
A Sparse Matrix Arithmetic based on H-Matrices.

Part I: Introduction to H-Matrices∗

Wolfgang Hackbusch

Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22-26, D-04103 Leipzig, Germany

email: wh@mis.mpg.de

Abstract

A class of matrices (H-matrices) is introduced which have the following properties. (i) They are sparse
in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication
is of almost linear complexity. (iii) In general, sums and products of these matrices are no longer in the
same set, but their truncations to the H-matrix format are again of almost linear complexity. (iv) The
same statement holds for the inverse of an H-matrix.

This paper is the first of a series and is devoted to the first introduction of the H-matrix concept. Two
concret formats are described. The first one is the simplest possible. Nevertheless, it allows the exact
inversion of tridiagonal matrices. The second one is able to approximate discrete integral operators.

AMS Subject Classifications: 65F05, 65F30, 65F50.
Key words: Hierarchical matrices, hierarchical block partitioning, sparse matrices, matrix inversion.

1 Introduction

When dealing with linear systems of n equations, one has optimal efficiency if the computational amount of
work is O(n). For many situations characterised by a sparse system matrix A, one knows optimal solution
algorithms. A basic problem arises for systems with non-sparse matrices. Since n2 entries are to be used,
the O(n2)-complexity seems to be unavoidable (the example of the fast Fourier transform shows that this is
not true in general). Two different techniques have been developed for full matrices. In the case of matrices
obtained from integral operators, the panel clustering technique uses a representation with only O(n log n)
data, which enables a matrix-vector multiplication with almost linear1 complexity. Another approach is the
matrix compression after using a special basis (e.g., wavelet bases) such that only few entries are of a non-
negligible size.

In all the modern approaches to fast linear algebra applications, one tries to avoid matrix-matrix oper-
ations and uses only matrix-vector multiplications (or the vector-vector scalar product). In particular, the
construction of an inverse matrix is forbidden. This is by two reasons; first, the computation is rather expen-
sive (O(n3) in the general case) and, second, the inverse A−1 is usually a full matrix, even if A is sparse, and
therefore the multiplication of A−1 by a vector is of O(n2)-complexity.

A severe problem arises whenever the computation involves a Schur complement, since it contains the
product P := A ∗ B−1 ∗ C with given (sparse) matrices A, B, C. In this case, all actions must be manageable
by performing the matrix-vector multiplication P ∗ x (involving the solution of Bz = y := Cx). There is no
access to matrix entries of P, since the computation of B−1 is unattainable.

In this paper, we follow a completely different strategy. We do approximate full matrices, form (approx-
imate) products of these matrices and compute the (approximate) inverse matrix. In the case of the Schur
complement involving A ∗ B−1 ∗ C, we propose to compute this product directly. Surprisingly, the amount
of work is almost linear in the dimension n. Obviously, this approach allows quite new applications. An
idea which is rather close to our approach is described in the papers [1], [12], however, there the hierarchical
treatment is missing, which is central in the present presentation.

∗This paper has appeared in Computing 62 (1999) 89-108. This version contains minor corrections.
1Almost linear complexity means O(n logk n), i.e., linear up to logarithmical factors.

1

The key point is the description of a class of matrices (called H-matrices2, where H abbreviates “hierar-
chical”). These matrices are not sparse in the sense that there are only few non-zero entries, but they are
data-sparse in the sense that these matrices are described by only few data. The class of H-matrices contains
certain sparse matrices and approximates very well full matrices as they arise from integral operators or from
the inversion of matrices corresponding to elliptic boundary value problems. The underlying idea is closely
related to the panel clustering technique mentioned above (cf. [2], [3], [5], [7], [8], [9], [10], [11]).

In order not to overburden this paper, we shall not discuss the application to elliptic boundary value
problems here. This will be postponed to a later paper [6]. Instead, we present the basics of the new
approach. The first H-matrix format described in Section 2 is the simplest example. Because of its simple
structure, one can explicitly count the work of operations like matrix-matrix multiplication or matrix inversion
(cf. Section 3). In spite of the simple structure, we show in Section 4 that these H-matrices allow an exact
inversion of tridiagonal matrices.

In order to define the H-matrices, we introduce in Subsection 2.1 the H-partitioning of the index set I.
This corresponds to a variable vector block-partitioning. After defining a non-standard matrix-partitioning
(partitioning of I × I), we present the definition of an H-matrix in Subsection 2.3.

A more realistic example with respect to interesting applications is the second example of H-matrices
introduced in Section 5. With the techniques exercised in Section 3, one finds that the matrix operations have
the same order of complexity as for the first example. However, now it is possible to approximate matrices
corresponding to integral operators as they typically arise in boundary element methods.

In a sequential paper [6] we shall describe the generalisations to two– and three-dimensional boundary
value problems and integral operators. Then the block partitioning which is fixed in the present first and
second examples of Sections 2 and 5 must be replaced by an H-partitioning of I × I and a criterion for the
selection must be given.

2 Introductory Example

We start with the simplest example of H-matrices. The hierarchy (“H”) is firstly a hierarchy of block
partitionings. Therefore, we have first to discuss the block partitionings.

2.1 The Vector Case

2.1.1 Partitioning of a Vector

We consider a vector space of vectors a = (ai)i∈I , where I is a finite index set (e.g., I = {1, ..., n}). The usual
block partitioning consists of a (fixed) partitioning of I into disjoint subsets, i.e., P = {Ij : 1 ≤ j ≤ k} with

I =
k
⋃

·
j=1

Ij . (1)

The jth block of a vector a is (ai)i∈Ij
.

