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A Sparse Graph Almost as Good as the Complete Graph on 
Points in K Dimensions 

Pravin M. Vaidya* 

AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

Abstract. A set V of n points in k-dimensional space induces a complete weighted 
undirected graph as follows. The points are the vertices of this graph and the weight of 
an edge between any two points is the distance between the points under some Lp 
metric. Let ~: < 1 be an error parameter and let k be fixed. We show how to extract in 
O(n log n + E-k log(1/~,)n) time a sparse subgraph G = (V, E) of the complete graph on 
V such that: (a) for any two points x, y in V, the length of the shortest path in 
G between x and y is at most (1 + e,) times the distance between x and y, and 
(b) IEI=  O(e, kn). 

1. Introduction 

A set V of n points in k-dimensional space induces a complete weighted undirected 
graph as follows. The points are the vertices of  this graph and the weight of an edge 
between any two points is the distance between the points under some Lp metric. 
Note that the L~ distance between x = (x  1, x z . . . . .  Xk) and y = (Yl ,  Y2 . . . . .  Yk) is 
given by ( ~ =  1 Ixi - YiIP) lip. We study the problem of compact ly  representing 
some of  the information represented by this graph. Specifically, given a set V of n 
points in k-dimensional space, we show how to extract a sparse subgraph 
G = (V, E) of  the complete graph on V with the following properties: 

(a) Let d(x,  y) denote the distance between (x, y), and DG(x, y) denote the length 
of the shortest path in G between x and y. (By convention, D~(x,  x )  = 0.) 
Then, for any pair of  points x, y in V, De(x ,  y)  < (1 + e)d(x,  y). 

(b) IEI = o(2k(3 + 12Cp/E)kn) where Cp = k lip for the Lp metric. Note  that cp is 
the length of the diagonal of  a unit box in the Lp metric. 

* Currently at the Department of Computer Science, University of Illinois at Urbana-Champaign, 
Urbana, IL 61801, USA. 
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Furthermore, we show how to construct G in O(nlogn+e-klog(1/~:)n) 
time for fixed k. Specifically, it is shown that G can be obtained from V in 
o(4kn log n + k log(k/e)4k(3 + 12Cp/~)kn) time. (Note that G can be obtained in 
O(n log n) time for fixed k and e.) 

To motivate the problem we briefly discuss two applications. The first applica- 
tion is mentioned in [1] and concerns the design of communication networks. One 
way to design a communication network on a set of n points V (in say two or three 
dimensions) is to use the complete graph on V; this minimizes the transmission 
distance between two points but there are ft(n z) links which could be too many. 
Using G instead of the complete graph reduces the number of links to O(~-kn) at 
the expense of increasing the transmission distance by a factor of (1 + e). 

The second applications is in finding approximate minimum spanning trees [ 11] 
in the complete graph on V. Note that the length of a spanning tree is the sum of the 
lengths of the edges in the spanning tree, and a minimum spanning tree is a 
spanning tree of minimum length. Since DG(x, y) < (1 + e)d(x, y) for a pair of 
points x, y in V, it follows that there exists a spanning tree in G whose length is at 
most (1 + e) times the length of a minimum spanning tree in the complete graph on 
V. Thus a minimum spanning tree in G is a good approximate minimum ~panning 
tree in the complete graph on V. The graph G could also be used to find quickly a 
perfect matching on V whose length is close to the minimum (for details, see [10]). 

The problem of approximating the complete graph on a set V of n points in the 
plane has been studied in [1]. In [1] it is shown that there is a planar subgraph of 
this complete graph such that the length of the shortest path in the subgraph 

between any two points x and y in V is at most ~ times the euclidean distance 
between x and y. Specifically, the L1 Delaunay triangulation [1], [7] of V is such a 
subgraph. Note that since the subgraph is planar it has O(n) edges. In [4] a similar 
result is proved about the L 2 Delaunay triangulation I-7] of V; specifically, that the 
length of the shortest path between x and y in the L 2 Delaunay triangulation is at 
most 5.08 times the euclidean distance between x and y. For a set of points V in the 
plane the graph G described in this paper is asymptotically a better approximation 
to the complete graph on V than the Delaunay triangulation, since D~(x, y) < 
(1 + e)d(x, y) for any pair of points x and y in V, and any given Lp metric. Also note 
that the graph G provides a good approximation to the complete graph on points 
in any fixed dimensional space rather than just for the complete graph on points in 
the plane, and that the Delaunay triangulation is not useful for k > 2 because it 
may not be sparse. Furthermore, if e is fixed, then the time for constructing G is 
asymptotically the same as the time for constructing the Delaunay triangulation of 
a set of n points in the plane; the construction of each of them requires | log n) 
time. 

