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Abstract

We present a sparse h-adaptive boundary integral equation solution for the 2D
Laplace equation using the multi-wavelets of Alpert. we show that using the zero
moment properties and the compact support properties of the multi-wavelet basis
we can produce an auto-refining method. Furthermore using the same properties
of the multi-wavelets on the matrices, they can be made sparse. Unforunately
the structure of the sparse matrices makes it very difficult to make use of fast
iterative solvers. We show that the h-adaption proceeds in an identical fashion
for both the untruncated and truncated system matrices (even with very severe
truncation of modest sized system matrices).

1 Introduction

In this paper we give an h-adaptive method for the 2D Boundary Element
Method (BEM) for Laplaces equation. The h-adaptivity arises from the
use of the multi-wavelets of Alpert fl, 2]. Multi-wavelets are part of the
more general subject of wavelets which is a relatively recent development
in numerical analysis. Because of its vast potential wavelet analysis has
been applied very rapidly to almost all areas of numerical approximation.
See Chui [3] for a broad introduction to wavelets, the seminal text is still
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646 Boundary Elements

Daubechies [6], though much of her work is more applicable to Signal Pro-
cessing.

The wavelet bases are used to approximate functions or data and can
be constructed to have very specific properties which suits the application
at hand. Hence to describe wavelets in general is no easy task if all cases
are to be included. We have opted instead to focus entirely upon the multi-
wavelets of Alpert and even when we refer to multi-wavelets we are only
considering a very small subset of all the possibilities.

Multi-wavelets have four very desirable properties; firstly they form
an orthonormal basis. This enables the energy norm of the approximate
solution to be rapidly calculated; secondly they are compactly supported,
which means there is only a finite range in which thay are non-zero; thirdly
the ordering of the basis elements can be viewed as a tree and it is this
property which enables auto-refining to occur in a relatively straight-forward
manner; finally they have a high zero moment property which provides a
mechanism to drive the auto refining and it also enables the system matrices
to be made sparse with little loss of accuracy by truncation of the small
elements. It should be noted however that this sparsity cannot be fully
exploited in a collocation scheme because of the complete loss of diagonal
dominace shown in figure 2. Whereas a Galerkin method based on multi-
wavelets retains its symmetry and diagonal dominace which enables the
system matrix to be solved by a number of sparse iterative techniques that
are much faster than LU decomposition.

It is this truncation of the matrix which gives the possibility of over-
coming one of the disadvantages of the BEM, namely the denseness of the
matrices that are produced. Many of the issues of sparsity have been con-
sidered by von Petersdorf and Schwab [10], Prossdorf and Schneider [7, 8]
and Dahmen et al [5].

2 Multi-wavelets and auto-refining

A multi-wavelet is an element of a basis which can represent a general
function. Wavelet bases differ from other more 'traditional' bases such as
Fourier or spline in that the basis is constructed so that its elements can
be ordered into a hierarchy. For approximations on a finite interval an
additional set of basis functions are required -called scaling functions—
which make the basis complete. In the case of multi-wavelets these are
the Legendre polynomials. The orthogonalised Legendre polynomials up to
quadratic order are given in Table 1 and the multi-wavelet basis elements
in Table 2.

The wavelet basis functions are all related 1o a principal set of wavelets,
</>'(x), which are then scaled (squashed) and translated (shifted) to produce
all the other members of the basis. For the multi-wavelets supported on
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Order
N

0

1

2

Legendre Polynomials

[-1,1)

M

A/!*

W!(3̂ -D

Table 1: The Legendre polynomials up to order 2

Order

N

0

Wavelets

[-1,0)

#

[0,1)

(-2 +

i/|(3 - 16* +

f /I (4 - 15z +

Table 2: The multi-wavelet bases up to order 2

[—1,1] the scaling and translation formula which achieves this is

T/̂ (z) := 2̂ f(2J(:c + 1) - 26 - 1) (1)

where the j relates to the level of the basis function, in which the higher
the j the smaller the interval of support, and the k relates to translation
at the j^ level. It is the localization property of wavelets which makes
them so attractive to almost all areas of numerical analysis. Combining the
localisation property with a high zero moment property enables large dense
systems of linear equations to be truncated with little loss of accuracy, as
will be seen later.

