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MICROBIOTA

A sparse covarying unit that
describes healthy and impaired
human gut microbiota development
Arjun S. Raman, Jeanette L. Gehrig, Siddarth Venkatesh, Hao-Wei Chang, Matthew C. Hibberd,

Sathish Subramanian, Gagandeep Kang, Pascal O. Bessong, Aldo A.M. Lima,

Margaret N. Kosek, William A. Petri Jr., Dmitry A. Rodionov, Aleksandr A. Arzamasov,

Semen A. Leyn, Andrei L. Osterman, Sayeeda Huq, Ishita Mostafa, Munirul Islam,

Mustafa Mahfuz, Rashidul Haque, Tahmeed Ahmed, Michael J. Barratt, Jeffrey I. Gordon*

INTRODUCTION: Ecosystems such as the hu-

man gut microbiota are typically described by

a “parts list” with enumeration of component

members. Accordingly, the abundances of com-

munity components are commonly used as a

metric for relating its configuration to features

of its habitat and to the biological state of the

host. Although this approach has provided

much insight, the structure and function of

biological systems are emergent, arising from

the collective action of constituent parts rather

than each part acting in isolation. This char-

acteristic demands a different approach to de-

scribing the form of a microbiota—one that

takes into consideration the abundances as

well as the interactions between members.

RATIONALE: Borrowing from the fields of

econophysics and protein evolution, where

identification of conserved covariation has

provided insights about the organization of

complex dynamic systems, we searched for fea-

tures amidst the seemingly intractable complex-

ity of human gut microbial communities that

could serve as a framework for understanding

how they assemble and function.

RESULTS: A statistical workflow was devel-

oped to identify conserved bacterial taxon-

taxon covariance in the gut communities of

healthy members of a Bangladeshi birth co-

hort who provided fecal samples monthly from

postnatal months 1 to 60. The results revealed

an “ecogroup” of 15 bacterial taxa that together

exhibited consistent covariation by 20 months

of age and beyond. Ecogroup taxa also described

gut microbiota development in healthy mem-

bers of birth cohorts residing in Bangladesh,

India, and Peru to an extent comparable to

what is achieved when

considering all detected

bacterial taxa; this finding

suggests that the ecogroup

network isaconservedgen-

eral feature of microbiota

organization. Moreover,

the ecogroup provided a framework for char-

acterizing the state of perturbed microbiota de-

velopment in Bangladeshi children with severe

acute malnutrition (SAM) and moderate acute

malnutrition (MAM), as well as a quantitative

metric for defining the efficacy of standard ver-

sus microbiota-directed therapeutic foods in re-

configuring their gut communities toward a

state seen in age-matched healthy children liv-

ing in the same locale. These results highlight

the importance of the ecogroup as a descriptor,

both for fundamental and practical uses. A con-

sortium of cultured ecogroup taxa, introduced

into gnotobiotic piglets, reenacted changes in

their relative abundances that were observed in

human communities as the animals transitioned

from exclusive milk feeding to a fully weaned

state consuming a prototypic Bangladeshi diet.

This pattern of change correlated with the rep-

resentation of a sparse set of metabolic path-

ways in the genomes of these organisms and, in

the fully weaned state, with their expression.

CONCLUSION:The ecogroup represents a sim-

plified feature of community organization and

components that could play key roles in commu-

nity assembly and function. As the gutmicrobiota

constantly faces environmental challenges, “em-

bedding” a sparse network of covarying taxa in a

larger framework of independently varying orga-

nisms could represent an elegant architectural

solution developed by nature tomaintain robust-

ness while enabling adaptation. The approach

used to identify and characterize the sparse net-

work of covarying ecogroup taxa is, in principle,

generalizable to a wide variety of ecosystems.▪
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Ecogroup as a concise

description of microbiota

form. (Top) Network diagram

of covarying taxa where node

(taxon) color indicates

ecogroup (green) or non-

ecogroup (gray), node size

indicates number of mutually

covarying taxa, and connection

between nodes indicates

covariance between two taxa.

(Bottom) Measuring the

representation of ecogroup

taxa reveals that children with

SAM treated with standard

therapeutic foods have an

ecogroup profile similar to that

of children with untreated

MAM, indicating persistent

perturbations in their gut

community relative to healthy

children. In contrast, children

with MAM treated with a

therapeutic food designed to

target the microbiota (MDCF-2)

have an ecogroup profile that

overlaps nearly entirely with

that of healthy children.
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MICROBIOTA

A sparse covarying unit that
describes healthy and impaired
human gut microbiota development
Arjun S. Raman1,2, Jeanette L. Gehrig1,2, Siddarth Venkatesh1,2, Hao-Wei Chang1,2,

Matthew C. Hibberd1,2, Sathish Subramanian1,2*, Gagandeep Kang3, Pascal O. Bessong4,

Aldo A.M. Lima5, Margaret N. Kosek6,7†, William A. Petri Jr.8, Dmitry A. Rodionov9,10,

Aleksandr A. Arzamasov9,10, Semen A. Leyn9,10, Andrei L. Osterman10, Sayeeda Huq11,

Ishita Mostafa11, Munirul Islam11, Mustafa Mahfuz11, Rashidul Haque11,

Tahmeed Ahmed11, Michael J. Barratt1,2, Jeffrey I. Gordon1,2‡

Characterizing the organization of the human gut microbiota is a formidable challenge

given the number of possible interactions between its components. Using a statistical

approach initially applied to financial markets, we measured temporally conserved

covariance among bacterial taxa in the microbiota of healthy members of a Bangladeshi

birth cohort sampled from 1 to 60 months of age. The results revealed an “ecogroup”

of 15 covarying bacterial taxa that provide a concise description of microbiota

development in healthy children from this and other low-income countries, and a means for

monitoring community repair in undernourished children treated with therapeutic foods.

Features of ecogroup population dynamics were recapitulated in gnotobiotic piglets as

they transitioned from exclusive milk feeding to a fully weaned state consuming a

representative Bangladeshi diet.

I
nnumerable studies of the functioning of

biological systems have underscored the

importance of characterizing interactions

between their component parts (1–5). De-

fining microbial communities in this way

can present a seemingly intractable challenge

(1–3, 6). For example, the gastrointestinal tract

of a healthy adult human harbors multiple

species, with multiple strain-level variants of a

given species, that can engage in higher-order

interactions with other community members.

Using a conservative species count of 100, the

number of terms needed to mathematically rep-

resent all possible species-species interactions

(pairwise and higher-order) is ~10
30
. A central

question is how biologically important inter-

actions between component members can be

identified so as to reduce the number of fea-

tures necessary for characterization of microbial

community properties, such as assembly during

the postnatal period, or temporal responses to

various perturbations.

Co-occurrence analysis has been used to de-

scribe community organization but is limited

in its ability to describe interactions between

microbes (7, 8). Recently developed approaches

have focused on defining microbe-microbe inter-

actions using cross-sectional data (9, 10), although

these methods were not explicitly designed to

address the temporal conservation of these in-

teractions in, for example, longitudinal studies.

Therefore, we turned to approaches developed

in the fields of econophysics and protein evo-

lution. Applying the concept of statistical co-

variance coupled with analytical techniques

of matrix decomposition has identified co-

fluctuating economic sectors and cooperative

amino acid networks of functional relevance

(11–13). The underlying presumption is that co-

variation that is conserved is covariation that

may be informative about the organization of

complex dynamic systems.

In this spirit, we have developed a computa-

tionalworkflow to calculate temporally conserved

covariance of gut bacterial taxa over time in

members of a healthy Bangladeshi birth cohort

sampledmonthly for the first five postnatal years.

The results revealed a network of 15 covarying

bacteria that we term an “ecogroup.” Ecogroup

taxa not only describe healthy gut microbial de-

velopment in children residing in Bangladesh

as well as several other low- and middle-income

countries; they also distinguish the microbiota

of Bangladeshi children with untreated moder-

ate and severe acutemalnutrition and the degree

to which these communities are reconfigured

toward a healthy state in response to several

therapeutic food interventions. Colonizing germ-

free piglets with a consortium of ecogroup taxa

and following them during the transition from

exclusive milk feeding through weaning onto a

representative diet consumed by Bangladeshi

children recapitulates features of healthy com-

munity development and reveals microbial ge-

nomic features and expressed metabolic attributes

important for fitness during succession.

Identifying the ecogroup

Thirty-six members of a birth cohort with con-

sistently healthy anthropometric scores living

within the Mirpur district of Dhaka, Bangladesh,

underwent monthly fecal sampling for the first

60 months of postnatal life [height-for-age Z

score (HAZ), –0.92 ± 1.19 (mean ± SD); weight-

for-height Z score (WHZ), –0.48 ± 1.33; n =

1961 fecal samples, 55 ± 4 samples collected

per individual; table S1]. In Bangladesh, the

median duration of breastfeeding is 4 months,

whereas the weaning process is long, with a

median of 25 months (14). Samples collected

less frequently, or only after 36 months, from

19 other children from Mirpur were also in-

cluded in our analysis (HAZ, –0.58 ± 1.12; WHZ,

–0.25 ± 0.96; n = 25.7 ± 10.5 samples per child).

