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Abstract

The paper presents a general strategy to solve ordinary differential equations (ODE),

where some coefficient depend on the spatial variable and on additional random vari-

ables. The approach is based on the application of a recently developed dimension-

incremental sparse fast Fourier transform. Since such algorithms require periodic

signals, we discuss periodization strategies and associated necessary deperiodization

modifications within the occurring solution steps. The computed approximate solu-

tions of the ODE depend on the spatial variable and on the random variables as

well. Certainly, one of the crucial challenges of the high-dimensional approximation

process is to rate the influence of each variable on the solution as well as the deter-

mination of the relations and couplings within the set of variables. The suggested

approach meets these challenges in a full automatic manner with reasonable compu-

tational costs, i.e., in contrast to already existing approaches, one does not need to

seriously restrict the used set of ansatz functions in advance.
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1 Introduction

During the last years, the concept of random variables has become a very popular

tool to model uncertain properties mathematically. For instance, diffusion charac-

teristics of inhomogeneous materials can be distinctly more accurately described by

functions that additionally depend on random variables. One common application

area of these mathematical designs are diffusion coefficients in differential equations.

Certainly, the additional random variables affect the solvability and—if exist—the

solutions of the differential equations under consideration. Besides investigations

on existence, uniqueness and regularity of solutions for specific mathematical prob-

lems that involve randomness (cf., e.g., [1, 2, 5, 10]), numerical solution approaches

need to be developed in order to compute approximations of the desired solutions.

Accordingly, the established numerical solution approaches for differential equations

without random coefficients need to be—at least—extended in order to meet the new

challenges that are caused by the randomness of the diffusion coefficient. Commonly,

discretizations of the domain of the stochastic variables lead to discretized solutions

that are used to compute solutions in polynomial spaces or finite element represen-

tations (cf., e.g., [7–9, 16, 19, 21]). One essential task in this approach is the choice

of suitable polynomial spaces and corresponding basis polynomials, which can be

extremely challenging for higher numbers of random variables and occuring depen-

dencies within the random variables. Furthermore, preferable choices of the used

basis functions can improve the efficiency of the arising computations.

In the recent literature, many solution approaches deal with differential equa-

tions with random parameters in their coefficients. Most commonly, one suggests to

choose several fixed instances of the random variables and applies known solvers for

the considered differential equations without random coefficients for each of those

instances. One achieves a set of solutions and computes the quantities of interest,

which may be the coefficients of a specific expansion of the full solution of the differ-

ential equation or simply the expectation function, from these solutions by applying

stochastic estimators. Naturally, the occurring approximation errors depend on the

used spatial discretization as well as the stochastic discretization strategies. Several

papers (cf., e.g., [9, 19, 21] and references therein) combine different types of these

strategies and even estimate the corresponding approximation errors in detail. For that

purpose, one often applies already known approximation guarantees to the specific

situations.

In this paper, we present a closed approach that deals with the spatial variable as

well as the random variables simultaneously in order to solve an ordinary differential

equation with a diffusion coefficient affected by randomness. In more detail, we

consider the differential equation

−
∂

∂η

(
a(η, ξ)

∂

∂η
u(η, ξ)

)
= f (η), u(α, ξ) = u(β, ξ) = 0 (1)

with homogeneous boundary conditions, where a : Da → R, Da := ×1+dξ

j=1 [αj , βj ]

⊂ R×R
dξ , is the diffusion coefficient, that depends on the spatial variable η as well

as the random variables that are the components of the vector ξ ∈ R
dξ , and the right
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hand side f : Df → R, Df := [α1, β1] ⊂ R, is a function that depends only on

the spatial variable η. Here we would like to point out, that the suggested solution

approach is not restricted to the homogeneous boundary conditions or to right hand

sides f that are independent of the random variables ξ . Simple modifications of

the presented approach lead to a solution strategy even for more general settings.

However, the restrictions will simplify the notations and help to preserve clarity.

The essential restriction

0 < r ≤ a(η, ξ) ≤ R < ∞ (2)

for all (η, ξ) ∈ Da guarantees the existence of a unique solution u(◦, ξ) of (1)

for each fixed ξ . Hence, we suggest to approximately compute the unique solution

u of (1) by means of a dimension-incremental sparse fast Fourier transform (FFT)

approach (cf. [15, 18]), and based on a direct reversion of the occurring derivatives.

On the one hand, the assumptions on the differential equation (1) do not guar-

antee for periodic signals that has to be treated. On the other hand, the sparse FFT

approaches consider the input signals as periodic signals and is more successful—in

the sense of approximation rates, number of needed samples to ensure a specific accu-

racy, etc.—when dealing with smooth periodic signals. Therefore, the periodization

of the arising signals will be necessary in order to compute good approximate solu-

tions of (1). At this point we would like to highlight that we approximately compute

a complete solution of (1), which can be used to subsequently approximate several

quantities of interest. The crucial advantage of this approach is that these complete

approximate solutions reveals detailed characteristics of the random variables, i.e.,

the influence of each single variable on the solution as well as the interaction between

different variables. We stress that the suggested strategy automatically detects these

detailed characteristics with reasonable computational costs.

The paper is organized as follows: First we roughly outline the concept of the

dimension-incremental sparse FFT approach and indicate the basic properties of suit-

able periodization mappings in Section 2. Section 3 presents the suggested strategy

to treat the considered problem which leads to an approximation of the solution of

the considered differential equation. As mentioned above, one may be interested in

specific quantities of interest of this solution. Thus, we demonstrate how to com-

pute nth moments of the computed solution in Section 4. Section 5 contains various

numerical examples, shows the operability of the suggested approach, and discusses

advantages and disadvantages of the applied sparse FFT approaches.

