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/e identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. However, the traditional high-
throughput techniques based on clinical trials are costly, cumbersome, and time-consuming for identifying DTIs. Hence, new
intelligent computational methods are urgently needed to surmount these defects in predicting DTIs. In this paper, we propose a
novel computational method that combines position-specific scoring matrix (PSSM), elastic net based sparse features extraction,
and rotation forest (RF) classifier. Specifically, we converted each protein primary sequence into PSSM, which contains biological
evolutionary information. /en we extract the hidden sparse feature descriptors in PSSM by elastic net based sparse feature
extraction method (ESFE). After that, we fuse them with the features of drug, which are represented by molecular fingerprints.
Finally, rotation forest classifier works on detecting the potential drug-target interactions.When performing the proposedmethod
by the experiments of fivefold cross validation (CV) on enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear
receptor datasets, this method achieves average accuracies of 90.32%, 88.91%, 80.65%, and 79.73%, respectively.We also compared
the proposed model with the state-of-the-art support vector machine (SVM) classifier and other effective methods on the same
datasets. /e comparison results distinctly indicate that the proposed model possesses the efficient and robust ability to predict
DTIs. We expect that the new model will be able to take effects on predicting massive DTIs.

1. Introduction

Identification of DTIs plays an increasingly critical part in
drug development. Drug-target interactions guarantee the
health promotion by preventing and treating diseases. Al-
though the biological research has made a great progress in
identifying DTIs, the pharmaceutical research method is still
time-consuming and expensive [1]. Meanwhile, it is sup-
posed that the market demand for new drugs remains
strong. Consequently, computer-aided drug development
(CADD) [2] methods are developed to reduce the cost and
complexity of DTIs prediction on a large scale.

In past years, the databases including DrugBank [3],
PubChem [4],/erapeutical Target Database (TTD) [5], and
ZINC [6] have provided the data of small molecule drugs
and biotechnology drugs. Furthermore, they also provide
biological and chemical information such as molecular

structures, drug-target interactions, and characteristics of
relevant drug [7]. /ese data can be downloaded in various
formats, and many reliable models have been designed to
predict DTIs based on these databases.

By the time, a series of limitations still exist in the
traditional computational models to detect interacting drug-
target pairs. /e model that creates a quantitative rela-
tionship based on the structures and pharmacological ac-
tivities of compounds is hard to achieve the accuracy
requirements of DTIs prediction for the lacks of physical
interpretation [8–10]. /e molecular docking model has a
poor performance on large-scaled DTIs prediction for it
cannot fit the proteins without three-dimensional (3D)
structure information [11–14]. /e model with ligand [15] is
based on pharmacophore mapping. It is difficult to effi-
ciently apply this model on account of the small number of
the known ligands. /e text mining methods [16, 17]
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including information matching and other retrieval tech-
nologies are limited by the mining algorithms to detect new
interactions in the literature database. However, proteins
metastructure provides a new biologic way to describe the
proteins with primary sequences. In fact, it has a better
application prospect in the identification of DTIs.

In the last few years, researchers have achieved many
advances in DTIs identification. Paska et al. [18] contributed
a prediction model based on Bayesian personalized matrix
decomposition. Ding et al. [19] proposed a double Laplacian
regularized least-squares (DLapRLS) method based on
Hilbert-Schmidt independence criterion and multikernel
learning (HSIC-MKL) model. Specifically, it builds kernels
for multiple information sources and then uses alternating
least squares to train it. Shi et al. [20] developed a novel
approach with triple matrix factorization (TMF) to find out
the characteristics that include dominant feature pairs,
frequent substructures, and conservative amino acid triplets.
Zheng et al. [21] proposed the multiple similarities collab-
orative matrix factorization (MSCMF) model, which proj-
ects drugs and targets into a common low-rank feature
space. Keum and Nam [22] used self-training SVM to
classify the feature vectors extracted by bipartite local model
(BLM). Lately, Wang et al. [23] developed a machine
learning approach to excavate DTIs. In this method, the
protein sequences were transformed into PSSM by counting
the occurrence frequency of amino acids in the same po-
sition. /en, discrete cosine transform (DCT) is utilized to
describe the PSSM, while encoding drugmolecules as feature
vectors.

