
A Sparse Grid Representation for Dynamic Three-Dimensional Worlds

Nathan R. Sturtevant
Department of Computer Science

University of Denver
Denver, CO, 80208

sturtevant@cs.du.edu

Abstract

Grid representations offer many advantages for path plan-
ning. Lookups in grids are fast, due to the uniform memory
layout, and it is easy to modify grids. But, grids often have
significant memory requirements, they cannot directly rep-
resent more complex surfaces, and path planning is slower
due to their high granularity representation of the world. The
speed of path planning on grids has been addressed using ab-
stract representations, such as has been documented in work
on Dragon Age: Origins. The abstract representation used
in this game was compact, preventing permanent changes to
the grid. In this paper we introduce a sparse grid representa-
tion, where grid cells are only stored where necessary. From
this sparse representation we incrementally build an abstract
graph which represents possible movement in the world at
a high-level of granularity. This sparse representation also
allows the representation of three-dimensional worlds. This
representation allows the world to be incrementally changed
in under a millisecond, reducing the maximum memory re-
quired to store a map and abstraction from Dragon Age: Ori-
gins by nearly one megabyte. Fundamentally, the represen-
tation allows previously allocated but unused memory to be
used in ways that result in higher-quality planning and more
intelligent agents.

Introduction

The choice of a world representation is a fundamental de-
cision that influences the features that can be put into the
path planning engine for a game. Most representations offer
trade-offs with some tasks being extremely easy, while other
tasks are more difficult. It is also important to include within
the choice of representation the time required to implement
the representation. While Blizzard had years to build a new
path planning system for Starcraft 21, not every company has
the time to invest in such a system. On his AiGameDev.com
web site, Alex Champandard recommends waypoint graphs2

“since they’re a simple and effective approach to naviga-
tion”, even though navigation meshes offer a richer feature
set.

Grids have also been a popular representation (eg (Sturte-
vant 2007)) because they are easy to build, only requiring an

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Described in detail in a 2011 GDC AI Summit talk
2http://aigamedev.com/open/reviews/alienswarm-node-graph/

array of blocked/unblocked values. But, because grids uni-
formly represent all space, they are not suitable for many
games, particularly large worlds. This results from a com-
bination of planning costs, which can be reduced via ab-
straction, and storage costs, because grid information is allo-
cated for all cells whether or not they are passable. In addi-
tion, grids have usually been restricted to two-dimensional
terrain. A grid (or voxel) representation of a full three-
dimensional world would be even more expensive to main-
tain.

This paper introduces an alternate sparse grid representa-
tion. The hypothesis behind this design was that a grid repre-
sentation could be enhanced to achieve four purposes. First,
to avoid storing areas of the map which are not traversable.
Second, to represent three-dimensional worlds. Third, to
easily allow points to be added to and removed from the
world at runtime. Fourth, and finally, to quickly automati-
cally build and update an abstract world representation. The
representation described here achieves all of these metrics.

Post-mortem analysis of the maps that shipped with
Dragon Age: Origins suggests that the original efforts fo-
cused on reducing the memory used by the abstraction layer
were misplaced. The underlying grid uses approximately 10
times more memory than the abstraction layer, and thus the
grid should have been the focus of optimization efforts.

The remainder of the paper is as follows. First, back-
ground material on path planning approaches are covered,
as well as the tasks that a path planning system would be ex-
pected to handle. Then, the new design is described in detail.
Finally, detailed experimental results show that this system
is suitable for being deployed in a commercial system.

Background and Problem Definition

There are a number of general tasks related to path planning
that any representation must be able to handle. When a plan-
ning task arrives, the location of the relevant agent within the
representation is known, but a target location will often be
in arbitrary coordinates that must then be converted into the
representation format. This process is called localization. It
is simple on a grid, as real-valued x and y coordinates must
only be divided by the grid resolution to find the integer grid
coordinates.

Most games feature dynamic worlds, with creatures or
other objects modifying the underlying representation. Ide-

73

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



ally, a path planning representation can be easily changed to
block or unblock locations within the world. Again, this is
simple on a grid, as grid cells in the representation can be
quickly localized and modified.