2 Prerequisites

2.1 Sparse FFT

As mentioned above, we suggest to approximate the solution of an ordinary dif-

ferential equation with random coefficients using the dimension-incremental FFT

approach presented in [15]. In this section, we declare the necessary notation and

indicate the basic idea of this algorithm.
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The aim of the dimension-incremental approach is the reconstruction of the

Fourier coefficients p̂k , k ∈ I , of an arbitrarily chosen trigonometric polynomial

p(x) :=
∑

k∈I

p̂ke2π ik·x, (3)

where the frequencies k are supported on a frequency set I ⊂ Z
d of finite cardinal-

ity, i.e. |I | < ∞. In contrast to usual FFT algorithms, the challenge of sparse FFT

algorithms is the efficient determination of the unknown frequency set I in addition

to the Fourier coefficients p̂k using only sampling values of p.

Appropriate thresholding strategies within dimension-incremental sparse FFT

algorithms allow for the treatment of general functions f ∈ L1(T
d)∩C(Td), i.e., the

sparse FFT determines an approximation of the frequency set I as well as an approx-

imation of the (roughly) largest Fourier coefficients of the function f . Accordingly,

the algorithms can be used in order to compute approximations

S̃I [f ](x) :=
∑

k∈I

f̂ke2π ik·x (4)

of the Fourier partial sum

SI [f ](x) :=
∑

k∈I

ck(f )e2π ik·x

for sufficiently smooth functions f . In this context, the Fourier partial sum SI [f ] is

the truncated Fourier series of f , which implies the formal definition of the Fourier

coefficients

ck(f ) :=

∫

Td

f (x)e−2π ik·xdx.

In general, the coefficients f̂k are just approximations of the Fourier coefficients

ck(f ), since they are computed using only function evaluations of f and thus are

disturbed at least by aliasing.

In order to compute both, the set I of the most significant frequencies k as

well as approximations f̂k of the corresponding Fourier coefficients, a dimension-

incremental approach was developed in [15, 18], where the fundamental concept

arises from a dimension-incremental method for the reconstruction of anharmonic

trigonometric polynomials based on Prony’s method (cf. [17]). An outline of this

concept can be found in [15, Sec. 2.2].

In this paper, we restrict the discussion to the in- and output of the algorithm (cf.

Algorithm 1). We require a restricted search space Ŵ ⊂ Z
d in frequency domain,

where the significant Fourier coefficients are assumed to be supported. For simplicity

and without crucial influence on the runtime of the algorithm, we can choose a tensor

product box of equal edge lengths, i.e., we fix Ŵ = Ĝd
N := [−N, N]d for a suitable

edge length 2N +1, N ∈ N. Since the used sampling nodes are chosen adaptively, we

assume the function f being given as a black box. The parameter θ ∈ R
+ is a thresh-

olding for the minimal absolute values that should be accepted as significant Fourier

coefficient f̂k and its projections in lower dimensions. Additional sparsity parameters
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Algorithm 1 Reconstruction of a multivariate function f from sampling values along

(multiple) rank-1 lattices (sFFT).

Input: Ŵ ⊂ Z
d search space in frequency domain

f (◦) : Td → C function f as black box (function handle)

θ ∈ R
+ relative threshold

s, slocal ∈ N sparsity parameters (slocal := s by default)

r ∈ N number of detection iterations

b ∈ N maximal number of multiple rank-1 lattice searches

per dimension-incremental step

BLACK BOX

ALGORITHM
Available at [22], details in [18, Alg. 1].

Output: I ⊂ Ŵ ⊂ Z
d set of detected frequencies, |I | ≤ min{s, |Ŵ|}

f̂ ∈ C
|I | corresponding Fourier coefficients of S̃If , cf. (4)

s, slocal ∈ N restrict the algorithm to deal with at most s or rslocal frequencies in

each dimension-incremental step. Here, the parameter r is the number of projections

that are used in each dimension-incremental step. Multiple projections are neces-

sary in order to avoid detection failures caused by cancellations. Since we will use

only function evaluations of the function f in order to compute an approximation,

we have to apply suitable sampling strategies. For the case where we use multiple

rank-1 lattices, the adaptive construction of the sampling set is affected by a certain

small default probability. Therefore, it may happen that one has to start this construc-

tion of the sampling set more than once. The parameter b ∈ N can be used in order

to restrict the number of restarts of the construction in each dimension-incremental

step in order to guarantee the termination of the algorithm (cf. [15]). However, this

parameter is not restrictive during the computation, since even the choice b = 5 is

not reached in practice.

The output of Algorithm 1 is the frequency set I and the corresponding approxi-

mated Fourier coefficients f̂k , k ∈ I , where S̃If (cf. (4)), is a good approximation

of f when all significant frequencies are collected in I .

One crucial point of the dimension-incremental approach is the construction of

spatial discretizations for trigonometric polynomials with frequencies in a certain,

adaptively determined candidate set. Additional preferable properties of these spatial

discretizations are

– fast discrete Fourier transform algorithms,

– fast construction methods for the spatial discretizations, and

– low oversampling factors, i.e., the ratio of the number of sampling values to the

cardinality of the candidate set should be low.

For high-dimensional sparse trigonometric polynomials, the concept of multiple

rank-1 lattices (cf. [13, 14]) combines all these advantages, which are particularly

beneficial to our targeted application.
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For the sake of completeness, we give further details on the used sampling

schemes. For a given generating vector z ∈ Z
d and a lattice size M ∈ N, we define

the rank-1 lattice

	(z, M) =

{
j

M
z mod 1 : j = 0, . . . , M − 1

}
,

where the modulo operation is applied componentwise. For a given frequency set

I ⊂ Z
d , |I | < ∞, the corresponding Fourier matrix is given by

A = A(	(z, M), I ) :=
(

e2π ik·z
j
M

)
j=0,...,M−1,k∈I

.