In the following we want to control the granularity of the block partitioning, i.e., instead of a fixed
partitioning we need a family containing coarse partitionings as well as fine ones. For this purpose, we
introduce a set of hierarchical partitionings which we call “H-partitionings”.

2.1.2 H-Tree over I

In the sequel, we use a tree structure. If t is a vertex of the tree T , S(t) denotes the set of sons of t. A vertex
t ∈ T is a leaf of the tree, if S(t) = ∅. L(T) is the set of leaves of T. The root is the unique vertex without
parent element. We summarise:

S(t) := {s ∈ T : s is son of t} for t ∈ T,

L(T) := {t ∈ T : S(t) = ∅} .

In the next definition, property (i) is mentioned for the sake of readability although it can be omitted since
it follows from (iv).

2Do not confound H-matrices with H-matrices (cf. Definition 6.6.7 in Hackbusch [4]).

2

Definition 2.1 Let I be an index set. A tree T is called an H-tree (based on I) if the following conditions
hold:

(i) All vertices t ∈ T are subsets of I.
(ii) I ∈ T .
(iii) #S(t) 6= 1 for all t ∈ T.
(iv) If t ∈ T is no leaf, S(t) contains disjoint subsets of I and t is the union of its sons, i.e.,

t =
⋃

·
s∈S(t)

s. (2)

We conclude that I is the root of T.

Example 2.2 Let I = {1, ..., n} and n = 2p. The partitioning of level p (finest partitioning) consists of n
one-element subsets,

Ip
1 = {1}, Ip

2 = {2}, . . . , Ip
n = {n}.

On level p − 1, two subsets from level p are combined. These subsets are

Ip−1
1 = {1, 2}, Ip−1

2 = {3, 4}, . . . , Ip−1
n/2 = {n − 1, n}.

Similarly, we obtain 4-element subsets of level p − 2, etc. Finally, at level 0, the whole index set I0
1 = I =

{1, 2, . . . , n} is the only block. This defines a binary tree T with the vertices {I`
i : 0 ≤ ` ≤ p, 1 ≤ i ≤ 2`}. I is

the root. The vertices at level p are the leaves. The sons of I`
i (` < p) are I`+1

2i−1and I`+1
2i .

We use the notation t → s to express that s ∈ S(t). Then the pair (t, s) is an (directed) edge in the tree
(graph) T. If there is a path t = t0 → t1 → . . . → tk = s from t to s (including the case t = s, i.e., k = 0), we
write

s ∈ S∗(t).

The characteristic properties of the H-tree T are described in

Remark 2.3 (a) Let s, t ∈ T with s 6= t. Then exactly one of the following three cases holds:
(i) s ⊂ t. Then s ∈ S∗(t)\{t}.
(ii) t ⊂ s. Then t ∈ S∗(s)\{s}.
(iii) s ∩ t = ∅. Then there is a unique smallest3 r ∈ T with s, t ∈ S∗(r).

(b) For any t ∈ T, S∗(t) is a subtree4 of T satisfying (i), (iii), (iv) from Definition 2.1.
(c) For any t ∈ T,

t =
⋃

·
s∈L(S∗(t))

s. (3)

Proof. (c) Introduce S`(t) := {s ∈ S∗(t) : there is a path t → . . . → s of length ≤ `}. Use induction to prove
t =

⋃

· s∈S`(t)
s for ` = 0, 1, . . . and S`(t) = L(S∗(t)) for sufficiently large `.

2.1.3 T-Partitioning

In the following, we restrict all block partitionings to those which are built by blocks contained in the tree T.
For these ones we use the name T -block partitioning.

Definition 2.4 A block partitioning P = {Ij : 1 ≤ j ≤ k} of I is called a T -block partitioning (or briefly, a
T -partitioning) if P ⊂ T holds besides (1).

The set of all such T -partitionings is denoted by P(T). The next remark shows that T -partitionings can
uniquely be described by means of H-subtrees (these are subtrees of T with the H-tree property defined in
Definition 2.1).

Remark 2.5 (i) P(T) = {L(T ′) : T ′ subtree of T and H-tree}.
(ii) There is a one-to-one mapping between T -partitionings and H-subtrees T ′ given by T ′ 7−→ P :=

L(T ′) ∈ P(T).

Proof. Part (i) follows from (ii). For the proof of (ii) let an H-subtree T ′ be given. Then (2) ensures
I =

⋃

· s∈L(T ′) s; hence, P := L(T ′) is a T -partitioning. If a T -partitioning P = {Ij : 1 ≤ j ≤ k} is given,

consider the subtree T ′ of T consisting of all t ∈ T with t ∩ Ij = Ij or t ∩ Ij = ∅ for all Ij ∈ P.

3Here, “smallest r” means that there is no proper subset r′ ⊂ r, r′ ∈ T, with s, t ∈ S∗(r′).
4T ′ is called a subtree of T, if the vertices of T ′ form a subset of those of T and all edges of T ′ belong to T.

3

2.1.4 Ordered Index Set

Assume that the index set is ordered. Without loss of generality we may assume I = {1, . . . , n}. Often,
one requires that the subsets t ∈ T of I consist of consecutive indices, i.e., there are first and last elements
n0(t), n1(t) ∈ I such that

t = {i ∈ I : n0(t) ≤ i ≤ n1(t)} for all t ∈ T. (4)

The blocks described in Example 2.2 are of this type.

