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Summary

There has been a lot of work fitting Ising models to multivariate binary data in order to understand 

the conditional dependency relationships between the variables. However, additional covariates 

are frequently recorded together with the binary data, and may influence the dependence 

relationships. Motivated by such a dataset on genomic instability collected from tumor samples of 

several types, we propose a sparse covariate dependent Ising model to study both the conditional 

dependency within the binary data and its relationship with the additional covariates. This results 

in subject-specific Ising models, where the subject’s covariates influence the strength of 

association between the genes. As in all exploratory data analysis, interpretability of results is 

important, and we use ℓ1 penalties to induce sparsity in the fitted graphs and in the number of 

selected covariates. Two algorithms to fit the model are proposed and compared on a set of 

simulated data, and asymptotic results are established. The results on the tumor dataset and their 

biological significance are discussed in detail.
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1. Introduction

Markov networks have been applied in a wide range of scientific and engineering problems 

to infer the local conditional dependency of the variables. Examples include gene 

association studies (Peng et al., 2009; Wang et al., 2011), image processing (Hassner and 

Sklansky, 1980; Woods, 1978), and natural language processing (Manning and Schutze, 

1999). A pairwise Markov network can be represented by an undirected graph G = (V, E), 

where V is the node set representing the collection of random variables, and E is the edge set 

where the existence of an edge is equivalent to the conditional dependency between the 

corresponding pair of variables, given the rest of the graph.
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Previous studies have focused on the case where an i.i.d. sample is drawn from an 

underlying Markov network, and the goal is to recover the graph structure, i.e., the edge set 

E, from the data. Two types of graphical models have been studied extensively: the 

multivariate Gaussian model for continuous data, and the Ising model (Ising, 1925) for 

binary data. In the multivariate Gaussian case, the graph structure E is completely specified 

by the off-diagonal elements of the inverse covariance matrix, also known as the precision 

matrix. Therefore, estimating the edge set E is equivalent to identifying the non-zero off-

diagonal entries of the precision matrix. Many papers on estimating the inverse covariance 

matrix have appeared in recent years, with a focus on the high-dimensional framework, for 

example, Meinshausen and Bühlmann (2006); Yuan and Lin (2007); Rothman et al. (2008); 

d’Aspremont et al. (2008); Rocha et al. (2008); Ravikumar et al. (2008); Lam and Fan 

(2009); Peng et al. (2009); Yuan (2010); Cai et al. (2011). Most of these papers focus on 

penalized likelihood methods, and many establish asymptotic properties such as consistency 

and sparsistency. Many have also proposed fast computational algorithms, the most popular 

of which is perhaps glasso by Friedman et al. (2008), which was recently improved further 

by Witten et al. (2011) and Mazumder and Hastie (2012).

In the Ising model, the network structure can be identified from the coefficients of the 

interaction terms in the probability mass function. The problem is, however, considerably 

more difficult due to the intractable normalizing constant, which makes the penalized 

likelihood methods popular for the Gaussian case extremely computationally demanding. 

Ravikumar et al. (2010) proposed an approach in the spirit of Meinshausen and Bühlmann 

(2006)’s work for the Gaussian case, fitting separate ℓ1-penalized logistic regressions for 

each node to infer the graph structure. A pseudo-likelihood based algorithm was developed 

by Höeing and Tibshirani (2009) and analyzed by Guo et al. (2010c).

The existing literature mostly assumes that the data are an i.i.d. sample from one underlying 

graphical model, although the case of data sampled from several related graphical models on 

the same nodes has been studied both for the Gaussian and binary cases (Guo et al., 

2010b,a). However, in many real-life situations, the structure of the network may further 

depend on other extraneous factors available to us in the form of explanatory variables or 

covariates, which result in subject-specific graphical models. For example, in genetic 

studies, deletion of tumor suppressor genes plays a crucial role in tumor initiation and 

development. Since genes function through complicated regulatory relationships, it is of 

interest to characterize the associations among various deletion events in tumor samples. 

