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ABSTRACT OF THE DISSERTATION

A Sparse Optimization Framework for the Numerical Solution of

PDEs

by

Ömer Faruk Tekin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2016

Professor Russel E. Caflisch, Chair

This dissertation studies the extension of sparse optimization techniques to the numerical

solution of partial differential equations for applications in scientific computing, in particular

many-particle systems that are governed by a differential equation. Sparse optimization

techniques have attracted much attention due to their substantial computational efficiency

and feasibility for large-scale problems such as image processing, compressed sensing, and

machine learning. In this dissertation, ℓ1-minimization scheme has been studied for the

solutions of elliptic and parabolic differential equations. Theoretical considerations for the

effectiveness of the scheme, such as the sparsity properties, completeness, consistency, and

the asymptotic behavior of the solutions are analyzed.
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CHAPTER 1

Introduction

It is very well known in many applications in machine learning such as Lasso regression [43],

compressed sensing [19], matrix rank minimization [31, 36] and principal component anal-

ysis [12] that addition of ℓ1 (or related quantity) to the optimization problems promotes

a sparse structure for the solutions [13, 14]. Such problems are generally referred as ℓ1-

minimization problems, and the ℓ1 term appears either as a constraint, or as a penalty term

to the objective functional.

Until very recently, the applications of ℓ1-minimization techniques were limited to dis-

crete problems and the theoretical foundations are treated mostly from a combinatorial

perspective. In [39], Schaeffer et al. introduced ℓ1-minimization for applications in contin-

uous systems such as PDEs, whereas the underlying ℓ1-minimization is carried out in the

spectral coefficients forming a discrete set. On the other hand, Ozolins et al. [33, 34] in-

troduced ℓ1-minimization on the spatial variable with applications in variational problems

in mathematical physics such as the Schrödinger’s equation in quantum mechanics, as well

as to obtain wavelets [18] adapted to differential operators. The concept of spatial localiza-

tion for basis functions have been introduced [46], and are called Wannier functions. The

fundamental idea in [33, 34] is to promote spatial localization in variational problems by

modifying the objective functional by a quantity related to the L1 norm. Here, L1 norm is

the continuous analogue of ℓ1 norm, whereas the spatial localization and compact support is

regarded as the continuous analogue of sparsity. This approach introduced many interesting

problems for both theoretical and practical considerations. Properties of the solution to

the modified continuous problem can be studied in the mathematical analysis and partial

differential equations context, whereas the numerical computations can be carried out via
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efficient algorithms designed for sparse structures in the convex optimization, and machine

learning context. This thesis consists of the study of theoretical aspects of the solutions

to such continuous problems, and the design of algorithms to numerically compute these

solutions. It is organized as follows.

In Chapter 2, motivated from the variational formulations of the eigenvalues of elliptic

operators, the spectral properties of the solutions of L1-penalized variational problems for

elliptic operators are studied. The results are shown to be applicable for Compressed Modes

(CM) and Compressed Plane Waves (CPW), which are devised to obtain a spatially localized

basis for elliptic differential operators with multi-resolution capabilities. In particular, it is

shown in Chapter 2 that the CMs and CPWs have proper approximation properties that

make them viable for basis functions.

Chapter 3 focuses on the quantitative and asymptotic analysis of the energy of the so-

lutions of L1-penalized variational problems for elliptic operators. The analysis leads to an

analogue of the Weyl’s Law, as well as the stability of the energy quantity in terms of the

L1-penalization parameter.

The aim of Chapter 4 is to explore the support and regularity properties by studying the

associated Euler-Lagrange equations. The results are first demonstrated in a general setting,

and narrowed down for applications to CMs and CPWs.

Finally in Chapter 5, I consider parabolic problems with weighted L1-penalization terms.

In particular, the compact support phenomenon in both time and space variables are verified.

Furthermore, numerical schemes are provided for solving such problems.
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CHAPTER 2

Completeness Results

2.1 Introduction

The purpose of this section is to provide a framework for the verification of the completeness

properties of the Compressed Modes (CM) and Compressed Plane Waves (CPW) introduced

in [33, 34]. We consider the problem in a general functional analytic setting, and apply the

corresponding results for CMs and CPWs. This chapter is taken with slight modification

from [42].

We begin with the observation that the definition of CM and CPW is a variant of the

Courant variational method (see e.g. [9, 20]). Namely, the Courant variational method

characterizes the Dirichlet eigenvalues and eigenvectors of a second-order symmetric elliptic

operator L defined on a bounded domain Ω ⊂ R
d

Lu = λu in Ω,

u = 0 on ∂Ω.

via a hierarchical variational procedure involving the minimization of the objective functional

B[u, u] = 〈Lu, u〉L2 . As for the CMs and CPWs, the main difference is that the objective

functional is modified by an L1 regularization term. We treat this modification term as an

arbitrary non-negative functional that satisfies certain boundedness criteria, and it turns out

that the L1 term has no discernible effect on completeness phenomenon. It is important to

note that a perturbation on the objective functional may not result in a unique differential

operator, for which the solutions are eigenfunctions. Therefore, the classical results in per-

turbation theory regarding the study of the spectral properties [29, 37] are not applicable

for CMs and CPWs.
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To put it in a general functional analytic setting, we would like to prove an analogue of

the spectral theorem for a self-adjoint operator T when the modes (generalized eigenvectors)

are computed as the minimizers of an objective functional of the following form

J (u) := P (u) + 〈Tu, u〉,

where P is a non-negative penalty term. To tackle the technicalities associated with the

above objective functional, we briefly discuss basic functional analytic facts in Section 2.2.

We prove that an analogue of the spectral theorem holds provided that the eigenvalues

of the operator grows sufficiently fast. In particular, the growth condition holds when T is

the weak realization of an elliptic operator on a bounded domain Ω lying inside R or R2.

The results presented in this chapter are further refinements of the results in [48, 4],

where the authors provide error estimates for CMs. A closely related study on spectral

properties for problems with L1 type terms is [24], where the spectral theory for evolution

equations with the total variation (TV) flow is developed for applications in image filtering

where traditional filtering approaches are not applicable due to the geometry of the images.

2.2 Perturbed variational problems associated to linear operators

The proof of the spectral theorem for elliptic operators relies on the fact that the “inverse”

of the elliptic differential operator is compact. The spectral theorem for symmetric compact

operators in stated as follows.

Theorem 2.2.1 ( Spectral Theorem for Compact Operators). Let H be a Hilbert space, and

K : H → H be a linear symmetric compact operator. Then,

1. K has real eigenvalues νk, and νk → 0 as k → ∞,

2. The (normalized) eigenvectors {φk}∞k=1, with Kφk = νkφk, form a complete orthonor-

mal system in H.

As a consequence of the above spectral theorem, the inverse T , of a positive compact

operator K satisfies the following spectral theorem.
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Theorem 2.2.2 (Spectral Theorem for Inverse-Compact Operators). Let H be a Hilbert

space, and K : H → H be a linear bijective symmetric compact operator, that is also bounded

below. Then, T = K−1 satisfies the following properties

1. T has real eigenvalues λk, with {λk}∞k=1 in increasing order, and λk → +∞ as k → ∞,

2. The (normalized) eigenvectors {φk}∞k=1, with Tφk = λkφk, form a complete orthonormal

system.

Remark 2.2.3. Notice that the operator T defined in Theorem 2.2.2 is unbounded, hence

T must have a domain of definition, D(T ), for which it is self-adjoint. We consider the

following natural choice of the domain of definition,

D(T ) = {α =
∑

n∈N
α̂nφn ∈ H|

∑

n∈N
λnα̂nφn ∈ H, or equivalently,

∑

n∈N
λ2n|α̂n|2 <∞},

in which there is no ambiguity of the definition of T .