2.2 The Matrix Case

2.2.1 Tensor Block Partitionings versus General Partitionings

Given a block partitioning P of I, the traditional block partitioning of a matrix is given by the product

P2 := P × P = {I ′ × I ′′ : I ′, I ′′ ∈ P}.

This means that the subblocks of a matrix A are Aij = (aαβ)α∈Ii,β∈Ij
, where Ii, Ij ∈ P . Hence, row- and

column-wise the same blocks Ii and Ij are used. This implies that the size of the blocks cannot be a function
of i − j (distance from the diagonal). In later applications we need finer blocks close to the diagonal and
coarser ones far away (compare the panel clustering technique in [7]).

We obtain a richer structure, when we look for general block partitionings P2 of I × I (not only for tensor
product blocks). A general block partitioning of I × I is an partitioning of I × I, where we allow general
subsets of I × I. Here, we restrict ourselves to a smaller set of general partitionings (H-partitionings) which
are hierarchically structured as in the vector case, but now the H-partitionings are based on the index set I×I
instead of I. Details will be postponed to the subsequent paper [6], since for the cases considered here, we
are able to define the partitionings explicitly. In particular, we will describe two partitionings. A very simple
one is constructed below, while the partitioning from Section 5 is a prototype for more realistic partitionings
needed for boundary value problems.

2.2.2 A Special Non-Tensor Partitioning

Let T be the H-partitioning of I defined in Example 2.2. More generally, we admit binary trees with the
property (4). The block partitioning P2 = P2(I, T) of I × I induced by T is defined recursively over the depth
of the tree T (largest pathlength in T).

In the trivial case of depth = 0 (i.e., T = {I}), define P2(I, T) := {I × I}.
If depth = 1, I ∈ T has exactly two sons {I1, I2}. Then, P2(I, T) := {I1 × I1, I1 × I2, I2 × I1, I2 × I2} is

the standard 2×2-block partitioning of I × I induced by the vector partitioning {I1, I2} = L(T).
If depth > 1, define first the block partitioning P ′

2 = {I1 × I1, I1 × I2, I2 × I1, I2 × I2} discussed above
involving the two sons I1, I2 of I. Next consider the subtrees Tk := S∗(Ik) for k = 1, 2 and replace the blocks
Ik × Ik in P ′

2 by the finer partitionings P2(Ik, Tk), i.e.,

P2(I, T) := P2(I1, T1) ∪ {I1 × I2} ∪ {I2 × I1} ∪ P2(I2, T2). (5)

In the case of T from Example 2.2, the tree has the depth p. The corresponding block partitionings P2(I, T)
are depicted below. For p > 1, the partitioning is no more of tensor-product form.

p = 0 : , p = 1 : , p = 2 : , p = 3 : . (6)

4

2.3 Hierarchical H-Matrices

In the following, P2 is a block partitioning of I × I not restricted to tensor-product partitionings, e.g., P2 is
the partitioning constructed above.

Definition 2.6 Let P2 be a block partitioning of I × I and k ∈ N. The underlying field of the matrices is K.
The set of H-matrices induced by P2 is

MH,k(I × I, P2) := {M ∈ K
I×I : each block M b, b ∈ P2, satisfies rank(M b) ≤ k}. (7)

We call a matrix A an Rk-matrix if rank(A) ≤ k.
In this section, we restrict our considerations to the simplest case k = 1. The resulting R1 -matrices are

discussed in the next subsection.
Another (recursive) description of an n × n H-matrix A with n = 2p (p > 0) corresponding to the block

partitioning P2 from §2.2.2 can be given by the requirement that A has the block structure

A =

[

A11 A12

A21 A22

]

with
n

2
×

n

2
H-matrices Aii and R1 -matrices A12, A21, (8)

where the recursion terminates for 1 × 1 H-matrices, which are usual 1 × 1 matrices.
We mentioned in the introduction that the panel clustering method is based on similar ideas. However,

the matrix representation of the panel clustering technique corresponds to a different block partitioning of
I × I. There the blocks are of the form {i} × {tj,i}, where i ∈ I and {tj,i : j ∈ I} is a T -block partitioning of
I. This partitioning may be different for each row index i.

2.4 R1 -Matrices

2.4.1 Properties, Multiplication of R1 -Matrices

Any n×m-matrix A of rank ≤ 1 (abbreviation: R1 -matrix or matrix of R1 -type) can be written in the form

A = a ∗ bH (notation: A = [a, b]) (9)

with a ∈ K
n, b ∈ K

m and bH being the Hermitian transposed of b. Properties of R1 -matrices5 are listed in

Remark 2.7 (a) The amount of storage is n + m (a and b to be stored).
(b) The amount of work for the matrix-vector multiplication A ∗ c (c ∈ K

m) are 2m− 1 operations to obtain6

α ∗ a, and 2m + n − 1 operations, if the multiplication in α ∗ a is performed explicitly.
(c) Let A = [a, b] . Then also AH = [b, a] is of the form (9).
(d) R1-matrices have a right- and left-ideal property: Multiplication from the right or left by an R1-matrix
yields again an R1-matrix. Even if B is a more general matrix, B ∗A with A = [a, b] requires only the amount
of work for computing B ∗ a and yields B ∗ A = [B ∗ a, b] . Similarly for A ∗ B. If A and B are R1-matrices,
A ∗ B or B ∗ A need only one scalar product.
(e) Let A = [a, b] . The evaluation of any of the entries Aij = aibj requires exactly one operation.
(f) Let A = [a, b] . A complete row aib

H [or column bja] of A requires m [n] operations.