However, in practice we observe not only the deletion events, but also various clinical 

phenotypes for each subject, such as tumor category, mutation status, and so on. These 

additional factors may influence the regulatory relationships, and thus should be included in 

the model. Motivated by situations like this, here we propose a model for the conditional 

distribution of binary network data given covariates, which naturally incorporates covariate 

information into the Ising model, allowing the strength of the connection to depend on the 

covariates. With high-dimensional data in mind, we impose sparsity in the model, both in 

the network structure and in covariate effects. This allows us to select important covariates 

that have influence on the network structure.
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There have been a few recent papers on graphical models that incorporate covariates, but 

they do so in ways quite different from ours. Yin and Li (2011) and Cai et al. (2013) 

proposed to use conditional Gaussian graphical models to fit the eQTL (gene expression 

quantitative loci) data, but only the mean is modeled as a function of covariates, and the 

network remains fixed across different subjects. Liu et al. (2010) proposed a graph-valued 

regression, which partitions the covariate space and fits separate Gaussian graphical models 

for each region using glasso. This model does result in different networks for different 

subjects, but lacks interpretation of the relationship between covariates and the graphical 

model. Further, there is a concern about stability, since the so built graphical models for 

nearby regions of the covariates are not necessarily similar. In our model, covariates are 

incorporated directly into the conditional Ising model, which leads to straightforward 

interpretation and “continuity” of the graphs as a function of the covariates, since in our 

model it is the strength of the edges rather than the edges themselves that change from 

subject to subject.

The rest of the paper is organized as follows. In Section 2, we describe the conditional Ising 

model with covariates, and two estimation procedures for fitting it. Section 3 establishes 

asymptotic properties of the proposed estimation method. We evaluate the performance of 

our method on simulated data in Section 4, and apply it to a dataset on genomic instability in 

breast cancer samples in Section 5. Section 6 concludes with a summary and discussion.

2. Conditional Ising Model with Covariates

2.1 Model set-up

We start from a brief review of the Ising model, originally proposed in statistical physics by 

Ising (1925). Let y = (y1, …, yq) ∈ {0, 1}q denote a binary random vector. The Ising model 

specifies the probability mass function Pθ(y) as

where θ = (θ11, θ12, …, θq−1q, θqq) is a q(q + 1)/2-dimensional parameter vector and Z(θ) is 

the partition function ensuring the 2q probabilities summing up to 1. Note that from now on 

we assume θjk equals to θkj unless otherwise specified. The Markov property is related to the 

parameter θ via

(1)

i.e., yj and yk are independent given all other y’s if and only if θjk = 0.

Now suppose we have additional covariate information, and the data are a sample of n i.i.d. 

points n = {(x1, y1), …, (xn, yn)} with xi ∈ ℝp and yi ∈ {0, 1}q. We assume that given 

covariates x, the binary response y follows the Ising distribution given by
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(2)

We note that for any covariates xi, the conditional Ising model is fully specified by the 

vector θ(xi) = (θ11(xi)θ12(xi), …, θq−1q(xi), θqq(xi)), and by setting θkj(x) = θjk(x) for all j > k, 

the functions θjk(x) can be connected to conditional log-odds in the following way,

(3)

where, y\j = (y1, …, yj−1, yj+1, …, yq). Further, conditioning on y\{j,k} being 0, we have

Similarly to (1), this implies yj and yk are conditionally independent given covariates x and 

all other y’s if and only if θjk(x) = 0.

A natural way to model θjk(x) is to parametrize it as a linear function of x. Specifically, for 1 

≤ j ≤ k ≤ q, we let

The model can be expressed in terms of the parameter vector θ as follows:

(4)

Instead of (3), we now have the log-odds that depend on the covariates, through

(5)

Note that for each j, the conditional log-odds in (5) involves (p+1)q parameters; taking into 

account the symmetry, i.e. θjk0 = θkj0 and θjk = θkj, we thus have a total of (p+1)q(q+1)/2 

parameters in the fully parametrized model.