Amplicons generated from variable region 4 (V4)

of bacterial 16S rRNA genes present in these

2455 fecal samples were sequenced, and the

resulting reads were assigned to operational

taxonomic units with ≥97% nucleotide sequence

identity (97%ID OTUs) (15, 16) (fig. S1). In total,

118 97%ID OTUs were represented at a relative

fractional abundance of at least 0.001 (0.1%)

in at least two of the samples collected over

the 60-month period.

An initial broad description of microbiota

development in this cohort was obtained by

applying unweighted and weighted UniFrac

to compute overall phylogenetic dissimilarity

between gut communities from the 36 children

sampled monthly from 1 to 60 months and 49

fecal samples collected in a previous study from

12 unrelated adults, aged 23 to 41 years, living

in Mirpur (17). This metric indicated that the

mean “infant/child-to-adult” distance decreases

to “adult-to-adult” by 3 years of age (fig. S2, A

and B). Alpha diversity also increased to adult-

like levels during this time period (fig. S2, C and

D). As an additional description of community

development, we used the 16S rDNA dataset to
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construct a sparse Random Forests (RF)–derived

model comprising age-discriminatory taxa (fig. S3,

A to E). Microbiota “age” can be computed by

noting the fractional abundances of these age-

discriminatory taxa in a given sample obtained

at a given time point (14). Applying the RF-

generated model disclosed a high degree of

correlation between microbiota age and chron-

ologic age (R
2
= 0.8) (fig. S3C). Although these

approaches provide measures of community

development, they do not characterize inter-

actions between community members during

this process.

Principal components analysis (PCA) applied

to taxa present in monthly fecal samples offers

a way to mathematically characterize gut micro-

biota organization by defining principal com-

ponents (eigenvectors). The result of PCA is a

ranked list of principal components (principal

component spectrum or “eigenspectrum”) where

each principal component carries a percent-

age of data variance. Tracking the principal

component spectrum through time offers a

description of the evolving temporal organiza-

tion of the gut microbiota. The approach we

used, iterative PCA (iPCA), is described in fig. S4A.

For each month, we created a matrix where the

rows were fecal samples and the columns com-

prised the 118 taxa described above. In the ex-

ample shown, time point 1 considers monthly

fractional abundance data from month 1 and a

reference time point. The dissimilarity between

the two time points is reflected in the primary

principal component (PC1). The system is con-

sidered to be “stable” at the time point where

adding subsequent months’ data negligibly con-

tributes to variance; mathematically, this is when

the eigenvalue of PC1 reaches an asymptote.

We performed iPCA on sequentially joined

monthly data with month 36 taken as a refer-

ence (fig. S4B). Month 36was chosen on the basis

of the results of phylogenetic dissimilarity and

diversitymeasurements presented in fig. S2 [note

that previous cross-sectional studies using these

metrics had also indicated that an adult-like con-

figuration was achieved by this time point; e.g.,

(18)]. iPCA revealed that month 20 and beyond

signify a time period of minimal structural var-

iation in the gut microbiota (fig. S4B). This con-

clusion was supported by using the very last

time point in the 5-year longitudinal study as

the reference (fig. S4C). Therefore, we were able

to design a workflow to compute reproducible

covariance (covariance conserved across time in

a mature community assemblage, as opposed to

transient covariance that may occur during com-

munity assembly) usingmonths 20 to 60without

having to make any a priori assumptions about

the importance of any taxon. For each month

spanning postnatal months 20 to 60, we calcu-

lated the covariance between the 118 taxa over all

individuals to generate monthly taxon-taxon co-

variance matrices (19) (see Fig. 1A, fig. S5, and

table S2A). The matrices were averaged to a

single taxon-taxon matrix (hC i; j

binit ) that repre-
sented a definition of consistent covariancewhere

i and j are bacterial taxa and t designates the

month (Fig. 1B and table S2B). PCA performed

on this matrix revealed that PC1 encompassed

80% of the data variance (Fig. 1C; see supple-

mentary text for a sensitivity analysis of the

workflow). A group of 15 covarying taxa repre-

sented the top 20% of all taxa projections along

PC1 (Fig. 1C; see table S3 for different thresh-

old cutoffs). They include OTUs assigned to

Bifidobacterium longum, another member of

Bifidobacterium, Faecalibacterium prausnitzii,

a member of Clostridiales, Prevotella copri,

Streptococcus thermophilus, and Lactobacillus

ruminis, all of which are age-discriminatory

bacterial strains identified from RF-based anal-

ysis of bacterial 16S rDNA datasets generated

from healthy members of this Bangladeshi co-

hort (fig. S3D).

The results of PCA performed on data gen-

erated from 478 samples collected from children

sampled at postnatal months 50 to 60 provide

an illustration of statistical covariation between

these taxa: PC1 reveals that B. longum (OTU

559527) and L. ruminis (OTU 1107027) positively

covary with one another across samples and neg-

atively covary with two P. copri strains (OTUs

840914 and 588929); PC2 documents how two

F. prausnitzii OTUs (514940 and 851865) posi-

tively covary with each other and negatively

covary with S. gallolyticus (OTU 349024) and

E. coli (OTU 1111294); PC3 discloses that the

two P. copri OTUs negatively covary with the

two F. prausnitzii OTUs (Fig. 1D).

Figure 1E provides a graphical depiction of

this network of covarying taxa. Each green node

represents one of the 15 OTUs that manifest a

high degree of conserved covariance between

months 20 and 60. Two nodes are connected by

an edge if their temporally averaged covariance

value (hC i; j

binit from Fig. 1B) is within the top 20%

of all such values. Node size is proportional to

the number of connections (edges) present. The

green nodes collectively covarywith one another.

In contrast, gray nodes depict taxa that covary

with green nodes but not with one another

(Fig. 1E). The green nodes constitute an “insu-

lated” ecostructure; its members exhibit signif-

icant intragroup covariation (fig. S6 and table

S2C). We chose the term “ecogroup” to reflect

the conserved collective statistical covariation

of this sparse network of 15 organisms.

Microbiota development in other
birth cohorts

We asked whether components of the ecogroup

provide a concise description of postnatal devel-

opment of the microbiota in healthy members

of the Bangladeshi cohort and, if so, whether

changes in the representation of these taxa fol-

low a pattern that is shared across other healthy

birth cohorts representing distinct geographic

locales and anthropologic features (20). Moreover,

we postulated that if ecogroup taxa are informa-

tive biomarkers of normal community develop-

ment, these taxamight be useful for characterizing

impaired development and/or the extent to which

community repair is achieved as a function of

various therapeutic interventions (21).

Three different matrices were created where

each row was a fecal sample collected from an

individual at a particular month in the healthy

Bangladeshi cohort and columns were either (i)

all 118 taxa, (ii) the 15 ecogroup taxa, or (iii) the

remaining 103 non-ecogroup taxa. PCA was

performed on the rows of these matrices; fecal

samples were plotted on the first three principal

components. The left panel of Fig. 2A shows the

results obtained when considering the fractional

representation of all 118 taxa in fecal samples

collected at postnatal months 4, 10, and 20.

There is substantial interpersonal variation in

gut community structure at postnatal month 1,

as evidenced by the broad distribution along

PC1, but this variation converges by month 4

(Fig. 2A, fig. S7, A and B, and table S2D). There-

after, changes in the structure of the fecal micro-

biota are depicted by right-to-left movement

along PC1, with minor variance observed along

PC2 and PC3. Minimal movement along PC1 is

observed after month 20 (fig. S7C), consistent

with the results of iPCA in fig. S4, B and C. (No-

tably, children in this cohort had completed

weaning bymonth 23; see fig. S8 for a description

of the nature and timing of their dietary tran-

sitions.) Ecogroup taxa recapitulate the variance

depicted by PC1, PC2, and PC3. Moreover, the

ecogroup taxa capture (i) the significant inter-

personal variation observed at postnatal month 1,

(ii) the subsequent convergence to a B. longum–

predominant microbiota at postnatal month 4,

and (iii) temporal changes noted at postnatal

months 10 and 20 (Fig. 2, A andB, fig. S7, A andB,

middle panels, and table S2E). In contrast, the

remaining 103 non-ecogroup taxa provide a

less informative representation of developmen-

tal changes in the microbiota, as exemplified by

the fact that PC1, PC2, and PC3 each capture

≤10% of the variance (Fig. 2A and fig. S7, A and

B, right panels). The importance of taxa with

low average fractional abundances and large

standard deviations, such as P. copri (Fig. 2B,

inset), is often overlooked when they are con-

sidered in isolation. However, analysis of taxon-

taxon covariation can reveal relationships between

member species, as illustrated by P. copri and

B. longum (Fig. 1D, blue box).

To determine the extent to which the eco-

group is a generalizable descriptor of the micro-

biota in infants and children with healthy growth

phenotypes, we turned to the MAL-ED network

of study sites located in low- and middle-income

countries (20, 21). Fecal samples had been col-

lected monthly for the first two postnatal years,

allowing sparse 30-taxon RF-generated models of

normal community development to be generated

frommembers of birth cohorts residing in Loreto,

Peru (periurban area) and Vellore, India (urban

area) (supplementary text, fig. S9, and table S4).

Our ability to identify a network of covarying

taxa in the Mirpur cohort depended on a high-

resolution time-series study that extended well

beyond the month at which the microbiota was

determined to be “stable” (month 20). This du-

ration of sampling did not occur at these other

MAL-ED sites, obviating our ability to identify

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 2 of 11
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Fig. 1. Defining a sparse, consistently covarying network of bacterial

taxa (“ecogroup”) in healthy Bangladeshi children. (A) Workflow.