The dimension-incremental sparse FFT deals with different candidate sets of fre-

quencies and asks for spatial discretizations for trigonometric polynomials with

frequencies supported on these frequency sets. Additional requirements on 	(z, M)

guarantees the spatial discretization property, i.e., the full column rank of the matrix

A(	(z, M), I ). Due to the structure of 	(z, M), the computations of the matrix vec-

tor products involving A and its pseudo inverse can be performed by fast Fourier

transform algorithms (cf. [11]). These fast algorithms as well as the component-by-

component construction algorithms for the used spatial discretizations (cf. [12]), are

the essential building blocks for the dimension-incremental sparse FFT based on sin-

gle rank-1 lattices as spatial discretizations, which we denote by R1LsFFT (cf. [18]

for details on that approach).

A very similar approach is considered in [15], where the authors replaced the

used sampling schemes by multiple rank-1 lattices, i.e., the spatial discretizations are

constructed by the union of more than one rank-1 lattice, which provides—at least

with high probability—asymptotically lower oversampling factors as well as much

faster construction approaches for spatial discretizations. Furthermore, fast Fourier

transform algorithms for the evaluation and the reconstruction of trigonometric poly-

nomials were developed (cf. [14]). The corresponding dimension-incremental sparse

FFT that uses these algorithms, i.e., the FFT algorithms as well as the construction

algorithms for the spatial discretizations, is denoted by MR1LsFFT in the following.

Recently, a very similar dimension-incremental sparse FFT based on random sam-

pling was introduced in [4]. One might also use this strategy in order to compute the

FFT parts of the approach presented in this paper. However, the corresponding algo-

rithm suffers from unreasonable computational costs due to the application of direct

matrix vector multiplications. For that reason, we will not use dimension-incremental

sparse FFTs based on random sampling in our numerical tests.

The aforementioned dimension-incremental sparse FFT algorithms based on lat-

tice sampling can be applied to periodic functions. Higher order smoothness of the

treated functions often leads to smaller and thus preferable frequency sets I . Hence,

we consider reasonable approaches to (smoothly) periodize non-periodic functions.

2.2 Periodization

The goal of a periodization is the approximation of a non-periodic function

f : [α, β] → C using trigonometric polynomials that are naturally periodic and

corresponding fast Fourier transform algorithms. Accordingly, we transform f to a

Adv Comput Math (2020) 46: 6565   Page 6 of 21



periodic function g̃ using a variable transform that has the following features

ϕ : [0, 1] 	→ [α, β],

ϕ(0) = α,

ϕ(1/2) = β,

ϕ(1/2 − x) = ϕ(1/2 + x) for x ∈ [0, 1/2],

ϕ is continuous in [0,1/2] and strictly increasing in (0,1/2), (5)

i.e., f (ϕ(x)) = g̃(x). In more detail, we are interested in approximations of the
antiderivative of the function f , which leads to

F(t) =

∫ t

α

f (τ)dτ =

∫ ϕ−1(t)

ϕ−1(α)

g̃(x)ϕ′(x)dx =

∫ ϕ−1(t)

0

g̃(x)ϕ′(x)dx, t ∈ [α, β]. (6)

In order to compute F(t), t ∈ [α, β], we are interested in suitable approximations

of g̃(x)ϕ′(x) for x ∈ [0, 1/2], which we want to realize using trigonometric poly-

nomials. There are two different approaches to realize the computation of F . One

point of view is to approximate g̃(x) and assume that ϕ′ is constant almost every-

where in [0, 1/2], which leads to the well known tent transform approach [6, 20]. A

more general approach will require additional assumptions on ϕ in order to obtain

periodic smoothness of g̃ϕ′ that allow for suitable periodic approximations. For our

purposes it is enough to deal with periodizations in one dimension. In higher dimen-

sional settings, i.e., periodizations applied to a vector of variables, we simply apply

the one-dimensional periodizations to each component of the vector.

2.2.1 Tent transform

The so-called tent-transform [6, 20] is often used for periodization due to its sim-

plicity. From a geometric point of view, the tent transform appends a mirror of the

non-periodic function to the original function and dilates the resulting function such

that its support is of length one. In addition, the new function is shifted such that its

support is exactly [0, 1]. In formula, the mapping

ϕ : [0, 1] → [α, β], ϕ(x) = β − |2(β − α)(1/2 − x)|

realizes this periodization of a function f : [α, β] → C (cf. Fig. 1a for a plot of ϕ),

where [α, β] = [−1, 1]. Certainly, this mapping ϕ is not continuously differentiable.

Nevertheless, the constant first derivative ϕ′ within (0, 1/2) and (1/2, 1) provides

advantages within the integrals that we would like to deal with. For t ∈ [α, β] and

ϕ−1 : [α, β] → [0, 1/2], ϕ−1(t) = t−α
2(β−α)

, we obtain

∫ t

α

f (τ)dτ =
∫ ϕ−1(t)

0 f (ϕ(x))ϕ′(x)dx = 2(β − α)
∫ t−α

2(β−α)

0 f (ϕ(x))dx.

Consequently, we only need to find an approximation of the antiderivative of the

periodic function f ◦ ϕ in order to achieve an approximation of an antiderivative of

the non-periodic function f .
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Fig. 1 Different periodization mappings ϕ

2.2.2 More general periodizations

In addition to the basic assumptions on the peridization mapping (cf. (5)), we may

assume periodic differentiability in order to obtain smoother integrands in (6). Higher

order smoothness of the periodization could have positive effects for the approxi-

mation of the integrand g̃ϕ′ using trigonometric polynomials. Roughly speaking, the

smoother the function, the faster the decay of the Fourier coefficients, i.e, the smaller

the cardinality of the frequency set of suitable approximating trigonometric poly-

nomials. In some cases it may be enough to construct periodizations of a specific

fixed smoothness, since the function f does not allow for higher order smoothness

of g̃. E.g., splines of higher order seems to be ideally suited in order to guarantee the

desired properties (cf. Example 1). In cases of functions f of higher but unknown

smoothness, infinitely differentiable mappings ϕ may be an option to ensure that

the periodization does not cause lower order smoothness of the integrand g̃ϕ′. One

suitable option for such a mapping is given in Example 2.

However, the usage of more complicated mappings may cause considerable addi-

tional effort in the implementation as well as additional computational runtime, e.g.,

for the evaluation of ϕ′ in (6), compared with the tent transform.