In the experiments, we proposed a novel computational
model that combines PSSM, elastic net based sparse feature
extraction (ESFE) method, and RF classifier to identify drug-
target identifications. Firstly, we converted the protein
primary sequences into PSSM to retain the biological evo-
lution information. After that, we combined the sparse
features of PSSM with drug molecular fingerprint infor-
mation. Finally, RF classifier is used to predict the DTIs. In
order to evaluate the model, this paper uses fivefold CV
method on the datasets of enzyme, ion channel, GPCRs, and
nuclear receptor. As complement to the evaluation, we also
compared the proposed model with support vector machine
(SVM) and several previous models. /e comprehensive
results show that the proposed model effectively generates
accurate predictions of DTIs. Figure 1 shows the flow chart
for detecting interacting drug-target pairs by the proposed
model.

2. Materials and Methods

2.1. Datasets. In this work, we choose the datasets con-
taining enzyme, ion channel, GPCRs, and nuclear receptor,
which were collected from DrugBank [2], SuperTarget [24],
BRENDA [25], and KEGG BRITE [26] by Yamanshi. In the
datasets, the number of drugs is 445, 210, 223, and 54, re-
spectively, and the number of target proteins is 664, 204, 95,
and 26, respectively. It has been demonstrated that the
number of interacting drug-target pairs which has been
verified for the datasets is 2926, 1467, 635, and 90,

respectively. Table 1 concretely gives the statistics of drugs,
target proteins, and interacting drug-target pairs on the
datasets.

In general, we utilize a bipartite graph [27] to depict the
network of DTIs. /e nodes of the bipartite graph match the
drug molecules, and the connections between the nodes
match the relationships of drugs-target. For example, 2926
real edges exist in the sparse network on enzyme dataset.
/ese edges represent the drug-target interactions, which
have been verified. /e total number of drug-target pairs is
295,480 (445× 664); 2926 drug-target pairs with interactions
are regarded as positive samples, and the residual 292,554
(295480−2926) pairs represent the potential negative sam-
ples. For ensuring the balance of samples, we randomly
selected the same number of negative samples as positive
samples. In theory, a few interacting drug-target pairs exist
in negative samples. Considering that the selected samples
only account for about 1% of the negative samples, we ignore
the possibility that the interacting drug-target pairs are
selected as negative samples. /e numbers of negative
samples selected on four datasets are 2926, 1467, 635, and 90,
respectively.

2.2. Drug Substructure Characterization. /e previous
studies indicate that we can use topological, constitutional,
and quantum chemical properties to describe drug com-
pounds. In this paper, we established the fingerprints of drug
molecular substructure to effectively encode the substruc-
tures of drug compounds./e fingerprint takes the form of a
feature vector containing 881 Boolean values, and each
Boolean value in the vector corresponds to a certain mo-
lecular substructure. When the drug molecule has a certain
molecular substructure, the corresponding Boolean value in
the vector will be set to 1; otherwise, it will be set to 0. /is
paper utilized PubChem system to achieve the chemical
structure of the drug molecular fingerprints [28].

2.3. Position-Specific ScoringMatrix (PSSM). On the basis of
the physical and chemical properties of amino acids [29, 30],
we can transform the primary protein sequence into a
multidimensional matrix. Position-specific scoring matrix
(PSSM) was introduced by Gribskov et al. [31] in 1987. It
provides an effective way to excavate the information of
biological evolution from different kinds of amino acids. In
this section, PSSM was utilized to extract the features of
target proteins. We convert primary sequences of proteins
into PSSM with position-specific iterated basic local align-
ment search tool (PSI-BLAST) [32]. /e matrix is expressed
as follows:

PSSM �

ℓ1,1 ℓ1,2

ℓ2,1 ℓ2,2

⋮ ⋮
ℓn,1 ℓn,2



· · · ℓ1,20

· · · ℓ2,20

⋱ ⋮
· · · ℓn,20

, (1)

where PSSM is a matrix of n × 20, nis the length of protein
sequence, and the number 20 represents the quantity of
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amino acids. When using PSI-BLAST, the parameter e and
iteration are, respectively, set as 0.001 and 3 to get wide and
high homologous sequences.

