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Abstract. We present a “parts and structure” model for object cate-
gory recognition that can be learnt efficiently and in a weakly-supervised
manner: the model is learnt from example images containing category in-
stances, without requiring segmentation from background clutter.

The model is a sparse representation of the object, and consists of a
star topology configuration of parts modeling the output of a variety of
feature detectors. The optimal choice of feature types (whose repertoire
includes interest points, curves and regions) is made automatically.

In recognition, the model may be applied efficiently in a complete
manner, bypassing the need for feature detectors, to give the globally
optimal match within a query image. The approach is demonstrated on
a wide variety of categories, and delivers both successful classification
and localization of the object within the image.

1 Introduction

A variety of models and methods exist for representing, learning and recogniz-
ing object categories in images. Many of these are variations on the “Parts and
Structure” model introduced by Fischler and Elschlager [10], though the modern
instantiations use scale-invariant image fragments [1,2,3,12,15,20,21]. The con-
stellation model [3,8,21] was the first to convincingly demonstrate that models
could be learnt from weakly-supervised unsegmented training images (i.e. the
only supervision information was that the image contained an instance of the
object category, but not the location of the instance in the image). Various types
of categories could be modeled, including those specified by tight spatial config-
urations (such as cars) and those specified by tight appearance exemplars (such
as spotted cats). The model was translation and scale invariant both in learning
and in recognition.
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However, the Constellation model of [8] has some serious short-comings,
namely: (i) The joint nature of the shape model results in an exponential explo-
sion in computational cost, limiting the number of parts and regions per image
that can be handled. For N feature detections, and P model parts the complexity
for both learning and recognition is O(NP ); (ii) Since only 20-30 regions per im-
age and 6 parts are permitted by this complexity, the model can only learn from
an incredibly sparse representation of the image. Good performance is therefore
highly dependent on the consistent firing of the feature detector; (iii) Only one
type of feature detector (a region operator) was used, making the model very
sensitive to the nature of the class. If the distinctive features of the category
happen, say, to be edge-based then relying on a region-based detector is likely
to give poor results (though this limitation was overcome in later work [9]); (iv)
The model has many parameters resulting in over-fitting unless a large number
of training images (typically 200+) are used.

Other models and methods have since been developed which have achieved
superior performance to the constellation model on at least a subset of the ob-
ject categories modeled in [8]. These models range from bag-of-word models
(where the words are vector quantized invariant descriptors) with no spatial or-
ganization [5,18], through to fragment based models [2,15] with particular spatial
configurations. The methods utilize a range of machine learning approaches EM,
SVMs and Adaboost.

In this paper we propose a heterogeneous star model (HSM) which main-
tains the simple training requirements of the constellation model, and also,
like the constellation model, gives a localization for the recognized object. The
model is translation and scale invariant both in learning and in recognition.
There are three main areas of innovation: (i) both in learning and recognition
it has a lower complexity than the constellation model. This enables both the
number of parts and the number of detected features to be increased substan-
tially; (ii) it is heterogeneous and is able to make the optimum selection of
feature types (here from a pool of three, including curves). This enables it to
better model objects with significant intra-class variation in appearance, but
less variation in outline (for example a guitar), or vice-versa; (iii) The recog-
nition stage can use feature detectors or can be complete in the manner of
Felzenswalb and Huttenlocher [6]. In the latter case there is no actual detec-
tion stage. Rather the model itself defines the areas of most relevance using a
matched filter. This complete search overcomes many false negatives due to fea-
ture drop out, and also poor localizations due to small feature displacement and
scale errors.

2 Approach

We describe here the structure of the heterogeneous star model, how it is learnt
from training data, and how it is applied to test data for recognition.
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2.1 Star Model

As in the constellation model of [8], our model has P parts and parameters
θ. From each image i, we extract N features with locations Xi; scales Si and
descriptors Di. In learning, the aim is to find the value of θ that maximizes the
log-likelihood over all images:

∑

i

log p(Xi,Di,Si|θ) (1)

Since N >> P , we introduce an assignment variable, h, to assign features to
parts in the model. The log-likelihood is obtained by marginalizing over h.