Thus an arbitrary function on [-1,1] can be represented by an /^ order
multi-wavelet series by

(2)
oo 2J-1

z=0 I J=0 fc=0

where the </>*'s are the orthogonalized Legendre polynomials and the i//s are
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the multi-wavelets, the a's and /?'s are given by

<*' = / f(x)<p(x)dx (3)
J-l

and

2-7

The energy or L2( —1,1) norm is

which comes immediately from the orthogonality of the basis. The norm
of the approximation is a key ingredient in the test for auto-refining which
we shall use later. The other property of multi-wavelets we exploit is their
zero moment properties. An arbitrary function q has M zero moments over
[-1,1] if

/•i
/ 2(z)z" < M.

We now give an intuitive demonstration of why the truncation of the
small multi-wavelet coefficients still gives an accurate but approximate rep-
resentation of an arbitrary function. The function representation given by
equation (2) requires the ̂ coefficients to be calculated by equation (4).
Expanding the function / as a Taylor series about the midpoints, XQ, of the
interval of support gives

-
E

The multi-wavelets of quadratic order given in Table 2 have two, three
and four zero moments respectively. For the in ulti- wavelet with two zero
moments we would have

~̂  ** (9)

If the function is 'almost linear' over an interval defined by a particular j
and k then its second derivative /*(XQ) will be small, which in itself will be
the dominant term. Truncation of this term will thus have little effect on
the norm of the approximating function and the approximation will still be
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'faithful' to the original function. Furthermore because the wavelet interval
of support is halved between level j and level j -f 1, even if a function could
not be represented accurately by a linear function on level j it is more likely
to be approximated by a linear function on level j + 1 since it is adding
to the overall approximation over a smaller interval of support. The zero
moment property is thus used very efficiently in wavelet approximations.

This gives us an overall strategy for auto-refining a multi-wavelet series.
A predefined value for e needs to be set. The scaling function coefficients
and the multi-wavelet coefficients on level 0 are then calculated. The ap-
proximate norm squared (||App|H is calculated. Also the contribution to
the norm from the multi-wavelets is calculated (which in the first instance
would have j and k both zero) with

Then if

II f ||2 II /f ||2
\\Upp\\ ~ \\Pj,k\\ ^ _ /-,,\

II f IP ^ '\\Japp\\

the multi-wavelet coefficients contribution to the norm is sufficiently small
and no more refining is necessary. Otherwise the multi-wavelet coefficients
of the multi-wavelets ̂ +1,2* and V'j+i,2fc+i must also be calculated. This
process is repeated until no more multi-wavelet coefficients need to be cal-
culated because the relative norm squared condition has been fully satisfied
or it has reached a preset maximum number of levels.

3 Application to BIE's

The basic form for an interior boundary integral equations for 2D Laplace
equation from Hall [11] is

where n(x) is the outward pointing normal to the boundary, r(x,y) is the
distance between points on the boundary given by r(x, y) = |x — y| and 0^
is the exterior boundary angle at the point y.

The boundary is approximated by TV quadratic elements. We have only
considered Dirichelet boundary conditions, the known flux and unknown
potential are initially represented by a multi-wavelet approximation using
the scaling functions and multi-wavelets on level j — 0 on each element. On
each boundary element there are thus six collocation points for a quadratic
multi-wavelet approximation, none of which are at the element ends.
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This is thus a non-conforming method. For a collocation formulation,
after dividing the boundary into elements whose geometry is represented by
quadratic parametric shape functions and the representation of the functions
in terms of scaling functions and multi-wavelets the following integrals (and
similar integrals involving the derivative kernel) arise

and

r- i+^(fc+i)
In Xa(t) — YlWjk(̂ )Ja(t)dt (14)

where x«(t) is the quadratic shape function approximation of the boundary
on the a^ element, yg is the s^ collocation point on the b^ element and
Ja(t) is the Jacobian of the a*** element. The point we wish to raise here
is that the integrals involving the multi-wavelets must not necessarily be
evaluated over the whole range of the parameter t.