2.4. Sparse Feature Extraction with Elastic Net. In order to
improve the accuracy of the classifier, it is necessary to
extract the most obvious features from the original data.
Zou et al. [33] proposed a sparse principal component
analysis method based on elastic net. Firstly, principal
component analysis was performed on PSSM; then the
principal component coefficients were sparsely processed
by elastic net. Suppose that PSSM is X � [x1, x2, . . . , xp]n,
n is the length of the protein sequence, and p is the
number of amino acids. After centralizing the matrix, this
method performs singular value decomposition (SVD) in
X as follows:

X � U DVT, (2)

where D �
D1 0
0 0

( ), D1 � diag(σ1, σ2, . . . , σr), σ1 ≥ σ2 ≥
. . . ≥ σr ≥ 0, and r � rank(X). /en we got the following
equations:

XV � x1, x2, . . . , xp[ ]
v11 v12 · · · v1p

v21 v22 · · · v2p

⋮ ⋮ ⋱ ⋮

vp1 vp2 · · · vpp




,

� ∑p
j�1

vj1Xj,∑
p

j�1

vj2Xj, · · · ,∑
p

j�1

vjpXj
  � U D,

∑p
j�1

vjiXj �
σ2i
n − 1

, (i � 1, 2, · · ·p).

(3)
We got σi from the above equations and then made yi �

σiui, (i � 1, 2, · · · , p) as the principal component to es-
tablish the ridge regression model. /e model adds L2 norm
to the least-square model, which can shrink the regression
coefficient. Supposing that Y � [y1, y2, · · · , yp] and Y

∧
� Xβ,

the ridge regression model is as follows:

β
∧
ridge � argmin

β

‖Y −Xβ‖22 + λ‖β‖
2
2( ). (4)

Estimation coefficients of ridge regression are still not
sparse in the ridge regression model. Adding L1 norm
constraint to ridge regressionmodel, we get elastic net model
to reduce some coefficients to 0. /erefore, the elastic net
model without scaling factor is used as the sparse approx-
imation of principal component analysis as
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Figure 1: Flow chart for detecting DTIs by the novel model.

Table 1: /e statistics of drugs, target proteins, and interacting
drug-target pairs on the benchmark datasets.

Dataset Drugs Target proteins Interactions

Enzyme 445 664 2926
Ion channel 210 204 1467
GPCRs 223 95 635
Nuclear receptor 54 26 90
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β
∧
� argmin

β

‖Y −Xβ‖22 + λ2‖β‖
2
2 + λ1‖β‖1( ), (5)

where λ1, λ2(λ1 > 0, λ2 > 0) are regular coefficients. /e
normalized elastic net estimation is used as the approximate
value of the principal component coefficient:

β
∧

‖β‖
∧ � vi. (6)

Finally, we replace PSSM with the principal component
coefficients for further process of feature fusion and clas-
sification. In this paper, the PSSM of each target protein
sequence would be described by 20 feature vectors, when
using the elastic net based sparse feature descriptor.

2.5. Rotation Forest (RF). Rotation forest is a kind of su-
pervised learning algorithm, which is an improvement of the
early integrated forest [34]. It has high accuracy of classifi-
cation for small- and medium-scale datasets. When executing
RF classifier, the dataset is randomly divided into different
sample subsets of K by selecting disjoint features. /en
bootstrap algorithm and sparse component analysis (PCA) are
utilized to generate sparse rotation matrices based on subsets.

Lastly, train each base classifier by utilizing the matrices, and
vote to give the result of RF classifier by counting the pre-
diction of different base decision tree classifiers.