We now work with the operators T that can be represented as the inverse of some bijective

symmetric compact operator. The eigenvalues and eigenvectors of T can be characterized

via the following Courant-Fisher variational formulae (see e.g. [9])

λ1 = min
u∈D(T )
||u||=1

〈Tu, u〉,

φ1 = argmin
u∈D(T )
||u||=1

〈Tu, u〉,

λk = min
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉,

φk = argmin
u∈D(T )

u∈{φ1,...,φk−1}⊥
||u||=1

〈Tu, u〉.

We consider a similar variational problem, where we perturb the objective functional

〈Tu, u〉. Strictly speaking, we define

J [u] = 〈Tu, u〉+ P (u),

5



where P : H → R is a non-negative penalty term. We view the term J [u] as the “energy” of

the element u, and run a progressive energy-minimization procedure as in the Courant-Fisher

formulae. In other words, we define

ζ1 = argmin
u∈D(T )
||u||=1

J [u],

(2.2.1)

ζk = argmin
u∈D(T )

u∈{ζ1,...,ζk−1}⊥
||u||=1

J [u].

In case of a non-uniqueness in the minimization above, we define ζk to be one of the

solutions to the corresponding minimization problem. To ensure the existence of ζk’s, we

impose that P is bounded and lower semi-continuous with respect to the norm-convergence,

in the sense that

P (u) ≤ C||u||,
(2.2.2)

||un − u|| → 0 =⇒ P (u) ≤ lim inf P (un).

The smallest constant C satisfying the boundedness of P is the functional norm of P ,

and is denoted by ||P ||.

We require that the eigenvectors of T , i.e. {φn}n∈N, form a complete orthonormal system

in H. We conjecture that as long as the perturbation satisfies the existence criteria (2.2.2),

such a spectral result still holds

Conjecture. The set {ζn}n∈N obtained via the variational procedure (2.2.1) forms a com-

plete orthonormal system in H.

This section mainly focuses on verifying this conjecture under certain growth assumptions

on the eigenvalues λn. In order to verify this conjecture, one needs to show that

φk ∈ span{ζn}n∈N ∀k ∈ N, (2.2.3)

where spanE denotes the space consisting of the finite linear combinations of the elements

in E. The following Hilbert theoretic result quantifies the relation (2.2.3).

6



Lemma 2.2.4. Let {en}n∈N be a maximal orthonormal system in a Hilbert space H. Let

{fn}n∈N be an orthonormal system in H. Assume that each fn has the expansion

fn =
∑

k∈N
an,kek, an,k ∈ C.

Then, for each k ∈ N,

d(ek, span{fn})2 = 1−
∑

n∈N
|an,k|2,

where d(e,M) denotes the distance between an element e ∈ H, and a linear subspace M of

H.

Proof. Let w be the projection of ek onto span{fn}n∈N. Then, since {fn}n∈N is an orthonor-

mal system, w is given by

w =
∑

n∈N
〈ek, fn〉fn

=
∑

n∈N
〈ek,

∑

j

an,jej〉fn

=
∑

n∈N
an,kfn.

Hence, we can compute the size of w

||w||2 =
∑

n∈N
|an,k|2. (2.2.4)

Note by the property of the projection that ek − w ⊥ w, therefore, by the Pythagorean

identity, we have

||ek||2 = ||ek − w||2 + ||w||2. (2.2.5)

Notice also that w, being the projection of ek onto span{fn}n∈N, is the closest point to ek

inside span{fn}n∈N, so that

d(ek, span{fn})2 = ||ek − w||2. (2.2.6)

Combining (2.2.4)-(2.2.6), we get

d(ek, span{fn})2 = ||ek||2 − ||w||2 = 1−
∑

n∈N
|an,k|2,

as desired.
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Corollary 2.2.5. Let {en}n∈N, {fn}n∈N, an,k be as in Lemma 2.2.4. Then, for each k ∈ N,

∑

n∈N
|an,k|2 ≤ 1, (2.2.7)

and

ek ∈ span{fn} ⇐⇒
∑

n∈N
|an,k|2 = 1.

The following lemma yields an estimate for the elements that are lying inside the or-

thogonal complement of any arbitrary orthonormal system, in terms of the deviation of their

functional values from the sum of the eigenvalues corresponding to the true eigenstates. This

deviation is denoted by R(N) (see the inequality (2.2.8).

Lemma 2.2.6. Let φn be the eigenvectors of the operator T , with the corresponding eigen-

values {λn}n∈N being in increasing order. Let {en}n∈N be an orthonormal system satisfying

N
∑

n=1

〈Ten, en〉 ≤ R(N) +
N
∑

n=1

λn ∀N ∈ N. (2.2.8)

Suppose that there exists f ∈ {en}⊥n∈N, ||f || = 1, with the expansion

f =
∑

n∈N
fnφn, fn ∈ C.

Then, we have
N
∑

n=1

|fn|2(λN+1 − λn) ≤ R(N), ∀N ∈ N. (2.2.9)

Proof. Let {an,k}n,k∈N denote the coefficients when en expanded in the basis {φk}k∈N, i.e.

en =
∑

k∈N
an,kφk.

Applying the result (2.2.7) of Lemma 2.2.4 to the orthonormal systems {en}n∈N ∪ {f},
and {φn}n∈N, for each k ∈ N, we get

∑

n∈N
|an,k|2 ≤ 1− |fk|2. (2.2.10)

By the bilinearity of the inner product,

〈Ten, en〉 =
∞
∑

k=1

|an,k|2λk.

8



Hence,
N
∑

n=1

〈Ten, en〉 =
∞
∑

k=1

(

N
∑

n=1

|an,k|2
)

λk. (2.2.11)

Since en’s have norm 1, in the expression (2.2.11), the coefficients of λk summed over k equals

N . Given that the λk’s are in the increasing order, the expression (2.2.11) is minimized when

the coefficients of λk are maximized for small k. Having the constraint (2.2.10), we get

N
∑

n=1

〈Ten, en〉 =
∞
∑

k=1

(

N
∑

n=1

|an,k|2
)

λk ≥
N
∑

k=1

(

1− |fk|2
)

λk + λN+1

N
∑

k=1

|fk|2.

Combining this, with the inequality (2.2.8) we get

N
∑

n=1

λn +R(N) ≥
N
∑

n=1

〈Ten, en〉 ≥
N
∑

n=1

(

1− |fn|2
)

λn + λN+1

N
∑

n=1

|fn|2,

which implies
N
∑

n=1

|fn|2(λN+1 − λn) ≤ R(N),

as desired.

Lemma 2.2.6 will be essential for proving the completeness result. The estimate (2.2.9)

provides us an understanding of the elements lying inside the orthogonal complement in

terms of R(N), and the eigenvalues of T . If the estimate (2.2.9) is incompatible with the

growth of eigenvalues, then we deduce that the orthogonal complement is empty, and hence

the orthonormal system is maximal.

The next lemma provides an estimate for the deviation of the functional values of ζn,

from the eigenvalues corresponding to the true eigenstates, hence Lemma 2.2.6 is applicable.

Lemma 2.2.7. Let {ζn}n∈N be the solutions to the variational procedure (2.2.1). Let {λn}n∈N
be the eigenvalues of T , in increasing order. Then,

J [ζn] ≤ λn + ||P ||.

In particular, we have

N
∑

n=1

〈Tζn, ζn〉 ≤
N
∑

n=1

J [ζn] ≤
N
∑

n=1

λn + ||P ||N. (2.2.12)

9



Proof. Let {an,k}n,k∈N denote the coefficients when ζn expanded in the basis {φk}k∈N

ζn =
∑

k∈N
an,kφk.

Let n ∈ N be fixed. For integers j with 1 ≤ j ≤ n− 1, define

ηj =
n
∑

k=1

aj,kφk.

Clearly, {η1, η2, . . . , ηn−1} ⊂ span{φ1, φ2, . . . , φn}. Furthermore,

dim span{φ1, φ2, . . . , φn} = n,

i.e. the space span{φ1, φ2, . . . , φn} has dimension larger than the cardinality of {η1, η2, . . . , ηn−1},
so that we can find η ∈ span{φ1, φ2, . . . , φn}, η 6= 0, such that

η ⊥ ηj, ∀j : 1 ≤ j ≤ n− 1.