In addition to creatures, the cost of moving in the world
can also be modified by a number of influences. This might
include area effects, such as a spell being cast in a role-
playing game, or lines of fire which should be avoided in
a first-person shooter. Locations with such modifications are
still passable, but are more expensive to pass than the regu-
lar terrain. Thus, routes without such effects applied would
be preferred. If planning occurs over multiple levels of ab-
straction, such costs should be taken account in all levels of
abstraction, otherwise high-level planning will not properly
take into account the costs of crossing low-level terrain. Fi-
nally, any representation must be amenable to fast planning
and re-planning.

There are three dominant representations used in the in-
dustry (Tozour 2002b). These include:

• Grids, which are covered in detail in this paper. Local-
ization and modifying grids is simple, but some sort of
abstraction mechanism is usually needed to speed path
planning in grids. Paths resulting from planning in grids
usually need an extra smoothing pass.

• Waypoint graphs, which are a graph representation of the
world. Modifying waypoint graphs is relatively straight-
forward, but there isn’t a tight coupling between the graph
and each individual point in the world, which can make
reasoning about terrain and the relationship to the way-
point graph more difficult. Agents on waypoint graphs
usually stay on the graph and its edges, resulting in lower
quality movement.

• Navigation meshes, or a nav mesh for short, which can be
represented by triangles (Demyen and Buro 2006) or by
polygons (Tozour 2002a). Meshes implicitly form graphs,
but each point in the graph represents a distinct area of
terrain in the mesh. Localization on meshes can be made
efficient with an underlying grid (Demyen 2006). Meshes
can be modified at runtime, but the process can be difficult
to implement. Paths through meshes are smoothed using
the funnel algorithm.

Nav meshes and waypoint graphs are high-level terrain
representations that greatly reduce planning costs. But, as
a result, they may not be able to easily account for small
areas of terrain with higher cost, such as a trap that has been
discovered and should be avoided. Modifying nav meshes
can also be difficult as geometric algorithms that process and
reason about meshes do not always handle special cases like
parallel lines or congruent points easily3. It is possible to
represent the walkable surface of complex terrain using nav
meshes and waypoint graphs, as they are not tied to a single
plane in any way.

A high-level representation can be built from
grids (Sturtevant 2007) resulting in something similar
to a nav mesh, except that the underlying regions in the

3See work and blog entries by Mikko Mononen on the Recast
tool http://code.google.com/p/recastnavigation/

graph are not always convex. We will describe this approach
in more detail in the next section, as our approach is based
on this previous work.

Sparse Grid Representation

We begin by describing previous work done in building an
abstract representation for Dragon Age: Origins (DAO) and
then show how it must be extended to introduce the prop-
erties we desire in our modified representation. There are
many variations on the design choices described here which
could be changed to meet specific game constraints.

Overall, the world is divided into two levels of granular-
ity. The underlying grid is a fine-grained representation suit-
able for local movement planning, and the representation of
small obstacles. From this grid, a high-level graph is built
which is suitable for longer range planning. The high-level
graph is built from connected regions in the underlying grid.
Even higher levels of abstraction can be used; this paper fo-
cuses on a single level of abstraction, as additional levels of
abstraction can be built with either the same principles or
using other techniques (Sturtevant and Geisberger 2010).

a

b

a b c

a

b

a

b

0 1

2 3

a

b

a b c

a

b

a

b

0 1

2 3

Figure 1: The abstraction used in Dragon Age: Origins.

Dividing the World into Sectors and Regions

The low-level map representation in DAO is a grid, but plan-
ning full paths on the grid was too expensive, so a high-level
representation was built by dividing the world up into sec-
tors and regions. This is shown in the left portion of Figure 1,
which is taken from (Sturtevant 2007). This map is divided
into four large squares, or sectors, which overlay the map.
The corner of each sector is labeled with an index. The sec-
tors are then sub-divided into regions, where all points in
a region are reachable from each other without leaving the
sector. Dark areas of the map are uncrossable walls, so sec-
tor 2 has three regions, while the remaining sectors have two
regions apiece.

The right portion of this figure shows the induced high-
level graph. Edges are added between regions if there is an
edge in the low-level grid which connects two regions in dif-
ferent sectors. This representation guarantees that any high-
level path can be refined into a low-level path, and that every
low-level path has a corresponding high-level path.