Left: 16S rDNA sequencing of fecal microbiota samples collected monthly

from healthy members of the birth cohort from postnatal months

20 to 60. For each month, a matrix is created where rows are taxa and

columns are fecal samples of individuals. Center: Taxon-taxon covariance

matrices for each month are calculated. Right: Monthly taxon-taxon

covariance matrices are normalized relative to the maximum monthly

covariance value. If a normalized monthly covariance value for a given (i, j)

taxon-taxon pair is within the top or bottom 10% of all monthly covariance

values, it is converted to a “1”; otherwise it is assigned a “0”. This binarized

covariance matrix is defined as C
i;j
bin. Concatenating C

i;j
bin for all months

creates a three-dimensional matrix, ðCi; j
binÞt. (B) Temporally conserved taxon-

taxon covariance matrix. The binarized covariance values for each

(i, j) pair of taxa in ðCi;j
binÞt are averaged over all months to give a temporally

weighted covariance value for each taxon-taxon pair (hCi; j
binit). In the limit

that two taxa always covary with each other, hCi;j
binit = 1. If two taxa never

covary with each other, hCi; j
binit = 0. The matrix shown illustrates sparse

temporally conserved coupling, with many taxa showing no consistent

covariance (hCi;j
binit ≈ 0; white pixels) but a few exhibiting a high degree

of conserved covariance (hCi; j
binit ≥ 0.5; deep red pixels). (C) Eigende-

composition of temporally conserved covariance matrix. Note that 80% of

the data variance in hCi;j
binit can be represented by a single principal

component. The histogram shows projections of taxa along PC1; data are

fit to a generalized extreme value distribution (red line). Applying a 20%

threshold to this distribution identifies 15 taxa that reproducibly covary

over time. (D) Fecal samples from postnatal months 50 to 60 shown on a

PCA space ordinated by the 15 taxa in (C). Heat maps illustrate the

fractional abundance of taxa responsible for the variance along each

principal component. The blue box shown in the left portion of the

projection along PC1 highlights the subset of healthy children who have a

high representation of P. copri relative to B. longum. (E) Graphical

representation of the sparse covarying network of 15 taxa (green

nodes). See text for details.
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conserved covariance among taxa. However, to

test how well the 15 ecogroup taxa identified in

the Mirpur cohort could characterize the devel-

oping microbiota of children living in these

countries, we created two matrices where each

row was a fecal microbiota sample from the

Indian or Peruvian cohorts and columns were

either all taxa identified in the Peruvian and

Indian samples or just the 15 ecogroup taxa

identified from the Bangladeshi birth cohort. PCA

was performed on the rows of these matrices and

the same analysis performed as described for

the healthy Bangladeshi birth cohort. The re-

sults show that the ecogroup taxa identified in

members of the healthy Bangladeshi cohort

also provide a concise description of commu-

nity development in healthy members of these

other two birth cohorts; that is, (i) they capture

the variance depicted by PC1, PC2, and PC3 as

compared to considering all taxa, and (ii) changes

in their fractional abundances followed tempo-

ral patterns similar to those documented in the

Bangladeshi cohort (fig. S10 and table S2F).

Ecogroup configuration in acute
malnutrition before and after treatment

Bangladeshi children with acute malnutrition

have perturbed microbiota development; their

gut communities appear younger than those of

chronologically age-matched individuals (14, 21).

We examined whether ecogroup taxa provide

a useful way to characterize the microbiota of

children with moderate or severe acute mal-

nutrition (MAM and SAM, respectively) prior

to and after food-based therapeutic interventions.

In the accompanying paper, Gehrig et al. describe

63 children from Mirpur diagnosed with MAM,

aged 12 to 18 months, who were enrolled in a

double-blind, randomized, controlled feeding

trial of different microbiota-directed comple-

mentary foods (MDCFs) (21). Fecal samples

were collected for 9 weeks at weekly intervals.

The first 2 weeks comprised a pretreatment ob-

servation period. Over the next 4 weeks, chil-

dren received either one of three MDCFs, or a

ready-to-use supplementary food (RUSF) rep-

resenting a form of conventional therapy that,

unlike the MDCFs, was not designed to target

specific members of the gut microbiota and re-

pair community immaturity. The last 2 weeks

represented the post-treatment observation pe-

riod. In total, we identified 945 97%ID OTUs

that had a fractional abundance of at least 0.001

(0.1%) in at least two fecal samples collected from

one or more participants prior to, during, and

after treatment (n = 531 samples). Gehrig et al.

(21) also describe another trial involving 54 hos-

pitalized Bangladeshi children with SAM, aged

6 to 36 months, where each participant was

treated with one of three standard therapeutic

foods and then followed over a 12-month period

after discharge. In total, we identified 944 97%

ID OTUs that had a fractional abundance of at

least 0.001 in at least two fecal samples collected

from one or more participants in this trial (n =

618 samples).

Amatrix was created that included (i) all fecal

samples from the SAM trial, (ii) pretreatment

samples from childrenwithMAMenrolled in all

four arms of the MDCF trial, (iii) MAM samples

obtained 2 weeks after treatment with one of

the three MDCFs or the RUSF, and (iv) fecal

samples from age-matched healthy Bangladeshi

children (table S5). Each row of thematrix was a

fecal sample, each columnwas an ecogroup taxon,

and each element in the matrix was the frac-

tional abundance of an ecogroup taxon within a

particular fecal sample. PCA was performed

on the rows of this matrix. Centroids for each

cohort were computed and plotted on the PCA

space (Fig. 3A). At the time of discharge, after

receiving standard therapeutic foods, the mi-

crobiota of children with SAM remained in an

incompletely repaired state: Although there was

some improvement at 1 month after discharge,
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Fig. 2. Characterizing healthy gut microbiota development in the Bangladeshi birth cohort.

(A) PCA spaces were created. Each point in the spaces represents a fecal sample described by

either all taxa present at a fractional abundance greater than 0.001 (0.1%) (118 taxa), ecogroup taxa

(15), or non-ecogroup taxa (103). The spatial distribution of fecal samples in each PCA space is

shown for the indicated postnatal months. (B) Bar graph illustrating average fractional abundance

of ecogroup taxa as a function of postnatal month (see table S2E). Inset: Average fractional

abundance (±SD) of P. copri as a function of time.
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there was minimal additional improvement evi-

dent at 6 or 12 months, at which times their

microbiota resembled that of untreated chil-

dren with MAM (Fig. 3A). The microbiota of

children with MAM that were treated with

MDCF-1, MDCF-3, and RUSF clustered together,

whereas the microbiota of those treated with

MDCF-2 closely resembled that of healthy chil-

dren. Notably, MDCF-2 was also distinct among

the four treatment types in eliciting changes in

the plasma proteome indicative of improved

health status, including changes in biomarkers

and mediators of metabolism, bone growth, cen-

tral nervous system development, and immune

function [see (21) for details].

PCA measures the effect of treatment on the

gut microbiota by considering a constellation

of changes in fractional abundance of ecogroup

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 5 of 11

Fig. 3. Ecogroup taxa define the response of the microbiota of children with SAM and MAM to various nutritional interventions. (A) Centroids

of each indicated cohort are plotted on a PCA space. Arrows indicate the temporal progression of microbiota reconfiguration for children with SAM

treated with conventional therapy and children with MAM treated with a RUSF or a MDCF. (B) Matrix decomposition of the axes shown in (A) highlights

the taxa that are important for fecal sample variance observed along each principal component. (C and D) Average fractional abundance of ecogroup

taxa identified in (B) in the fecal microbiota of members of the SAM and MAM cohorts as a function of treatment (see table S2G).
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taxa, with the premise that the fractional abun-

dances as well as the covariation of these taxa

are important for characterizing community con-

figuration. The left panel of Fig. 3B shows that

the relationship between the fractional represen-

tations of B. longum (OTU 559527) and E. coli

(OTU 1111294) determines microbiota position

along PC1 in Fig. 3A. The center and right panels

of Fig. 3B show that the relationship between the

fractional representations of B. longum, E. coli,

S. gallolyticus (OTU 349024), and P. copri (OTUs

588929 and 840914) determines position along

PC2, whereas position along PC3 reflects

the relationship between the abundances of

S. gallolyticus and the two P. copri OTUs. B. longum,

S. gallolyticus, and E. coli are the predominant

ecogroup taxa represented in the microbiota of

children with untreated SAM (Fig. 3C and table

S2G). Treatment results in movement of their

microbiota along PC1 and PC3 in Fig. 3A;

this movement is associated with a decrease in

B. longum, S. gallolyticus, and E. coli (Fig. 3C and

table S2G). Differences between the microbiota

of healthy children and those with SAM prior

to and during the 12 months after treatment

with standard therapeutic foods are manifest by

differences in their respective positions along

PC1 and PC3 (Fig. 3A). These differences sig-

nify incomplete repair to a “healthy” state and

highlight the need to achieve further decreases

in the fractional abundance of B. longum (asso-

ciated with movement to the right of PC1) along

with further decreases in the fractional abun-

dance of S. gallolyticus and increases in P. copri

(associated with positive movement along

PC3). The representation of B. longum, P. copri,

S. gallolyticus, and E. coli in the microbiota of

12- to 18-month-old children with untreated MAM

accounts for their positive projection along PC1

and PC3 relative to the microbiota of children

with untreated SAM (Fig. 3A). Among the tested

therapeutic foods, MDCF-2 was uniquely asso-

ciated with a positive movement along PC1 (Fig.