Now, since ηj’s and η lie inside span{φ1, φ2, . . . , φn}, we get

〈η, ζj〉 = 〈η, ηj〉 = 0, ∀j : 1 ≤ j ≤ n− 1,

so that

η ⊥ ζj, ∀j : 1 ≤ j ≤ n− 1.

By rescaling, we may assume ||η|| = 1, so that η lies precisely in the class of functions

where we look for a minimizer to determine ζn. The function η is in the solution set of the

variational problem (2.2.1) at the nth step, hence

J [ζn] ≤ J [η] = 〈Tη, η〉+ P (η). (2.2.13)

Since P is a bounded operator, we have

P (η) ≤ ||P || ||η|| = ||P ||. (2.2.14)

Suppose η has the expansion

η =
n
∑

k=1

bkφk.

10



Since, ||η|| = 1, we have
∑n

k=1 |bk|2 = 1. Furthermore, by the bilinearity of the inner product,

〈Tη, η〉 =
n
∑

k=1

|bk|2λk.

We also have that λk’s are in increasing order, so that

〈Tη, η〉 =
n
∑

k=1

|bk|2λk ≤ λn

n
∑

k=1

|bk|2 = λn. (2.2.15)

Combining (2.2.13)-(2.2.15), we obtain

J [ζn] ≤ λn + ||P ||. (2.2.16)

Summing up the inequality (2.2.16) for n = 1, 2, . . . , N , and combining with the non-

negativity of P , we verify (2.2.12).

The following theorem provides the completeness of the orthonormal system {ζn}n∈N,
provided that the eigenvalues satisfy the super-linear growth.

Theorem 2.2.8. Suppose the eigenvalues of T satisfy

lim
n→∞

λn
n

= ∞. (2.2.17)

Then, {ζn}n∈N, which are defined by the variational procedure (2.2.1), forms a complete

orthonormal system in H.

Proof. Lemma 2.2.7 implies

N
∑

n=1

〈Tζn, ζn〉 ≤
N
∑

n=1

λn + ||P ||N,

so that Lemma 2.2.6 is applicable to the orthonormal system {ζn}n∈N with the function

R(N) = ||P ||N . That is, assuming the existence of an f ∈ {ζn}⊥n∈N, ||f || = 1 with the

expansion

f =
∑

fnφn, fn ∈ C,

we obtain the estimate

N
∑

n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N. (2.2.18)

11



This last inequality implies (assuming fn 6= 0)

λN+1 − λn ≤ ||P ||N
|fn|2

, ∀N ∈ N,

which yields a contradiction by violating the growth condition (2.2.17) on λN+1, as we take

limit as N → ∞. Therefore, there is no non-zero function f ∈ {ζn}⊥n∈N, implying that the

orthonormal system {ζn}n∈N is complete, as desired.

By trading the magnitude of the penalty term with the growth of λn, we can generalize

the Theorem 2.2.8 so that it holds under a weaker growth condition on λn.

Theorem 2.2.9. Suppose that the eigenvalues λn grows linearly in the sense that they satisfy

λn =Mn+ o(n), as n→ ∞ (2.2.19)

for some constant M . Suppose also that the penalty term P satisfies the following bound

||P || < M. (2.2.20)

Then, {ζn}n∈N forms a complete orthonormal system in H.

Proof. Proceeding similarly as in the proof of Theorem 2.2.8, we get the inequality (2.2.18).

Namely, if f is a function with unit norm, lying in the orthogonal complement of {ζn}n∈N,
then we have

N
∑

n=1

|fn|2(λN+1 − λn) ≤ ||P ||N, ∀N ∈ N. (2.2.21)

Now, for m < N , by the monotonicity of λk, we can lower-bound the LHS of (2.2.21) by

(λN+1 − λm)
m
∑

n=1

|fn|2,

so that
λN+1 − λm

N

m
∑

n=1

|fn|2 ≤ ||P ||, ∀N ∈ N, ∀m : 0 < m < N. (2.2.22)

Taking the limit of (2.2.22) as N → ∞, with the aid of the growth condition (2.2.19), we

obtain

M

m
∑

n=1

|fn|2 ≤ ||P ||, ∀m ∈ N.
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Now, taking the limit as m→ ∞, and by the fact that ||f || = 1, we obtain

M ≤ ||P ||,

contradicting (2.2.20).

The following theorem establishes how close the functions ζn approximate the subspaces

generated by the first few eigenvectors of the operator T .

Theorem 2.2.10. Let Vm be the subspace generated by the functions {ζ1, ζ2, . . . , ζm}. Then,
for any n ≤ m, we have

n
∑

k=1

d(φk, Vm)
2 ≤ m||P ||

λm+1 − λn
,

provided λm+1 6= λn.

Proof. Recall from Lemma 2.2.7 that

m
∑

j=1

〈Tζj, ζj〉 ≤
m
∑

j=1

J [ζj] ≤ m||P ||+
m
∑

j=1

λj. (2.2.23)

Recall by the bilinearity of the inner product that

〈Tζj, ζj〉 =
∞
∑

k=1

|aj,k|2λk. (2.2.24)

Combining (2.2.24) and (2.2.23), yields that

m
∑

j=1

∞
∑

k=1

|aj,k|2λk ≤ m||P ||+
m
∑

j=1

λj. (2.2.25)

Rearranging (2.2.25), we obtain

∞
∑

k=m+1

m
∑

j=1

|aj,k|2λk −
m
∑

k=1

(

1−
m
∑

j=1

|aj,k|2
)

λk ≤ m||P ||.

Lower-bounding the terms λk with k > m, by λm+1 in the last expression, we obtain

λm+1

∞
∑

k=m+1

m
∑

j=1

|aj,k|2 −
m
∑

k=1

(

1−
m
∑

j=1

|aj,k|2
)

λk ≤ m||P ||. (2.2.26)
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Since
∑∞

k=1 |aj,k|2 = 1 for j = 1, 2, . . . ,m, we conclude that

∞
∑

k=m+1

m
∑

j=1

|aj,k|2 =
m
∑

k=1

(

1−
m
∑

j=1

|aj,k|2
)

.

Substituting this into the inequality (2.2.26), and rearranging further we obtain

m
∑

k=1

(

1−
m
∑

j=1

|aj,k|2
)

(λm+1 − λk) ≤ m||P ||. (2.2.27)

Notice by Lemma 2.2.4 that the coefficient in front of λm+1 − λk in (2.2.27) is equal to

d(φk, Vm)
2, so that (2.2.27) becomes

m
∑

k=1

d(φk, Vm)
2(λm+1 − λk) ≤ m||P ||.

Exploiting the monotonicity of λk once more, we obtain

n
∑

k=1

d(φk, Vm)
2(λm+1 − λn) ≤

m
∑

k=1

d(φk, Vm)
2(λm+1 − λk) ≤ m||P ||,

implying
n
∑

k=1

d(φk, Vm)
2 ≤ m||P ||

λm+1 − λn
,

as desired.

2.3 Perturbed variational problems associated to elliptic opera-

tors

The results of Section 2.2 can now be applied to second-order linear symmetric elliptic

operators. Let L be a second-order linear symmetric elliptic operator defined on a bounded

domain Ω in R
d. For simplicity, we consider symmetric elliptic operators with principal parts

−∆, i.e. the Schrödinger’s operator given by

Lu = −∆u+ cu,

where c : Ω → R is a bounded measurable function.

As noted in the beginning of Section 2.2, according to the spectral theorem for second-

order linear symmetric elliptic operators, L satisfies the following properties

14



1. L has real (Dirichlet) eigenvalues, λk, with {λk}∞k=1 in increasing order, and λk → +∞
as k → ∞,

2. The (normalized) eigenfunctions {φk}∞k=1, with Lφk = λkφk, form a complete orthonor-

mal system in L2(Ω).