2.4.2 Sums of R1 -Matrices, Singular-Value Decomposition

Let A and A′ be two R1 -matrices. Then, in general, the sum is not an R1 -matrix but of rank 2. A suitable
approximating R1 -matrix is the subject of the next considerations.

The singular-value decomposition of an arbitrary n × m-matrix A is

A = U ∗ D ∗ V,

where U is a unitary n × n-matrix, V a unitary m × m-matrix and D a diagonal n × m matrix. D contains
the “singular values” di ≥ 0. Without loss of generality we may assume d1 ≥ d2 ≥ Then k = rank(A) is
the maximal index k with dk > 0.

5R1-matrices are used, since they need very few storage. However, for small blocks this does not pay. Therefore, in practice,
one should change definition (7) and use the standard format for 2×2 or even larger blocks.

6This suggests using a triple (α, a, b) for α[a, b].

5

Let A an arbitrary n × m-matrix of the rank k. When we look for an approximate matrix of the rank
k′ ∈ [1, k] , the matrix

A′ = U ∗ D′ ∗ V with D′ := diag{d1, ..., dk′ , 0, ..., 0}

is of rank k′ and has the smallest Frobenius norm ‖A − A′‖F .
This construction is easily applicable for k′ = 1 in order to replace the sum A + B of rank 2 by a

new approximating R1 -matrix C (here only eigenvalues and eigenvectors of 2 × 2-matrices are needed; see
proof of Remark 2.8 below). This approximation even allows an error estimation by ‖(A + B) − C‖F or
‖(A + B) − C‖F /‖C‖F . The approximate sum C of A and B is a projection of A + B onto the set of R1 -
matrices. We use the notation C = A +R1 B or, in the general case of rank-k-matrices,

C = A +Rk B (10)

for the truncated sum.
For the convenience of the reader, we give the details of the (+R1)-summation procedure. Given A = [a1, b1]

and B = [a2, b2], let Σ := A+B be the true sum and Σ = U ∗D∗V its singular value decomposition. The rows
of the unitary matrix V are the (normalised) eigenvectors of ΣHΣ. Since only eigenvectors v corresponding to
non-zero eigenvalues are of interest, we may restrict v to the span of {b1, b2}. The ansatz v = α1b1 +α2b2 leads
to the eigenvalue problem λα = GaGbα with α = (α1, α2)

T and the 2 × 2 Gram matrices Ga = (aH
i aj)i,j=1,2

and Gb = (bH
i bj)i,j=1,2. Choosing the normalised eigenvector v = α1b1 + α2b2 corresponding to the larger of

the two eigenvalues λ1, λ2, we can represent the truncated sum C = A +Rk B as [a3, b3] with b3 := v and
a3 := Σv = (Av) + (Bv).

Remark 2.8 The R1-addition +R1 of two n × m-matrices costs 9(n + m) + 29 operations7.

Proof. Let A = [a1, b1], B = [a2, b2] and C := A+R1 B = [a3, b3]. The two Gram matrices8 Ga = (aH
i aj)i,j=1,2

and Gb = (bH
i bj)i,j=1,2 involve six scalar products resulting in 6(n+m)−6 operations. Let v be the eigenvector

of GaGb corresponding to the larger eigenvalue. The solving of the 2 × 2 eigenvalue problem costs O(1)
operations. b3 := v1b1 + v2b2 including the normalisation requires 3m + O(1) operations. Finally, a3 :=
Ab3 + Bb3 needs 3n + O(1) operations exploiting the structure b3 := v1b1 + v2b2 and the already computed
values bH

i bj .

Remark 2.9 If A = [a, b] is an R1-matrix and A′ a submatrix, then also A′ is an R1-matrix of the form
A′ = [a′, b′] with respective subblocks a′, b′ of a, b.

2.5 Rk-Matrices

If we replace R1 -matrices by Rk -matrices, the following properties hold for fixed k:

• The storage for n × m Rk -matrices is O(n + m).

• The product A ∗ B requires k2 scalar products.

• The truncation of A+B to an Rk -matrix requires the solution of a 2k×2k eigenvalue problem. However,
the additional amount of work is O(1) independent of the dimensions n, m.

• The operation count for the various matrix-vector and matrix-matrix operations described below are of
the same order (only the constants are different).

We conclude that there is no problem in using Rk -matrices. In the following, we use R1 -matrices only to
simplify the presentation.

7A reduction can be achieved by the hint given in Footnote 8.
8In order not to recompute the scalar products aH

i
ai and bH

i
bi, i = 1, 2, every time, it is advantageous to compute aHa and

bHb once for all for any R1-matrix [a, b].

6

2.6 Uniform H-Matrices

In general, the addition of Rk -matrices cannot be performed exactly. In the following, we describe a special
situation, where the addition is exact.

So far, an Rk -matrix
∑k

i=1[ai, bi] could be formed with arbitrary vectors ai, bi. Another situation occurs
if we fix two bases

{ai : 1 ≤ i ≤ k}, {bj : 1 ≤ j ≤ k} ⊂ K
I (11)

and form the R1 -matrices
{[ai, bj] : 1 ≤ i, j ≤ k}, (12)

which span a subspace Vk ⊂ K
n×m. We write Vk = Vk(I × I) for this space of matrices over the index set

I × I.