The choice of linear parametrization for θjk(x) has several advantages. First, (5) mirrors the 

logistic regression model when viewing the xℓ’s, yk’s and xℓyk’s (k ≠ j) as predictors. Thus 

the model has the same interpretation as the logistic regression model, where each parameter 
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describes the size of the conditional effect of that particular predictor. Specifically, for 

continuous covariates, θjkℓ (ℓ ≥ 1) describes the effect of covariate xℓ on the conditional log-

odds of yj when yk is 1, and θjk0 simply describes the main effect of yk on the conditional 

log-odds of yj. For categorical covariates, the interpretation is almost the same except that 

now the covariate would be represented by several dummy variables, and the parameter θjkℓ 

represents the effect of each level of the covariate relative to the reference level. Second, this 

parametrization has a straightforward relationship to the Markov network. One can tell 

which edges exist and on which covariates they depend by simply looking at θ. Specifically, 

the vector  being zero implies that yk and yj are conditionally independent given 

any x and the rest of yℓ’s, and θjkℓ being zero implies that the conditional association 

between yj and yk does not depend on xℓ. Third, the continuity of linear functions ensures the 

similarity among the conditional models for similar covariates, which is a desirable 

property. Finally, the linear formulation promises the convexity of the negative log-

likelihood function, allowing efficient algorithms for fitting the model discussed next.

2.2 Fitting the model

The probability model Pθ(y|x) in (4) includes the partition function Z(θ(x)), which requires 

summation of 2q terms for each data point and makes it intractable to directly maximize the 

joint conditional likelihood . However, (5) suggests we can use logistic 

regression to estimate the parameters, an approach in the spirit of Ravikumar et al. (2010). 

The idea is essentially to maximize the conditional log-likelihood of  given  and xi 

rather than the joint log-likelihood of yi.

Specifically, the negative conditional log-likelihood for yj can be written as follows

(6)

where

Note that this conditional log-likelihood involves the parameter vector θ only through its 

subvector , thus we sometimes write ℓj(θj; n) when 

the rest of θ is not relevant.

There are (p + 1)q(q + 1)/2 parameters to be estimated, so even for moderate p and q the 

dimension of θ can be large. For example, with p = 10 and q = 10, the model has 605 

parameters. Thus there is a need to regularize θ. Empirical studies of networks as well as the 

need for interpretation suggest that a good estimate of θ should be sparse. Thus we adopt the 

ℓ1 regularization to encourage sparsity, and propose two approaches to maximize the 

conditional likelihood (6).
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2.2.1 Separate regularized logistic regressions—The first approach is to estimate 

each θj, j = 1, …, q separately using the following criterion,

where θj\0 = θj\{θjj0}, that is, we do not penalize the intercept term θjj0.

In this approach, θjk and θkj are estimated from the jth and kth regressions, respectively, thus 

the symmetry θ̂
jk = θ̂kj is not guaranteed. To enforce the symmetry in the final estimate, we 

post-process the estimates following Meinshausen and Bühlmann (2006), where the initial 

estimates are combined by comparing their magnitudes. Specifically, let θ̂jkℓ denote the final 

estimate and  denote the initial estimate from the separate regularized logistic 

regressions. Then for any 1 ≤ j < k ≤ q and any ℓ = 0, …, p, we can use one of the two 

symmetrizing approaches:

The separate-min approach is always more conservative than separate-max in the sense that 

the former provides more zero estimates. It turns out that when q is relatively small, the 

separate-min approach is often too conservative to effectively identify non-zero parameters, 

while when q is relatively large, the separate-min approach performs better than the 

separate-max approach.. More details are given in Section 4.

2.2.2 Joint regularized logistic regression—The second approach is to estimate the 

entire vector θ simultaneously instead of estimating the θj’s separately, using the criterion,

where θ\0 = θ\{θ110, θ220, …, θqq0}. One obvious benefit of the joint approach is that θ̂ can 

be automatically symmetrized by treating θjk and θkj as the same during estimation. The 

price, however, is that it is computationally much less efficient than the separate approach.

To fit the model using either the separate or the joint approach, we adopt the coordinate 

shooting algorithm in Fu (1998), where we update one parameter at a time and iterate until 

convergence. The implementation is similar to the glmnet algorithm of Friedman et al. 