Furthermore, the Courant-Fisher principle applies to L, hence the eigenvalues and eigen-

functions of L is given by the following variational formulae

λ1 = min
u∈H1

0 (Ω)
||u||2=1

B[u, u],

φ1 = argmin
u∈H1

0 (Ω)
||u||2=1

B[u, u],

λk = min
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

φk = argmin
u∈H1

0 (Ω)

u∈{φ1,...,φk−1}⊥
||u||2=1

B[u, u],

where

B[u, v] = 〈Lu, v〉 =
∫

Ω

∇u · ∇v + cuv dx

is the bilinear form associated to L.

We proceed similarly as in Section 2.2, where we perturb the functional B[u, u]. This

time, we restrict ourselves to the penalty terms given by a constant multiple of the L1 norm.

Namely, we consider the energy functional

Jµ[u] = B[u, u] +
1

µ
||u||L1 ,

and analogously define the functions {ψk}k∈N via

ψ1 = argmin
u∈H1

0 (Ω)
||u||2=1

Jµ[u],

(2.3.1)

ψk = argmin
u∈H1

0 (Ω)

u∈{ψ1,...,ψk−1}⊥
||u||2=1

Jµ[u].
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We call these functions {ψk}k∈N “Compressed Modes of second type” (CM-II) by analogy

to the “Compressed Modes” (CM) defined in [33]. The main difference between CM and

CM-II is that CMs are defined as the minimizers of a joint energy sum under orthogonality

constraints, whereas CM-IIs marginally minimize the energy functional under a progressive

orthogonality constraint. Nevertheless, CM-IIs {ψ1, ψ2, . . . , ψm}, being an orthonormal se-

quence, are in the solution set of the associated variational problem for CMs. Therefore, the

theory for CM-IIs can be used to prove the analogous results for CMs.

The following lemma establishes the existence of {ψk}k∈N by verifying the existence cri-

teria (2.2.2) for the L1 penalty term in the definition of Jµ.

Lemma 2.3.1. Let P : L2(Ω) → R be defined by P (u) = 1
µ
||u||L1. Then, P satisfies the

criteria (2.2.2). Furthermore,

||P || = |Ω| 12
µ

.

Proof. By Cauchy-Schwarz inequality,

1

µ
||u||L1 ≤ 1

µ
||u||L2 ||χΩ||L2 =

|Ω| 12
µ

||u||L2 . (2.3.2)

Here, χΩ denotes the characteristic function of the domain Ω. The equality in (2.3.2) holds

when u is a non-zero constant function. Therefore, P is bounded with functional norm |Ω|
1
2

µ
.

As for the lower semi-continuity, consider a sequence un ∈ L2(Ω) converging to some u ∈
L2(Ω) in L2. The inequality 2.3.2 implies that un converges to u also in L1, so that P (u) =

limP (un), as desired.

Now, the Theorems 2.2.8, 2.2.9, 2.2.10, can be derived for {ψk}k∈N. Theorems 2.2.8,

and 2.2.9 holds true when the eigenvalues grow super-linearly, and linearly, respectively.

Weyl’s law yields the exact asymptotic behavior of the eigenvalues of a second-order linear

symmetric elliptic operator.

Theorem 2.3.2 (Weyl’s Law (see e.g. [20])). Let L be a second-order linear elliptic operator

on a bounded domain Ω ⊂ R
d, of the form

Lu = −∆u+ cu,
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where c : Ω → R is a bounded measurable function. Let {λn}n∈N be the eigenvalues of L, in

increasing order. Then,

λn =
(2π)d

ωd|Ω|
n2/d + o(n2/d), as n→ ∞,

where ωd denotes the volume of the unit ball in R
d.

Therefore, we can deduce from the Weyl’s law that super-linear and linear growth condi-

tions on eigenvalues holds true precisely in dimensions 1, and 2, so that we have the following

corollaries as direct consequences of the Theorems 2.2.8, 2.2.9, and 2.2.10.

Corollary 2.3.3 (Corollary to Theorem 2.2.8). Let L = −∆+ c(x) be defined on a bounded

open interval in R, where c is a bounded measurable function. Then, the associated Com-

pressed Modes of second type (CM-II), {ψn}n∈N, which are defined by the variational proce-

dure (2.3.1), forms a complete orthonormal system in L2(Ω).

Corollary 2.3.4 (Corollary to Theorem 2.2.9). Let L = −∆+ c(x) be defined on a bounded

rectangular domain in R
2, where c is a bounded measurable function. Suppose also that the

penalty parameter µ satisfies the following bound

µ >
|Ω| 32
4π

.

Then, the associated Compressed Modes of second type (CM-II), {ψn}n∈N, which are defined

by the variational procedure (2.3.1), forms a complete orthonormal system in L2(Ω).

Corollary 2.3.5 ( Corollary to Theorem 2.2.10). Let {φk}k∈N be the (Dirichlet) eigenfunc-

tions of the operator L = −∆ + c(x), defined on a bounded domain Ω ⊂ R
n. Let {λk}k∈N

be the associated eigenvalues. Let {ψn}n∈N be the functions defined by the variational proce-

dure (2.3.1), and Vm be the subspace generated by the functions {ψ1, ψ2, . . . , ψm}. Then, for
any n ≤ m, we have

n
∑

k=1

d(φk, Vm)
2 ≤ m|Ω| 12

µ(λm+1 − λn)
, (2.3.3)

provided λm+1 6= λn.
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Remark 2.3.6. The inequality (2.3.3) in Corollary (2.3.5) quantifies how close the function

spaces Vm approximate the true eigenfunctions in terms of the distribution of the eigenvalues.

The distribution of eigenvalues has been widely studied for the Laplace equation in the

context of universal inequalities (see for instance [26]). In Appendix B, we discuss how

the RHS of the inequality (2.3.3) can be further refined to a more explicit form for specific

domains Ω.

Remark 2.3.7. The Corollaries 2.3.3- 2.3.5 holds true (with modified inequalities) for

second-order linear symmetric elliptic operators with appropriate coercivity properties, so

that the eigenvalues grows at the same order as −∆.

The following theorem establishes that the elements that lie in the orthogonal complement

of {ψn}n∈N cannot lie inside the space H1
0 (Ω). In other words, the orthogonal complement

consists of highly irregular functions.

Theorem 2.3.8. Let Ω ⊂ R
d, and {ψn}n∈N be the solutions to the variational proce-

dure (2.2.1). Then,

{ψn}⊥n∈N ∩H1
0 (Ω) = {0}.

Proof. Assume to the contrary that there is a non-zero f ∈ {ψn}⊥ ∩ H1
0 (Ω). We may

normalize f such that ||f ||2 = 1. Since f ∈ {ψ1, . . . , ψn−1}⊥ for all n, f is in the class of

functions where we look for a minimizer to obtain ψn, hence it is in the solution set of the

variational problem (2.2.1) at nth step. As ψn is the actual solution to the corresponding

minimization problem, we have

Jµ[ψn] ≤ Jµ[f ]. (2.3.4)

We now prove that

lim
n→∞

Jµ[ψn] = ∞, (2.3.5)

which together with (2.3.4) implies

Jµ[f ] = ∞. (2.3.6)

Recall that
N
∑

n=1

B[ψn, ψn] =
∞
∑

k=1

(

N
∑

n=1

|an,k|2
)

λk, (2.3.7)
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where the coefficients in front of λk have magnitude less than or equal to 1 for each k, and

their sum over k is N . Since λk’s are in increasing order, the expression (2.3.7) is minimized

when the coefficients of λk are maximized for small k. Therefore,

N
∑

n=1

B[ψn, ψn] ≥
N
∑

k=1

λk,

and since P is non-negative

N
∑

n=1

Jµ[ψn] =
N
∑

n=1

B[ψn, ψn] + P (ψn) ≥
N
∑

n=1

B[ψn, ψn] ≥
N
∑

k=1

λk. (2.3.8)

We know that lim
n→∞

λn = ∞, and both λn’s and Jµ[ψn]’s are in increasing order. Therefore,

the inequality (2.3.8) can hold only if (2.3.5) holds. Hence, we verify (2.3.6), i.e.