3A); this corresponds to decreased fractional

abundance of B. longum (Fig. 3D and table S2G)

and more complete community repair.

Two other methods, SparCC and SPIEC-EASI,

have been used to describe microbiota organi-

zation (9, 10). As these methods were designed

for cross-sectional studies, we adapted them

(see supplementary text) so we could compare

their ability to identify (i) temporally conserved

aspects of community organization, and (ii) the

degree to which SAM and MAM microbiota are

repaired with different food-based interventions

with the approach we had used to identify the

ecogroup. SparCC identifies a subset of eco-

group taxa that describe healthy gut micro-

biota development in members of the 5-year

healthy Bangladeshi cohort study (fig. S11, A

and B). SparCC clearly separates the microbiota

of children with untreated SAM from healthy

controls and shows that treatment with standard

therapeutic foods fails to repair their microbiota

to a healthy state, or even to a state seen in

children with untreated MAM. Compared to the

approach described in Fig. 1A, SparCC does not

as clearly separate MAM from healthy or (by

extension) the differential effects of MDCF

treatment, although it does place MDCF-2–

treated microbiota closest to that of healthy

children (fig. S11C). One explanation is that

P. copri does not contribute as prominently to the

collective group of correlated taxa identified by

SparCC (fig. S11 and table S6, A and B). SPIEC-

EASI identifies P. copri and other Prevotella

OTUs as key microbes (fig. S12, A and B, and table

S6, C to E). However, SPIEC-EASI does not pro-

vide as informative a description of the temporal

pattern of healthy gut microbial development

as does the ecogroup taxa [note the relative lack

of movement over time of community configu-

ration from right to left along PC1 in fig. S12C

compared to Fig. 2A (ecogroup taxa) and fig.

S11B (SparCC)]. The 15 interacting taxa iden-

tified by SPIEC-EASI separate untreated and

treated SAM and MAM microbiota from one

another and from healthy (fig. S12D). As with

the two other approaches, although less clearly

than with the ecogroup taxa, SPIEC-EASI shows

that MDCF-2 is most effective in changing the

configuration of the MAM-associated micro-

biota toward a healthy state relative to MDCF-1,

MDCF-3, and RUSF. Together, these findings pro-

vide support for considering temporally conserved

taxon-taxon covariance when characterizing the

microbiota of children with undernutrition prior

to and after various therapeutic interventions.

Ecogroup taxa in a gnotobiotic
piglet model of postnatal Bangladeshi
dietary transitions

Our observations raise questions about the

nature of the interactions among B. longum,

P. copri, and other ecogroup taxa during post-

natal development as a function of the dietary

transitions that occur when children progress

from exclusive milk feeding to complementary

feeding to a fully weaned state. To address this

issue, we colonized germ-free piglets with

ecogroup taxa and tracked the dynamics of

consortium members over time. We turned to

gnotobiotic piglets rather than mice because

the former have physiologic and metabolic qual-

ities more similar to that of humans (22). Piglets

were derived as germ-free at birth and were fed

an irradiated sow’s-milk replacement (Soweena)

for the first four postnatal days (fig. S13A). Piglets

(n = 5) were then colonized, by oral gavage,

with a consortium of seven cultured, sequenced

B. longum strains recovered from the fecal mi-

crobiota of children living in Mirpur, Bangladesh

as well as three other countries (Peru, Malawi,

and the United States) (fig. S13A). On the basis

of their genome sequences (table S7), six strains

were classified as B. longum subspecies infantis

and one as B. longum subspecies longum. The ga-

vage mixture also contained two Bifidobacterium

breve strains, which we used as comparators to

delineate factors that contribute to the fitness

of the B. longum strains, given the phylogenetic

similarity of their genomes. Beginning on post-

natal day 4, a diet representative of that con-

sumed by 18-month-old children living in Mirpur

[Mirpur-18 (21)] was added to food bowls con-

taining Soweena. On postnatal day 7, piglets

were gavaged with a second consortium con-

sisting of 16 additional cultured sequenced eco-

group taxa (fig. S13A) representing 13 of the 15

species shown in Fig. 1C. During postnatal days

5 to 22, the amount of Mirpur-18 added to food

bowls was progressively increased while the

amount of Soweena was decreased; once a fully

weaned state was achieved on day 22, animals

were monotonously fed the Mirpur-18 diet un-

til they were euthanized on postnatal day 29.

Piglets increased their weight by 185 ± 31%

(mean ± SD) between postnatal days 7 and 29.

To define features in ecogroup strains that

relate to their fitness during the series of dietary

transitions that mimic those experienced by

children living in Mirpur, we performed short-

read shotgun sequencing of community DNA

prepared from rectal swabs obtained at 11 time

points spanning experimental days 5 to 29 (fig.

S13A) and along the length of the gut at the

time of euthanasia. The results are presented in

Fig. 4A and table S2H. After gavage of remain-

ing ecogroup members, the representation of

all B. longum strains diminished rapidly. From

postnatal day 8 to day 22, as the animals were

being weaned, S. gallolyticus, E. coli, E. avium,

L. salivarius, and P. copri exhibited distinct

patterns of temporal change in their represen-

tation. After the animals were fully weaned, there

was a pronounced increase in P. copri, which be-

came the dominant member of the cecal, colonic,

and fecal microbiota (Fig. 4A and fig. S13B). The

relationship between the abundances of P. copri

and B. longum is comparable in these piglets to

that observed in the healthy Bangladeshi chil-

dren who were used to evaluate the microbiota

configurations of untreated and treated children

with MAM and SAM (Fig. 3, C and D).

The representations of 81 mcSEED metabolic

modules (see methods) in strain genomes were

used to make in silico predictions about their

capacity to synthesize amino acids and B vita-

mins, utilize a variety of carbohydrates, and

generate short-chain fatty acids. Predicted pheno-

types were scored as either a “1” or a “0” sig-

nifying auxotrophy or prototrophy in the case of

amino acid and B-vitamin biosynthesis, or the

ability or inability to utilize various carbohydrates

(table S8). PCA of a “binary phenotype matrix” of

all strains present at a fractional representation

of ≥0.001 in fecal samples collected from post-

natal day 8 to day 18 identified 14 carbohydrate

utilization pathways, plus the capacity to synthe-

size cysteine, folate, and pantothenate as genomic

features that distinguish these strains from each

other (table S9). Hierarchical clustering by these

predicted metabolic phenotypes also grouped

these strains by their fitness (Fig. 4, B and C).

We performed microbial RNA-seq using cecal

contents to characterize the expression of genes

encoding components of mcSEEDmetabolic mod-

ules presentwithin the ecogroup strains. [The frac-

tional representations of these strains in the cecum

and feces at the time of euthanasia were highly

correlated (r
2
= 0.98; table S10).] Figure S14A
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illustrates the workflow used to generate a

mcSEED “enrichment matrix” (ME) that signifies

the extent towhich the aggregate transcript levels

of components of a given mcSEED metabolic

module in a given bacterial strain quantitatively

differ from that of a reference strain. Because

P. copri had the highest fractional representa-

tion on postnatal day 29, it was used as the

reference (fig. S14B and table S2I). PCA was

performed on the mcSEED enrichment matrix

(Fig. 5A and table S11A). The results revealed that

the transcriptomes of Bifidobacterium strains

cluster together and are distinct from those of

P. copri, E. coli, B. luti, and E. avium. Moreover,

the distribution of strains along PC1 based on

their mcSEED enrichment profiles correlated

with their fractional representation (fitness) in

the cecal and fecal microbiota (Fig. 5A, inset).

To identify which expressed components of

mcSEED metabolic modules contribute to the

differences in the fractional representation, we

required a way to relate the principal compo-

nents of the rows (metabolic modules) and col-

umns (strains) of the mcSEED enrichment matrix.

To do so, we used singular value decomposition

(SVD; fig. S14, C and D). Relative to P. copri, the

most distinguishing features of the Bifidobacterium

transcriptomes were markedly reduced or absent

expression of pathways involved in (i) biosynthesis

of cysteine, tyrosine, tryptophan, and asparagine;

(ii) utilization of several carbohydrates (xylose

and b-xylosides plus galacturonate/glucuronate/

glucuronide); (iii) biosynthesis of queuosine; and

(iv) uptake of cobalt related to cobalamin bio-

synthesis (Fig. 5B and tables S2J and S11B).

Moreover, expression of four of these pathways

(cysteine and asparagine biosynthesis; xylose/

b-xyloside and galacturonate/glucuronate/

glucuronide utilization) exclusively differentiate

P. copri, B. luti, E. coli, and E. avium from all

nine Bifidobacterium species and the other five

strains whose transcripts were represented in

the community metatranscriptome (Fig. 5B).

The biological significance of expression of

these distinguishingmcSEEDmetabolic modules

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 7 of 11

Fig. 4. Distinguishing genomic features related to the fitness

landscape of ecogroup strains in gnotobiotic piglets. (A) Average

fractional abundances of strains plotted over time (see table S10).