It is worth noting that the simple algorithm given below, suggested by T. Feder 
and N. Nisan 1-5], will find a subgraph H of the complete graph with distance and 
sparseness properties similar to those of G. 

Choose a tolerance angle 0 (related to e) and process edges in increasing order of 
length as follows. For  each edge (x, y), if H does not contain an edge (x, z) (or 
(y, z)) such that the angle zxy (or zyx) is less than 0, then add (x, y) to H. 
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H has bounded  degree (for fixed k) but comput ing  it takes O(n 2 log n) time. The 
subgraph G on the other  hand can be obtained in O(n log n) time. We also note that  
in [3] Clarkson describes how to extract a subgraph of the complete  graph on 
points in three-dimensions,  with properties similar to those of  G, in O(n 2) t ime; his 
technique utilizes nar row cones and is quite different from ours. 

In Section 2 we give some notat ion and definitions. In Section 3 we define the 
graph G = (V,, E) and in Section 4 we show that  G has the propert ies  (a) and (b) 
ment ioned at the beginning of this section. In Section 5 we describe how to extract 
the graph G from the set of points V in O(n log n + ~-k log(1/e)n) time for fixed k. 

2. Notation and Definitions 

We give some nota t ion  useful in defining the graph G. We define a box b to be the 
product  J1 x Jz x ...  x Jk of k intervals (either closed, semiclosed, or open), or, 
equivalently, the set of those points x = (x l ,  x2 . . . . .  Xk) such that  xl lies in the 
interval Ji, for i = 1 . . . . .  k. A box is a cubical box iff all the k intervals defining the 
box are of identical length. The size of cubical box b equals the length of each of the 
intervals defining b and is denoted by size(b). Note  that  the m a x i m u m  Lp distance 
between a pair of points in a cubical box b is cp size(b). We only deal with cubical 
boxes in this paper  and box means  cubical box. The centre O(b) of a box b is defined 
to be the point  (q; l(b) . . . .  , ~k(b)) where Oi(b) is the centre of the ith interval defining 
the box b, for i = 1 . . . . .  k. Let hi(b) be the hyperplane  defined by hi(b) = {x: xi = 
Oi(b)}, let L(hi(b)) be the left open half-space {x: x~ < 0~(b)}, and let R(hi(b)) be the 
right closed half-space {x: xi > 0i(b)}. 

Let Immediate-successors(b) be the set of boxes defined by 

Immediate-Successors(b) 

= {b': b' = b c~ fz c~...C~Jk , where Jl = L(hi(b)) or Jl = R(hi(b)), 1 <_ i <__ k}. 

Immediate-Successors(b) is the set of  2 k boxes obta ined upon cutting up b by k 
mutual ly  or thogona l  hyperplanes  passing through the center of b, each plane being 
perpendicular  to one of the k coordinate  axes. 

Cor responding  to a cubical box b, let shrunk(b) be a cubical box such that:  

1. If lb c~ V[ _< 1, then shrunk(b) = b c~ V. 
2. If I b c~ V t -> 2, then (i) shrunk(b) c_ b, (ii) shrunk(b) c~ V = b c~ V, and (iii) the 

m a x i m u m  L~ distance between a pair  of points  in shrunk(b) n V equals the 
size of shrunk(b). 

Intuitively, obtaining shrunk(b) corresponds  to shrinking b as much  as possible 
without  destroying its cubical shape or forcing outside any point  in V that  is within 
it. 

For  a cubical box b such that  t b c~ V I > 2, let Successors(b) be the set of  boxes 
defined as 

Successors(b) = {b': b' = shrunk(b"), b" e Immediate-Successors(b), ]b" r~ V[ >_ 1}. 
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Whereas if I b n V I ___ 1, then Successors(b) = ~ .  Each box in Successors(b) has 
been shrunk as much as possible so that further shrinkage would either destroy the 
cubical shape of the box or push out of the box a point in V that was originally in 
the box. 