Remark 2.10 (a) The subspace Vk = Vk(I × I) spanned by (12) consists of Rk-matrices. Furthermore,
dimVk = k2 holds.

(b) If the Rk-matrices A, B belong to Vk, the sum is also an Rk-matrix from Vk.

Let b = I1 × I2 ⊂ I × I be some matrix block. The restriction of [ai, bj] to b is the block matrix

[ai, bj]|b = (ai,αb̄j,β)(α,β)∈b (1 ≤ i, j ≤ k).

Although these block matrices do not necessarily form a basis, they span a subspace denoted by Vk(b) =
Vk(I1 × I2).

Definition 2.11 Let Vk = Vk(I × I) as before and deduce from Vk the subspaces Vk(b) for all blocks b ∈ P2.
An H-matrix from MH,k(I × I, P2) is a uniform H-matrix, if all block matrices M b, b ∈ P2, appearing in (7)
belong to Vk(b). The set of uniform H-matrices is denoted by UH,k(I × I, P2, Vk).

Example 2.12 Assume I = {1, . . . , n} and a mapping x : I → R with x(α) =: α (α ∈ I). Define the vectors
ai = bi by means of xi−1, i.e., (ai)α = αi−1 for α ∈ I = {1, . . . , n}. In this case, Vk represents polynomials
∑

i,j=0,...,k−1 xiyj. Due to the later Remark 4.2, we may replace the vectors ai, bj from above by the scaled
ones a′

i := Daai and b′j := Dbbj, where Da and Db are diagonal matrices.

3 Complexity of the H-Matrix Arithmetic

All statements below correspond to the H-matrix class with P2 from (5) and k = 1. We note that a large part
of the operations can be saved if the involved matrices are symmetric and, in particular, if the blocks A11,
A22 in (8) and their subblocks etc. are identical. In the following, we consider the general case only.

3.1 Storage

As an exercise, we consider the number of blocks in the partitioning P2(I, T) from (5). Set Nblock(p) :=
#P2(I, T) for n = 2p. By definition, we have Nblock(0) = 1 and Nblock(1) = 4. Recursion (5) yields Nblock(p) =
2 + 2Nblock(p − 1) for p > 1. This leads to

Nblock(p) = 3n − 2. (13)

According to Remark 2.7a, the storage for the R1 -matrix [a, b] is NR1(p) := 2n = 2p+1. For p = 0, it
is sufficient to store only one real number, i.e., NR1(0) := 1. Let Nstorage(p) be the storage needed for an
H-matrix of dimension 2p × 2p. The recursion (5) yields

Nstorage(p) = 2NR1(p − 1) + 2Nstorage(p − 1) = 2p+1 + 2Nstorage(p − 1).

Together with Nstorage(0) = NR1(0) = 1, we obtain

Lemma 3.1 The storage requirement for an n × n H-matrix with n = 2p is

Nstorage(p) = (2p + 1)n = (1 + 2 log2 n)n. (14)

7

3.2 Addition

The sum of two R1 -matrices is already discussed in Remark 2.8. The costs are denoted by NR1+R1(p).
The exact addition A+B of two H-matrices requires to add all blocks. Ab +Bb, b ∈ P2. The approximate

addition of two H-matrices is defined by replacing the exact operation + by +R1 from (10). The result C is
denoted by the same symbol: C = A +R1 B.

Let n = 2p and p > 0. Denote the cost of the R1 -addition of two n × n H-matrices by NH+H(p).
Then the recursion NH+H(p) = 2NH+H(p − 1) + 2NR1+R1(p − 1) = 2NH+H(p − 1) + 2(9n + 29) follows
from Remark 2.8. Together with NH+H(0) = 1 we obtain

NH+H(p) = 18pn + 59n − 58. (15)

Finally, we discuss the sum A + B of an n × n H-matrix A and an R1 -matrix B (notation of the costs:

NH+R1(p)). Due to Remark 2.9, the R1 -blocks in B =

[

B11 B12

B21 B22

]

can be obtained without arithmetic

operations. The recursion NH+R1(p) = 2NH+R1(p − 1) + 2NR1+R1(p − 1) and the start NH+R1(0) = 1 are
identical to NH+H and yield NH+R1(p) = 18pn + O(n).

Lemma 3.2 The R1-addition of two n × n H-matrices or of an H-matrix and an R1-matrix requires
18n log2 n + O(n) operations.

Remark 3.3 The Rk-addition of two uniform H-matrices from UH,k(I × I, P2, Vk) is exact.

3.3 Matrix-Vector Multiplication

Let A be an n × n H-matrix and x an n-vector. Decompose A as in (8) and x into the n/2-block vectors x1

and x2. The multiplication Ax reduces to the computation of A11x1, A12x2, A21x1, A22x2 and their addition.
Due to Remark 2.7b, A12x2 and A21x1 cost each 3n

2 − 1 operations. Denote the costs of Ax (with n = 2p) by
NMV (p). The recursion NMV (p) = 2NMV (p − 1) + 4n− 2 starting with NMV (0) = 1 yields

NMV (p) = 4pn − n + 2. (16)

Lemma 3.4 The matrix-vector multiplication of an n × n H-matrix by a (general) vector requires
4n log2 n − n + 2 operations.

The matrix-vector multiplication becomes cheaper if the vector x is sparse. The extreme case is a vector
x with only one non-zero component. The proof of the following remark is left to the reader.