Example 1 A spline of order four can be used to construct a periodization that is two

times continuously differentiable. The mapping ϕ, plotted in Fig. 1b for [α, β] =

[−1, 1], is given by

ϕ : [0, 1] → [α, β],

ϕ(x) =

{
−16(β − α)x3 + 12(β − α)x2 + α 0 ≤ x ≤ 1/2,

16(β − α)x3 − 36(β − α)x2 + 24(β − α)x + 5α − 4β 1/2 < x ≤ 1.

Example 2 The cosine function can be used to construct an infinitely differentiable

periodization mapping

ϕ : [0, 1] → [α, β], ϕ(x) =
α − β

2
cos(2πx) +

α + β

2
.

A corresponding plot for [α, β] = [−1, 1] can be found in Fig. 1c.
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3 ODE solver

Since the differentiations within the ODE (1) acts on only one variable, we revert the

differentiation by integration and thus obtain a formal solution

u∗(t, ξ) =

∫ t

α1

−
∫ η

α1
f (τ)dτ + c1(ξ)

a(η, ξ)
dη + c2(ξ). (7)

However, for high-dimensional variables ξ the computation of such a solution is a

particular challenge.

We denote by F the antiderivative of f and obtain c2(ξ) = 0 since u∗(α1, ξ) = 0

for homogeneous boundary conditions. The solution u∗(t, ξ) changes to

u∗(t, ξ) =

∫ t

α1

F(α1) − F(η)

a(η, ξ)
dη

︸ ︷︷ ︸
:=u1(t,ξ)

+c1(ξ)

∫ t

α1

1

a(η, ξ)
dη

︸ ︷︷ ︸
:=u2(t,ξ)

, (8)

where we will use the term c1(ξ) in order to satisfy the boundary condition

u∗(β1, ξ) = 0. In particular, requirement (2) implies u2(β1, ξ) > 0 and thus fixing

c1(ξ) := −
u1(β1, ξ)

u2(β1, ξ)
(9)

yields homogeneous boundary conditions for u∗. Accordingly, for given f and a we

need to compute suitable approximations of u1 and u2. To this end, we will apply

a dimension-incremental sparse FFT approach as described in Section 2.1. Since

these FFT algorithms handles periodic signals, we need to periodize the upcoming

functions.

3.1 Integration of the right hand side f

First, we determine the term F(α1) − F(t) in (8) from above by approximating

and integrating f . To this end, we periodize f using a suitable periodization ϕ (cf.

Section 2.2),

f̃ (x) = f (ϕ(x)).

Accordingly, we obtain
∫

f (τ)dτ =

∫
f (ϕ(x))ϕ′(x)dx =

∫
f̃ (x)ϕ′(x)dx

and approximate the integrand on the right hand side by a trigonometric polynomial

S̃N

[
f̃ ϕ′

]
(x) =

N∑

k=−N

âke2π ikx . (10)

An antiderivative of S̃N

[
f̃ ϕ′

]
is given by

∫
S̃N

[
f̃ ϕ′

]
(x)dx = â0x +

∑

1≤|k|≤N

âk

2kπ i
e2π ikx,
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which yields

F(τ) + c =

∫
f (τ)dτ ≈ â0ϕ

−1(τ ) +
∑

1≤|k|≤N

âk

2kπ i
e2π ikϕ−1(τ ).

Consequently, we denote the approximation of the term F(α1) − F(t) by F̆ (t) and
obtain

F(α1) − F(η) ≈ F̆ (η) := â0(ϕ
−1(α1) − ϕ−1(η)) +

∑

1≤|k|≤N

âk

2kπ i
e2π ikϕ−1(α1)

−
∑

1≤|k|≤N

âk

2kπ i
e2π ikϕ−1(η)

= −â0ϕ
−1(η) −

∑

1≤|k|≤N

âk

2kπ i
(e2π ikϕ−1(η) − 1). (11)

3.2 Approximating u1, u2, and c1

We denote the integrands in (8) that determine u1 and u2 by v1 and v2, respectively,

i.e. we have

v1(η, ξ) := F(α1)−F(η)
a(η,ξ)

and v2(η, ξ) := 1
a(η,ξ)

.

First we consider the function v1 and plug in the approximation F̆ (η) of F(α1)−F(η)

from (11). This yields an approximation of v1

v̆1(η, ξ) :=
F̆ (η)

a(η, ξ)
.

Now, our goal is to construct an antiderivative of v̆1 with respect to η, which is an

approximation of the antiderivative of v1. To this end, we construct a periodization

of v̆1 using mappings ϕη and ϕξ . We take into account the influence of the peri-

odization during integration with respect to the first variable, which leads to the

periodic integrand ˜̆v1(x, y) = v̆1(ϕη(x), ϕξ (y))ϕ′
η(x). We compute a corresponding

approximation

S̃I1
[ ˜̆v1](x, y) :=

∑

(k,l)∈I1⊂Z
1+dy

b̂(k,l)e
2π i(kx+l·y), (12)

which can be done by sparse FFT approaches, as described in Section 2.1, similar to

those described in [15, 18]. The antiderivative of S̃I1
[ ˜̆v1] with respect to x is given by

∫
S̃I1

[ ˜̆v1](x, y)dx =
∑

(k,l)∈I1
k 
=0

b̂(k,l)

2kπ i
e2π i(kx+l·y) + x

∑

(0,l)∈I1

b̂(0,l)e
2π il·y + C(y) (13)

We choose C(y) := −
∑

(k,l)∈I1
k 
=0

b̂(k,l)

2kπ i
e2π il·y in order to guarantee ŭ1(α1, ξ) = 0 for

all ξ ∈ D′
a := ×dξ +1

j=2 [αj , βj ], and we roll back the periodization, which leads to the
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approximation

ŭ1(t, ξ) :=
∑

(k,l)∈I1
k 
=0

b̂(k,l)

2kπ i︸ ︷︷ ︸
=:b(k,l)

(
e2π ikϕ−1

η (t) − 1
)

e
2π il·ϕ−1

ξ
(ξ)

+ ϕ−1
η (t)

∑

(0,l)∈I1

b̂(0,l)︸︷︷︸
=:b(0,l)

e
2π il·ϕ−1

ξ
(ξ)

(14)

of u1 given in (8).

