[2] O. AXELSSON, Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
[3] R. BARRETT, M. BERRY, T. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT,

R. POZO, C. ROMINE, AND H. VAN DER VORST, Templates for the Solution of Linear
Systems, SIAM, Philadelphia, PA, 1994.

[4] M. BENSON, J. KRETTMANN, AND M. WRIGHT, Parallel algorithms for the solution of certain
large sparse linear systems, Internat. J. Comput. Math., 16 (1984), pp. 245–260.

[5] M. BENZI, A Direct Row-Projection Method for Sparse Linear Systems, Ph.D. thesis, Depart-
ment of Mathematics, North Carolina State University, Raleigh, NC, 1993.

[6] M. BENZI AND C. D. MEYER, A direct projection method for sparse linear systems, SIAM
J. Sci. Comput., 16 (1995), pp. 1159–1176.

[7] M. BENZI AND C. D. MEYER, An explicit preconditioner for the conjugate gradient method,
in Proc. Cornelius Lanczos International Centenary Conference, J. D. Brown, M. T. Chu,
D. C. Ellison, and R. J. Plemmons, eds., SIAM, Philadelphia, PA, 1994, pp. 294–296.

[8] M. BENZI, C. D. MEYER, AND M. TŮMA, A sparse approximate inverse preconditioner for the
conjugate gradient method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149.

APPROXIMATE INVERSE PRECONDITIONING 993

[9] M. BENZI AND M. TŮMA, A Sparse Approximate Inverse Preconditioner for Nonsymmetric
Linear Systems, Research Report No. 653, Institute of Computer Science, Czech Academy
of Sciences, Prague, Czech Republic, 1995.

[10] H. BERRYMAN, J. SALTZ, W. GROPP, AND R. MIRCHANDANEY, Krylov methods preconditioned
with incompletely factored matrices on the CM-2, J. Parallel Distrib. Comput., 8 (1990),
pp. 186–190.

[11] E. CHOW AND Y. SAAD, Approximate inverse preconditioners via Sparse-Sparse Iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995–1023.

[12] E. CHOW AND Y. SAAD, Approximate inverse techniques for block-partitioned matrices, SIAM
J. Sci. Comput., 18 (1997), pp. 1657–1675.

[13] E. CHU, A. GEORGE, J. W.-H. LIU, AND E. G.-Y. NG, User’s Guide for SPARSPAK-A: Water-
loo Sparse Linear Equations Package, Technical Report CS-84-36, University of Waterloo,
Waterloo, ON, Canada, 1984.

[14] M. T. CHU, R. E. FUNDERLIC, AND G. H. GOLUB, A rank-one reduction formula and its
applications to matrix factorizations, SIAM Rev., 37 (1995), pp. 512–530.

[15] P. CONCUS, G. H. GOLUB, AND G. A. MEURANT, Block preconditioning for the conjugate
gradient method, SIAM J. Sci. Statist. Comput., 6 (1985), pp. 220–252.

[16] J. D. F. COSGROVE, J. C. DIAZ, AND A. GRIEWANK, Approximate inverse preconditionings
for sparse linear systems, Internat. J. Comput. Math., 44 (1992), pp. 91–110.

[17] T. DAVIS, Sparse matrix collection, NA Digest, Vol. 94, Issue 42, October 1994.
[18] S. DEMKO, W. F. MOSS, AND P. W. SMITH, Decay rates for inverses of band matrices, Math.

Comput., 43 (1984), pp. 491–499.
[19] I. S. DUFF, MA28 - A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations,

Harwell Report AERE R8730, HMSO, London; revised 1980.
[20] I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford

University Press, Oxford, UK, 1986.
[21] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Users’ Guide for the Harwell-Boeing Sparse Ma-

trix Collection, Technical Report RAL-92-086, Rutherford Appleton Laboratory, Chilton,
UK, 1992.

[22] I. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradients,
BIT, 29 (1989), pp. 635–657.

[23] H. ELMAN, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986),
pp. 191–217.

[24] M. FIEDLER, Inversion of bigraphs and connection with the Gauss elimination, in Graphs,
Hypergraphs and Block Systems, Zielona Gora, Poland, 1976, pp. 57–68.

[25] L. FOX, An Introduction to Numerical Linear Algebra, Oxford University Press, Oxford, UK,
1964.

[26] L. FOX, H. D. HUSKEY, AND J. H. WILKINSON, Notes on the solution of algebraic linear
simultaneous equations, Quart. J. Mech. Appl. Math., 1 (1948), pp. 149–173.

[27] A. GEORGE AND J. W.-H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[28] A. GEORGE AND J. W.-H. LIU, The evolution of the minimum degree algorithm, SIAM Rev.,
31 (1989), pp. 1–19.