∑

i

log
∑

h

p(Xi,Di,Si,h|θ) (2)

In the constellation model, the joint density is factored as:

p(Xi,Di,Si,h|θ) = p(Di|h, θ)
︸ ︷︷ ︸

Appearance

p(Xi|Si,h, θ)
︸ ︷︷ ︸

Rel. Locations

p(Si|h, θ)
︸ ︷︷ ︸

Rel. Scale

p(h|θ)
︸ ︷︷ ︸

Occlusion

(3)

In [8], the appearance model for each part is assumed independent but the rel-
ative location of the model parts is represented by a joint Gaussian density.
While this provides the most thorough description, it makes the location of all
parts dependent on one another. Consequently, the EM-based learning scheme,
which entails marginalizing over p(h|Xi,Di,Si, θ), becomes an O(NP ) opera-
tion. We propose here a simplified configuration model in which the location of
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Fig. 1. (a) Fully-connected six part shape model. Each node is a model part while
the edges represent the dependencies between parts. (b) A six part Star model. The
former has complexity O(NP ) while the latter has complexity O(N2

P ) which may be
further improved in recognition by the use of distance-transforms [6] to O(NP ).

the model part is conditioned on the location of a landmark part. Under this
model the non-landmark parts are independent of one another given the land-
mark. In graphical model terms, this is a tree of depth one, with the landmark
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part being the root node. We call this the “star” model. A similar model, where
the reference frame acts as a landmark is used by Lowe [16] and was studied in a
probabilistic framework by Moreels et al. [17]. Figure 1 illustrates the differences
between the full and star models. In the star model the joint probability of the
configuration aspect of the model may be factored as:

p(X|S,h, θ) = p(xL|hL)
∏

j �=L

p(xj |xL, sL, hj , θj) (4)

where xj is the position of part j and L is the landmark part. We adopt a
Gaussian model for p(xj |xL, sL, hj , θj) which depends only on the relative posi-
tion and scale between each part and the landmark. The reduced dependencies
of this model mean that the marginalization in Eqn. 2 is O(N2P ), in theory
allowing us to cope with a larger N and P in learning and recognition.

In practical terms, we can achieve translation invariance by subtracting the
location of the landmark part from the non-landmark ones. Scale invariance
is achieved by dividing the location of the non-landmark parts by the locally
measured scale of the landmark part.

It is useful to examine what has been lost in the star compared to the constel-
lation model of [8]. In the star model any of the leaf (i.e. non-landmark) parts
can be occluded, but (as discussed below) we impose the condition that the land-
mark part must always be present. With small N this can lead to a model with
artificially high variance, but as N increases this ceases to be a problem (since
the landmark is increasingly likely to actually be detected). In the constellation
model any or several parts can be occluded. This is a powerful feature: not only
does it make the model robust to the inadequacies of the feature detector but it
also assists the convergence properties of the model by enabling a subset of the
parts to be fitted rather than all simultaneously.

The star model does have other benefits though, in that it has less parameters
so that the model can be trained on fewer images without over-fitting occurring.

2.2 Heterogeneous Features

By constraining the model to operate in both learning and recognition from the
sparse outputs of a feature detector, good performance is highly dependent on
the detector finding parts of the object that are characteristic and distinctive
of the class. The majority of approaches using feature-based methods rely on
region detectors such as Kadir and Brady or multi-scale Harris [11,13] which
favour interest points or circular regions. However, for certain classes such as
bottles or mugs, the outline of the object is more informative than the textured
regions on the interior. Curves have been used to a limited extent in previous
models for object categories, for example both Fergus et al. [9] and Jurie &
Schmid [12] introduce curves as a feature type. However, in both cases the model
was constrained to being homogeneous, i.e. consisting only of curves. Here the
models can utilize a combination of different features detectors, the optimal
selection being made automatically. This makes the scheme far more tolerant to
the type of category to be learnt.
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Fig. 2. Output of three different feature detectors on two airplane images. (a) Curves.
(b) Kadir & Brady. (c) Multi-scale Harris.

In our scheme, we have a choice of three feature types: Kadir & Brady; multi-
scale Harris and Curves. Figure 2 shows examples of these 3 operators on two
sample airplane images. The detectors were chosen since they are somewhat com-
plementary in their properties: Kadir & Brady favours circular regions; multi-
scale Harris prefers interest points, and curves locate the outline of the object.

To be able to learn different combinations of features we use the same rep-
resentation for all types. Inspired by the performance of PCA-SIFT in region
matching [14], we utilize a gradient-based PCA approach in contrast to the
intensity-based PCA approach of [8]. Both the region operators give a location
and scale for each feature. Each feature is cropped from the image (using a square
mask); rescaled to a k×k patch; has its gradient computed and then normalized
to remove intensity differences. Note that we do not perform any orientation
normalization as in [14]. The outcome is a vector of length 2k2, with the first k

elements representing the x derivative, and the second k the y derivatives. The
derivatives are computed by symmetric finite difference (cropping to avoid edge
effects).