The analogous approach, but without approximating v2, leads to an approximation

of u2(t, ξ)

ŭ2(t, ξ) :=
∑

(k,l)∈I2⊂Z
1+dy

k 
=0

ĉ(k,l)

2kπ i︸ ︷︷ ︸
=:c(k,l)

(
e2π ikϕ−1

η (t) − 1
)

e
2π il·ϕ−1

ξ
(ξ)

+ ϕ−1
η (t)

∑

(0,l)∈I2

ĉ(0,l)︸︷︷︸
=:c(0,l)

e
2π il·ϕ−1

ξ
(ξ)

. (15)

The construction of ŭj (t, ξ) yields ŭj (α1, ξ) = 0, j = 1, 2. Consequently, each

linear combination of ŭ1 and ŭ2 satisfies the homogeneous boundary condition in

t = α1. A suitable approximation of c1(ξ) (cf. (9)), will lead to a linear combination

of ŭ1 and ŭ2 that also satisfies the homogeneous boundary condition in t = β1. To

this end, we periodize ŭ1 as well as ŭ2 and construct the approximation

c̆1(ξ) := −
ŭ1(β1, ξ)

ŭ2(β1, ξ)
and its periodization ˜̆c1(y) = −

ŭ1(ϕη(1/2), ϕξ (y))

ŭ2(ϕη(1/2), ϕξ (y))
,

which are well defined due to the requirements on the diffusion coefficient a. We

stress on the fact that the periodizations of ŭj do not coincide to the terms in (13),

since these are non-periodic in general due to the terms that are linear in x.

We approximate ˜̆c1 using sparse FFT approaches by

S̃I3
[ ˜̆c1](y) :=

∑

l∈I3⊂Z
dy

dle
2π il·y . (16)

and achieve an approximation of the non-periodic function c1 by

˘̆c1(ξ) =
∑

l∈I3

dle
2π il·ϕ−1

ξ
(ξ)

. (17)

Altogether, an approximation of u∗(t, ξ) (cf. (8)), is then given by

ŭ(t, ξ) := ŭ1(t, ξ) + ˘̆c1(ξ)ŭ2(t, ξ), (18)

which actually is built of three Fourier series combined with inverse mappings of the

periodizations ϕη and ϕξ . Algorithm 2 summarizes the approach stated above.
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Algorithm 2 Basic procedure for computing an approximation of the solution of (1)

using a dimension-incremental sparse FFT approach.

Input: f : T → C function handle of right hand side f

a : T1+dξ → C function handle of random coefficient a
ϕη : [0, 1] → [α1, β1] periodization mapping of spatial variable η

ϕ−1
η : [α1, β1] → [0, 1/2] inverse of the periodization mapping ϕη

ϕ′
η : [0, 1] → R first derivative of ϕη

ϕξ : [0, 1]dξ → ×dξ +1

j=2 [αj , βj ] periodization mapping of random variables ξ

N ∈ N, θ ∈ R, s ∈ N sFFT parameters

1: Compute the Fourier coefficients
{
âk

}N

k=−N
of S̃N

[
f̃ ϕ′

]
by means of a 1d FFT

using function values of (f ◦ ϕη)ϕ
′
η, cf. (10)

2: Compute the coefficients of the finite sum representation of non-periodic F̆ by

modifying the coefficients
{
âk

}N

k=−N
, cf. (11)

3: Compute the Fourier coefficients {b̂(k,l)}(k,l)∈I1
of S̃I1

[ ˜̆v1] by means of an sFFT

algorithm using sampling values of F̆ (ϕη(x))ϕ′
η(x)/a(ϕη(x), ϕξ (y)) , cf. (12)

4: Compute the Fourier coefficients {ĉ(k,l)}(k,l)∈I2
of S̃I2

[ ˜̆v2] by means of an sFFT

algorithm using sampling values of ϕ′
η(x)/a(ϕη(x), ϕξ (y)) , similar to (12)

5: Compute the coefficients {b(k,l)}(k,l)∈I1
and {c(k,l)}(k,l)∈I2

of the finite sum repre-

sentation of non-periodic ŭ1 and ŭ2 by modifying the coefficients {b̂(k,l)}(k,l)∈I1

and {ĉ(k,l)}(k,l)∈I2
, cf. (14) and (15)

6: Compute the Fourier coefficients {dl}l∈I3
of S̃I3

[ ˜̆c1] by means of an sFFT algo-

rithm using sampling values of ŭ1(ϕη(1/2), ϕξ (y))/ŭ2(ϕη(1/2), ϕξ (y)) , cf.

(16)

Output: {b(k,l)}(k,l)∈I1
coefficients of ŭ1, cf. (14)

{c(k,l)}(k,l)∈I2
coefficients of ŭ2, cf. (15)

{dl}l∈I3
coefficients of ˘̆c1, cf. (17)

3.3 Tent transform in spatial domain

For the specific choice of the tent transform (cf. Section 2.2.1, for the periodization

ϕη and componentwise for ϕξ , we obtain some simplifications in the calcula-

tions above. Moreover, uniformly distributed random variables ξj lead to additional

simplifications due to the constant probability density. We observe

∫ η

α1

f (τ)dτ = 2
∫ η−α1

2(β1−α1)

0 f
(
β1 − |2(β1 − α1)(1/2 − x)|

)
dx

and, hence, it is enough to compute an approximation of f̃ = f ◦ ϕη, due to the

equality

S̃N [f̃ ϕ′
η][0,1/2] = 2S̃N [f̃ ][0,1/2].
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The approximation of S̃N [f̃ ] is preferable, since f̃ ϕ′
η is not continuous in the case

where f (β1) 
= 0 and, thus, problematic to approximate using trigonometric polyno-

mials. Subsequent to the computation of S̃N [f̃ ] :=
∑N

k=−N âke2π ikx , the calculations

of the antiderivative and deperiodization leads to

F̆ (η) := 2
(
−â0ϕ

−1(η) +
∑

1≤|k|≤N
âk

2kπ i
−

∑
1≤|k|≤N

âk

2kπ i
e2π ikϕ−1(η)

)

= −â0
η−α1

β1−α1
−

∑
1≤|k|≤N

âk

kπ i
(e

π ik
η−α1
β1−α1 − 1).