Let Box-Tree be a rooted tree of boxes defined as follows: 

Each node in the Box-Tree is a cubical box, the root is a smallest cubical box 
containing all the points in V, and the children of each nonleaf box (node) b in 
the Box-Tree are the boxes in Successors(b). 

Note that each nonleaf node in the Box-Tree has at least two children. Further- 
more, each leaf is a singleton set containing exactly one point in V, and the leaf 
boxes partition the set V. The Box-tree is similar to the cell-tree [2] and the quad- 
tree [6]. 

3. The Graph G = ( V, E) 

We now describe the graph G = (V, E). Let B be the set of all the boxes (nodes) in 
the Box-Tree. Let father(b) denote the father or box b in the Box-Tree. For a box 
b e B, let rep(b) be a representative point in b n V. (Note that for a leaf box b, rep(b) 
is the unique point in b n V.) Some of the edges in E incident to rep(b) will be 
defined in terms of a list of boxes in the "neighborhood" of b which will be denoted 
by Near(b). Let dmin(b , b') denote the minimum distance between a point in b and a 
point in b'. For a box b E B, Near(b) is defined as 

Near(b) = {b': b' e B, size(b') < size(b), size(father(b')) 

6cp } 
>_ size(b), drain(b, b') <_ ---- size(b) . 

Note that Successors(b) c_ Near(b) and that the boxes in Near(b) are disjoint. Also, 
observe that the boxes in B are (partially) ordered by containment. Near(b) is 
obtained by taking the set of all boxes smaller than b whose minimum distance 
from b is less than (or equal to) a certain threshold ((6Cp/e)size(b)), and then picking 
the maximal boxes in this set. 

The set of edges E (and thus G = (V, E)) is defined as follows: 

where 

E = Ex w E2, 

E 1 = {(rep(b), rep(b')): b e B, b' e successors(b), rep(b) # rep(b')} 
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and 

E 2 = {(rep(b), rep(b')): b e B, b' ~ B, b' ~ Near(father(b))}. 
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4. G = ( V ,  E )  is a Good Approximation to the Complete Graph on V 

We show that  G = (V, E) has the following properties.  

(a) For  any two points x, y in V, DG(x, y) < (1 + e)d(x, y) where the DG(x, y) 
denotes the length of the shortest  path  in G between x and y. 

(b) ]El = o(2k(3 + 12C,/e)kn) where c, = k lip for the Lp metric. 

To  prove proper ty  (a) we require the following lemma. 

Lemma 1. Let  x be a point  in V and let b be a box in B such that x ~ b. Then 
D~(x, rep(b)) <_ 2cp size(b). 

Proof Let ({x} = b o, bl . . . . .  b, = b) be the path  from {x} to b in the Box-Tree. 
Then bi ~ Successors(hi+ 1) and size(bl) < �89 size(hi+ 1), 1 < i < r. Moreover ,  for any 
of the Lp metrics there is an edge in E 1 (and thereby in E) of length at most  
Cp size(bi+ 1) between rep(bi) and rep(bi+ 1). Thus  

r - 1  r 1 

D~(x, rep(b)) < ~ D~(rep(bi), rep(bi+ 1)) < ~ cp size(bi+ 1) < 2cp size(b). [] 
i=O i = 0  

We now show that  G has proper ty  (a) described above. 

Lemma 2. For a pair of points x,y in V, Da(x, y) < (1 + e)d(x, y). 

Proof For  a point  z e V, let Path(z, r) be the set of all boxes b e B such that  b is on 
the pa th  from {z} to the root  in the Box-Tree and size(b) > r. Note  that, for each 
box b e Path(z, r), z ~ b if r >_ 0. Let b~ be the smallest box in Path(x, ed(x, y)/6%), 
and let by be the smallest box in Path(y, ed(x,y)/6cp). Let /4 x be the box in 
Successors(bx) such that  x E b'~. (It could be that  b'~ = {x}.) Similarly, let b'y be the 
box in Successors(by) such that  y e b'y. 