Remark 3.5 Let A be an n × n H-matrix and x a vector with only m non-zero entries.
(a) If m = 1, the multiplication Ax requires n + log2 n operations.
(b) For general m ≤ n, the leading term 4n log2 n from Lemma 3.4 becomes 2(n + m) log2 n.

3.4 Matrix-Matrix Multiplication

Let n = 2p. The multiplication of two R1 -matrices requires NR1∗R1(p) := 3n−1 operations (cf. Remark 2.7d).
Next, we consider the multiplication A ∗ [a, b] {or [a, b] ∗ A} of an n × n H-matrix A and the R1 -matrix

[a, b]. Since A ∗ [a, b] = [Aa, b], the costs coincide with the operation count of the matrix-vector multiplication
from Lemma 3.4: NH∗R1(p) := 4n log2 n − n + 2. The same number NR1∗H = NH∗R1 holds for [a, b] ∗ A.

Let NH∗H(p) be the costs for the approximate product A ∗R1 B of the H-matrices. Due to (8), we form
the products A11 ∗R1 B11, A22 ∗R1 B22 (costs: 2NH∗H(p− 1)) and A12 ∗B21, A21 ∗B12 (costs: 2NR1∗R1(p− 1))
as well as A11 ∗B12, A22 ∗B21, A12 ∗B22, A21 ∗B11 (costs: 4NH∗R1(p− 1)). By Lemma 3.2, the R1 -additions
in (A11 ∗R1 B11) +R1 (A12 ∗R1 B21), (A21 ∗R1 B12) +R1 (A22 ∗R1 B22) require 2NH+R1(p − 1) operations and
those in (A11 ∗B12)+R1 (A12 ∗B11), (A22 ∗B21)+R1 (A21 ∗B11) need 2NR1+R1(p− 1) operations. Altogether,
we get the recursion

NH∗H(p) = 2NH∗H(p − 1) + 2NR1∗R1(p − 1) + 4NH∗R1(p − 1) + 2NH+R1(p − 1) + 2NR1+R1(p − 1)

= 2NH∗H(p − 1) + 26pn + 52n− 52

with the starting value NH∗H(0) = 1. This leads to NH∗H(p) = 13p2n + 65pn− 51n + 52.
We summarise:

8

Lemma 3.6 The multiplication of two H-matrices requires 13n log2
2 n + 65n log2 n − 51n + 52 operations.

The multiplication of an H-matrix by an R1-matrix costs 4n log2 n − n + 2, while the multiplication of two
R1-matrices needs 3n − 1 operations.

3.5 Matrix Inversion

In the following, we assume that an H-matrix A of size n×n with n = 2p is given and we try to approximate
the inverse A−1 by an H-matrix B = InvR1(A). Again, we use induction with respect to the depth p of block
structure. For p = 0, InvR1(A) := A−1 is defined as the exact inverse of the 1 × 1-matrix A. Having defined
InvR1 on level p − 1, the (exact) inverse of A with block structure (8) is

A−1 =

[

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

(17)

with the Schur complement S = A22 − A21A
−1
11 A12. Since A11 is an H-matrix of level p − 1, InvR1(A11)

is already defined. Because A21, A12 are R1 -matrices, the exact product A21A
−1
11 A12 is replaced by the

R1 -matrix A21InvR1(A11)A12 (cf. Remark 2.7d). Then S̃ := A22 −R1 A21InvR1(A11)A12 defines the
H-matrix approximating S. Next, InvR1(S̃) can be performed. So far, the computational work amounts to
2Ninv(p − 1) + NH∗R1(p − 1) + NR1∗R1(p − 1) + NH+R1(p − 1).

The approximation of −A−1
11 A12S

−1 by −InvR1(A11)A12InvR1(S̃) and of the similar block −S−1A21A
−1
11

by −InvR1(S̃)A21InvR1(A11) costs 3NR1∗H(p − 1) (note that one product, e.g., A−1
11 A12 is already known

from the computation of S).
It remains to approximate the left upper block in A−1. Since S−1A21A

−1
11 and A−1

11 A12 are already
approximated, NH+R1(p − 1) + NR1∗R1(p − 1) operations complete the computation of InvR1(A).

The sum of all costs amounts to

Ninv(p) = 2Ninv(p − 1) + 4NH∗R1(p − 1) + 2NH+R1(p − 1) + 2NR1∗R1(p − 1).

The previous results yield Ninv(p) = 2Ninv(p − 1) + 4 ∗ 4(p − 1)n
2 + 2 ∗ 18(p − 1)n

2 + O(n) = 2Ninv(p − 1) +
26pn + 34n− 110. Together with Ninv(0) = 1, we obtain Ninv(p) = 13p2n + 47pn− 109n + 110.

Lemma 3.7 The approximate inversion of an H-matrix requires 13n log2
2 n+47n log2 n−109n+110 operations.

3.6 LU-Decomposition

It is of course possible to compute the (approximate) LU-decomposition LU of A with normalised lower
triangular H-matrix L and upper triangular H-matrix U. Then the computation of L−1x or U−1x requires
2n log2 n + O(n) operations. The LU-decomposition needs 6n log2

2 n + O(n log2 n) operations.

4 Properties of the H-Matrices

We have seen that, in general, neither the sum nor the product of two H-matrices from MH,k are again of
the same type so that a “rounding” is necessary. In the following, we list some properties which hold exactly.
The first statement is already known.