(2010), and we omit the details here.
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3. Asymptotics: Consistency of Model Selection

In this section we present the model selection consistency property for the separate 

regularized logistic regression. Results for the joint approach can be derived in the same 

fashion. The spirit of the proof is similar to Ravikumar et al. (2010), but since their model 

does not include covariates x, both our assumptions and conclusions are different.

In this analysis, we treat the covariates xi’s as random vectors. With a slight change of 

notation, we now use θj to denote θj\0, dropping the intercept which is irrelevant for model 

selection. The true parameter is denoted by θ*. Without loss of generality we assume that 

, and we also assume that θ̂jj0 = 0.

First, we introduce additional notation to be used throughout this section. Let

(7)

(8)

where

Let j denote the index set of the non-zero elements of , and let  be the submatrix of 

 indexed by j. Similarly defined are  and , where  is the complement set 

of j. Moreover, for any matrix A, let ‖A‖∞ = maxi ∑j |Aij | be the matrix L∞ norm, and let 

Λmin(A) and Λmax(A) be the minimum and maximum eigenvalues of A, respectively.

For our main results to hold, we make the following assumptions for all q logistic 

regressions.

A1 There exists a constant α ∈ (0, 1], such that

A2 There exist constants Δmin > 0 and Δmax > 0, such that
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A3 There exists δ > 0, such that

(9)

These assumptions bound the correlation among the effective covariates, and the amount of 

dependence between the group of effective covariates and the rest. Under these assumptions, 

we have the following result:

Theorem 1

For any j = 1, …, q, let θĵ be a solution of the problem

(10)

Assume A1, A2 and A3 hold for  and . Let d = maxj ‖ j‖0 and C > 0 be a constant 

independent of (n, p, q). If

(11)

(12)

(13)

then the following hold with probability at least  (δ* is a constant in (0, 1)),

1. Uniqueness: θĵ is the unique optimal solution for any j ∈ {1, …, q}.

2.
ℓ2 consistency:  for any j ∈ {1, 

…, q}

3. Sign consistency: θĵ correctly identifies all the zeros in  for any j ∈ {1, …, q}; 

moreover, θĵ identifies the correct sign of non-zeros in  whose absolute value is 

at least .

Theorem 1 establishes the consistency of model selection allowing both of the dimensions 

p(n) and q(n) to grow to infinity with n. The extra condition A3, which requires the 

distribution of x to have a fast decay on large values, was not in Ravikumar et al. (2010) as 

the paper does not consider covariates. The new condition is, however, quite general; for 

example, it is satisfied by the Gaussian distribution and all categorical covariates. The proof 

of the theorem can be found in the Online Supplementary Materials Appendix A.

Note that the properties in Theorem 1 hold on the original fit for each separate regression; in 

practice, we still need to post-process the fitted parameters by symmetrizing them using 

either the separate-max or the separate-min approach described earlier in section 2.2.1. Here 
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we briefly investigate the three properties after this symmetrization. For property (1), the 

symmetrized estimates might not necessarily be the optimal solution for each regression, 

thus it is not sensible to consider uniqueness anymore; next, it is not difficult to see that 

property (3) still holds for both sets of symmetrized estimates since it characterizes the 

relationship between the fitted value and the true value and the true value remains the same 

for different fits of the same parameters; as for property (2), we will have to enlarge the 

upper bound on the right hand side by a factor of d1/2, i.e,

(14)

A simple proof of this adapted results can be found in the Online Supplementary Materials 

Appendix B.

4. Empirical Performance Evaluation

In this section, we present four sets of simulation studies designed to test the model selection 

performance of our methods. We vary different aspects of the model, including sparsity, 

signal strength and proportion of relevant covariates. The results are presented in the form of 

ROC curves, where the rate of estimated true non-zero parameters (sensitivity) is plotted 

against the rate of estimated false non-zero parameters (1-specificity) across a fine grid of 

the regularization parameter. Each curve is smoothed over 20 replications.