We have 

DG(x, y) < D~(x, rep(b'~)) + DG(rep(b'~), rep(b'y)) + DG(y, rep(b'y)). (i) 

' r ' We bound D•(. , rep(bx)), DG(y, rep(b'y)), and D~(ep(bx), rep(b'y)) in terms of e and 
d(x,y). From L e m m a  I it follows that  Da(x, rep(b'x))<_2c ~ size(b'~) and 
D~( y, rep(b'y)) <_ 2cp size(b'y)). Since b~ is the smallest box in Path(x, ~d(x, y)/Scp), 
and b'~e Successors(b~), size(b'x) < ed(x, y)/6cp, and hence Da(x, rep(b'~)) < 
(e/3)d(x, y). Similarly, we can show that  D~(y, rep(b'y))< (e/3)d(x, y). We show 

p below that  D~(rep(b'~), rep(by))< (1 + e/3)d(x, y). Then from (i) above  it would 
follow that  Da(x, y) < (1 + e)d(x, y). 
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I We now show that DG(rep(b'x), rep(by)) < (1 + e/3)d(x, y). We assume that the 
p t t boxes b'~ and b r are distinct. (Otherwise, DG(rep(b~), rep(br)) = 0.) Suppose that 

size(bx)<size(by).  (The case where size(br)<size(bx)  is similar.) Then 
b'y ~ Near(b~). This follows from the following three observations and the definition 
of Near(bx). First, since size(b~) > Ed(x, y)/6cp, we have 

Second, 

! dmi,(bx, by)<_d(x, y)<6Cpsize(bx) .  

~d(x, y) 
size(b'y) <_ < size(bx). 

6cp 

Third, size(father(b'y)) = size(by) >_ size(b~). 
Since father(b'x) = b~ and b'y ~ Near(bx), (rep(b'x), rep(b'y)) ~ E 2 and thus (rep(b'x), 

rep(b'y)) ~ E. Then, for any of the Lp metrics, 

Da(rep(b'~), rep(b'y)) = d(rep(b'~), rep(b'y)) 

< d(x, y) + d(x, rep(b'~)) + d( y, rep(b'y)) 

<_ d(x, y) + cp size(b'~) + Cp size(b'~.) 

ed(x, y) ed(x, y) 
< d(x, y) + cp . . . . .  + cp 6% 6Cp 

[] 

To bound the number  of edges in G we require a bound on the size of Near(b) for 
each b e B. Such a bound is provided by the following lemma. 

Lemma 3. For b ~ B, let A(b) be a subset of  B satisfying the following two 
conditions: 

1. For each b' ~ A(b), dmi,(b, b') < r6, and size(father(b')) > 6 > size(b). 
2. For any pair of  boxes b', b" in A(b), b' c~ b" = ~ .  

Then lA(b)l < 2k(3 + 2r) k. 

Before giving a proof  of Lemma 3 we give an intuitive sketch. First, observe that 
a box b' in A(b) is obtained by shrinking a box of size at least 6/2 in Immediate- 
successors(father(b')); thus the parameter  6 is a measure of the size of the empty 
space around a box in A(b). Based on this observation we can construct a set of 
disjoint boxes of the same cardinality as A(b), -vith each box in the set of size 6/2 
and contained in a box of size approximately 2r6 around b. A bound on IA(b)l may 
then be obtained by noting that at most O(vr)*, v fixed, disjoint boxes of size 6/2 
may be packed in a box of size 2r& 
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Proof of  Lemma 3. Recall that  lmmediate-Successors(b') is the set of 2 k boxes 
obtained by cutting up b' by k mutual ly  or thogona l  hyperplanes  passing through 
the center of b', each plane being perpendicular  to one of the k coordinate  axes. Let 

A I(b) = {b': b' e Immediate-Successors(father(b")), b' ~_ b", b" e A(b)}. 

We have 

Vb' ~Ay(b),  size(b')>_ 6/2>size(b)/2.  

Since the boxes in A(b) are disjoint, the boxes in Ai(b ) are also disjoint and thus 

IAi(b)l = IZ(b)l. 