The normalized gradient-patch is then projected into a fixed PCA basis1 of
d dimensions. Two additional measurements are made for each gradient-patch:
its unnormalized energy and the reconstruction error between the point in the
PCA basis and the original gradient-patch. Each region is thus represented by a
vector of length d + 2.

Curve features are extracted in the same manner as [9]: a Canny edge detector
is run over the image; the edgels are grouped into chains; each chain is then

1 The fixed basis was computed from patches extracted using all Kadir and Brady
regions found on all the training images of Motorbikes; Faces; Airplanes; Cars (Rear);
Leopards and Caltech background.
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broken at its bitangent points to give a curve. Since the chain may have multiple
bitangent points, each chain may result in multiple curves (which may overlap
in portions). Curves which are very straight tend to be uninformative and are
discarded.

The curves are then represented in the same way as the regions. Each curve’s
location is taken as its centroid with the scale being its length. The region around
the curve is then cropped from the image and processed in the manner described
above. We use the curve as an feature detector, modeling the textured region
around the curve, rather than the curve itself. Modeling the actual shape of the
curve, as was done in [9], proved to be uninformative, in part due to the difficulty
of extracting the contours consistently enough.

2.3 Learning the Model

Learning a heterogeneous star model (HSM) can be approached in several ways.
One method is to learn a fully connected constellation model using EM [8] and
then reduce the learnt spatial model to a star by completely trying out each of
the parts as a landmark, and picking the one which gives the highest likelihood
on the training data. The limitation of this approach is that the fully connected
model can only handle a small number of parts and detections in learning. The
second method, which we adopt, is to learn the HSM directly using EM as in
[8,21], starting from randomly-chosen initial conditions, enabling the learning of
many more parts and with more detections/image.

Due to the more flexible nature of the HSM, successful learning depends on
a number of factors: To avoid combinatorics inherent in parameter space and
to ensure the good convergence properties of the model, an ordering constraint
is imposed on the locations of the model parts (e.g. the x-coordinates must
be increasing). However, to enable the landmark part to select the most stable
feature on the object (recall that we force it to always be present), the land-
mark is not subject to this constraint. Additionally, each part is only allowed
to pick features of a pre-defined type and the ordering constraint only applies
within parts of the same type. This avoids over-constraining the shape model.
Imposing these constraints prevents exact marginalization in O(N2P ), however
by using efficient search methods, an approximation can be computed using all
hypotheses within a threshold δ of the best hypothesis that obeys the constraint
(δ = e−10 in our experiments). In Figure 3, the mean time per iteration per
frame in learning is shown as N and P are varied. In Figure 3(a) P is fixed at 6
and N varied from 20 up to 200 while recording the mean time per image over
all EM iterations in learning. The curve has a quadratic shape with the time per
image still respectable even for N = 200. It should be noted that a full model
cannot be learnt with N > 25 due to memory requirements. In Figure 3(b) N is
fixed at 20 and P varied from 2 to 13 with the mean time per image plotted on a
log-scale y-axis. The curve for the full model is a straight line as expected from
the O(NP ) complexity, stopping at P = 7 owing to the memory overhead. The
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Fig. 3. Plots showing the learning time for a star model with different numbers of
parts (P ) and detections per image (N). (a) P fixed to 6 and N varied from 20 to
200. The curve has a quadratic shape, with a reasonable time even for N = 200. (b)
N fixed to 20 and P varied from 2 to 13, with a logarithmic time axis. The full model
is shown with a dashed line and the star model with a solid line. While both show
roughly exponential behavior (i.e. linear in the log-domain), the star model’s curve is
much flatter than the full model.

star model’s curve, while also roughly linear, has a much flatter gradient: a 12
part star model taking the same time to learn as a 6 part full model.

The optimal choice of feature types is made using a validation set. For each
dataset, given a pre-defined number of parts, seven models each with differ-
ent combinations of types are learnt: Kadir & Brady (KB); multi-Scale Harris
(MSH); Curves (C); KB + MSH; KB + C; MSH + C; KB + MSH + C. In
each case, the parts are split evenly between types. In cases where the dataset
is small and the validation set would be too small to give an accurate estimate
of the error, the performance on the training set was used to select the best
combination.