Remark 4.1 (a) The matrix-vector multiplication Ax for A ∈ MH,k is exact.
(b) Let A ∈ MH,` and B an Rk-matrix. Then AB and BA are again Rk-matrices.

Let D be a diagonal matrix. Then the block structure of A ∈ MH,k is not changed by a multiplication
by D. Furthermore, DA, AD ∈ MH,k shows that the product can be performed exactly. This can also be
expressed as follows.

Remark 4.2 MH,k is invariant with respect to diagonal scaling.

Although this fact seems trivial, it implies that any kind of equilibration of the matrix entries is unnecessary.
The H-matrix set MH,1(I × I, P2) with P2 from (5) is very simple. Nevertheless, it is the appropriate

format for the treatment of tridiagonal matrices.

9

Proposition 4.3 Let A ∈ K
I×I be a tridiagonal matrix. Then, A and A−1 belong to MH,1(I × I, P2). The

matrix InvR1(A) from §3.5 is the exact inverse A−1.

Proof. The statement A, A−1 ∈ MH,1 holds for p = 0. In the following, we assume the assertion for p− 1, i.e.,
n/2.

a) By induction, A11, A22 from (8) are H-matrices. A12 has at most one non-zero entry. Hence A12 is an
R1 -matrix [a, b] with ai = 0 except the last index and bj = 0 except the first index. A21 has the transposed
structure. This proves A ∈ MH,1 for level p.

b) The proof of A−1 ∈ MH,1 starts with the Schur complement S = A22−A21A
−1
11 A12. The characterisation

of A12 and A21 in part a) shows that A21A
−1
11 A12 has only one non-zero entry in the (1,1)-position. Therefore,

S remains a tridiagonal matrix and by induction S−1 ∈ MH,1 follows. The off-diagonal blocks −A−1
11 A12S

−1

and −S−1A21A
−1
11 are of R1 -type. The first block can be written as the inverse of the Schur complement

S = A11 − A12A
−1
22 A21.

Corollary 4.4 Proposition 4.3 holds also for band matrices with 2k off-diagonals with k > 1, if H-matrices
from MH,k(I × I, P2) are used.

5 A Second Example for H-Matrices

For many purposes, the class MH,k(I × I, P2) given above is not dense enough around the diagonal. In the
following, we present a richer block partitioning P ′

2 of I × I, which still leads to the same orders of complexity
as obtained before.

5.1 The Block Partitioning P
′
2

We assume that the H-tree T is the same as before. First, we define N - and N ∗-matrices (N abbreviates
“neighbourhood”; block matrices of type N will be used for neighbouring blocks from T).

Let n = 2p. An n× n-matrix A is an N -matrix (matrix of N -type) if p = 0 or if it has the block structure

A =

[

A11 A12

A21 A22

]

with
n

2
×

n

2
Rk -matrices A11, A12, A22 and N -matrix A21. (18)

Similarly, we define the transposed type: A is an N ∗-matrix if AT is of N -type, i.e., in (18) A11, A21, A22

are Rk -matrices and A12 is an N ∗-matrix (if p > 0). The set of these N - and N ∗-matrices is denoted by
MN ,k(I × I, P ′

2) and MN∗,k(I × I, P ′
2), respectively (or briefly, MN ,k,MN∗,k). The product of two matrices

of type N [or both of type N ∗] should be truncated into an Rk -matrix.
Then the H-matrices from MH,k(I × I, P ′

2) corresponding to the new block partitioning P ′
2 are defined in

Definition 5.1 A ∈ MH,k(I × I, P ′
2) if either n = 1 (p = 0) or if

A =

[

A11 A12

A21 A22

]

with A11, A22 ∈ MH,k, A12 ∈ MN ,k, A21 ∈ MN∗,k. (19)

Note that the 1 × 1-matrices possess all types; in particular, they are Rk -matrices. For p ≤ 2, the block
partitioning P ′

2, which is implicitly defined by (19), is the trivial partitioning into 1× 1-blocks. Larger blocks
appear the first time for p = 3 :

(20)

10

5.2 Complexity

Since the arguments are the same as explained in Section 3, we present the results without further explanations.
We abbreviate log2 n by p.

The number of blocks in B′
2 is Nblock = 9n− 6p − 8.

The number of data to be stored is Nstorage = 6pn + O(n).
Concerning the addition, the different combinations of types must be considered:

NRk+Rk, NN+Rk, NN+N = O(n), NH+Rk, NH+H = O(pn).

Matrix-vector multiplication:

NRk∗x = 3n + O(1), NN∗x = 11n + O(1), NH∗x = 11pn + O(n).

Matrix-matrix multiplication:

NRk∗Rk, NN∗Rk, NN∗N∗ = O(n), NH∗Rk, NH∗N = O(pn), NH∗H = O(p2n).

Inversion: Ninv = O(p2n).

5.3 Approximation of Integral Operators

We will use the newly defined H-matrices to approximate full matrices arising from integral operators as they
appear in the boundary element method. For the general structure of the integral operators we refer to [5],
[11]. The true background of this application is the fact that the inverse of the discretisation matrix arising
from an elliptic boundary value problem has properties quite similar to the discrete integral operator.

Replacing the integration over the surface simply by an integral over [0, 1] and choosing the simplest weakly
singular kernel κ(z) := log(z), we obtain the example

(Au) (x) :=

∫ 1

0

log(x − y)u(y)dy for x ∈ [0, 1].