We bound  lAf(b)[. Note  that, for each b 'e  Ai(b), dmin(b , b' )< r6 and size(b')>__ 
6/2 > size(b)~2. Shrink each box b' ~ Ay(b) to obtain a box b" such that  size(b") = 
6/2 and dmin(b , b")  = dmin(b , b ' ) ;  let A}(b) be the set obta ined by shrinking the boxes 
in Ai(b ) in this manner .  It is clear that  

IA~r(b)l = IAf(b)L. 

Let /~ be a box such that  0(/;) = 0(b) (i.e., b and ~; have the same center) and 
size([~) = (3 + 2r)& This choice for size([~) together  with the condit ion that  
dmi~(b, b") <<_ r6 for each b" e A}(b), guarantees that  each box in A}(b) is a subset 
of b. 

Since, for each box b" e ASy(b), b" ~_ [~, and as boxes in A}(b) are disjoint we have 

[A)(b)l 
volume of/ ;  

< 2k(3 + 2r) k. 
volume of a box in A}(b) - 

Thus 

IA(b)l = IAi(b)l = IA}(b)l ~ 2k(3 + 2r) k. [] 

The number  of edges in E is bounded  as follows. The number  of edges in E 1 is 
upper  bounded  by the number  of nodes (boxes) in the Box-tree, and so IEI[ < 2n. 
There is an edge in E2 between rep(b) and rep(b') only if b ~ Near(father(b')) or 
b' ~ Near(father(b)). Thus  

IE21 ~ ~ INear(b)l. 
b e B  

Since the boxes in Near(b) are disjoint, we can apply  L e m m a  3 with A ( b ) =  
Near(b), 6 = size(b), and r = 6cp/e, and conclude that  

( I Near(b)[ <_ 2 k 3 + P 
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Hence 

Finally, 
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( IE2[ < ~ [Near(b)l = 0 2 k 3 + ~ . 
b e B  

IEI <_ IEII + IE2I = O(2k(3 +12~p)kn). 

We have shown that G has the property (b) mentioned at beginning of the section. 

5. Speedily Constructing G = ( V, E) 

We see that the Box-Tree can be constructed in O(4kn log n) time. We also show 
that once the Box-Tree is available, the sets Near(b) can be obtained for all the 
boxes b e B in O(n log n + k log(k/e)4k(3 + 12cp/e)kn) time. The representatives in 
all the boxes in B can be chosen in O(n) time by starting with the leaf boxes 
in the Box-Tree, and, for a nonleaf box b, letting rep(b) equal rep(b') for some b' e 
Successors(b). It then follows that G can be obtained in o(4knlogn + 
k log(k/e)4k(3 + 12cp/e)kn) time. 

The Box-Tree can be obtained in o(4kn log n) time as a byproduct of the 
All-Nearest-Neighbors Algorithm in [9]. We start with a tree consisting of just the 
root box, and grow the tree by splitting a leaf box in the current tree that has the 
largest volume among all the leaf boxes in the current tree. A box b is split by k 
mutually perpendicular hyperplanes through its center to give the boxes in 
Immediate-Successors(b) and the boxes in Immediate-Successors(b) are then suita- 
bly shrunk to obtain the boxes in Successors(b). The leaf boxes in the current tree 
partition the points in V. For  each leaf box b in the current tree, k sorted lists of the 
points in b n V are maintained, each list containing the points ordered on one of 
the k coordinates. The ordered lists enable efficient splitting of boxes. For details 
the reader may refer to [9-1. 

We now describe how to obtain the sets Near(b) for the boxes in B. The boxes in 
B are processed irr non-increasing order of size; Bp denotes the set of processed 
boxes in B. Let B, be the set of boxes given by 

Bs = {b: 3b' e Bp s.t. b e Successors(b'), b q~ np}. 

For each box b e B s, we maintain two sets of boxes, ~(b) and fl(b), where 
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and 

fl(b) = {b': b e ~(b')}. 

The set ~(b) is eventually used to obtain the set Near(b). 
At each step the largest box in Bs, denoted by b L, is processed. The  set Near(bL) 

is obta ined from ~(bE), bL is moved  from B~ to Bp and the boxes in Successors(bL) 
are added to Bs. The  ~ and fl sets are created for the boxes in Successors(bL), and 
suitably updated  for the boxes in ~(bL) u fl(bL). We note that  the ~ sets of only the 
boxes in Successors(bL) U fl(bL) are affected during a step, and the fl sets of only the 
boxes in Successors(bL) w ~(bL) are affected during a step. 