Jµ[f ] = B[f, f ] + P (f) = ∞. (2.3.9)

Now, since P is bounded, the expression (2.3.9) yields

B[f, f ] = ∞. (2.3.10)

On the other hand, as B is the bilinear form associated to a second order elliptic operator,

it is bounded in the sense that

|B[u, v]| ≤ C||u||H1(Ω)||v||H1(Ω). (2.3.11)

Combining (2.3.10), and (2.3.11) applied to u = v = f , we get

||f ||H1(Ω) = ∞,

i.e. f /∈ H1(Ω), contradicting the assumption that f ∈ {ψn}⊥ ∩H1
0 (Ω).

2.3.1 Scaling Properties

In this subsection, our aim is to provide the scaling invariance between µ and Ω. Let κΩ

denote the usual scaling of the domain Ω by a positive real number κ. Let L̃ on κΩ be given

by

L̃u = −∆u+ c̃u = −∆u+ κ−2c
(x

κ

)

u,
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If the operator L on Ω has orthonormal eigenpairs {(φn(x), λn)}∞n=1, then

{(κ−d/2φn
(x

κ

)

, κ−2λn)}∞n=1

forms the orthonormal set of eigenpairs for L̃. Let {ψ1, ψ2, . . . , } be the compressed

modes of second type (CM-II), corresponding to the operator L. For each n ∈ N, define

ψ̃n(x) = κ−d/2ψn(
x
κ
). Then, clearly{ψ̃1, ψ̃2, . . . , } forms an orthonormal system. Moreover,

B̃[ψ̃n, ψ̃n] = 〈L̃ψ̃n, ψ̃n〉 =
∫

κΩ

|∇ψ̃n|2dx+
∫

κΩ

c̃ψ̃2
ndx

= κ−2

∫

Ω

|∇ψn|2dx+ κ−2

∫

Ω

cψ2
ndx

= κ−2B[ψn, ψn],

and

‖ψ̃n‖1 =
∫

κΩ

|ψ̃n|dx = κd/2
∫

κΩ

|ψn|dx = κd/2‖ψn‖1.

Hence, {ψ̃1, ψ̃2, . . . , } is the corresponding CM-II for the operator L̃ on κΩ, with respect to

the energy functional

J̃µ̃[u] = B̃[u, u] +
1

µ̃
||u||L1 ,

where

µ̃ =
µ

κ2+d/2
.

Notice that this last scaling relation is consistent with the scaling properties of the inequalities

in Corollary 2.3.4 and Corollary 2.3.5.

2.4 Applications

We now establish the analogues of the Theorems 2.2.8-2.2.10 for the Compressed Modes and

the Compressed Plane Waves. We first provide the precise definitions of Compressed Modes

(CM) and Compressed Plane Waves (CPW) as introduced in [33, 34], and establish their

connections to the theory we developed in Section 2.2, and then proceed with the verification

of the analogous theorems.
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2.4.1 Compressed Modes

Compressed Modes are defined via the following minimization procedure

Ψ(m) = {ψ(m)
1 , . . . , ψ(m)

m } = argmin
h1,h2,...,hm

m
∑

i=1

Jµ[hi] s.t. 〈hj, hk〉 = δjk, (2.4.1)

where

Jµ[u] =
1

µ
||u||L1 + 〈u,

(

−1

2
∆ + V

)

u〉 = 1

µ
||u||L1 +

1

2
||∇u||2L2 +

∫

Ω

V u2dx, (2.4.2)

where V is a bounded measurable real-valued function defined on Ω. Here, the quan-

tity 〈u,
(

−1
2
∆+ V

)

u〉 corresponds to the bilinear form associated to the elliptic operator

−1
2
∆ + V . We denote the eigenvalues and eigenfunctions of −1

2
∆ + V by λn and φn, with

λn’s being in increasing order, as usual.

As noted earlier, Compressed Modes of second type {ψ1, ψ2, . . . , ψm}, defined by the

variational procedure (2.3.1), being an orthonormal sequence, is in the solution set of the

minimization problem (2.4.1), so that

m
∑

i=1

Jµ[ψ
(m)
i ] ≤

m
∑

i=1

Jµ[ψi].

Combining this with the estimate (2.2.12), we obtain

m
∑

i=1

Jµ[ψ
(m)
i ] ≤ m

|Ω| 12
µ

+
m
∑

j=1

λj. (2.4.3)

The proof of Theorem 2.2.10 relies essentially on the estimation (2.2.23), and the or-

thonormality of the sequence {ψ1, . . . , ψm}. We still have the orthonormality, and the esti-

mation (2.4.3) analogous to (2.2.23). Hence, the following corollary holds.

Corollary 2.4.1 (Corollary to Theorem 2.2.10). Let Vm be the subspace generated by the

Compressed Modes Ψ = {ψ(m)
1 , ψ

(m)
2 , . . . , ψ

(m)
m }. Then, for any n ≤ m, we have

n
∑

k=1

d(φk, Vm)
2 ≤ m|Ω| 12

µ(λm+1 − λn)
,

provided λm+1 6= λn.
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From Corollary 2.4.1, we deduce the following approximation result.

Corollary 2.4.2. Let {φk}k∈N be the (Dirichlet) eigenfunctions of a second-order linear sym-

metric elliptic operator L, defined on a bounded domain Ω ⊂ R. Given any fixed parameter

µ, the first m Compressed Modes up to a linear transformation, denoted by {ξ(m)
1 , . . . , ξ

(m)
m },

satisfy

lim
m→∞

‖φk − ξ
(m)
k ‖2 = 0, ∀k ∈ N.

Proof. Let ξ
(m)
k denote the projection of φk onto the linear subspace spanned by {ψ(m)

1 , . . . , ψ
(m)
m },

which we denote by Vm. Then, clearly, ξ
(m)
k is a linear combination of {ψ(m)

1 , . . . , ψ
(m)
m }. Fur-

thermore, as a property of the projection, we have

d(φk, Vm) = ||φk − ξ
(m)
k ||2,

so that Corollary 2.4.1 implies

n
∑

k=1

||φk − ξ
(m)
k ||22 ≤

m|Ω| 12
µ(λm+1 − λn)

. (2.4.4)

As Ω is a bounded domain inside R, By Weyl’s law, we know that λm grows quadratically

in m. Hence, taking the limit of (2.4.4) as m → ∞, we conclude that the summands in the

LHS of (2.4.4) decays to zero, i.e.

lim
m→∞

‖φk − ξ
(m)
k ‖2 = 0, (2.4.5)

as desired.

Corollary 2.4.2 can be viewed as a completeness result, since (2.4.5) yields that any

eigenfunction φk is well approximated by its projection ξ
(m)
k onto Vm. In this sense, Vm’s

trace the full space as m→ ∞.

2.4.2 Compressed Plane Waves

The construction of Compressed Plane Waves is closely related to that of Compressed Modes,

where both involve minimizing a certain functional. The difference is that Compressed Plane
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Waves have multi-resolution capabilities, which is achieved by adding the shift-orthogonality

constraints. Let w = (w1, . . . ,wd) ∈ R
d
+ be a basis of a d-dimensional lattice and let Ω be

a rectangular box with

Ω = [0, n1w1]× · · · × [0, ndwd], (n1, . . . , nd) ∈ N
d.

Define the lattice

Γw = {jw := (j1w1, . . . , jdwd)|0 ≤ j1 < n1, . . . ,0 ≤ jd < nd}.

The first n Basic Compressed Plane Waves (BCPWs) {ψk}nk=1, are defined via

ψ1 = argmin
ψ

Jµ[ψ] s.t. 〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw;

ψk = argmin
ψ

Jµ[ψ] s.t.