The summary of the experimental design shows when the various taxa

were first introduced by gavage and how the diet changed over time. See

fig. S13A for complete strain designations. (B) Genome features that

distinguish among strains whose average fractional abundances in the

fecal microbiota of piglets was ≥0.001 between postnatal days 8 and 22.

These distinguishing features are mcSEED metabolic phenotypes color-

coded according to whether they are predicted to endow the host

strain with prototrophy for amino acids and B vitamins or the capacity

to utilize the indicated carbohydrate. Strains are hierarchically

clustered according to the representation of these metabolic pathways.

(C) Heat map depicting the fractional representation of the strains shown

in (B) at the indicated time points. Strains are hierarchically clustered

according to the mcSEED metabolic phenotypes in (B). Note that the

pattern of clustering defined by phenotypes also clusters strains by

their fitness.
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demanded a further contextualization based

on whether these systems were complete or

incompletely represented in the strain genomes.

Figure 5C shows that all of the Bifidobacterium

strains contain complete metabolic pathways

for tyrosine, asparagine, and tryptophan biosyn-

thesis but do not contain complete metabolic

pathways for cysteine biosynthesis; utilization

pathways for galactose, xylose, and glucuronides;

and B-vitamin synthetic pathways for queuosine

and cobalamin. In contrast, E. coli and B. luti

have mcSEED binary phenotype profiles similar

to that of P. copri and contain complete meta-

bolic pathways for cysteine biosynthesis and

xylose utilization (table S2J). These results in-

dicate that genomic features of the Bifidobac-

terium strains examined limit their ability to

thrive in the context of the Mirpur-18 diet and

a community that contains the other ecogroup

strains. In contrast, the fact that P. copri and

other ecogroup strains contain and express

these metabolic pathways provides support for

their importance in maintaining their fitness

under these conditions. As such, the feature-

reduction approachusedhere provides a rationale

for testing nutritional interventions that target

these pathways in ecogroup members in chil-

dren at risk for, or who already have, perturbed

microbiota development.

Conclusions

We have developed a statistical approach to

identify a group of 15 covarying bacterial taxa

that we term an ecogroup. We found that the

ecogroup is a conserved structural feature of

the developing gut microbiota of healthy mem-

bers of several birth cohorts residing in dif-

ferent countries. Moreover, the ecogroup can

be used to distinguish the microbiota of chil-

dren with different degrees of undernutrition

(SAM, MAM) and to quantify the ability of their

gut communities to be reconfigured toward a

healthy state with a MDCF. Studies of gnoto-

biotic piglets subjected to a set of dietary tran-

sitions designed to model those experienced

by members of the Bangladeshi healthy birth

cohort demonstrate that temporal changes in

the fitness of ecogroup taxa can occur in the

absence of other gut communitymembers. These

observations suggest that the approach used to

identify the ecogroup may be useful in charac-

terizing microbial community organization in

members of other longitudinally sampled (hu-

man) cohorts.

A critical feature of biological systems is that

they function reliably, yet adapt when faced with

environmental fluctuations (23, 24). An architec-

ture of sparse but tight coupling enables rapid

evolution to new functions in proteins (25, 26).

Studies ofmacro-ecosystems such as ant colonies

have argued that adaptive behaviors are depen-

dent on proper network organization (27). The

gut microbiota must satisfy the constraints of

survival: namely, withstanding insult and main-

taining functionality (robustness) while still

having the capacity for plasticity. “Embedding”

a sparse network of covarying taxa in a larger

framework of independently varying organ-

isms could represent an elegant architectural

solution developed by nature to maintain ro-

bustness while enabling adaptation.

Methods
Human studies

A previously completed NIH birth cohort study

(“Field Studies of Amebiasis in Bangladesh”;

ClinicalTrials.gov identifier NCT02734264) was

conducted at the International Centre for Diar-

rhoeal Disease Research, Bangladesh (icddr,b).

Anthropometric data and fecal samples were

collected monthly from enrollment through

postnatal month 60. Informed consent was ob-

tained from the mother or guardian of each

child. The research protocol was approved by the

institutional review boards of the icddr,b and the

University of Virginia, Charlottesville.

In the case of the MAL-ED birth cohort study

(“Interactions of Enteric Infections and Mal-

nutrition and the Consequences for Child Health

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 8 of 11

Fig. 5. Distinguishing features of mcSEED metabolic module expression related to the fitness

of ecogroup strains in weaned gnotobiotic piglets. See fig. S13A for full strain designations.

(A) The transcriptomes of cecal community members were classified on the basis of gene assignments

to 81 mcSEED metabolic modules (see count matrix in fig. S14B). Each strain is plotted on the first

two principal components of the enrichment matrix in fig. S14B. The inset shows that fractional

representation (fitness) of strains correlates with their expression profiles as judged by position

along PC1. (B) Singular value decomposition (SVD, fig. S14C) identifies which among the 81

expressed metabolic modules most distinguish the indicated strains in the cecal community and

Mirpur-18 diet contexts (fig. S14D). (C) Expressed discriminatory metabolic modules identified by

SVD in (B) are shown as complete or incompletely represented in the genomes of the indicated

strains by red pixels (predicted prototrophy for the amino acid or the ability to utilize the

carbohydrate shown) or by white pixels (auxotrophy or the inability to utilize the carbohydrate).

Strains and metabolic modules are hierarchically clustered.
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and Development”; ClinicalTrials.gov identifier

NCT02441426), anthropometric data and fecal

samples were collected every month from enroll-

ment to 24 months of age. The study protocol

was approved by institutional review boards at

each of the study sites.

The accompanying paper by Gehrig et al. (21)

describes studies that enrolled (i) Bangladeshi

children with MAM in a double-blind, random-

ized, four-group, parallel assignment inter-

ventional trial study of microbiota-directed

complementary food (MDCF) prototypes con-

ducted in Dhaka, Bangladesh (ClinicalTrials.gov

identifier NCT03084731); (ii) a reference cohort

of age-matched healthy children from the same

community; and (iii) a subcohort of 54 children

with SAM who were treated with one of three dif-

ferent therapeutic foods and followed for 12months

after discharge with serial anthropometry and

biospecimen collection (“Development and Field

Testing of Ready-to-Use Therapeutic Foods Made

of Local Ingredients in Bangladesh for the Treat-

ment of Children with SAM”; ClinicalTrials.gov

identifier NCT01889329). The research protocols

for these studies were approved by the Ethical

Review Committee at the icddr,b. Informed con-

sent was obtained from the mother/guardian of

each child. Use of biospecimens and metadata

from each of the human studies for the analyses

described in this report was approved by the

Washington University Human Research Protec-

tion Office (HRPO).

Collection and storage of fecal samples
and clinical metadata

Fecal samples were placed in a cold box with ice

packs within 1 hour of production by the donor

and collected by field workers for transport back

to the lab (NIH Birth Cohort, MAL-ED study).

For the “Development and Field Testing of Ready-

to-Use Therapeutic Foods Made of Local In-

gredients in Bangladesh for the Treatment of

Children with SAM” study, the healthy reference

cohort, and the MDCF trial, samples were flash-

frozen in liquid nitrogen–charged dry shippers

(CX-100, Taylor-Wharton Cryogenics) shortly after

their production by the infant or child. Biospeci-

mens were subsequently transported to the local

laboratory and transferred to –80°C freezers

within 8 hours of collection. Sampleswere shipped

on dry ice to Washington University and archived

in a biospecimen repository at –80°C.

Sequencing bacterial V4-16S rDNA
amplicons and assigning taxonomy

Methods used for isolation of DNA from fro-

zen fecal samples, generation of V4-16S rDNA

amplicons, sequencing of these amplicons, cluster-

ing of sequencing reads into 97% ID OTUs, and as-

signing taxonomy are described in Gehrig et al. (21).

Generation of RF-derived models of gut
microbiota development

We produced RF-derived models of gut micro-

biota development from the Peruvian, Indian,

and “aggregate”V4-16S rDNAdatasets generated

from 22, 14, and 28 healthy participants, respec-

tively (see supplementary text for a description of

the aggregate dataset). Model building for each

birth cohort was initiated by regressing the re-

lative abundance values of all identified 97%ID

OTUs in all fecal samples against the chronologic

age of each donor at the time each sample was

procured (R package “randomForest,” ntree =

10,000). For each country site, OTUswere ranked

on the basis of their feature importance scores,

calculated from the observed increases in mean

square error (MSE) when values for that OTU

were randomized. Feature importance scoreswere

determined over 100 iterations of the algorithm.

To determine how many OTUs were required to

create a RF-based model comparable in accuracy

to a model comprising all OTUs, we performed

an internal 100-fold cross-validation where mod-

els with sequentially fewer input OTUs were

compared to one another. Limiting the country-

specific models to the top 30 ranked OTUs had

only minimal impact on accuracy (within 1% of

the MSE obtained with all OTUs). In addition

to calculating the R
2
of the chronological age

versus predicted microbiota age for reciprocal

cross-validation of the RF-derived models, we

also calculated the mean absolute error (MAE)

and root mean square error (RMSE) for the ap-

plication of each model to each dataset to fur-

ther assess model quality (table S12).