Let X � (x1, x2, x3, · · · , xn)
T be the training feature set

taking the form of an n ×mmatrix to carry out them features
of n samples, and let Y � (y1, y2, y3, · · · , yn)

T be the label
matrix of 1 × n. /e base classifiers of RF are represented as
D1, D2, D3, · · · , DL, respectively. /e training steps of base
classifiers are as follows:

(I) /e sample set M is randomly divided into K
sample subsets; each subset contains C � m/K
features.

(II) Suppose that Mi,j denotes the sample subset, and
Xi,j denotes the feature set of Mi,j. Perform
bootstrap method to rebuild a new training feature
set X’i,j on 75% of the original feature set Xi,j.

(III) Perform principal component analysis (PCA) on
the set X’i,j. When the index of feature is j, we got
the principal component coefficients
a(1)i,j , a

(2)
i,j , a

(3)
i,j , · · · , a

(Cj)

i,j .

(IV) /e principal component coefficients are put into
the sparse rotation matrix Ri as follows:

Ri �

a(1)i,1 , a
(2)
i,1 , · · · a

C1( )
i,1 0 · · · 0

0 a(1)i,2 , a
(2)
i,2 , · · · a

C2( )
i,2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · a(1)i,K , a
(2)
i,K , · · · a

Ck( )
i,K




. (7)

Base classifier Di gives that the possible result of test
sample x is di,j(xR

a
i ). /en calculate the confidence degree

to which x belongs to different categories as μj(x); the
formula is as follows:

μj(x) �
1

L
∑L
i�1

di,j xR
a
i( ). (8)

Finally, the sample x is distributed into a most likely class.

3. Results and Discussion

3.1. Evaluation Criteria. In general, we used four evaluation
criteria, accuracy (Acc.), sensitivity (Sen.), precision (Pre.),
and Matthews correlation coefficient (MCC), to measure the
effect of the prediction model on four datasets.

Acc. �
TP + TN

TP + FP + TN + FN
,

Sen. �
TP

TP + TN
,

Pre. �
TP

FP + TP
,

MCC �
TN × TP − FN × FP����������������������������������������

(TN + FN) ×(TP × FP) ×(TN + FP) ×(TP × FN)
√ ,

(9)
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where TP (true positive) is the aggregate of true samples
predicted correctly; TN (true negative) is the aggregate of
true samples predicted incorrectly; FP (false negative)
represents the number of false samples predicted incorrectly;
FN (false negative) represents the number of false samples
predicted correctly. We employ receiver operating charac-
teristic (ROC) [35] curves to image results and count the
area under the curve (AUC) [36] to quantify the perfor-
mance of model.

3.2. Parameter Discussion. /e numbers of decision trees K
and random subsets L in RF are relevant to the performance
of the proposed model. We adopt grid search method [37] to
optimize the suitable parameters. Figure 2 shows that the
accuracy rapidly increases in the beginning and tends to be
flat as the K-value increases. On the other hand, we can see
that the accuracy increases when the L-value is between 0
and 20 and then gradually descends in a fluctuation.
Considering the cost of time and calculation, the K-value
and L-value of RF are, respectively, set as 22 and 20. Figure 2
shows the influence generated by different parameters of RF
on the proposed model.

3.3. Fivefold Cross-Validation Results on Four Datasets.
Fivefold CV was applied in evaluating the prediction ability
of model on four gold standard datasets. /is method is a

distinct sampling verification where each sample has only
one chance to be selected into the testing dataset. Specifi-
cally, the whole dataset is equally divided into five sections,
one of which is regarded as the testing data and the others
are treated as the training data. During the validation, the
model keeps K� 22 and L� 20, which are generated as
Figure 2 by considering the influence on the proposed
model. Tables 2–5 give the validation results of four datasets.