〈ψ(x), ψ(x− jw)〉 = δj,0 ∀ jw ∈ Γw

〈ψ(x), ψi(x− jw)〉 = 0 ∀ i : 0 < i < k,

where the functional Jµ is defined by

Jµ[u] =
1

µ
||u||L1 + 〈u,−1

2
∆u〉 = 1

µ
||u||L1 +

1

2
||∇u||2L2 .

Notice that this functional is a special case of the functional (2.4.2), with V ≡ 0.

The translations of the BCPWs on the lattice Γw produce all CPWs. Unlike Compressed

Modes that are solved in a single minimization problem, the Compressed Plane Waves are

constructed hierarchically. This is similar to the shift-orthogonal wavelets [45], but a dis-

tinction of CPWs is that it is adapted to the Laplace operator.

Existence of CPW’s essentially follows from the observation that shift orthogonality (i.e

the constraints in the definition of BCPWs) is preserved under L2-limits, so that any minimiz-

ing sequence has a subsequential limit, which still satisfies the shift orthogonality properties.

The following theorem (see for example [6]) characterizes any orthonormal sequence of shift

orthogonal functions.

Theorem 2.4.3. Let Ω ⊂ R
d, and the lattice Γw be defined as above. Let {ξk}∞k=1 be an

orthonormal sequence of shift orthogonal functions. Then, the (Hilbert) space H = L2(Ω)
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can be written as a direct sum

H = H1 ⊕H2 ⊕ . . .⊕HN ,

where each Hk is the Hilbert space spanned by some eigenfunctions for the Laplace equation

in the rectangular box Ω, with the property that if ξk has the decomposition

√
Nξk = ek1 + ek2 + · · ·+ ekN , ekj ∈ Hj,

then E = {ekj |j = 1, 2, . . . , N ; k ∈ N} forms an orthonormal system in H. Furthermore,

N = n1n2 · · ·nd = |Γw|.

A detailed discussion of Theorem 2.4.3, with a characterization of the Hilbert spaces Hk

is given in the Appendix A.

Remark 2.4.4. In Theorem 2.4.3, for a fixed k, both {ξkj |jw ∈ Γw}, and {ekj |j = 1, 2, . . . , N}
form an orthonormal system, and have the same cardinality, hence their linear span agree.

Therefore,

span{ξkj |jw ∈ Γw;k = 1, . . . ,M} = span{ekj |j = 1, . . . ,N;k = 1, . . . ,M}

for any M ∈ N ∪ {∞}.

With this remark and Theorem 2.4.3, instead of working with the CPW’s {ψkj }, it is

natural to switch to {ekj} for completeness results. Let’s define

J∞[u] =
1

2
||∇u||2L2(Ω).

Then, we can write

Jµ[u] = J∞[u] +
1

µ
||u||L1 .

As the Hilbert spaces Hj are the span of some eigenfunctions of the Laplacian, the functional

J∞ satisfies the following linearity property

J∞[e1 + e2 + · · ·+ eN ] = J∞[e1] + J∞[e2] + . . .+ J∞[eN ], ej ∈ Hj, j = 1, 2, . . . , N.
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Now, the functions {ekj} can be regarded as the solutions to the following problems

{e11, e12, . . . , e1N} = argmin
fj∈Hj

||fj ||2=1

J∞[f1] + . . .+ J∞[fN ] +
1

µ
||f1 + · · ·+ fN ||1,

{ek1, ek2, . . . , ekN} = argmin
fj∈{e1j ,...,e

k−1
j }⊥∩Hj

||fj ||2=1

J∞[f1] + . . .+ J∞[fN ] +
1

µ
||f1 + · · ·+ fN ||1.

This is analogous to the variational procedure (2.2.1), except that at each step in the mini-

mization, we obtain multiple functions. Nevertheless, we might regard one particular ekj , say

ek1 for simplicity, as the solution to the following minimization problem over H1

ek1 = argmin
f∈{e11,...,e

k−1
1 }⊥∩H1

||f ||2=1

J∞[f ] + J∞[ek2] + . . .+ J∞[ekN ] +
1

µ
||f + ek2 + · · ·+ ekN ||1.

We still have the boundedness of the penalty term P (f) = 1
µ
||f + ek2 + · · ·+ ekN ||1, as

1

µ
||f + ek2 + · · ·+ ekN ||1 ≤

1

µ

(

||f ||1 + ||ek2||1 . . .+ ||ekN ||1
)

(Cauchy-Schwarz) ≤ |Ω| 12
µ

(

||f ||2 + ||ek2||2 . . .+ ||ekN ||2
)

=
N |Ω| 12
µ

,

i.e.

||P || ≤ N |Ω| 12
µ

. (2.4.6)

Therefore, {ekj}k∈N could be viewed as the solutions to an analogue of the variational

procedure (2.2.1), in the Hilbert space Hj, with the linear functional being the restriction of

−1
2
∆ on Hj.

Next, let’s enumerate the eigenfunctions forming each Hilbert space Hj as follows

Hj = span{φkj |k = 1, 2, . . .},

−1

2
∆φkj = λkjφ

k
j

λ1j ≤ λ2j ≤ . . . .

(2.4.7)

The following theorem establishes an analogue of the Weyl’s Law.
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Theorem 2.4.5. Let λkj be defined as in (2.4.7), then

λkj =
N(2π)d

2ωd|Ω|
k2/d + o(k2/d), as k → ∞,

where ωd denotes the volume of the unit ball in R
d.

A discussion of Theorem 2.4.5 can be found in Appendix A.

Overall, we verified that the functions {ekj} are obtained via a variational procedure

analogous to (2.2.1). We also noted in Remark 2.4.4 that the spans of {ekj}, and CPWs

agree. Therefore, the theory developed in Section 2.2 applies to CPWs, so that we obtain

the following corollaries as direct consequences of the Theorems 2.2.8, 2.2.9, and 2.2.10.

Corollary 2.4.6 (Corollary to Theorem 2.2.8). Let Ω be a bounded interval in R, that is

an integer multiple of some lattice Γw. Then, for any parameter µ, the set of Compressed

Plane Waves {ψkj } defined on Ω forms a complete orthonormal system in L2(Ω).

Proof. Notice that {ekj}k∈N ⊂ Hj are obtained as the solutions to a variational problem

in Hj, analogous to the variational procedure (2.2.1). Furthermore, since Ω lies inside R,

by Theorem 2.4.5, the corresponding eigenvalues grow super-linearly. Therefore, by Theo-

rem 2.2.8, {ekj}k∈N forms a complete orthonormal system in Hj, for each j = 1, 2, . . . , N .

Finally, by Remark 2.4.4, {ψkj } is a complete orthonormal system in H.

Corollary 2.4.7 (Corollary to Theorem 2.2.9). Let Ω be a rectangular domain inside R
2,

that is an integer multiple of some lattice Γw. Then, for any parameter µ satisfying

µ >
|Ω| 32
2π

, (2.4.8)

the set of Compressed Plane Waves {ψkj } defined on Ω forms a complete orthonormal system

in L2(Ω).

Proof. Since Ω lies inside R
2, notice by Theorem 2.4.5 that the corresponding eigenvalues

grow linearly, with the linearity constant 2πN
|Ω| . The proof proceeds analogous to the proof

of Corollary 2.4.6, except that we rather apply Theorem 2.2.9. Note that the bound for the

underlying penalty term is provided in (2.4.6). Hence, whenever the inequality (2.4.8) holds,
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the assumption (2.2.20) in Theorem 2.2.9 is satisfied. Therefore, Theorem 2.2.9 yields the

completeness of {ψkj }, as desired.

Corollary 2.4.8 (Corollary to Theorem 2.2.10). Let V m
j be the subspace generated by the

functions {e1j , e2j , . . . , emj }. Then, for any n ≤ m, we have

n
∑

k=1

d(φkj , V
m
j )2 ≤ mN |Ω| 12

µ(λm+1
j − λnj )

,

provided λm+1
j 6= λnj . Defining V

m via

V m = span{ψkj |j ∈ Z
d,k = 1,2, . . . ,m},

we further have

∑

k≤m,j≤N
d(φkj , V

m)2 =
mN |Ω| 12

µ

∑

j≤N

1

λm+1
j − λnj

.