To  compute  Near(bL) quickly during a step we rely on the following l emma 
which is proved later. 

L e m m a  4. At the start of each step, 

Near(bL)~(~176 �9 

To create and update  the ~, fl sets efficiently we utilize the following observat ions:  

1. A box b is added to or deleted from fl(b') whenever b' is added to or deleted 
from ct(b). 

2. For  each b e Successors(bE), a(b) ~_ (ct(bL) u Successors(bE) ) and fl(b) ~_ 
(fl(bL) w Successors(bE) ). 

3. For  each b e ct(bL) (resp. b e fl(bL) ), only a box in Successors(bE) can get added 
to fl(b) (resp. ct(b)). 

We now give the a lgor i thm for comput ing  the sets Near(b). Initially, B v is empty  
and B s is the singleton set containing the root  of the Box-Tree. 

Procedure Construct-Near-sets 
Begin 
/* Initialize */ 
Bp:= ~ ;  B s :-- {root}; bE:= root; 
~(root),= {root}; fl(root),= {root}; 
While size(bE) > 0 do 
Begin 

/* Process bL */ 
/* Compute Near(bE) from 0~(bL) */ 
Near (bE).'= ~(bE) U (Ub~,tbL) Successors(b)); 
Delete f rom Near(bE) each box b such that  

size(b) >_ size(bE) or size(father(b) < size(bE); 
Delete f rom Near(bE) each box b such that  dmi,(b E, b) > (6cp/e) size(bE); 
/* Update  ~, fl sets and Bp, B s */ 
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For  all b e Successors(bE) do 
~(b).'= ~(bE) W S u c c e s s o r s ( b E )  - {bE}; 

/3(b).'=//(bE) ~ Successors(bE) - {bE}; 
For all b e (/3(bE) -- {bE} ) do 

at(b).'= ct(b) u Successors(bE) -- {bE}; 
For  all b e (or(bE)) -- {bE}) do 

/3(b),=/3(b) w Successors(bE) -- {bE}; 
For  all b ~ (Successors(bE) u/?(bE) -- {bE} do 

Delete from ~t(b) each box b' such that dmi,(b, b') > (6cp/e) size(b) 
and whenever b' is deleted from ~(b) also delete b from/3(b'); 

Bp ..= Bp w {bE}; B~ ,= B~ w Successors(bE) - {bE}; 
b E : :  largest box in B,; 

endwhile 
For  each leaf box b e B, Near(b) ,= ~ ;  

end Construct-Near-sets 

First, we show the correctness of the above procedure, and then bound the time 
requirement. An execution of the while loop in the above procedure is referred to as 
a step. It is easily seen that the ~ and/3 sets are correctly updated at each step. 

Lemma 5. Let H = (bo, bl . . . . .  bin) , m > 1, be any path in the Box-Tree  such that 
b o is a leaf, bi+ 1 = father(bi), 0 < i < m, and b,. is the root. At  the start o f  each step 
H satisfies the following condition: 

There exists an r >_ 0 such that (1) b r e Bs, (2) b i 6 (B - (Bp w B~)), 0 < i < r, and 
(3) b jeBp ,  r < j  < m. 

Proof  By easy induction based on the observation that at the end of a step b L is 
moved from B~ t o  Bp and all the boxes in S u c c e s s o r s ( b L )  a re  added to B,. [] 

From Lemma 4 it follows that when the above procedure has terminated, 
Near(b) has been correctly computed for each box in Bp. From Lemma 5 it follows 
that when the procedure terminates, Bp w B s = B, and each box in B s is a leaf. So 
the procedure correctly computes Near(b) for all b e B. 

To bound the time requirement of the procedure we need to bound the sizes of 
the ct and fl sets. The next lemma is useful in proving bounds on the sizes of the ct 
and fl sets. 

Lemma 6. At  the start o f  each step the following statements hold: 

(1) The boxes in Bs are disjoint. 
(2) For each b ~ B~, size(father(b)) >_ size(bE). 