The approximations ŭ1 and ŭ2 (cf. (14) and (15)) can be computed in the exact

same manner. Altogether, using the tent transform in spatial domain requires slight

modifications in Algorithm 2 in lines 1, 3, and 4. The used sampling values must be

computed with a factor 2 instead of ϕ′
η.

4 Computingmoments of the solution

In Section 3, we discussed a strategy for computing an approximate solution ŭ (cf.

(18)) of the ODE in (1). The computation of quantity of interests needs some further

investigations. For simplicity, we demonstrate one approach to compute approxi-

mations of the nth moments of the solution u∗ of the ODE in (1) based on the

approximation ŭ. To this end, we denote the domain of the random variables by

D′
a := ×dξ +1

j=2 [αj , βj ].

The nth moment of the solution u∗ of (1) is given by

u∗
En(t) := E(

(
u∗(t, ◦)

)n
) =

∫

D′
a

(
u∗(t, ξ)

)n
dμ(ξ) =

∫

D′
a

(
u∗(t, ξ)

)n
ρ(ξ)dξ ,

where ρ is the probability density function of the random variable vector ξ .

Periodization yields

∫

D′
a

(
u∗(t, ξ)

)n
ρ(ξ)dξ =

∫
[0,1/2]

dξ

(
u∗(ϕt (x), ϕξ (y))

)n
ρ(ϕξ (y)) |det(J )| dy,

where J is the involved Jacobian matrix. Assuming ϕξ is a periodization that acts

on each component of ξ separately (cf. Section 2.2), the determinant of the Jacobian

matrix is a tensor product function and we continue

= 2−dξ
∫
T

dξ

(
u∗(ϕt (x), ϕξ (y))

)n
ρ(ϕξ (y))

∏dξ

j=1

∣∣∣ϕ′
ξj

(yj )

∣∣∣ dy

≈ 2−dξ
∫
T

dξ

(
ŭ(ϕt (x), ϕξ (y))

)n
ρ(ϕξ (y))

dξ∏

j=1

∣∣∣ϕ′
ξj

(yj )

∣∣∣

︸ ︷︷ ︸
=:wn(x,y)

dy. (19)
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We approximate the integrand wn using a sparse FFT approach and achieve a Fourier

partial sum

SI4
[wn](x, y) =

∑

(k,l)∈I4

â(k,l)e
2π i(kx+l·y).

Integrating SI4
[wn] instead of wn in (19) leads to the approximation

ŭ∗
En(t) := 2−dξ

∫
T

dξ

∑
(k,l)∈Iw

â(k,l)e
2π i(kx+l·y)dy = 2−dξ

∑
(k,0)∈I4

â(k,0)e
2π ikx

= 2−dξ
∑

(k,0)∈I4
â(k,0)e

2π ikϕ−1
t (t)

of u∗
En since each monomial that depends on y integrates to zero.

5 Numerical tests

For our numerical tests, we use an example from [3]. The goal is to numerically solve

the boundary-value problem

−
∂

∂η

(
a(η, ξ)

∂

∂η
u(η, ξ)

)
= 10, with u ≡ 0 at ∂(0, 1), (20)

where the random coefficient a : [0, 1] × [−1, 1]dξ → R is given by

a(η, ξ) = a0 +

dξ /2∑

j=1

ξ2j−1
cos(jπη)

jγ
+ ξ2j

sin(jπη)

jγ
,

with γ ∈ R, γ > 1, a0 ∈ R, a0 > 2ζ(γ ), dξ ∈ 2N, and ζ denotes the

Riemann zeta function. The random coefficient a is bounded within the interval

[a0 − 2ζ(γ ), a0 + 2ζ(γ )] and thus the differential equation (20) is uniquely solvable

for fixed ξ ∈ [−1, 1]dξ .

The parameters ξk, k = 1, . . . , dξ can be interpreted as random variables. Here we

choose them to be uniformly distributed

ξk ∼ U([−1, 1])

and we fix a0 = 4.3 and γ = 2. In Fig. 2 we (partially) plotted an approximation of

the solution of this differential equation, where we restricted the number of random

variables to two.

In order to demonstrate the applicability of the presented approach, we specify

the settings of the applied algorithmic components. On the one hand, we restrict the

numerical tests to the tent transform as periodization mapping (cf. Section 2.2.1),

since this seems to be the most unfavorable choice due to its relatively low smooth-

ness. On the other hand, we have to specify the applied sparse FFT approaches

and the corresponding parameters. We choose three different sparsity levels s and

refinements N for our approximated solutions ŭρ , ρ = I, II, III (cf. Section 3.2). Fur-

thermore, we apply two different algorithms for computing approximate solutions

denoted by ŭ
ρ

r1l and ŭ
ρ

mr1l, namely the sFFT algorithms that use sampling schemes

that are rank-1 lattices and multiple rank-1 lattices, respectively. We call the corre-

sponding sFFT algorithms R1LsFFT and MR1LsFFT. The basic structure of both
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Fig. 2 Solution u(η, ξ1, ξ2) of (20) for dξ = 2 parameters and a0 = 4.3, γ = 2

algorithms is described in [18, Alg. 1]. The crucial differences of the R1LsFFT and

the MR1LsFFT are in step 2b and 2f, where the first approach uses the component–

by–component construction as described in Algorithm 1 in [18, Sec. 2.2.1] in order

to determine suitable generating vectors and the latter approach uses [14, Alg. 4] with

c = 2 in order to determine multiple rank-1 lattice discretizations.