2.5 Conclusions

In this chapter, we established a functional analytic framework to study the completeness

properties of solutions of optimization problems that are formulated as a perturbation of the

Courant-Fischer variational problem. This framework enabled us to verify the completeness

properties of CM-I, CM-II, and CPW. In particular, for dimension d = 1, the completeness

is proved unconditionally, and for dimension d = 2, it is shown that CM-II, and CPW form

a complete basis provided that the underlying penalization term is sufficiently small. These

results confirmed the conjecture posed in [33, 34] for dimensions d = 1, 2, whereas for higher

dimensions the problem still remains open.
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CHAPTER 3

Quantitative Analysis of Energy

3.1 An Analogue of Weyl’s Law for Compressed Modes of second

type

In this section, we would like to prove an analogue of the Weyl’s law for the Compressed

Modes of second type (CM-II) defined in Section 2.3. Recall that Weyl’s law provides

the asymptotic behavior of the (Dirichlet) eigenvalues of a second order symmetric elliptic

linear operator. The eigenvalues of a second order symmetric elliptic linear operator, T ,

also corresponds to the values of the bilinear form 〈Tu, u〉 evaluated at the (normalized)

eigenvectors

λn = 〈Tφn, φn〉

In a similar construction, we consider the “energy” associated with each of the CM-II ζn

defined by

κn = 〈Tζn, ζn〉+
1

µ
‖ζn‖1

and consider the asymptotic behavior of the sequence κn. The following theorem provides

the precise asymptotic behavior of κn by relating it to the associated Weyl’s Law.

Theorem 3.1.1. Let {λn}n∈N be the (Dirichlet) eigenvalues of a second-order linear sym-

metric elliptic operator T on a bounded domain Ω ⊂ R
d. Suppose that CΩ is the implicit

constant in the Weyl’s law for {λn}n∈N, so that

λn = CΩn
2
d +O(n

1
d ) as n→ ∞.

Let {κn}n∈N be the associated energies corresponding to the CM-II, in the sense that

κn = J [ζn] := 〈Tζn, ζn〉+
1

µ
‖ζn‖1.
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Then, {κn}n∈N satisfies the following analogue of the Weyl’s law

κn = CΩn
2
d +O(n

3
2d ) as n→ ∞.

For the proof of Theorem 3.1.1, we analyze the cumulative sum of κn’s, i.e. the function

F : R+ → R defined on integers via

F (n) =
∑

m≤n
κm, ∀n ∈ N,

and extended to the positive real numbers by interpolation. Notice that the above cumulative

sum of energies are also considered in Lemma 2.2.7 for the completeness results. We also make

use of those earlier estimates for F . Furthermore, due to the positivity and the increasing

nature of the energies κn, the function F is a convex function. The following lemma provides

an estimate for the derivative of convex functions with certain properties, and will be useful

for the proof of Theorem 3.1.1.

Lemma 3.1.2. Let F : R+ → R be a convex function satisfying

F (t) = tα +O(tβ), as t→ ∞,

where the real numbers α, and β satisfies α > 1, and α > β > 0. Suppose further that F is

differentiable on R
+ \ E, where E is a discrete set. Then,

F ′(t) = αtα−1 +O(t
α+β

2
−1), as t ∈ R

+ \ E and t→ ∞.

The proof of Lemma 3.1.2 consists of standard asymptotic analysis arguments, and is

given in Appendix C. Now, we are ready to present the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. As noted earlier, we consider the function F : R+ → R defined via

F (n) =
∑

m≤n
κm, ∀n ∈ N

on integers, and extended to the whole positive real axis by linear interpolation. F is a

convex function, and satisfies

lim
x↑n

F ′(x) = κn
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From Lemma 2.2.7, we have

∑

m≤n
λm ≤ F (n) ≤

∑

m≤n
λm + n‖P‖, (3.1.1)

where P is the underlying penalization operator (i.e. the L1 norm).

The Weyl’s law

λn = CΩn
2
d +O(n

1
d )

can be summed into
∑

m≤n
λm = CΩ

∑

m≤n
m

2
d +O(n

d+1
d ), (3.1.2)

and the resulting quantity can be approximated by the standard integral test as

d

d+ 2
n

d+2
d =

∫ n

0

x
2
ddx ≤

∑

m≤n
m

2
d ≤

∫ n+1

0

x
2
ddx =

d

d+ 2
(n+ 1)

d+2
d ,

so that
∑

m≤n
m

2
d =

d

d+ 2
n

d+2
d +O(n

2
d ).

Finally, since the remainder term in the last asymptotic relation is dominated by the re-

mainder in (3.1.2), we obtain

∑

m≤n
λm =

d

d+ 2
CΩn

d+2
d +O(n

d+1
d ). (3.1.3)

Next, let’s consider (3.1.1). By the asymptotic formula (3.1.3) for the cumulative sum of

eigenvalues, both sides of (3.1.1) are controlled by the same quantity, so that we obtain

F (n) = CΩn
d+2
d +O(n

d+1
d ). (3.1.4)

Now, applying Lemma 3.1.2 to F in the light of (3.1.4), we obtain

κn = lim
x↑n

F ′(x) = CΩn
2
d +O(n

3
2d ),

as desired.

Notice that the proof of Theorem 3.1.1 only requires the boundedness of the penalty

term P , hence it holds for a general class of variational problems as long as the existence

criteria (2.2.2) given in Chapter 2 is satisfied.
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3.2 Consistency of Eigenvalues

As CM-II are defined by a modification of the variational principle for the eigenvalues of

a second order symmetric elliptic linear operator, it is a question of interest to figure out

whether the energies of the CM-II converges to the true eigenvalues as the L1 regularization

term approaches to zero. Specifically, for a second order symmetric elliptic linear operator T ,

we consider the energy associated to the CM-II ζn = ζn(µ) as a function of the regularization

parameter µ

κn(µ) = 〈Tζn, ζn〉+
1

µ
‖ζn‖1. (3.2.1)

The following theorem provides the rate of convergence for κn(µ) to the true eigenvalues λn.

Theorem 3.2.1. Let {λn}n∈N be the (Dirichlet) eigenvalues of a second order linear sym-

metric elliptic operator on a bounded domain Ω ⊂ R
d. Let {κn(µ)}n∈N be the energies

corresponding to the CM-II defined as in (3.2.1). Then,

λn − (2n−1 − 1)
‖P‖
µ

≤ κn(µ) ≤ λn + 2n−1‖P‖
µ

∀n ∈ N, (3.2.2)

where ‖P‖ denotes the operator norm of the L1 norm.

Proof. The analysis is based on the following cumulative energy sum, which has also been

considered in Section 3.1

F (n) =
∑

m≤n
κm(µ), ∀n ∈ N

From Lemma 2.2.7, we have

∑

m≤n
λm ≤ F (n) ≤

∑

m≤n
λm + n

‖P‖
µ

(3.2.3)

We prove (3.2.2) by a generalized induction argument. For n = 1, the induction hypoth-

esis follows simply by (3.2.3). Now, assume that (3.2.2) holds for n = 1, 2, . . . , r − 1. Then,
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F (r − 1) satisfies the following upper and lower bounds

F (r − 1) ≤
∑

m≤r−1

(λm + 2m−1‖P‖
µ

)

=
∑

m≤r−1

λm +
‖P‖
µ

∑

m≤r−1

2m−1

=
∑

m≤r−1

λm + (2r−1 − 1)
‖P‖
µ

(3.2.4)

F (r − 1) ≥
∑

m≤r−1

(λm − (2m−1 − 1)
‖P‖
µ

)

=
∑

m≤r−1

λm − ‖P‖
µ

∑

m≤r−1

2m−1 − 1

=
∑

m≤r−1

λm − (2r−1 − r)
‖P‖
µ

(3.2.5)

By (3.2.3), we have

∑

m≤r
λm − F (r − 1) ≤ κr(µ) ≤

∑

m≤r
λm − F (r − 1) + r

‖P‖
µ

.