Learning is fairly robust, except when a completely inappropriate choice of
feature type was made in which case the model occasionally failed to converge,
despite multiple re-runs. A major advantage of the HSM is the speed of learning.
For a 6 part model with 20 detections/feature-type/image the HSM typically
takes 10 minutes to converge, as opposed to the 24 hours of the fully connected
model – roughly the same time as a 12 part, 100 detections/feature-type/image
would with the HSM. Timings are for a 2Ghz Pentium 4.

2.4 Recognition Using Features

For the HSM, as with the fully connected Constellation Model of [8], recogni-
tion proceeds in a similar manner to the learning process. For a query image,
regions/curves are first found using a feature detector. The learnt model is then
applied to the regions/curves and the likelihood of the best hypothesis com-
puted using the learnt model. This likelihood is then compared to a threshold
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to determine if the object is present or not in the image. Note that as no order-
ing constraint is needed (since no parameters are updated), this is an O(N2P )
operation.

Good performance is dependent on the features firing consistently across dif-
ferent object instances and varying transformations. To ensure this, one approach
is to use a very large number of regions, however the problem remains that each
feature will still be perturbed slightly in location and scale from its optimal posi-
tion so degrading the quality of the match obtainable by the model. We address
these issues in the next section.

2.5 Complete Recognition Without Features

Relying on unbiased, crude feature detectors in learning is a necessary evil if
we wish to learn without supervision: we have no prior knowledge of what may
or may not be informative in the image but we need a sparse representation to
reduce the complexity of the image sufficiently for the model learning to pick out
consistent structure. However in recognition, the situation is different. Having
learnt a model, the appearance densities model the regions of the image we
wish to find. Our complete approach relies on these densities having distinctive
mean and a sufficiently tight variance so that they can be used for soft template
matching.

The scheme, based on Feltzenswalb and Huttenlocher [6], proceeds in two
phases: first, the appearance densities are run completely over the entire image
(and at different scales). At each location and scale, we compute the likelihood
ratio for each part. Second, we take advantage of the Star model for location
and employ the efficient matching scheme proposed by [6], which enables the
global maximum of both appearance and location to be found within the image.
The global match found is clearly superior to the maximum over a sparse set of
regions. Additionally, it allows us to precisely localize the object (and its parts)
within the image. See figure 4 for an example.

In more detail, each PCA basis vector is convolved with the image (employing
appropriate normalizations), so projecting every patch in the image into the PCA
basis. While this is expensive (O(k2N), where N is now the number of pixels in
the image and k is the patch size) this only needs to be performed once regardless
of the number of category models that will evaluate the image. For a given model,
the likelihood ratio of each part’s appearance density to the background density
is then computed at every location, giving a likelihood-ratio map over the entire
image for that part. The cost is O(dN), where the dimension of the PCA space,
d is much less than k2.

We then introduce the shape model, which by the use of distance transforms
[6], reduces the cost of finding the optimal match from O(N2P ) to O(NP ). Note
that we cannot use this trick in learning since we need to marginalize out over
all possible matches, not just the optimal. Additionally, the efficient matching
scheme requires that the location model be a tree. No ordering constraint is
applied to the part locations hence the approximations necessary in learning are
not needed.
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Fig. 4. An example of the complete recognition operation on a query image. (a) A
mosaic query image. (b) First five descriptor densities of a 5 part face model (black
is background density). (c) Overall matching probability (red is higher). The global
optimum indicated by the white circle, while the magenta +’s show the maximum of
each part’s response. Note they are not in the same location, illustrating the effect of
the shape term. (d) Close-up of optimal fit with shape model superimposed. Crosses
indicates matched location of each part, with the squares showing their scale. The
ellipses show the variance of the shape model at 1 standard deviation.

3 Experiments

We investigate the performance of the HSM in a number of ways: (i) we compare
to the fully connected model; (ii) the effect of increasing the number of parts
and detections/image; (iii) the difference between feature-based and complete
recognition.

3.1 Datasets

Our experiments use a variety of datasets. Evaluation of the HSM using feature-
based detection is done using nine widely varying, unnormalized, datasets
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summarized in Table 1. While some are relatively consistent in nature (Mo-
torbikes, Faces) others were collected from Google’s image search and are not
normalized in any way so are highly variable (Camels, Bottles). Guitars and
Houses are two diverse datasets, the latter of which is highly variable in nature.
The negative test set consists of a variety of scenes around Caltech. All datasets
are available from our website [7]. In recognition, the test is a simple object
present/absent with the performance evaluated by comparing the equal error
rates (p(Detection)=1-p(False Alarm)). To test the difference between feature-

Table 1. A comparison between the star model and the fully connected model across
9 datasets, comparing test equal error rate. All models used 6 parts, 20 Kadir & Brady
detections/image. In general, the drop in performance is a few percent when using the
simpler star model. The high error rate for some classes is due to the inappropriate
choice of feature type.