The focus of the design of this abstraction for DAO was
to minimize the memory overhead used by the abstraction.
Hence, the abstract edges and almost all of the data for the

74



abstraction is stored compactly in a single vector. This cre-
ates problems, however, if the grid is changed. Removing
abstract edges could be done easily, but if new edges are
needed, there may not be space to store them directly. This
could require re-organizing the entire data structure, an ex-
pensive operation. As a result, the DAO grid world is left
static, except for changes in traversal costs as a result of area
effects and moving NPCs.

Sparse Grid Design

Thus, we begin by re-designing the data structures used to
implement this same abstraction in a way that the underlying
grid and high-level graph can both be easily modified as the
world changes.

Points in our space can be represented both by tuples of
integers, (x, y, z), and by internal sector and region informa-
tion. Localizing a point within a sector is simple, so at the
highest level there is an array of sectors, with each sector
containing a list of regions in the sector. In the DAO repre-
sentation a global map stored all the underlying data for the
grid, and regions boundaries were implicit from the obsta-
cles in the grid. We modify this by explicitly storing the grid
information within each region. In full, each region contains:

• A center location representing a point at the approximate
middle of the region.

• A base height. The heights of individual grid cells are
stored as offsets to this height.

• A count of free and partially blocked cells. This informa-
tion is not strictly necessary, but can be used to propagate
local travel costs into the abstract graph. If many cells are
blocked in the region, the cost of traversing an edge inci-
dent to the region should be more expensive.

• A list of graph edges incident to the region. Each edge
includes the destination sector, region, and the edge sup-
port, which is the number of underlying grid edges that
would have to be removed for the abstract edge to be re-
moved.

• A pointer to the low-level grid data for the region.

The first four items are packed into 32 bits (8 bits each),
while the edges and grid data require a pointer. Each edge is
stored in 32 bits, and each grid location is stored in 16 bits.
The low-level grid contains:

• One bit for each of the 8 directions of movement repre-
senting whether movement in that direction is possible.
This means that grid edges are stored explicitly instead of
implicitly. This simplifies the process of checking if there
are passable neighbors, particularly when the neighbors
might be in a different sector or region.

• Five bits of height information, meaning that within a
region there are 31 possible height values, with the last
height value representing that a cell is impassable.

• Three bits representing how many local area effects are
currently applied to the cell. These counts are aggregated
within the full region.

A map from the DAO benchmark problem set4 built us-

4http://movingai.com/benchmarks/dao/

(a) (b)

Figure 2: (a) An example map showing the abstract graph
representation and underlying map. (b) The map where the
sparse grid representation provides the largest gain.

ing this representation is shown in Figure 2(a). The white
lines represent the abstract edges in the graph. The thick-
ness of a line represents its underlying support in the grid.
Note that if there are multiple regions in the same sector,
they are stored separately, effectively doubling the memory
required to store the map. For the map in this figure, there
are 47 sectors which contain no regions. But, because there
are multiple regions in other sectors, the final representation
has 169 total sectors and 164 total regions. Thus, the sav-
ings by not storing the data in every sector offsets the fact
that regions are stored multiple times. The largest savings
are found in the map in Figure 2(b), which is mostly empty
space. Full storage results are contained in the experimen-
tal results. The alternate advantage of using this approach is
that modifying the map and abstraction becomes much eas-
ier. We will show how this is done after comparing the total
memory usage in our new design to the memory used by the
DAO representation.

Memory Usage

The DAO abstraction used 32 bits for each sector, storing an
array index for the region data and the number of regions in
each sector. Our new representation uses the same amount
of memory per sector on a 32-bit system, but the use of a
pointer requires more memory on a 64-bit system.

The DAO abstraction stored each edge in a single byte.
Each region contained the center location and the number of
edges, requiring 16 bits total. Thus, each region is 2 bytes
plus 1 byte per edge. The new representation uses 32 bits
per region plus two pointers, and edges are stored in four
bytes instead of a single byte. Edges could be compressed
into less storage, but alignment issues could result, so we
aligned data structures to 32-bit boundaries. This means that
regions now require 12 bytes plus 4 bytes for each edge. We
assume that the underlying grid requires the same number
of bytes in both representations (2 bytes per cell), although
more memory may be used if other meta-information about
the world is stored directly in the grid.