The data generation scheme is as follows. For each simulation, we fix the dimension of the 

covariates p, the dimension of the response q, the sample size n and a graph structure E in 

the form of a q × q adjacency matrix (randomly generated scale-free networks (Barabási and 

Albert, 1999); in the Online Supplementary Materials Appendix E, we also study the effect 

of sparsity for k-nearest neighbor graphs). For any (j, k), 1 ≤ j ≤ k ≤ q,  consists of 

(p + 1) independently generated and selected from three possible values: β > 0 (with 

probability ρ/2), −β (with probability ρ/2), and 0 (with probability 1−ρ). An exception is 

made for the intercept terms θjj0, where ρ is always set to 1. Covariates xi’s are generated 

independently from the multivariate Gaussian distribution Np(0, Ip). Given each xi and θ, we 

use Gibbs sampling to generate the yi, where we iteratively generate a sequence of  (j = 

1, …, q) from a Bernoulli distribution with probability  and take the last 

value of the sequence when a stopping criterion is satisfied.

We compared three estimation methods: the separate-min method, the separate-max method 

and the joint method. Our simulation results indicate that performance of the separate-min 

method is substantially inferior to that of the separate-max method when the dimension of 

the response is relatively small (results omitted for lack of space). Thus we only present 

results for the separate-max and the joint methods for the first three simulation studies.

4.1 Effect of sparsity

First, we investigate how the selection performance is affected by the sparsity of the true 

model. The sparsity of θ can be controlled by two factors: the number of edges in E, denoted 

by nE, and the average proportion of effective covariates for each edge, ρ. We fix the 
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dimensions q = 10, p = 20 and the sample size n = 200, and set the signal size to β = 4. 

Under this setting, the total number of parameters is 1155. The sparsity parameter nE takes 

values in the set {10, 20, 30}, and ρ takes values in {0.2, 0.5, 0.8}. The resulting ROC 

curves are shown in Figure 1.

The first row shows the results of the joint approach and the second row of the separate-max 

approach. As the true model becomes less sparse, the performance of both the joint and the 

separate methods deteriorates, since sparse models have the smallest effective number of 

parameters to estimate and benefit the most from penalization. Note that the model selection 

performance seems to depend on the total number of non-zero parameters ((q+nE)(p+1)ρ), 

not just on the number of edges (nE). For example, both approaches perform better in case 

nE = 20, ρ = 0.2 than nE = 10, ρ= 0.5, even though the former has a more complicated 

network structure. Comparing the separate-max method and the joint method, we observe 

that the two methods are quite comparable, with the joint method being slightly less 

sensitive to increasing the number of edges.

In practice, one often needs to select a value for the tuning parameter. We compared 

different methods for selecting the optimal tuning parameter: validating the conditional 

likelihood on a separate data set of the same size, cross-validation, AIC and BIC. The 

selected models corresponding to each method are marked on the ROC curves. As we can 

see, cross-validation seems to provide a reasonable choice in terms of balancing the true 

positive rate and the false positive rate.

4.2 Effect of signal size

Second, we assess the effect of signal size. The dimensions are set to be the same as in the 

previous simulation, that is, q = 10, p = 20 and n = 200, and underlying network is the same. 

The expected proportion of effective covariates for each edge is ρ = 0.5. The signal strength 

parameter β takes values in the set {0.5, 1, 2, 4, 8, 16}. For each setting, the non-zero entries 

of the parameter vectors θ are at the same positions with the same signs, only differing in 

magnitude. The resulting ROC curves are shown in Figure 2.

As the signal strength β increases, both the separate and the joint methods show improved 

selection performance, but the improvement levels off eventually. The separate-max method 

performs better overall given that the optimal points selected by cross-validation have lower 

false discovery rate.

4.3 Effect of noise covariates

In this set of simulations, we study how the model selection performance is affected by 

adding extra uninformative covariates. At the same time, we also investigate the effect of the 

number of relevant covariates ptrue and the sample size n. The dimension of the response is 

fixed to be q = 10 and the network structure remains the same as in the previous simulation. 

We take ptrue ∈ {10, 20} and n ∈ {200, 500}. For each combination, we first fit the model 

on the original data and then on augmented data with extra uninformative covariates added. 