Total size Full model Star model
Dataset of dataset test error (%) test error (%)

Airplanes 800 6.4 6.8
Bottles 247 23.6 27.5
Camels 350 23.0 25.7

Cars (Rear) 900 15.8 12.3
Faces 435 9.7 11.9

Guitars 800 7.6 8.3
Houses 800 19.0 21.1

Leopards 200 12.0 15.0
Motorbikes 900 2.7 4.0

based and complete recognition where localization performance is important, the
UIUC Cars (Side) dataset [1] is used. In this case the evaluation in recognition
involves localizing multiple instances of the object.

3.2 Comparison of HSM and Full Model

We compare the HSM directly with the fully connected model [8], seeing how
the recognition performance drops when the configuration representation is sim-
plified. The results are shown in Table 1. It is pleasing to see that the drop in
performance is relatively small, only a few percent at most. The performance
even increases slightly in cases where the shape model is unimportant. Figures
6-9 show star models for guitars, bottles and houses.

3.3 Heterogeneous Part Experiments

Here we fixed all models to use 6 parts and have 40 detections/feature-type/frame.
Table 2 shows the different combinations of features which were tried, along with
the best one picked by means of the training/validation set. We see a dramatic
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difference in performance between different feature types. It is interesting to note
that several of the classes perform best with all three feature types present. Figure
6 shows a heterogenous star model for Cars (Rear).

Table 2. The effect of using a combination of feature types on test equal error rate.
Key: KB = Kadir & Brady; MSH = Multi-scale Harris; C = Curves. All models had
6 parts and 40 detection/feature-type/image. Figure in bold is combination automati-
cally chosen by training/validation set.

Dataset KB MSH C KB,MSH KB,C MSH,C KB,MSH,C

Airplanes 6.3 22.5 27.5 11.3 13.5 18.3 12.5
Bottles 24.2 23.3 17.5 24.2 20.8 15.0 17.5
Camel 25.7 20.6 26.9 24.6 24.0 22.9 24.6

Cars (Rear) 11.8 6.0 5.0 2.8 4.0 5.3 2.3
Faces 10.6 16.6 17.1 12.0 13.8 12.9 10.6

Guitars 6.3 12.8 26.0 8.5 9.3 18.8 12.0
Houses 17.0 22.5 36.5 20.8 23.8 26.3 20.5

Leopards 14.0 18.0 45.0 13.0 23.0 23.0 18.0
Motorbikes 3.3 3.8 8.8 3.0 3.3 3.8 3.5

3.4 Number of Parts and Detections

Taking advantage of the efficient nature of the star model, we now investigate
how the performance alters as the number of parts and the number of detections/
feature-type/frame is varied. The choice of features-types for each dataset is fixed
for these experiments, using the optimal combination, as chosen in Table 2.
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Fig. 5. (a) Test equal error rate versus number of parts, P , in the star model for
40 detections/feature-type/image. (b) Test equal error rate versus the number of
detections/feature-type/image, N , for 8 part star models. In both cases the combi-
nations of feature-types used was picked for each dataset from the results in Table 2
and fixed.
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Fig. 6. An 8 part heterogeneous star model for Cars (Rear), using all three feature
types (Kadir & Brady (K); multi-Scale Harris (H); Curves (C)) Top left: Detection in
a test image with the spatial configuration model overlaid. The coloured dots indicate
the centers of regions (K or H) chosen by the hypothesis with the highest likelihood.
The thick curve in red is the curve selected by one of the curve parts – the other curve
part being unassigned in this example. The magenta dots and thin magenta curves are
the centers of regions and curves assigned to the background model. The ellipses of
the spatial model show the variance in location of each part. The landmark detection
is the top left red one. Top right: 7 patches closest to the mean of the appearance
density for each part, along with the determinant of the variance matrix, so as to give
an idea of the relative tightness of each distribution. The colour of the text corresponds
to the colour of the dots in the other panels. The letter by each row indicates the type
of each part. Bottom panel: More detection examples. Same as top left, but without
the spatial model overlaid. The size of the coloured circles and diamonds indicate the
scale of regions in the best hypothesis. The test error for this model is 4.5%.
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Part 1 − Det: 6x10−29

Part 2 − Det: 1x10−30

Part 3 − Det: 4x10−29

Part 4 − Det: 6x10−31

Part 5 − Det: 2x10−30

Part 6 − Det: 4x10−30

Part 7 − Det: 6x10−29

Part 8 − Det: 1x10−28

K

K

K

K

K

K

K

K

Fig. 7. An 8 part model for Guitars, using 40 Kadir & Brady features per image. 6.3%
test error.