The DAO representation and our new representation will
both have the same number of regions and edges, but the new
representation will not store any grid information for sectors

75



Algorithm 1 Greedy Point Addition(p = {x, y, z})

1: sector ← getSector(x, y)
2: if sector has no regions then
3: create new region in sector and add p
4: else
5: for all regions r in sector do
6: if p can be added to r then
7: add p to r
8: return
9: end if

10: end for
11: create new region in sector and add p
12: end if

with no passable points. The new representation requires a
two-step lookup for localization, first finding the sector, and
then the region for a given point.

Adding Points to the Map

Within each sector, if there are overlapping z coordinates
or if the range of z values is too large, points must be par-
titioned into separate regions. This partitioning could be
done offline using an approach like watershed segmenta-
tion (Mangan and Whitaker 1999), but as the map is ex-
pected to change at runtime, we use a greedy approach,
which could be further optimized if necessary.

Maps are built incrementally by adding passable (x, y, z)
coordinates to the representation. We assume that diagonal
edges cannot be crossed unless both of the adjoining cells
are passable. This means the order of adding cells to the map
matters. The following algorithm is used to add passable grid
cells to the representation. This works in two stages. First,
points are added to the representation, and then the edges are
added. As stated previously, all edges are explicitly stored in
the representation.

Adding Points The code in Algorithm 1 describes how
points are added to the world. Given a point, (x, y, z), the
sector containing this point is found using simple division.
If the sector is empty, a new region is created and the point
is added. Otherwise each region is tested in turn to see if the
point can be added. This involves testing to see if the point
is adjacent to an existing point in the region and whether the
point falls within the limits of the heights representable in
each region.

Adding a point could enable two adjacent regions to be
merged. This requires removing the points from one region
and adding them to the other, but for simplicity we currently
do not merge split regions.

Adding Edges After a point has been added to a region,
the edges must be added. This is done by finding all points
in the 8 adjacent cells to the cell that was just added. These
points may be in the same region, a different region, or even
a different sector. There are then 12 possible edges that can
be added to the world, shown in Figure 3. Most of these
edges are obvious, as they involve the cell being added, A.
But, if cells B, C and D are already part of the world, then
adding A allows a diagonal edge to be added between B and

AB

C D

Figure 3: The possible edges which must be checked when
adding the grid cell marked “A”.

Figure 4: An example staircase built using multiple regions
in the same sector.

D. These extra diagonals account for an additional 4 edges.
Each of these edges are added to the low-level grid, even

if the neighbor of a cell is in a different sector or region.
But, when this occurs, an abstract edge is either added to
the region itself or, if the abstract edge already exists, the
support of the existing edge is increased.

All edges are stored in both the origin and destination
cells, and if applicable, in the origin and destination regions
as well. This allows directed edges, such as the ability to
jump down from a height that can’t be climbed, however we
do not use this representational capability in this implemen-
tation.

The addition of edges between regions in the same sector
is what allows three-dimensional maps to be created. Sup-
pose a map needs to represent a staircase, like the one shown
in Figure 4. In such a situation it is possible for the stairs
to all be in the same sector, and for every state in the sec-
tor to be reachable without leaving the sector. In the DAO
representation this would require putting all points in the
same region, which isn’t possible. With edges between re-
gions in the same sector, the points can be put in different
regions with edges in between them, still representing the
space properly.

Removing Points from the Map

Removing maps from the representation takes place using a
similar process to the way points were added. As before, the

76



points surrounding the cell being removed are assembled,
and the 12 edges that were potentially added (Figure 3) are
now removed from the low-level grid. Removing these edges
also reduces the support of any abstract edges, and if the
support reaches 0, then the abstract edge is removed.

The key complication in removing a point from the map
is that it might split a previously passable region into two
separate regions. Thus, after removing a point, the connec-
tivity of a region must be tested. If the region is no longer
connected, the smallest k − 1 of the k resulting regions are
removed and re-added to the representation. This is done di-
rectly using the point adding procedure described above.

When adding or removing points from the representa-
tion, the location of the abstract region center must be re-
computed. This is done by finding the point in the region
which is closest to the center of the region, although other
optimizations (Sturtevant 2007) can reduce the work re-
quired for path planning.