Tables 1 and 2 show the parameters we used in columns two to five for the two

different sFFT algorithms. The impacts of these parameters are shortly described in

Section 2.1.

Increasing the number dξ of random variables yields approximation problems of

higher dimensionality. Clearly for practical applications, the number of random vari-

ables needs to be suitably bounded. The used diffusion coefficient a is build in such

a way, that the influence of the random variable ξj decreases with growing index j .

Our first crucial task is to estimate the index j for which we can truncate the series

expansion of a without losing significant information of a. In other words we would

like to estimate a suitable number dξ .

Example 3 To this end, we computed the approximation of a solution of (20) by

our approach with a fixed large number dξ = 40 of random variables, i.e., we

treat a 41-dimensional approximation problem. We end up with an approximation

ŭIII
r1l as represented in (18). In order to simplify the considerations on the influence

and the interactions on the variables of ŭ we apply periodizations and the sparse

Table 1 Parameter settings, the number of samples M used for the computation of the approximations

of ˜̆v1, ṽ2, and SI4
[w1] for dξ = 20, cf. Sections 3.2 and 4, and the total cardinality within the box

Ĝ21
N = [−N,N ]21 of frequency candidates for the sFFT algorithm that uses rank-1 lattices as spatial

discretizations for dξ = 20

ρ N s θ r MS̃I1

[
˜̆v1

]
MS̃I2

[̃v2] MSI4
[w1] â21

N

∣∣

I 32 1,000 1 · 10−12 5 2.71 · 107 2.96 · 107 7.29 · 106 1.18 · 1038

II 64 5,000 1 · 10−12 5 5.67 · 108 7.15 · 108 1.72 · 108 2.1 · 1044

III 128 8,000 1 · 10−12 5 2.46 · 109 3.06 · 109 6.98 · 108 4.06 · 1050

Adv Comput Math (2020) 46: 65 Page 15 of 21    65



Table 2 Parameter settings, the number of samples M used for the computation of the approximations of
˜̆v1, ṽ2, and SI4

[w1] for dξ = 20, cf. Sections 3.2 and 4, and the total cardinality within the box Ĝ21
N of

frequency candidates for the sFFT algorithm that uses multiple rank-1 lattices as spatial discretizations for

dξ = 20

ρ N s θ r MS̃I1

[
˜̆v1

]
MS̃I2

[̃v2] MSI4
[w1] â21

N |

I 32 1,000 1 · 10−12 5 1.1 · 108 1.15 · 108 2.55 · 107 1.18 · 1038

II 64 5,000 1 · 10−12 5 1.35 · 109 1.45 · 109 3.54 · 108 2.1 · 1044

III 128 8,000 1 · 10−12 5 4.5 · 109 4.75 · 109 8.49 · 108 4.06 · 1050

FFT approach on ŭ which leads in essence to a single Fourier sum representa-

tion of ŭ. The associated frequency set of this approximate solution—together with

the absolute values of the occurring (Fourier) coefficients of this solution—allows

for rating the random variables to their importance. In particular, if the expansion

hj − lj , (k, h), (k′, l) ∈ I of the frequency set in direction j is zero—or very small

and the corresponding coefficients almost zero in relation to the largest occurring

coefficients—the solution does not or not significantly depend on the variable ξj .

Accordingly, leaving out this variable should not cause significant errors.

Figure 3 indicates the expansions in each coordinate direction of the frequency

set of ŭ for dξ = 40. Obviously, the last 18 random variables have a very small

expansion. We stress that the variables ξ21 as well as ξ22 have a significant frequency

support but can be neglected due to the low order of magnitude of its Fourier coeffi-

cients. For these reasons, we restrict the number of random variables to dξ = 20 in

the following experiments.

As mentioned in the last example, we fix dξ = 20. We solved (20) by the means

of the sparse FFT approaches that uses single or multiple rank-1 lattices as spatial

discretizations. The applied parameter constellations are presented in Tables 1 and 2.

Both tables contains the total amount of samples that were used for the approximation

of the functions ˜̆v1, ṽ2, and SI4
[w1] in columns six to eight for the different parameter

settings as well. Moreover, the last columns of both tables present the cardinality of

Fig. 3 Directional expansion of the frequency set I ⊂ Z
1+dξ of ŭ for the random variables
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the full grids Ĝ21
N , where the sFFT algorithms search for the frequencies of the sparse

representations of the computed approximations.

Example 4 We consider the average error of the computed approximations ŭ
ρ
† ,

† ∈ {r1l, mr1l}, of the solution u∗ for fixed spatial nodes ηk . To this end we cal-

culate the solution of (20) for ntest = 20000 fixed randomly chosen parameters

ξ i ∈ [−1, 1]20, i = 1, . . . , 20000 as grid functions defined on the uniform grid

ηk =
k

100
, k = 0, . . . , 100, (21)

via numerical integration and an error bound of 10−6. We denote the corresponding

solution by ǔ, i.e., we assume that the values ǔ(ηk, ξ
i) are suitable approximations

of the true solution and we use these function values for comparison against our

approximations. For a first comparison, we consider the pointwise difference with

respect to our approximated solution and calculate the mean, i.e.,

Err
ρ
† (ηk) :=

1

ntest

ntest∑

i=1

|ǔ(ηk, ξ
i) − ŭ

ρ
† (ηk, ξ

i)|.

The errors Err
ρ

r1l and Err
ρ

mr1l for the parameter selections ρ = I, II, III from Tables 1

and 2 are plotted in Figs. 4 and 5, respectively. We observe that the approxima-

tions computed by the MR1LsFFT are slightly better than those computed using the

R1LsFFT algorithm. Certainly, this observation seems reasonable due to the usage of

different numbers of sampling values (cf. Tables 2 and 1).

According to the last example, we computed a complete approximate solution

of (20). In Section 4 we explained how to compute moments of these approximate

solution.