After the application of fivefold cross validation on
enzyme dataset, the average accuracy, sensitivity, precision,
MCC, and AUC come to be 90.32%, 91.41%, 89.03%, 80.70%,
and 95.93%with standard deviations of 1.52%, 1.29%, 2.62%,
2.99%, and 1.10%, respectively. On the ion channel dataset,
the average values of accuracy, sensitivity, precision, MCC,
and AUC reached 88.91%, 88.37%, 89.61%, 77.82%, and
94.86%, respectively, and the average standard deviations are
0.49%, 1.47%, 1.13%, 0.97%, and 0.17%. With regard to
GPCRs dataset, the average values of accuracy, sensitivity,
precision, MCC, and AUC reached 80.65%, 80.89%, 79.93%,
61.07%, and 88.16%, with standard deviations of 1.65%,
2.79%, 3.25%, 3.45%, and 0.94%, respectively. On nuclear
receptor dataset, the average values of accuracy, sensitivity,
precision, MCC, and AUC reached 79.73%, 78.56%, 80.99%,
60.60%, and 85.72% with standard deviations of 7.90%,
9.74%, 12.21%, 16.70%, and 4.65%, respectively. Figures 3–6
show the ROC curves of the four datasets generated by 5-
fold CV.
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Figure 2: Influence of parameters K and L on the proposed model.

Table 2: 5-fold CV results on enzyme dataset obtained by the proposed model.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) AUC (%)

1 91.45 92.78 90.30 82.94 96.42
2 88.38 91.36 84.81 76.95 94.36
3 92.05 91.93 91.77 84.09 96.89
4 90.51 91.71 88.68 81.05 96.05
5 89.23 89.30 89.61 78.45 95.93
Average 90.32± 1.52 91.41± 1.29 89.03± 2.62 80.70± 2.99 95.93± 1.10
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Table 3: 5-fold CV results on ion channel dataset obtained by the proposed model.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) AUC (%)

1 88.64 87.86 88.17 77.23 94.94
2 89.32 90.17 88.67 78.66 94.88
3 88.81 88.85 90.54 77.48 94.77
4 88.31 86.18 90.66 76.72 95.07
5 89.49 88.78 90.01 78.99 94.62
Average 88.91± 0.49 88.37± 1.47 89.61± 1.13 77.82± 0.97 94.86± 0.17

Table 4: 5-fold CV results on GPCRs dataset obtained by the proposed model.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) AUC (%)

1 80.71 80.74 82.58 61.34 88.70
2 83.46 84.80 82.17 66.97 89.45
3 79.53 76.92 81.97 59.21 87.04
4 79.44 81.30 77.52 58.98 87.99
5 80.11 80.70 75.41 58.87 87.59
Average 80.65± 1.65 80.89± 2.79 79.93± 3.25 61.07± 3.45 88.16± 0.94

Table 5: 5-fold CV results on nuclear receptor dataset obtained by the proposed model.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) AUC (%)

1 86.11 80.95 94.44 73.25 88.27
2 88.89 93.32 82.35 78.06 90.87
3 72.22 68.75 65.95 43.75 80.78
4 71.42 78.95 71.43 42.15 80.78
5 80.01 70.83 90.81 65.79 87.91
Average 79.73± 7.90 78.56± 9.74 80.99± 12.21 60.60± 16.70 85.72± 4.65
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3.4. Comparison with Support Vector Machine Classifier.
Many traditional classifiers can effectively predict DTIs. In
this section, we combined SVM [38] with elastic net based
sparse feature extraction (ESFE) as a compared model for
further assessing the performances of the prediction model.
When building the support vector machine classifier, the
Gaussian kernel is adopted in SVM to predict DTIs.

Meanwhile, the parameter c also affects the performance of
the model. In addition, we utilized grid search method to
tune and monitor the established model and set the best
parameter c as 0.1. Table 6 illustrates the results predicted by
the comparison model on enzyme dataset. /e average
accuracy, sensitivity, precision, MCC, and AUC are 86.44%,
84.64%, 89.02%, 72.99%, and 91.62%, respectively, with
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Figure 5: ROC curves are received by 5-fold CV on GPCRs dataset.
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standard deviations of 1.08%, 1.54%, 1.61%, 2.14%, and
0.99%, respectively. /e accuracy of RF classifier has im-
provements of 1.08%, 1.54%, 1.61%, 2.14%, and 0.99%, re-
spectively, compared with the SVM classifier. /e
improvements indicate that the RF is more stable and ef-
fective than support vector machine.