Generating Successors in Search

During an A* search, the successors of any state must be
generated. In our sparse grid representation the successors
of every grid cell are explicitly stored, which eliminates
the need to find and test all neighbors for passability. But,
because neighbors can be in different sectors or regions,
the lookup of known neighbors can still be expensive. This
is demonstrated in the experimental results, where several
techniques for speeding up this process are evaluated. Gen-
erating abstract successors of a region is straightforward, as
all of the edges are explicitly stored within the region.

Note that in the DAO representation, a small search is
used to identify the current region. Because regions are now
stored explicitly, this is no longer necessary. This can also
make pathfinding easier, because instead of finding the path
to the center of a region, a path can be found to any grid cell
within a region, as the region associated with a cell is always
known.

Experimental Results

On 2-dimensional maps the representation described in this
paper will be identical to the abstraction used in DAO. The
speed-up of the DAO approach over A* has already been
studied in several contexts (Sturtevant 2007; Sturtevant and
Geisberger 2010). So, in our experimental results we focus
on other properties. First, we look at the total memory used.
Then, we look at the cost of generating successors. Finally,
we look at the cost of modifying the map by adding or re-
moving successors.

All experiments were run on a 2.66GHz Intel Core i7 with
8GB of RAM. Only a single core and a fraction of the total
RAM were used in the experiments. The code which imple-
ments this representation has been released as open source
for use by other researchers or those in the game industry5.
Any comparison to the existing DAO abstraction was done
using the code that shipped with AI Wisdom 4 (Rabin 2008).
The code base was implemented over a few weeks time,

5See http://code.google.com/p/hog2/

M
em

o
ry

 (
b

y
te

s)

103

104

105

106

Map #

0 50 100 150

Grid Map Memory Usage

Sparse Grid Memory Usage

Figure 5: Distribution of memory used per map.

Table 1: Average time time to generate all successors on
each legal state of every map.

Sector Regular Naive Smart 1-bit 8-bit

8 0.15 µs 0.24 µs 0.19 µs 0.17 µs 0.12 µs
12 0.15 µs 0.23 µs 0.17 µs 0.14 µs 0.11 µs
16 0.15 µs 0.23 µs 0.17 µs 0.13 µs 0.10 µs

most of which was used for refining the design described
here.

Total Memory Usage

To analyze memory usage we looked at the set of maps
that shipped with Dragon Age: Origins, measuring the to-
tal memory used by both the abstraction and the underlying
grid. We sorted the results according to the memory used by
the original representation, showing the results in Figure 5.
Note that the y-axis is a logarithmic scale. This is neces-
sary to clearly distinguish the curves across the range of map
sizes. These lines show the distribution for sectors size 12,
but different sector sizes do not result in a significant differ-
ence in the curves.

Over all the maps, the average memory used by the previ-
ous approach was 178,390 bytes versus 93,064 bytes for the
sparse grids. More importantly the maximum memory re-
quired to store any map was reduced from 1,457,090 bytes
to 519,292 bytes, almost a 3-fold reduction.

We performed the same analysis on maps from Dragon
Age II. This game has a smaller scope, so the largest map
only required 600k of memory with the regular representa-
tion, which was reduced to 200k with the sparse representa-
tion.

Generating successors

Although we could measure the cost of pathfinding, the cost
of a search includes many other overheads which are inde-
pendent of representation. Instead we directly measure the
cost of successor generation by measuring the average cost
of generating all successors over all legal states in all DAO
maps. The results are in Table 1.

A regular grid implementation takes 0.15µs to gener-
ate successors, regardless of the sector size. On the sparse

77



Table 2: Average time to remove and re-add 99 cells from
the middle of a map.

Sect. size Avg. cut Max. cut Avg. add Max add

8 0.081 ms 0.263 ms 0.059 ms 0.129 ms
12 0.120 ms 0.624 ms 0.076 ms 0.162 ms
16 0.172 ms 0.804 ms 0.100 ms 0.207 ms

grid, successor generation isn’t completely straightforward.
A state is internally represented by a sector, region, and re-
gion offset, while successors are based on x/y/z coordi-
nates; moving between these representations isn’t free.