Comparing OTUs with DADA2 amplicon
sequence variants (ASVs) (fig. S1)

Each OTU in the ecogroup and each OTU in the

sparse RF-derived models that had 100% se-

quence identity to an ASV was identified; each

of these OTUs was defined as a “primary OTU

sequence” and the ASV as the “correct ASV se-

quence.” The primary OTU sequence was then

mutated according to the maximum sequence

variance accepted by QIIME for a ≥97%ID OTU

(i.e., ≤3%) to create a library of 1000 derivative

sequences. Each sequence in the librarywas then

compared to a database of all ASVs produced

from DADA2 analysis (28) of all 16S rDNA data-

sets generated from all birth cohorts described in

this report and in Gehrig et al. (21). The ASVwith

the maximum sequence identity to each mem-

ber of each library of 1000 derivative sequences

was noted. If this ASVmatched the correct ASV

sequence, the OTU derivative sequence in the

library was assigned a “1”; otherwise it was as-

signed a “0”. An average over all 1000 derivative

sequences in a given library was then calculated.

This process was iterated 10 separate times,

creating 10 trials of 1000 derived sequences for

each OTU. An average over all 10 trials was

then calculated, thereby defining the prob-

ability of an OTU being ascribed to the correct

ASV given the accepted sequence “entropy” of

QIIME (15). The results demonstrated that V4-

16S rDNA sequences comprising a 97%ID OTU

generated by QIIME map directly to the single

ASV sequence deduced by DADA2.

Studies of gnotobiotic piglets

Experiments involving gnotobiotic piglets were

performed under the supervision of a veterinar-

ian using protocols approved by the Washington

University Animal Studies Committee.

Diets

Piglets were initially bottle-fed with an irradiated

sow’s milk replacement (Soweena Litter Life,

Merrick; catalog number C30287N). Soweena

powder (120-g aliquots in vacuum-sealed steri-

lized packets) was gamma-irradiated (>20 Gy)

and reconstituted as a liquid solution in the gnoto-

biotic isolator (120 g per liter of autoclaved

water). The procedure for producing Mirpur-18

is detailed in Gehrig et al. (21).

Husbandry

Feeding: The protocol used for generating germ-

free piglets was based on our previous publica-

tion (29) with modifications (21). Piglets were

fed at 3-hour intervals for the first 3 postnatal

days, at 4-hour intervals from postnatal days

4 to 8, and at 6-hour intervals from postnatal

day 9 to the end of the experiment. Introduc-

tion of solid foods began on postnatal day 4

and weaning was accomplished by day 22. Each

gnotobiotic isolator was equipped with four

stainless steel bowls and one 2-gallon waterer;

each 2-gallon waterer (Valley Vet, Maryville,

KS; catalog number 17544) was equipped with

two 0.5-inch nipples (Valley Vet, catalog num-

ber 17352). During the first 3 days after birth,

all four bowls were filled with Soweena. From

days 4 to 12, at each feeding, one bowl was filled

with Mirpur-18 while the remaining three bowls

were filled with Soweena. On day 12, one bowl of

milk was replaced with a bowl of water. From

day 15 to day 19, each daytime feeding consisted

of placement of two bowls of water and two

bowls of Mirpur-18. In nighttime, one bowl of

water was replaced with Soweena (i.e., each iso-

lator at each feeding had two bowls ofMirpur-18,

one bowl of water, and one bowl of Soweena).

From postnatal days 20 and 21, only one bowl

was provided with Soweena, and the amount of

milk added was reduced by one half each day

during this period. On day 22, the last bowl of

milk was replaced with a bowl of water, thereby

completing the weaning process. After weaning,

two bowls of fresh sterilizedwater and two bowls

of fresh Mirpur-18 were introduced into each iso-

lator every 6 hours to enable ad libitum feeding.

The 2-gallon waterer was replenished with fresh

sterilized water every 2 to 3 days. Mirpur-18 con-

sumption was monitored by noting the amount

of input food required to maintain a filled bowl

during a 24-hour period. Piglets were weighed

daily using a sling (catalog number 887600; Pre-

mier Inc., Charlotte, NC). Environmental enrich-

ment was provided within the isolators including

plastic balls for “rooting” activity and rubber hoses

and stainless steel toys for chewing and manipu-

lating. The behavior and health status of the pig-

lets weremonitored every 3 to 4 hours throughout

the day andnight during the first 13 postnatal days

and then every 6 hours until the time of eutha-

nasia on day 29.

Bacterial genome assembly, annotation,

in silico metabolic reconstructions, and phenotype

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 9 of 11
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predictions: Barcoded, paired-end genomic libra-

ries were prepared for each bacterial isolate, and

the libraries were sequenced (Illumina MiSeq

instrument; paired-end 150- or 250-nt reads).

Reads were demultiplexed and assembled; con-

tigs with greater than 10× coverage were initially

annotated using Prokka (30) followed by anno-

tation at various levels by mapping protein se-

quences to the Prokaryotic Peptide Sequence

database of the Kyoto Encyclopedia of Genes

andGenomes (KEGG) as described inGehrig et al.

(21). Additional annotations were based on SEED,

a genomic integration platform that includes a

growing collection of complete and nearly com-

plete microbial genomes with draft annotations

performed by the RAST server (31). SEED con-

tains a set of tools for comparative genomic

analysis, annotation, curation, and in silico re-

construction of microbial metabolism. Microbial

Community SEED (mcSEED) is an application of

the SEED platform thatwe have used formanual

curation of a large and growing set of bacterial

genomes representing members of the human

gut microbiota (currently ~2600). mcSEED sub-

systems (32) are user-curated lists/tables of

specific functions (enzymes, transporters, tran-

scriptional regulators) that capture current (and

ever-expanding) knowledge of specific metabolic

pathways, or groups of pathways, projected onto

this set of ~2600 genomes. mcSEED pathways

are lists of genes comprising a particular meta-

bolic pathway ormodule; theymay bemore gran-

ular than a subsystem, splitting it into certain

aspects (e.g., uptake of a nutrient separately from

itsmetabolism). mcSEED pathways are presented

as lists of assigned genes and their annotations in

table S7. As detailed in Gehrig et al. (21), predicted

phenotypes are generated from the collection of

mcSEED subsystems represented in a microbial

genome and the results described in the form of

a binary phenotypematrix (BPM; prototrophy or

auxotrophy for an amino acid or B vitamin; the

ability to utilize specific carbohydrates and/or

generate short-chain fatty acid products of fer-

mentation). Table S7 presents the supporting

evidence for assigning a given phenotype to an

organism.

Colonization: Bacterial strains were cultured

under anaerobic conditions in pre-reduced

Wilkins-Chalgren anaerobe broth (Oxoid Inc.)

or MegaMedium (21, 33). Methods used for

sequencing, assembling, and annotating bac-

terial genomes are described in Gehrig et al.

(21). An equivalent mixture of each B. longum

strain or additional ecogroup strain was prepared

by adjusting the volumes of each culture based on

optical density (OD600) readings. An equal volume

of pre-reduced PBS containing 30% glycerol was

added to the mixture and aliquots were frozen

and stored at –80°C until use. Each piglet re-

ceived an intragastric gavage (Kendall Kangaroo

2.7 mm diameter feeding tube; catalog number

8888260406, Covidien, Minneapolis, MN) of

11 ml of a solution containing the bacterial con-

sortia listed in fig. S13A and Soweena (1:10 v/v).

The fecal microbiota was sampled using rectal

swabs on the days indicated in fig. S13A.

Euthanasia and assessment of community

composition along the length of the intestine:

Euthanasia was performed on experimental

day 29 according to American Veterinary Med-

ical Association (AVMA) guidelines. The small

intestine was divided into 20 sections of equal

length; the first 1 cm of the 1st, 5th, 10th, 15th,

and 20th sections were opened with an incision,

and luminal contents were harvested with sterile

cell scraper (Falcon; catalog number 353085).

Luminal contents were also harvested from the

cecum, proximal colon (10 cm of the mid-spiral

region), and distal colon (10 cm from the anus).

Methods for isolation of DNA from luminal and

fecal samples, and short-read shotgun sequenc-

ing of community DNA samples (COPRO-seq),

are all detailed in Gehrig et al. (21).

Microbial RNA-seq: Isolation of RNA from

cecal contents harvested from piglets at the

time of euthanasia, depletion of ribosomal rRNA

(Ribo-Zero Kit, Illumina), and bacterial RNA pu-

rificationwere performed (21). Double-stranded

complementary DNA and indexed Illumina li-

brarieswerepreparedusing theSMARTerStranded

RNA-seq kit (Takara Bio USA). Libraries were

analyzedwith aBioanalyzer (Agilent) to determine

fragment size distribution and then sequenced

[Illumina NextSeq platform; 75-nt unidirectional

reads; 36.9 (±5.4) × 10
6
reads per sample (mean ±

SD); n = 5 samples]. Fluorescence was not mea-

sured from the first four cycles of sequencing, as

this library preparation strategy introduces three

nontemplated deoxyguanines. Transcripts were

quantified (34), normalized (transcripts per kilo-

base per million reads; TPM), and then aggre-

gated according to their representation in mcSEED

and KEGG subsystems/pathway modules (21).

REFERENCES AND NOTES

1. W. Z. Lidicker Jr., A clarification of interactions in

ecological systems. Bioscience 29, 375–377 (1979).

doi: 10.2307/1307540

2. K. Faust, J. Raes, Microbial interactions: From networks to

models. Nat. Rev. Microbiol. 10, 538–550 (2012). doi: 10.1038/

nrmicro2832; pmid: 22796884

3. M. Layeghifard, D. M. Hwang, D. S. Guttman, Disentangling

interactions in the microbiome: A network perspective.