Proof. (1) follows from Lemma 5. (2) follows by an easy induction based on the 
observation that during each step the largest box in B s is processed. [] 

We next bound the sizes of the ct and fl sets. 
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L e m m a  7. At the start of each step, for each box b e Bs the followin9 bounds hold: 

(I) Ict(b)l < 2k(3 -4- 12Cp/e) k. 
(II) Ifl(b)l -< 2k(3 + 12Cp/e) k. 

Proof F r o m  the definition of ct(b) and L e m m a  6 it follows that  the condit ions of 
L e m m a  3 are satisfied with A(b) = ct(b), 6 = size(b), and r = 6cp/e. (I) then follows 
by the appl icat ion of L e m m a  3. 

Next note that,  for each box b' ~ fl(b), 

6% 6% size(bL). drain(b, b') <_ size(b') <_ 

Then from L e m m a  6 it follows that  the condit ions of L e m m a  3 are satisfied with 
A(b) = fl(b), 6 = size(be), and r = 6Cp/e. (II)  then follows by the applicat ion of 
L e m m a  3. 

We now show L e m m a  4. 

L e m m a  4. At the start of each step, 

Proof Note  that  

Near(bL) 

[] 

6% } 
= b: size(b) < size(bL), size(father(b)) >_ size(bL), dmln(bL, b) <_ size(bL) . 

We first show that  

\ \b~n, 

F r o m  L e m m a s  5 and 6 it follows that,  for all b ~ Bp, size(b) >_ size(bL). Thus  

Near(bL) c~ Bp = ~ .  (ii) 

F r o m  L e m m a  5 we get that, for each b e B - (Bp u Bs), size(b) < size(bL). Hence, 

for each b ~ Near(bL), father(b) e (Bp u Bs). (iii) 

Equa t ion  (i) then follows from (ii), (iii), and L e m m a  5. 
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N o w  suppose that b e Near(bL). From the definition of  Near(bL) we get that  
drain(bE, b) < (6cp/e)size(bL) and that dmin(bL, father(b)) < (6c~/e) size(bL). Thus if 
b e Bs we can conclude that b e ~(bL). So suppose b ~ B s. Then from (i) we get that 
father(b) e B s and hence fa ther (b)e  or(bE). Thus we may  conclude that, for each 
b e Near(bE), either b e ~(bL) or  father(b) e or(bE). Lemma 4 then follows. [ ]  

The running time of Procedure Construct-Near-sets is upper bounded  as follows. 
By maintaining a heap [8] for the boxes in Bs, bL may be selected in O(log n) time 
per step; the total time for heap maintainence and selection of b L is O(n log n). 
F rom Lemma 7 it follows that the sizes of ~ and fl sets are bounded  by a constant  
(dependent on k and ~) and hence there are a constant  number  of  additions to ct and 
fl sets during each step. Thus the total number  of additions to and deletions from 
and fl sets is O(n). For  a box b, we implement ~t(b) by a data  structure which allows 
insertions and deletions to be performed in O(log(10t(b)l)) time, and allows access to 
a box b', with the largest value of the parameter  dr, i,(b, b') in O(log(lct(b)l)) time. 
The set fl(b) is also implemented by an identical data  structure. Note  that it suffices 
to implement 0t(b) and fl(b) as a heap or  a 2-3 tree [8]. So the ct and fl sets can be 
maintained in a total of O(n) time. Furthermore,  during a step Near(bL) is also 
obtained in constant  time; so comput ing  the Near  sets also requires a total of O(n) 
time. Explicitly evaluating the constants  gives a running time of O(nlog  n + 
k log(k/e)4~(3 + t2cp/e)kn) for the Procedure Construct-Near-sets.  

6. Remarks 

The number  of edges in G have an exponential  dependence on the dimension k 
which could be as bad as (ck) k where c is a constant  that  does not depend on k. An 
open question is whether this dependence on the dimension can be reduced to (c') ~ 
where c' does not  depend on k; furthermore we would like c' to be small, say less 
than or equal to 4. Better still is it possible to reduce the dependence on k to a 
polynomial  in k at the expense of increasing the dependence on n by a small factor, 
say log n? 
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