The total number of covariates ptotal ∈ {ptrue, 50, 200}. The non-zero parameters are 

generated the same way as before with β = 4 and ρ = 0.5. With the changes in ptotal, the total 
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number of non-zero parameters remains fixed for each value of ptrue, while the total number 

of zeros is increasing.

To make the results more comparable across setting, we plot the counts rather than rates of 

true positives and false positives. The resulting curves are shown in Figure 3. Generally, 

performance improves when the sample size grows and deteriorates when the number of 

noise covariates increases, particularly with a smaller sample size. The separate-max method 

dominates the joint method under these settings, but the difference is not large.

4.4 Stability selection when q is large

Stability selection was proposed by Meinshausen and Bühlmann (2010) to improve potential 

lack of stability of a solution and to quantify the significance of a selected structure under 

high-dimensional settings. It is based on subsampling in combination with (high-

dimensional) selection algorithms. Benefits of stability selection includes its insensitiveness 

to the amount of the regularization in the original selection algorithms and its improvement 

of model selection accuracy over them. Specifically, we repeatedly fit the model 100 times 

on random subsamples (without replacement) of half of the original data size. For each 

tuning parameter λ from a fixed grid of values, we record the frequency of θ̂jkℓ being non-

zero respectively for each covariate Xℓ, ℓ = 0, …, p on all pairs of (j, k), 1 ≤ j < k ≤ q, and 

denote it by fjkℓ(λ). Then we use  as a measure of importance of covariate 

Xℓ for the edge (j, k). Finally, for each covariate Xℓ, we rank the edges based on the selection 

frequencies . At the top of the list are the edges that depend on Xℓ most 

heavily.

We note that in previous simulation settings, even though the dimensions of the variables are 

not large, the number of parameters far exceeds the sample size. We applied stability 

selection coupled with the proposed methods, and found that the results of stability selection 

are comparable with those of not using stability selection without much improvement. (See 

the Online Supplementary Materials Appendix C.)

In this subsection, we mimic the real data example and increase the dimension of the binary 

responses q to a large value. Specifically, we set the sample size n = 100, the dimension of 

the covariates p = 5 and vary the dimension of binary responses q = {50, 100, 200}. The 

total number of non-zero parameters is fixed to be 150. The magnitude of the model 

parameters are set to be β = 8. We then compare the three proposed methods with stability 

selection. The results are shown in Figure 3 of the Online Supplementary Materials. We 

found that as the dimension q increases, coupling stability selection with the joint approach 

and the separate-max approach significantly improve model selection performance over the 

respective original methods. Since the separate-min approach coupled with stability 

selection had the best performance overall, we adopted it for our data example in Section 5.

5. Application to Tumor Suppressor Genes Study

In breast cancer, deletion of tumor suppressor genes plays a crucial role in tumor initiation 

and development. Since genes function through complicated regulatory relationships, it is of 

interest to characterize the associations among various deletion events in tumor samples, and 
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at the same time to investigate how these association patterns may vary across different 

tumor subtypes or stages.

Our data set includes DNA copy number profiles from cDNA microarray experiments on 

143 breast cancer specimens (Bergamaschi et al., 2006). Among them, 88 samples are from 

a cohort of Norwegian patients with locally advanced (T3/T4 and/or N2) breast cancer, 

receiving doxorubicin (Doxo) or 5 uorouracil/mitomycin C (FUMI) neoadjuvant therapy 

(Geisler et al., 2003). The samples were collected before the therapy. The other 55 are from 

another cohort of Norwegian patients from a population-based series (Zhao et al., 2004). 