Trends Microbiol. 25, 217–228 (2017). doi: 10.1016/

j.tim.2016.11.008; pmid: 27916383

4. A. R. Ives, B. Dennis, K. L. Cottingham, S. R. Carpenter,

Estimating community stability and ecological interactions

from time-series data. Ecol. Monogr. 73, 301–330 (2003).

doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2

5. D. R. Hekstra, S. Leibler, Contingency and statistical laws in

replicate microbial closed ecosystems. Cell 149, 1164–1173

(2012). doi: 10.1016/j.cell.2012.03.040; pmid: 22632978

6. S. Weiss et al., Correlation detection strategies in microbial

data sets vary widely in sensitivity and precision. ISME J.

10, 1669–1681 (2016). doi: 10.1038/ismej.2015.235;

pmid: 26905627

7. K. Faust et al., Microbial co-occurrence relationships in the

human microbiome. PLOS Comput. Biol. 8, e1002606 (2012).

doi: 10.1371/journal.pcbi.1002606; pmid: 22807668

8. A. Zelezniak et al., Metabolic dependencies drive species

co-occurrence in diverse microbial communities. Proc. Natl.

Acad. Sci. U.S.A. 112, 6449–6454 (2015). doi: 10.1073/

pnas.1421834112; pmid: 25941371

9. J. Friedman, E. J. Alm, Inferring correlation networks from

genomic survey data. PLOS Comput. Biol. 8, e1002687 (2012).

doi: 10.1371/journal.pcbi.1002687; pmid: 23028285

10. Z. D. Kurtz et al., Sparse and compositionally robust inference

of microbial ecological networks. PLOS Comput. Biol. 11,

e1004226 (2015). doi: 10.1371/journal.pcbi.1004226;

pmid: 25950956

11. V. Plerou et al., Random matrix approach to cross correlations

in financial data. Phys. Rev. E 65, 066126 (2002). doi: 10.1103/

PhysRevE.65.066126; pmid: 12188802

12. S. W. Lockless, R. Ranganathan, Evolutionarily conserved

pathways of energetic connectivity in protein families. Science

286, 295–299 (1999). doi: 10.1126/science.286.5438.295;

pmid: 10514373

13. N. Halabi, O. Rivoire, S. Leibler, R. Ranganathan, Protein

sectors: Evolutionary units of three-dimensional structure.

Cell 138, 774–786 (2009). doi: 10.1016/j.cell.2009.07.038;

pmid: 19703402

14. S. Subramanian et al., Persistent gut microbiota immaturity in

malnourished Bangladeshi children. Nature 510, 417–421

(2014). doi: 10.1038/nature13421; pmid: 24896187

15. J. G. Caporaso et al., QIIME allows analysis of high-throughput

community sequencing data. Nat. Methods 7, 335–336 (2010).

doi: 10.1038/nmeth.f.303; pmid: 20383131

16. A direct comparison of these OTUs and amplicon sequence

variants (ASVs) identified using a bioinformatic pipeline

designed to reduce sequencing errors disclosed good agree-

ment between the two methods (fig. S1 and methods).

Therefore, we retained OTU designations for this study.

17. A. Hsiao et al., Members of the human gut microbiota involved

in recovery from Vibrio cholerae infection. Nature 515,

423–426 (2014). doi: 10.1038/nature13738; pmid: 25231861

18. T. Yatsunenko et al., Human gut microbiome viewed

across age and geography. Nature 486, 222–227 (2012).

doi: 10.1038/nature11053; pmid: 22699611

19. Each monthly covariance matrix was normalized against the

highest covariance value for that month (see fig. S5, A to D,

and table S2A for the example of month 60). Because some

taxon-taxon covariance values are zero as a result of the

absence of a taxon (e.g., fig. S5C), fitting a probability

distribution over all of the covariance values becomes a

practical constraint. Therefore, we retained the nonzero values

across months 20 to 60, yielding 80 of the original 118 taxa.

Values in the normalized covariance matrix for each month

were then fit to a t-location scale probability distribution

because the monthly normalized covariance histograms were

significantly heavy-tailed (e.g., fig. S5D). Given our desire to

identify which taxon-taxon covariance values were consistently

in the tails of these probability distributions over time, the

elements in each monthly covariance matrix were binarized to

a “1” if they fell within the top or bottom 10% and a “0” if their

values were within the remaining 80% of the probability

distribution; this isolated the most covarying taxon-taxon pairs

[ðCi;j
bin

Þt , where i and j are bacterial taxa and t designates the

month]. Monthly binarized covariance matrices were then

averaged over time to create an 80 × 80 covariance matrix

that signifies temporally conserved taxon-taxon covariation

(hCi;j
binit , Fig. 1B).

20. MAL-ED Network Investigators, The MAL-ED study: A

multinational and multidisciplinary approach to understand the

relationship between enteric pathogens, malnutrition, gut

physiology, physical growth, cognitive development, and

immune responses in infants and children up to 2 years of age

in resource-poor environments. Clin. Infect. Dis. 59,

S193–S206 (2014). pmid: 25305287

21. J. L. Gehrig et al., Effects of microbiota-directed foods in

gnotobiotic animals and undernourished children. Science 365,

eaau4732 (2019).

22. E. Miller, D. Ullrey, The pig as a model for human nutrition.

Annu. Rev. Nutr. 7, 361–382 (1987).

23. J. A. Draghi, T. L. Parsons, G. P. Wagner, J. B. Plotkin,

Mutational robustness can facilitate adaptation. Nature 463,

353–355 (2010). doi: 10.1038/nature08694; pmid: 20090752

24. M. Kirschner, J. Gerhart, Evolvability. Proc. Natl. Acad.

Sci. U.S.A. 95, 8420–8427 (1998). doi: 10.1073/

pnas.95.15.8420; pmid: 9671692

25. R. N. McLaughlin Jr., F. J. Poelwijk, A. Raman, W. S. Gosal,

R. Ranganathan, The spatial architecture of protein function

and adaptation. Nature 491, 138–142 (2012). doi: 10.1038/

nature11500; pmid: 23041932

26. A. S. Raman, K. I. White, R. Ranganathan, Origins of allostery

and evolvability in proteins: A case study. Cell 166, 468–480

(2016). doi: 10.1016/j.cell.2016.05.047; pmid: 27321669

27. D. M. Gordon, The ecology of collective behavior. PLOS Biol.

12, e1001805 (2014). doi: 10.1371/journal.pbio.1001805;

pmid: 24618695

28. B. J. Callahan et al., DADA2: High-resolution sample inference

from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

doi: 10.1038/nmeth.3869; pmid: 27214047

29. M. R. Charbonneau et al., Sialylated milk oligosaccharides

promote microbiota-dependent growth in models of infant

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 10 of 11

RESEARCH | RESEARCH ARTICLE

o
n
 S

e
p
te

m
b
e
r 3

0
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://dx.doi.org/10.2307/1307540
http://dx.doi.org/10.1038/nrmicro2832
http://dx.doi.org/10.1038/nrmicro2832
http://www.ncbi.nlm.nih.gov/pubmed/22796884
http://dx.doi.org/10.1016/j.tim.2016.11.008
http://dx.doi.org/10.1016/j.tim.2016.11.008
http://www.ncbi.nlm.nih.gov/pubmed/27916383
http://dx.doi.org/10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
http://dx.doi.org/10.1016/j.cell.2012.03.040
http://www.ncbi.nlm.nih.gov/pubmed/22632978
http://dx.doi.org/10.1038/ismej.2015.235
http://www.ncbi.nlm.nih.gov/pubmed/26905627
http://dx.doi.org/10.1371/journal.pcbi.1002606
http://www.ncbi.nlm.nih.gov/pubmed/22807668
http://dx.doi.org/10.1073/pnas.1421834112
http://dx.doi.org/10.1073/pnas.1421834112
http://www.ncbi.nlm.nih.gov/pubmed/25941371
http://dx.doi.org/10.1371/journal.pcbi.1002687
http://www.ncbi.nlm.nih.gov/pubmed/23028285
http://dx.doi.org/10.1371/journal.pcbi.1004226
http://www.ncbi.nlm.nih.gov/pubmed/25950956
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://www.ncbi.nlm.nih.gov/pubmed/12188802
http://dx.doi.org/10.1126/science.286.5438.295
http://www.ncbi.nlm.nih.gov/pubmed/10514373
http://dx.doi.org/10.1016/j.cell.2009.07.038
http://www.ncbi.nlm.nih.gov/pubmed/19703402
http://dx.doi.org/10.1038/nature13421
http://www.ncbi.nlm.nih.gov/pubmed/24896187
http://dx.doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://dx.doi.org/10.1038/nature13738
http://www.ncbi.nlm.nih.gov/pubmed/25231861
http://dx.doi.org/10.1038/nature11053
http://www.ncbi.nlm.nih.gov/pubmed/22699611
http://www.ncbi.nlm.nih.gov/pubmed/25305287
http://dx.doi.org/10.1038/nature08694
http://www.ncbi.nlm.nih.gov/pubmed/20090752
http://dx.doi.org/10.1073/pnas.95.15.8420
http://dx.doi.org/10.1073/pnas.95.15.8420
http://www.ncbi.nlm.nih.gov/pubmed/9671692
http://dx.doi.org/10.1038/nature11500
http://dx.doi.org/10.1038/nature11500
http://www.ncbi.nlm.nih.gov/pubmed/23041932
http://dx.doi.org/10.1016/j.cell.2016.05.047
http://www.ncbi.nlm.nih.gov/pubmed/27321669
http://dx.doi.org/10.1371/journal.pbio.1001805
http://www.ncbi.nlm.nih.gov/pubmed/24618695
http://dx.doi.org/10.1038/nmeth.3869
http://www.ncbi.nlm.nih.gov/pubmed/27214047
http://science.sciencemag.org/


undernutrition. Cell 164, 859–871 (2016). doi: 10.1016/

j.cell.2016.01.024; pmid: 26898329

30. T. Seemann, Prokka: Rapid prokaryotic genome annotation.

Bioinformatics 30, 2068–2069 (2014). doi: 10.1093/

bioinformatics/btu153; pmid: 24642063

31. R. Overbeek et al., The SEED and the Rapid Annotation of

microbial genomes using Subsystems Technology (RAST).