A typical discretisation like the collocation method with piecewise constant elements for the equidistant9

interval partitioning
[xi−1, xi], xi = ih, i = 1, . . . , n, h = 1/n,

with the midpoints xi−1/2 = (i − 1/2)h of the intervals as collocation points leads to the matrix (discrete
operator)

A = (aij)i,j=1,...,n with aij =

∫ xj

xj−1

log(xi−1/2 − y)dy. (21)

As in the panel clustering method, one can replace the kernel function κ(x, y) = log(x − y) in a certain
range of x, y by an approximation κ̃(x, y) of the form

κ̃(x, y) =
∑

ι∈J
Xι(x)Yι(y). (22)

The simplest choice of such an approximation is Taylor’s formula applied with respect to y (then J =
{0, 1, . . . , k − 1}, Xι(x) = derivatives of κ(x, ·) evaluated at y = y∗ and Yι(y) = (y − y∗)ι). In this case, one
checks that κ(x, y) = log(x − y) leads to the error estimate

|κ(x, y) − κ̃(x, y)| ≤
1

k

1

(|x − y∗| − |y − y∗|)k
|y − y∗|k for |x − y∗| > |y − y∗|. (23)

Error estimates of this kind are studied more generally in the panel clustering technique (cf. [5, (9.7.12a,b)]).
Other expansions κ̃(x, y) than the Taylor polynomial are studied in [10].

If κ is replaced in (21) by κ̃, the integral becomes

ãij =
∑

ι∈J

Xι(xi−1/2)

∫ xj

xj−1

Yι(y)dy. (24)

9Non-equidistant partitionings work as well since additional factors according to the subinterval lengths are harmless because
of Remark 4.2.

11

Let b ∈ B′
2 be one block and restrict the indices i, j in (24) to b. Then (24) describes a block matrix Ãb.

Obviously, each term of the sum in (24) is an R1 -matrix [a, b] with ai = Xι(xi−1/2) and bj =
∫ xj

xj−1

Yι(y)dy.

Since #J = k, the block Ãb is of Rk -type.
The first 2×2-block of type Rk in (20) corresponds to 0 ≤ x ≤ 1/4 and 1/2 ≤ y ≤ 3/4. Choosing y∗ := 5/8,

we obtain |x − y∗| ≥ 3/8, |y − y∗| ≤ 1/8 and therefore

|y − y∗| ≤ η|x − y∗| (25)

with η = 1/3. One checks that (25) with η = 1/3 holds for all Rk -blocks in the H-matrix. The combination
of (23) and (25) yields

|κ(x, y) − κ̃(x, y)| ≤
1

k
(

η

1 − η
)k. (26)

Hence, the difference |aij − ãij | is bounded by h
k (η

1−η)k. In the special case of η = 1/3, we have |aij − ãij | ≤
h
k2−k. The maximum norm error satisfies ‖A − Ã‖∞ ≤ 2−k/k, where k corresponds to the choice of the
Rk -matrices.

We summarise:

Proposition 5.2 Approximate the collocation matrix A from (21) by (22)-(24). Then the resulting approx-
imation Ã is an H-matrix belonging to MH,k(I × I, B′

2) from Definition 5.1 and satisfies the error estimate

‖A − Ã‖∞ ≤ 2−k/k.

References

[1] S. A. Goreinov, E. E. Tyrtyshnikov, and A. Y. Yeremin: Matrix-free iterative solution strategies for large
dense linear systems. Numerical Linear Algebra with Applications 4 (1997) 273–294.

[2] W. Hackbusch: The panel clustering algorithm. MAFELAP 1990 (J. R. Whiteman, ed.). Academic Press,
London, 1990 (Uxbridge, April 1990) pp. 339–348.

[3] W. Hackbusch : The solution of large systems of BEM equations by the multi-grid and panel clustering
technique. Numerical Methods. Rend. Sem. Mat. Univers. Politecn. Torino. Libreria Editrice Universitaria
Levrotto & Bella, Torino, 1991 (Turin, June 1990) pp. 163–187.

[4] W. Hackbusch : Iterative Solution of Large Sparse Systems. Springer-Verlag, New York, 1994.

[5] W. Hackbusch : Integral Equations. Theory and Numerical Treatment. ISNM 128. Birkhäuser, Basel, 1995.

[6] W. Hackbusch and B.N. Khoromskij: A Sparse H-Matrix Arithmetic. Part II: Application to Multi-
Dimensional Problems. Computing 64 (2000) 21-47

[7] W. Hackbusch and Z. P. Nowak: On the fast matrix multiplication in the boundary element method by
panel clustering. Numer. Math. 54 (1989) 463–491.

[8] W. Hackbusch and S. A. Sauter: On the efficient use of the Galerkin method to solve Fredholm integral
equations. Applications of Mathematics 38 (1993) 301–322.

[9] C. Lage: Softwareentwicklung zur Randelementmethode: Analyse und Entwurf effizienter Techniken.
Dissertation, Universität Kiel 1996.

[10] C. Lage : Fast evaluation of singular kernel functions by cluster methods. In preparation (1998).

[11] S. A. Sauter: Über die effiziente Verwendung des Galerkin-Verfahrens zur Lösung Fredholmscher
Integralgleichungen. Dissertation, Universität Kiel 1992.

[12] E. E. Tyrtyshnikov: Mosaic-skeleton approximations. Calcolo 33 (1996) 47–57.

12