As the number of parts in the model is increased (for a fixed number of de-
tections/frame) some of the categories show a slight change in performance but
many remain constant. Examination of the models reveals that many of the ad-
ditional parts do not find stable features on the object, suggesting that more
features on the image are required. Increasing the number of detections/feature-
type/image increases the error rate slightly in some cases such as camels, since
many of the additional detections lie in the background of the image, so increas-
ing the chances of a false positive. With a suitable combination of feature-types
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Part 2 − Det: 3x10-30

Part 3 − Det: 1x10-30

Part 4 − Det: 2x10-30

Part 5 − Det: 7x10-30

Part 6 − Det: 3x10-32

Part 1 − Det: 3x10-30

C

H

C

C

H

H

Fig. 8. A 6 part model for Bottles, using a maximum of 20 Harris regions and 20
Curves per image. 14.2% test error.

however, the increased number of parts and detections can give a more complete
coverage of the object, improving performance (e.g. Cars (Rear) where the error
drops from 4.5% at 8 parts to 1.8% with 12 parts, using 40 detections/image of
all 3 feature types).

3.5 Complete Search Experiments

We now investigate the performance of feature-based recognition versus the com-
plete approach. Taking the 8-part Cars (Rear) model shown in Figure 6, we apply
it completely to the same test set resulting in the equal error rate dropping from
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Fig. 9. A 10 part model for Houses, using 40 Kadir & Brady features per image. 16.5%
test error.

4.5% to 1.8%. Detection examples for the complete approach are shown in Figure
11, with the ROC curves for the two approaches shown in Figure 11(b).

The localization ability of the complete approach is tested on the Cars (Side)
dataset, shown in Figure 10. A fully connected model (Figures 10 (a) & (b))
was learnt and then decomposed into a star model and run completely over
the test set. An error rate of 7.8% was achieved – a decrease from the 11.5%
obtained with a fully connected model using feature-based detection in [8]. The
performance gain shows the benefits of using the complete approach despite the
use of a weaker shape model. Examples of the complete star model localizing
multiple object instances can be seen in Figure 10(c).
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(a)

Part 1 − Det: 7x10−27

Part 2 − Det: 3x10−35

Part 3 − Det: 5x10−29

Part 4 − Det: 3x10−28

Part 5 − Det: 6x10−29

Part 6 − Det: 3x10−35

K

K

K

K

K

K

(b)

(c)

(d)

Fig. 10. (a) & (b) A 6 part model Cars (Side), learnt using Kadir & Brady features.
(c) Examples of the model localizing multiple object instances by complete search.
(d) Comparison between feature-based and complete localization for Cars (Side). The
solid recall-precision curve is [1]; the dashed line is the fully connected shape model
with feature-based detection [8] and the dotted line is the complete-search approach
with star model, using the model shown in (a) & (b). The equal error rate of 11.5%
from [8] drops to 7.8% when using the complete search with the star model.
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Fig. 11. (a) Detection examples of the 8 part Cars (Rear) model from Figure 6 be-
ing used completely. (b) ROC curves comparing feature-based (dashed) and complete
detection (solid) for the 8 part Cars (Rear) model in Figure 6. Equal error improves
from 4.5% for feature-based to 1.8% for complete.

4 Summary and Conclusions

We have presented a heterogeneous star model. This model retains the impor-
tant capabilities of the constellation model [8,21], namely that it is able to learn
from unsegmented and unnormalized training data; and in recognition on unseen
images it is able to localize the detected model instance. The HSM outperforms
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the constellation model on almost all of the six datasets presented in [8]. It is
also faster to learn, and faster to recognize (having O(NP ) complexity in recog-
nition rather than the O(NP ) of the constellation model). We have also demon-
strated the model on many other object categories varying over compactness
and shape. Note that while other models and methods have achieved superior
performance to [8], for example [5,15,18,19], they are unable to both learn in a
weakly-supervised manner and localize in recognition.

There are several aspects of the model that we wish to improve and investi-
gate. Although we have restricted the model to a star topology, the approach is
applicable to a trees and k-fans [4], and it will be interesting to determine which
topologies are best suited to which type of object category.
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