Once the solution to the initial system matrix has been obtained the
solution is auto-refined by the method mentioned in section 2 and a new
system matrix is constructed. Much of the matrix from the previous itera-
tion can be used. This process is repeated until either no-more auto-refining
is required or the relative error increases.

These matrices can be rendered sparse by truncating the small values
in the system matrix. The condition for trunction which we apply to this
is for non-singular entries in the system matrix (/C™,n) if

Km,n < %2-J (15)

where a is a preset truncation parameter and the j relates to the level of the
multi-wavelet appearing in the calculation of the integral. This was tested
in two cases, both of which had c set at 0.5. Table 3 gives the results for
auto-refining with no truncation of the system matrix, whilst Table 4 gives
the results for the system matrix with a in equation 15 set to 0.01. In both
cases the approximate solution was refined in exactly the same way. The
refinement took five steps in both cases, the final tree representation of the
second element is shown in Figure 3b).

4 Results

In this section we first wish to demonstrate that auto-refining works and
secondly that is not effected even by severe trunction of the matrices. We
have chosen

(7(z, %/) = ^̂  — (16)
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(0, f + 0.2)
X 7T 7T \

2 > 2 /

2'

Figure 1: The boundary

as the exact solution of the Laplace equation with a — 0 and b — | -f 0.2.
The boundary is a square with sides of length TT and is shown in figure 1. The
maximum error has been calculated by evaluating the exact solution and
the approximate solution at 100 points on each boundary element including
the end points.

The only visible difference between the two solutions is shown in figure
3 where at the end point of the second element the approximation 'wobbles'
a bit. This feature however is mainly associated with the truncation scheme
for the matrix not taking into account the corner points. The coefficients
in the system matrix should be truncated will a little more care.

Step
0
1
2
3
4

Matrix size
24
30
42
60
78

Type
L2

5.0518
5.8382
4.7355
1.3639
0.6672

of error
Max
2.6781
5.7055
1.7566
0.5812
0.3620

Table 3: The errors for the untruncated matrix
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Figure 2: The truncated matrix
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Figure 3: a) The solution and b) the tree representation of the flux on the
2"d element.
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Iteration
0
1
2
3
4

n
24
30
42
60
78

Type
L2

5.0519
5.8385
4.7365
1.3635
0.6509

of error
Max

2.6775
5.7055
1.7591
0.5787
0.3617

Sparsity

25.0
33.56
43.65
52.47
58.56

Table 4: The errors when the truncation is set to a — 0.01

5 Conclusions

We have shown that using the properties of mu Hi-wavelets an auto-refining
scheme can be applied to the solution of boundary integral equations. Be-
cause of the space limitations we have not been able to shown that this
is fully scalable, though from further experiments we have performed the
method works well for matrices less than 1000x1000. The sparsity in a col-
location scheme cannot be put to a practical use as Figure 2 shows there is
no symmetry and more importantly all daigonal dominance is lost. However
using multi-wavelets in a Galerkin formulation of a BIE looks to be promis-
ing since then all of the system matrix from the previous step is retained
when refining occurs. Furthermore there are a priori estimates which can be
used to calculate which entries in the system matrix need to be calculated,
further reducing the time required to calculate the matrix. An efficient im-
plementation would then be able to use the solution from the previous step.
There are other improvements that can be made, most notably in the type
of wavelets we are using. Applying the lifting scheme of Sweldens [9] to the
multi-wavelets it is possible to construct a biorthogonal basis where in the
case of the quadratic multi-wavelets each basis function would have four
zero moments instead of two, three, and four zero moments we currently
have.
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