[29] J. R. GILBERT, Predicting structure in sparse matrix computations, SIAM J. Matrix Anal.
Appl., 15 (1994), pp. 62–79.

[30] N. I. M. GOULD AND J. A. SCOTT, On Approximate-Inverse Preconditioners, Technical Report
RAL-95-026, Rutherford Appleton Laboratory, Chilton, UK, 1995.

[31] M. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approximate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838–853.

[32] M. GROTE AND H. SIMON, Parallel preconditioning and approximate inverses on the Con-
nection Machine, in Proc. Sixth SIAM Conference on Parallel Processing for Scientific
Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, eds.,
SIAM, Philadelphia, PA, 1993, pp. 519–523.

[33] M. A. HEROUX, P. VU, AND C. YANG, A parallel preconditioned conjugate gradient package for
solving sparse linear systems on a Cray Y-MP, Appl. Numer. Math., 8 (1991), pp. 93–115.

[34] M. R. HESTENES, Inversion of matrices by biorthogonalization and related results, J. Soc.
Indust. Appl. Math., 6 (1958), pp. 51–90.

[35] M. R. HESTENES AND E. STIEFEL, Method of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards, 49 (1952), pp. 409–436.

[36] A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New York,
1964; reprinted by Dover, New York, 1975.

994 MICHELE BENZI AND MIROSLAV TŮMA

[37] O. G. JOHNSON, C. A. MICCHELLI, AND G. PAUL, Polynomial preconditioning for conjugate
gradient calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362–375.

[38] M. T. JONES AND P. E. PLASSMANN, The efficient parallel iterative solution of large sparse
linear systems, Graph Theory and Sparse Matrix Computation, IMA Vol. Math. Appl. 56,
A. George, J. R. Gilbert, and J. W.-H. Liu, eds., Springer-Verlag, New York, 1994,
pp. 229–245.

[39] I. E. KAPORIN, Explicitly preconditioned conjugate gradient method for the solution of unsym-
metric linear systems, Internat. J. Comput. Math., 40 (1992), pp. 169–187.

[40] I. E. KAPORIN, Two-level explicit preconditioning of the conjugate gradient method, Differential
Equations, 28 (1992), pp. 280–289.

[41] I. E. KAPORIN, New convergence results and preconditioning strategies for the conjugate gra-
dient method, Numer. Linear Algebra Appl., 1 (1994), pp. 179–210.

[42] L. YU. KOLOTILINA, A. A. NIKISHIN, AND A. Yu. YEREMIN, Factorized sparse approximate
inverse (FSAI) preconditionings for solving 3D FE systems on massively parallel com-
puters II: Iterative construction of FSAI preconditioners, in Proc. IMACS International
Symposium on Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen, eds.,
North–Holland, Amsterdam, 1992, pp. 311–312.

[43] L. YU. KOLOTILINA AND A. YU. YEREMIN, Factorized sparse approximate inverse precondi-
tioning I: Theory, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[44] L. YU. KOLOTILINA AND A. YU. YEREMIN, Factorized sparse approximate inverse precondi-
tioning II: Solution of 3D FE systems on massively parallel computers, Internat. J. High
Speed Comput., 7 (1995), pp. 191–215.

[45] S. L. LEE, Krylov Methods for the Numerical Solution of Initial-Value Problems in Differential-
Algebraic Equations, Ph.D. thesis and Technical Report UIUCDS-R-93-1814, Department
of Computer Science, University of Illinois at Urbana-Champaign, IL, 1993.

[46] T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems,
Math. Comp., 34 (1980), pp. 73–497.

[47] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear sys-
tems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977),
pp. 148–162.

[48] N. S. MENDELSOHN, Some properties of approximate inverses of matrices, Trans. Roy. Soc.
Canada, III, 50 (1956), pp. 53–59.

[49] Y. SAAD, Preconditioning techniques for nonsymmetric and indefinite linear systems, J. Com-
put. Appl. Math., 24 (1988), pp. 89–105.

[50] Y. SAAD, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Technical Report
CSRD TR 1029, CSRD, University of Illinois at Urbana-Champaign, IL, 1990.

[51] Y. SAAD, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra Appl.,
1 (1994), pp. 387–402.

[52] G. W. STEWART, Conjugate direction methods for solving systems of linear equations, Numer.
Math., 21 (1973), pp. 283–297.

[53] R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146–160.

[54] H. A. VAN DER VORST, High performance preconditioning, SIAM J. Sci. Statist. Comput.,
10 (1989), pp. 1174–1185.

[55] R. S. VARGA, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.
[56] H. F. WALKER, Implementation of the GMRES method using Householder transformations,

SIAM J. Sci. Statist. Comput., 9 (1988), pp. 152–163.
[57] Z. ZLATEV, Computational Methods for General Sparse Matrices, Kluwer, Dordrecht, the

Netherlands, 1991.