Each copy number profile reports the DNA amounts of 39,632 probes in the sample. The 

array data was preprocessed and copy number gain/loss events were inferred as described in 

Bergamaschi et al. (2006). To reduce the spatial correlation in the data, we bin the probes by 

cytogenetic bands (cytobands). For each sample, we define the deletion status of a cytoband 

to be 1 if at least three probes in this cytoband show copy number loss. 430 cytobands 

covered by these probes show deletion frequencies greater than 10% in this group of 

patients, and they were retained for the subsequent analysis. The average deletion rate for all 

the 430 cytobands in 143 samples is 19.59%. Our goal is to uncover the association patterns 

among these cytoband-deletion events and how the association patterns may change with 

different clinical characteristics, including TP53 mutation status (a binary variable), estrogen 

receptors (ER) status (a binary variable), and tumor stage (an ordinal variable taking values 

in {1, 2, 3, 4}).

For our analysis, denote the array data by y143×430, where  indicates the deletion status of 

the jth cytoband in the ith sample. Let xi denote the covariate vector containing the three 

clinical phenotypes of the ith sample, and xℓ the ℓth covariate vector. We first standardize the 

covariate matrix x143×3 and then fit our Ising model with covariates with the separate-min 

fitting method. We then apply stability selection (Meinshausen and Bühlmann, 2010) to 

infer the stable set of important covariates for each pairwise conditional association. We are 

primarily interested in the pairs of genes belonging to different chromosomes, as the 

interaction between genes located on the same chromosome is more likely explained by 

strong local dependency. The results are shown in Table 1 of the Online Supplementary 

Materials, where the rank list of the edges depending on different covariates are recorded. 

The first two columns of each covariate-related columns are the node names and the third 

column records the selection frequency.

There are 348 inter-chromosome interactions (between cytobands from different 

chromosomes) with selection probabilities at least 0.3. Among these, 75 interactions change 

with the TP53 status; 51 change with the ER status; and another 58 change with the tumor 

grade (see details in Table 1 of the Online Supplementary Materials). These results can be 

used by biologists to generate hypotheses and design relevant experiments to better 

understand the molecular mechanism of breast cancer. The most frequently selected 

pairwise conditional association is between deletion on cytoband 4q31.3 and deletion on 

18q23 (83% selection frequency). Cytoband 4q31.3 harbors the tumor suppressor candidate 

gene SCFFbw7, which works cooperatively with gene TP53 to restrain cyclin E-associated 

genome instability (Minella et al., 2007). Previous studies also support the existence of 
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putative tumor suppressor loci at cytoband 18q23 distal to the known tumor suppressor 

genes SMAD4, SMAD2 and DCC (Huang et al., 1995; Lassus et al., 2001). Thus the 

association between the deletion events on these two cytobands is intriguing.

Another interesting finding is that the association between deletion on cytoband 9q22.3 

region and cytoband 12p13.31 appears to be stronger in the TP53 positive group than in the 

TP53 negative group. A variety of chromosomal aberrations at 9p22.3 have been found in 

different malignancies including breast cancer (Mitelman et al., 1997). This region contains 

several putative tumor suppressor genes (TSG), including DNA-damage repair genes such 

as FANCC and XPA. Alterations in these TSGs have been reported to be associated with 

poor patient survival (Sinha et al., 2008). On the other hand, cytoband 12p13.31 harbors 

another TSG, namely ING4 (inhibitor of growth family member 4), whose protein binds 

TP53 and contributes to the TP53-dependent regulatory pathway. A recent study also 

suggests involvement of ING4 deletion in the pathogenesis of HER2-positive breast cancer. 

In light of these previous findings, it is interesting that our analysis also found the 

association between the deletion events of 9p22.3 and 12p13.31, as well as the changing 

pattern of the association under different TP53 status. This result suggests potential 

cooperative roles for multiple tumor suppressor genes in cancer initiation and progression.

For visualization, we constructed separate graphs for each covariate, where each graph 

includes all the edges depending on that covariate with selection frequency at least 0.3. 

Specifically, we use the results from Table 1 of the Online Supplementary Materials to 

create Figure 4. In Figure 4, the “main effect” subplot shows all edges in the first two 

columns of Table 1 of the Online Supplementary Materials, which correspond to non-zero 

θ̂jk0 parameters and the edges are weighted by their selection frequency as shown in the 

same table. The remaining three subplots are created in the same fashion. For nodes that 

have at least 3 neighbors in the covariate dependent plots, we also mark the names of them. 