Nucleic Acids Res. 42, D206–D214 (2014). doi: 10.1093/nar/

gkt1226; pmid: 24293654

32. R. Overbeek et al., The subsystems approach to genome

annotation and its use in the project to annotate 1000 genomes.

Nucleic Acids Res. 33, 5691–5702 (2005). doi: 10.1093/nar/

gki866; pmid: 16214803

33. A. L. Goodman et al., Extensive personal human gut

microbiota culture collections characterized and

manipulated in gnotobiotic mice. Proc. Natl. Acad.

Sci. U.S.A. 108, 6252–6257 (2011). doi: 10.1073/

pnas.1102938108; pmid: 21436049

34. M. C. Hibberd et al., The effects of micronutrient deficiencies

on bacterial species from the human gut microbiota.

Sci. Transl. Med. 9, eaal4069 (2017). doi: 10.1126/

scitranslmed.aal4069; pmid: 28515336

35. Github deposition of code; Zenodo doi: 10.5281/zenodo.3255003.

Also available for download at github.com/arjunsraman/

Raman_et_al_Science_2019.

ACKNOWLEDGMENTS

We are indebted to the families of study subjects for their active

participation and assistance. We thank the staff and investigators at

icddr,b for their contributions to the recruitment and enrollment of

participants in the 5-year Bangladeshi birth cohort study plus the

interventional studies of children with SAM and MAM, as well as the

collection of biospecimens and data. We also thank the study team

members and health care workers involved in the MAL-ED birth

cohort studies; M. Gottlieb, D. Lang, K. Tountas, and M. McGrath, who

provided invaluable assistance in coordinating the MAL-ED

collaboration and providing access to key clinical datasets; M. Meier,

S. Deng, and J. Hoisington-López for superb technical assistance;

D. O’Donnell, J. Serugo, and M. Talcott for their indispensable help

with gnotobiotic piglet husbandry; and R. Olson for technical support

with the mcSEED-based genome analysis and subsystem curation.

Funding: Supported by the Bill & Melinda Gates Foundation as part of

the Breast Milk, Gut Microbiome, and Immunity (BMMI) Project.

The 5-year birth cohort study of Bangladeshi children was funded by

NIH grant AI043596 (W.A.P.). A.S.R. is a postdoctoral fellow

supported by Washington University School of Medicine Physician

Scientist Training Program and in part by NIH grant DK30292. D.A.R.,

A.A.A., and S.A.L. were supported by Russian Science Foundation

grant 19-14-00305. J.I.G. is the recipient of a Thought Leader award

from Agilent Technologies. Author contributions: R.H. and W.A.P.

designed and oversaw the 5-year birth cohort study; they, together

with T.A., were responsible for coordinating various aspects of

biospecimen and metadata collection. S.H., M.M., R.H., W.A.P., and

T.A. (Bangladesh), M.N.K. (Peru), G.K. (India), P.O.B. (South Africa), and

A.A.M.L. (Brazil) oversaw the MAL-ED studies. S.H., I.M., M.I., M.M.,

and T.A. were responsible for studies involving the SAM and MAM

cohorts. J.L.G. and S.S. generated 16S rDNA datasets from human

fecal samples. M.J.B. managed the repository of biospecimens

and associated clinical metadata used for the studies described

above. H.-W.C. performed the experiments with gnotobiotic piglets

with the assistance of A.S.R. S.V., and M.C.H. D.A.R., A.A.A., S.A.L.,

and A.L.O. performed in silico metabolic reconstructions based on the

genome sequences of bacterial strains introduced into gnotobiotic

piglets. A.S.R. conceived the mathematical approach and wrote all of

the computational workflow for identifying ecogroup taxa, performed

the sensitivity analysis of the workflow, compared the SparCC and

SPIEC-EASI algorithms with the workflow, and undertook the analyses

of gut microbial communities from subjects enrolled in the SAM,

MDCF, Peruvian, and Indian cohort studies as well as the gnotobiotic

piglet experiment, with J.L.G., S.V., M.J.B., and J.I.G. contributing in

various supportive ways. A.S.R. and J.I.G. wrote the paper. Competing

interests: J.I.G. is a co-founder of Matatu Inc., a company

characterizing the role of diet-by-microbiota interactions in animal

health. W.A.P. serves as a consultant to TechLab Inc., a company that

makes diagnostic tests for enteric infections and has served as a

consultant for Perrigo Nutritionals LLC, which produces infant

formula. Data and materials availability: Bacterial V4-16S rDNA

sequences in raw format (prior to postprocessing and data analysis),

shotgun datasets generated from cultured bacterial strains, and

COPRO-seq and microbial RNA-seq datasets obtained from

gnotobiotic piglets have been deposited at the European Nucleotide

Archive under study accession number PRJEB27068. Code has been

archived at Zenodo (35). Fecal specimens from the MAL-ED birth

cohorts in Bangladesh (icddr,b, Dhaka), Brazil (Federal University of

Ceará, Fortaleza), India (Christian Medical College, Vellore), Peru

(JHSPH/AB PRISMA), South Africa (University of Venda), and from

the NIH birth cohort and SAM/MDCF studies at icddr,b, were provided

to Washington University under material transfer agreements.

This work is licensed under a Creative Commons Attribution 4.0

International (CC BY 4.0) license, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original

work is properly cited. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/. This license does not apply

to figures/photos/artwork or other content included in the article

that is credited to a third party; obtain authorization from the rights

holder before using such material.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/365/6449/eaau4735/suppl/DC1

Supplementary Text

Figs. S1 to S16

Tables S1 to S13

References (36–40)

13 June 2018; resubmitted 24 April 2019

Accepted 7 June 2019

10.1126/science.aau4735

Raman et al., Science 365, eaau4735 (2019) 12 July 2019 11 of 11

RESEARCH | RESEARCH ARTICLE

o
n
 S

e
p
te

m
b
e
r 3

0
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://dx.doi.org/10.1016/j.cell.2016.01.024
http://dx.doi.org/10.1016/j.cell.2016.01.024
http://www.ncbi.nlm.nih.gov/pubmed/26898329
http://dx.doi.org/10.1093/bioinformatics/btu153
http://dx.doi.org/10.1093/bioinformatics/btu153
http://www.ncbi.nlm.nih.gov/pubmed/24642063
http://dx.doi.org/10.1093/nar/gkt1226
http://dx.doi.org/10.1093/nar/gkt1226
http://www.ncbi.nlm.nih.gov/pubmed/24293654
http://dx.doi.org/10.1093/nar/gki866
http://dx.doi.org/10.1093/nar/gki866
http://www.ncbi.nlm.nih.gov/pubmed/16214803
http://dx.doi.org/10.1073/pnas.1102938108
http://dx.doi.org/10.1073/pnas.1102938108
http://www.ncbi.nlm.nih.gov/pubmed/21436049
http://dx.doi.org/10.1126/scitranslmed.aal4069
http://dx.doi.org/10.1126/scitranslmed.aal4069
http://www.ncbi.nlm.nih.gov/pubmed/28515336
http://dx.doi.org/10.5281/zenodo.3255003
http://github.com/arjunsraman/Raman_et_al_Science_2019
http://github.com/arjunsraman/Raman_et_al_Science_2019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://science.sciencemag.org/content/365/6449/eaau4735/suppl/DC1
http://science.sciencemag.org/


development
A sparse covarying unit that describes healthy and impaired human gut microbiota

Haque, Tahmeed Ahmed, Michael J. Barratt and Jeffrey I. Gordon
A. Arzamasov, Semen A. Leyn, Andrei L. Osterman, Sayeeda Huq, Ishita Mostafa, Munirul Islam, Mustafa Mahfuz, Rashidul 

AleksandrGagandeep Kang, Pascal O. Bessong, Aldo A.M. Lima, Margaret N. Kosek, William A. Petri Jr., Dmitry A. Rodionov, 
Arjun S. Raman, Jeanette L. Gehrig, Siddarth Venkatesh, Hao-Wei Chang, Matthew C. Hibberd, Sathish Subramanian,

DOI: 10.1126/science.aau4735
 (6449), eaau4735.365Science 

, this issue p. eaau4732, p. eaau4735Science

metabolic and growth profiles on a healthier trajectory.
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