A naive implementation, which switches representations
to generate successors, and then switches back, takes 0.23-
0.24µs on average to generate successors. A smarter imple-
mentation only switches between representations at the bor-
ders of sectors and regions, where successors might be in a
different sector and/or region. This implementation is still
slower than a regular grid, taking 0.17-0.19µs.

If extra memory available, even better performance can be
achieved. Using 1-bit to cache whether a state has neighbors
in a different sector or region results in faster performance,
except on sectors of size 8; smaller sectors have a larger per-
centage of cells on the border between sectors and regions.
Using 8-bits to mark every edge as external or internal to the
region is up to 33% faster than regular successor generation.
This memory overhead could also speed the regular imple-
mentation, but may not be affordable without the memory
savings made possible by the sparse grid.

Modifying the map

One of the key features of our sparse grids is the ability to
modify the map. We demonstrate this by cutting out a strip
of 99 cells in a row in the middle of each map and then
adding it back in again. We then measure the average time
needed to remove and add the 99 cells separately, as well as
the maximum time required for each set of operations. The
major cost associated with removing points from the map
is checking to see if a region has been split. We aggregate
the calls together, so regions are only recomputed once per
sector. Checking for region splits at each step approximately
doubles the average and maximum time required to cut 99
cells from the map.

The overall results are in Table 2. The average cut and
add time depends on the sector size. This is because it takes
more time to check if regions have been split when there
are larger sectors. But, even the maximum cut time is under
1ms, which is sufficiently fast, as this is not a common oper-
ation. Note that temporary changes to a map are performed
by weighting the relevant cells. Adding cells to the map is
much cheaper, taking at most 0.207ms even on the largest
sector sizes.

Conclusions

In this paper we have offered an alternate representation for
grid-based maps and grid-based map abstractions. This rep-
resentation eliminates the need to store grid data for por-

tions of a map which can never be traversed. Experiments
with the set of maps that shipped with Dragon Age: Origins,
shows that this approach can reduce the maximum mem-
ory required to store a map from approximately 1.5MB to
500kb.

In addition to reducing the memory overhead, the repre-
sentation is also able to represent three-dimensional maps,
and it is easy to modify the map at runtime. The cost of this
approach is that successor generation is slightly slower than
before, unless memory is used to offset the speed penalty.

There are a number items of future work. We have only
completed a few iterations of optimization on the code, and
so additional optimizations are still possible. For instance,
we currently store a separate grid for each region. Shar-
ing grids between regions would further reduce memory,
but could increase the time for adding and repairing cells.
Also, while sparse grids can represent many classes of three-
dimensional maps, it is assumed that all creatures in the map
are affected by gravity and walk on flat surfaces. It is an open
question whether this work could be adapted for vertical
surfaces. One possible approach would be to allow vertical
connections between cells. These could either model walk-
able walls, or ladders that can be climbed. Finally, caching
schemes could be used to avoid or reduce the allocation of
memory at runtime.

Although some have questioned the usefulness of grids in
modern games, this work shows that they are still a valid
representation to be considered. We understand that they are
not suitable for every game, but, given the enhancements de-
scribed here, they are still suitable for use in many games.

Acknowledgements

We appreciate the feedback on this work from the reviewers,
as well as cooperation with Gavin Burt and BioWare.

References

Demyen, D., and Buro, M. 2006. Efficient triangulation-
based pathfinding. In Proceedings of the 21st National Con-
ference on Artificial Intelligence, 942–947. AAAI Press.

Demyen, D. 2006. Efficient triangulation-based pathfinding.
Master’s thesis, University of Alberta.

Mangan, A. P., and Whitaker, R. T. 1999. Partitioning 3d
surface meshes using watershed segmentation. IEEE Trans-
actions on Visualization and Computer Graphics 5:308–
321.

Rabin, S., ed. 2008. AI Game Programming Wisdom 4.
Charles River Media.

Sturtevant, N. R., and Geisberger, R. 2010. A comparison
of high-level approaches for speeding up pathfinding. In
AIIDE.

Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In AIIDE, 31–36.

Tozour, P. 2002a. Building a near-optimal navigation mesh.
In AI Game Programming Wisdom. (S. Rabin, ed.), 171–185.

Tozour, P. 2002b. Search space representations. In AI Game
Programming Wisdom 2. (S. Rabin, ed.).

78