To make the graph readable, we did not include all 430 nodes but only the nodes with edges.

Since there are obvious hubs (highly connected nodes) in the graph, which often have 

important roles in genetic regulatory pathways, we also did extra analysis to confirm the 

findings. As there can be different hubs associated with different covariates, we separate 

them as follows. For each node j, covariate ℓ, and stability selection subsample m, let the 

“covariate-specific” degree of node j be . A ranking of nodes can then be 

produced for each covariate ℓ and each replication m, with  being the corresponding rank. 

Finally, we compute the median rank across all stability selection subsamples 

, and order nodes by rank for each covariate. The results 

are listed in Table 2 of the Online Supplementary Materials. Interestingly, cytoband 8p11.22 

was ranked close to the top for all three covariates. The 8p11–p12 genomic region plays an 

important role in breast cancer, as numerous studies have identified this region as the 

location of multiple oncogenes and tumor suppressor genes (Yang et al., 2006; Adélaïde et 

al., 1998). High frequency of loss of heterozygosity (LOH) of this region in breast cancer 

has also been reported (Adélaïde et al., 1998). Particularly, cytoband 8p11.22 harbors the 

candidate tumor suppressor gene TACC1 (transforming, acidic coiled-coil containing 

protein 1), whose alteration is believed to disturb important regulations and participate in 
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breast carcinogenesis (Conte et al., 2002). From Table 1 of the Online Supplementary 

Materials, we can also see that the deletion of cytoband 8p11.22 region is associated with 

the deletion of cytoband 6p21.32 with relatively high confidence (selection frequency = 

0.46); and these associations change with both TP53 status. This finding is interesting 

because high frequency LOH at 6q in breast cancer cells are among the earliest findings that 

led to the discovery of recessive tumor suppressor genes of breast cancer (Ali et al., 1987; 

Devilee et al., 1991; Negrini et al., 1994). These results together with the associations we 

detected confirm the likely cooperative roles of multiple tumor suppressor genes involved in 

breast cancer.

6. Summary and Discussion

We have proposed a novel Ising graphical model which allows us to incorporate extraneous 

factors into the graphical model in the form of covariates. Including covariates into the 

model allows for subject-specific graphical models, where the strength of association 

between nodes varies smoothly with the values of covariates. One consequence of this is that 

if all covariates are continuous, then when the value of a covariate changes, only the strength 

of the links is affected, and there is zero probability for the graph structure to change. In 

principle this could be seen as a limitation. On the other hand, this is a necessary 

consequence of continuity, and small changes in the covariates resulting in large changes in 

the graph, as can happen with the approach of Liu et al. (2010), make the model 

interpretation difficult. With binary covariates, which is the case in our motivating 

application, the situation is different; for example, since edge (j, k) depends on the value 

, the graph structure can change in the following situation: when θjk0 = 0 and 

, for a subject at the reference level where the entire x is 0, edge (j, k) does not exist, 

but edge (j, k) will exist if any of the “important“ covariate is at the non-reference level. It is 

the same case with categorical covariates with more than two levels. Further, our approach 

has the additional advantage of discovering exactly which covariates affect which edges, 

which can be more important in terms of scientific insight.

While here we focused on binary network data, the idea can be easily extended to 

categorical and Gaussian data, and to mixed graphical models involving both discrete and 

continuous data. Another direction of interest is understanding conditions under which 

methods based on the neighborhood selection principle of running separate regressions are 

preferable to pseudo-likelihood type methods, and vice versa. This comparison arises 

frequently in the literature, and understanding this general principle would have applications 

far beyond our particular method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ROC curves for varying levels of sparsity, as measured by the number of edges (nE) and 

expected proportion of non-zero covariates (ρ). Optimal points are marked for different 

model selection methods.
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Figure 2. 
ROC curves for varying levels of signal strength, as measured by the parameter β. Optimal 

points are marked for different model selection methods.
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Figure 3. 
ROC curves for varying dimension, number of noise covariates, and sample size.
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Figure 4. 
Graphs of edges depending on each covariate (based on Table 1 of the Online 

Supplementary Materials).
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