Example 5 We demonstrate the performance of our approximation strategy by a

comparison of subsequently computed approximate moments of the solution u∗. The

Fig. 4 Averaged absolute errors Err
ρ

r1l for 20000 random samples of y and using the sFFT algorithm with

single rank-1 lattices sampling
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Fig. 5 Averaged absolute errors Err
ρ

mr1l for 20000 random samples of y and using the sFFT algorithm

based on multiple rank-1 lattice sampling

Monte Carlo approximation of the expectation value is given by

untest(ηk) =
1

ntest

ntest∑

i=1

ǔ(ηk, ξ
i)

for fixed ηk (cf. (21)), and the pointwise error at these spatial nodes is computed by

Res
ρ
† (ηk) := |untest(ηk) − Eŭ

ρ
† (ηk)|,

where the approximations Eŭ
ρ
† (ηk) of the first moment are gained from the solutions

ŭ
ρ
† , † ∈ {r1l, mr1l} as described in Section 4. The Res

ρ
† behave very similar for fixed

ρ and † ∈ {r1l, mr1l}. Slightly better errors of the Expectation can be observed for

the multiple rank-1 lattice approach (cf. Figs. 6 and 7).

Furthermore, we can regard higher order moments. In a similar way as above, we

computed the approximation of the second-order moment by averaging

untest(ηk)2 =
1

ntest

ntest∑

i=1

ǔ(ηk, ξ
i)2

and the pointwise error for each ηk

Res
ρ,2
† (ηk) := |untest(ηk)2 − Eŭ

ρ
† (ηk)

2|.

Fig. 6 Absolute difference Res
ρ

r1l(ηk) of Monte Carlo expectation value untest (ηk) and the approximation

Eŭ
ρ

r1l of u∗
E
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Fig. 7 Absolute difference Res
ρ

mr1l(ηk) of Monte Carlo expectation value untest (ηk) and the approximation

Eŭ
ρ

mr1l of u∗
E

In Fig. 8, the errors Res
ρ,2
r1l for the single rank-1 lattice approach (R1LsFFT) are

plotted. We see that adequately chosen parameters yield even very well approximated

second moments.

6 Conclusion

In this paper we have developed a new reliable and efficient algorithm for the solu-

tion of ordinary differential equations, where some coefficient depend on the spatial

variable and on additional random variables. In contrast to other numerical solution

methods, which often provide solution strategies for determining a fixed quantity of

interest, we propose the direct computation of an approximate representation of the

solution based on multivariate trigonometric polynomials. To this end, we use already

available dimension-incremental sparse FFT methods in combination with suitable

periodization mappings. The resulting approximate solution, which depends on the

spatial variable and all random variables, allows us to calculate special properties of

the solution, such as, e.g., the expected value and the variance. Other methods, such as

the Monte Carlo method, require generally a lot of approximate solutions of the ODE

for fixed values of the random variables and thus have a high effort. The strength of

Fig. 8 Absolute difference Res
ρ,2
r1l (ηk) of Monte Carlo second moment untest (ηk)2 and the approximation

E(ŭ
ρ

r1l)
2 of u∗

E2
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the proposed method lies in the fact that often a well approximating solution uses

only relatively few active basis functions in high-dimensional problems. The crucial

challenge is to efficiently figure out these active basis functions, which is exactly the

field of application for which the dimension-incremental sparse FFT is made for.
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13. Kȧmmerer, L.: Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polyno-

mials. J. Fourier Anal. Appl. 24, 17–44 (2018)

14. Kämmerer, L.: Constructing spatial discretizations for sparse multivariate trigonometric polynomials:

That allow for a fast discrete Fourier transform. Appl. Comput. Harmon. Anal. 47, 702–729 (2019)

15. Kämmerer, L., Potts, D., Volkmer, T.: High-dimensional sparse FFT based on sampling along multiple

rank-1 lattices. arXiv:1711.05152 (2017)

Adv Comput Math (2020) 46: 6565   Page 20 of 21

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
http://arxiv.org/abs/1701.01671
https://doi.org/10.1007/s10208-020-09462-z
https://doi.org/10.1007/s10208-020-09462-z
http://arxiv.org/abs/1711.05152


16. Le Maı̂tre, O.P., Knio, O.M.: Spectral methods for uncertainty quantification scientific computation.

Springer, Netherlands (2010)

17. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer

Anal. 40, 204–224 (2013)

18. Potts, D., Volkmer, T.: Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput

Harmon. Anal. 41, 713–748 (2016)

19. Rauhut, H., Schwab, C.: Compressive sensing Petrov–Galerkin approximation of high-dimensional

parametric operator equations. Math. Comp. 86, 661–700 (2017)

20. Suryanarayana, G., Nuyens, D., Cools, R.: Reconstruction and collocation of a class of non-periodic

functions by sampling along tent-transformed rank-1 lattices. J. Fourier Anal. Appl. 22, 187–214

(2016)

21. Teckentrup, A., Jantsch, P., Webster, C., Gunzburger, M.: A multilevel stochastic collocation method

for partial differential equations with random input data. SIAM/ASA J Uncertain. Quantif. 3, 1046–

1074 (2015)

22. Volkmer, T.: SparseFFTr1l, Matlab� toolbox for computing the sparse fast Fourier transform based

on reconstructing rank-1 lattices in a dimension incremental way http://www.tu-chemnitz.de/∼tovo/

software (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Adv Comput Math (2020) 46: 65 Page 21 of 21    65

http://www.tu-chemnitz.de/~tovo/software
http://www.tu-chemnitz.de/~tovo/software

	A sparse FFT approach for ODE with random coefficients
	Abstract
	Introduction
	Prerequisites
	Sparse FFT
	Periodization
	Tent transform
	More general periodizations


	ODE solver
	Integration of the right hand side f
	Approximating u1, u2, and c1
	Tent transform in spatial domain

	Computing moments of the solution
	Numerical tests
	Conclusion
	References