Figure 7 gives the ROC curves of the comparedmodel on
enzyme dataset. /e comparison of multiple criteria shows

that the RF classifier has a better performance compared
with SVM classifier.

3.5. Comparison with Other Methods. /us far, many
models are presented for identifying DTIs. In this part, we
tested four models, MSCMF [14], NetLapRLS [15],
KBMF2K [39], and Yamanishi [40], to better assess the

Table 6: 5-fold cross-validation results on enzyme dataset by RF and SVM classifiers.

Test set Acc. (%) Pre. (%) Sen. (%) MCC (%) AUC (%)

PSSM+ESFE+RF
1 91.45 92.78 90.30 82.94 96.42
2 88.38 91.36 84.81 76.95 94.36
3 92.05 91.93 91.77 84.09 96.89
4 90.51 91.71 88.68 81.05 96.05
5 89.23 89.30 89.61 78.45 95.93
Average 90.32± 1.52 91.41± 1.29 89.03± 2.62 80.70± 2.99 95.93± 1.10
PSSM+ESFE+ SVM
1 86.92 84.26 90.02 74.03 92.70
2 87.52 86.56 89.72 75.04 91.82
3 85.98 82.90 89.86 72.25 91.41
4 87.01 85.89 89.33 74.04 92.11
5 84.78 83.58 86.18 69.61 90.06
Average 86.44± 1.08 84.64± 1.54 89.02± 1.61 72.99± 2.14 91.62± 0.99
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Figure 7: ROC curves yielded by the SVM classifier on enzyme dataset.

Table 7: /e average AUC generated by our method, MSCMF, NetLapRLS, KBMF2K, and Yamanishi on benchmark datasets.

Dataset Our method MSCMF NetLapRLS KBMF2K Yamanishi

Enzyme 0.9593 0.9142 0.9013 0.832 0.821
Ion channel 0.9486 0.9054 0.9165 0.799 0.692
GPCRs 0.8816 0.8363 0.7701 0.849 0.811
Nuclear receptor 0.8572 0.6867 0.6772 0.824 0.814
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prediction ability of our model. /ese methods also adopt
fivefold CV. Table 7 provides the average AUC of these
models performed on enzyme, ion channel, GPCRs, and
nuclear receptor datasets. In this table, the AUC values of
these methods are less than our method to varying de-
grees. /e average AUC has growth of 0.0922, 0.1204,
0.0650, and 0.1067, respectively. /e results illustrate that
the proposed model has a significant improvement in
detecting DTIs.

4. Conclusions

In this paper, we proposed a novel computational model
combining position-specific scoring matrix (PSSM), elastic
net based sparse feature extraction, and rotation forest
classifier to identify drug-target interactions./e fivefold CV
method comprehensively assessed the prediction ability of
the proposed model on the datasets. Our model achieves
average accuracies of 90.32%, 88.91%, 80.65%, and 79.73%
on such datasets as enzyme, ion channel, GPCRs, and nu-
clear receptor. In addition, we conduct support vector
machine (SVM) and other previous models on the same
datasets. /e results illustrate that our model can stably and
precisely predict DTIs. Although we perform many exper-
iments, this paper still has some limitations. On the one
hand, the sparse feature descriptors represent the local in-
formation of PSSM, and the overall information is hardly to
get. On the other hand, the grid search method was utilized
on rotation forest to keep the most import information, and
it shows that the differences of features obtained from the
feature extraction need to be improved. /e future research
will focus on finding more suitable feature extraction
methods and better classifiers to optimize the model. Fur-
thermore, we will study the influence of noise on the results
to improve the accuracy and feasibility of the proposed
model.
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