Now, substituting the upper and lower bounds (3.2.4)-(3.2.5) in the above inequality for the

respective sides, we obtain

λr − (2r − 1)
‖P‖
µ

≤ κr(µ) ≤ λr − 2r
‖P‖
µ

,

as desired.

By taking limit as µ→ ∞ in (3.2.2), one obtains the following corollary.

Corollary 3.2.2. Let {λn}n∈N be the (Dirichlet) eigenvalues of a second-order linear sym-

metric elliptic operator on a bounded domain Ω ⊂ R
d. Let {κn(µ)}n∈N be the energies

corresponding to the CM-II defined as in (3.2.1). Then,

lim
µ→∞

κn(µ) = λn.
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Remark 3.2.3. The convergence rate (3.2.3) is exponentially slow in terms of n, the order

of the CM-II, hence is practical for only the lower order CM-II. On the other hand, the

Weyl’s law and Theorem 3.1.1 implies that

λn = CΩn
2
d +O(n

1
d ) as n→ ∞,

κn(µ) = CΩn
2
d +O(n

3
2d ) as n→ ∞,

so that

|κn(µ)− λn| = O(n
3
2d ) as n→ ∞,

hence suggesting that the convergence rate (3.2.3) would be polynomial for large values of

n.

3.3 Conclusions

The analysis in this chapter has established the asymptotic behavior of the energies of CM-II

as the depth of the functions approaches to infinity, or the penalization term approaches to

zero. In particular, the asymptotic behavior as depth tends to infinity agrees with the associ-

ated Weyl’s Law, hence implying the consistency with the unperturbed eigenvalue problem.

As the penalization term vanishes, the resulting limit is found to be the corresponding eigen-

value, hence establishing the stability of the energies.
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CHAPTER 4

Analysis of Euler Lagrange Equation

In this chapter, we consider the Euler-Lagrange equations satisfied by the Compressed Modes

and Compressed Plane Waves, and derive certain properties of them by analyzing the corre-

sponding differential equation. The study of Euler-Lagrange equations will be useful for the

study of the asymptotic behavior of the support of the Compressed Modes, as well as the

regularity properties of the Compressed Modes and Compressed Plane Waves.

4.1 Derivation of the Euler-Lagrange Equations

As the associated variational problems for the Compressed Modes and Compressed Plane

Waves contain the L1 regularization term, the Euler-Lagrange equations satisfied by these

functions involve the subgradient of the absolute value function f(x) = |x|. We denote this

subgradient term by p, where

p(u) =



























−1, if u < 0

∈ [−1, 1] if u = 0

1, if u > 0.

4.1.1 Euler-Lagrange Equation for Compressed Modes of Type One

Recall that the firstN of the Compressed Modes for the second order linear symmetric elliptic

differential operator T = −∆+ V (x), is calculated by the following variational problem

{ψ1, ψ2, . . . , ψN} = argmin
ψ̃1,ψ̃2,...,ψ̃N

N
∑

i=1

∫

Rd

(

1

µ
|ψ̃i|+

1

2
|∇ψ̃i|2 + V (x)ψ̃2

i

)

dx s.t.

∫

Rd

ψ̃jψ̃kdx = δjk
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Now, incorporating the Lagrange multipliers associated to the above normalization and or-

thogonality constraints, we obtain the following Euler-Lagrange Equation for ψi, i = 1, . . . , N

−∆ψi + 2V (x)ψi − 2λiψi +
1

µ
p(ψi) =

∑

j 6=i
λijψj (4.1.1)

4.1.2 Euler-Lagrange Equation for Compressed Modes of Type Two

Similarly, the ith CM-II, ζi, is given by

ζi = argmin
ζ

∫

Rd

(

1

µ
|ζ|+ 1

2
|∇ζ|2 + V (x)ζ2

)

dx subject to











〈ζ, ζ〉 = 1

〈ζ, ζm〉 = 0 for m < i

Now, since the ith CM-II only depends on the modes that are in the lower level, the

following Euler-Lagrange Equation is satisfied by ζi

−∆ζi + 2V (x)ζi − 2λiζi +
1

µ
p(ζi) =

∑

j<i

λijζj (4.1.2)

Notice that the Euler-Lagrange equations for CM-I and CM-II are almost equivalent, except

that the Lagrange multipliers λij vanishes for CM-II whenever i < j.

4.1.3 Euler-Lagrange Equation for Compressed Plane Waves

The definition of CPWs are similar to CMs, where, in addition to the orthogonality con-

straints, the constraints imposed by the shift-orthogonality properties are also required.

Furthermore, the differential operator is assumed to be −1
2
∆. Namely,

ψn = argmin
ψ

‖∇ψ‖22 +
1

µ
‖ψ‖1 subject to



























〈ψ, ψ〉 = 1

〈ψ, ψk〉 = 0 for 0 < k < N

〈ψ, ψmk 〉 = 0 for m < n, 0 ≤ k < N

For CPWs, the Lagrange multipliers are included both for the orthogonality constraints

against the previously obtained functions, as well as the shifts of the function itself. There-

fore, the Euler-Lagrange equation is given by

−∆ψn +
1

µ
p(ψn) =

N−1
∑

k=0

λkψk +
∑

m<n

N−1
∑

k=0

λmk ψ
m
k . (4.1.3)
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4.2 Regularity Results

The regularity properties of minimizers have been studied in the context of calculus of

variations for linear and non-linear problems [2, 3, 21, 32]. The main method to obtain

regularity of the solutions is the study of the associated Euler-Lagrange equation. The

variational formulations for Compressed Modes and Compressed Plane Waves have solutions

in the Sobolev Space H1(Ω), hence the associated Euler-Lagrange Equations (4.1.1)-(4.1.3)

are satisfied in the weak sense. In this section, we would like to verify higher order regularity

such as classical differentiability of the solutions. We carry out this by the elliptic regularity

theorems. One obstacle while using the elliptic regularity theorems would be the irregularities

associated with the subdifferential term p. Therefore, the analysis of the term p constitutes

a significant part of this section. We begin with stating the relevant theorems regarding the

elliptic regularity, which will be used throughout this section. The following theorem yields

the regularity of the solutions of the elliptic PDE’s in the Sobolev sense.

Theorem 4.2.1 (Elliptic Regularity Theorem, see e.g. Section 6.3 in [22]). Let L be an

elliptic operator with C∞ coefficients. Let f ∈ Hm(U), where U is a bounded domain in R
d,

with C1 boundary. Then, the solution u ∈ H1(U) to the PDE

Lu = f in U

satisfies u ∈ Hm+2
loc (U).

The following theorem converts the Sobolev regularity into classical regularity.

Theorem 4.2.2 (Sobolev Embedding Theorem, see e.g. Section 6.3 in [1]). Let u ∈ Hk(U),

where U is a bounded domain in R
d, with C1 boundary. If

k >
d

2
,

then,

u ∈ Ck−⌊ d
2
⌋−1(Ū).
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4.2.1 Problem Statement

The regularity treatment will be a rather generalized one, where we consider a generalized

version of the Euler-Lagrange Equations (4.1.1)-(4.1.3). In its most general formulation, the

Euler-Lagrange Equations (4.1.1)-(4.1.3) take the following form

Lu+
1

µ
p(u) = Tu+ F, (4.2.1)

where L is a second order elliptic operator, p is the subdifferential of the absolute value

function, F is a function possessing similar regularity properties as u (possibly a linear

combination), and finally Tu is some (finite) linear combination of translates of u, which can

be written as

Tu(x) =
k
∑

i=1

ciu(x− wi), (4.2.2)

for constants c1, . . . , ck, and non-zero shift parameters w1, . . . , wk.

For the Euler-Lagrange equations (4.1.1)-(4.1.3), the operator L is the original differential

operator minus the Lagrange multiplier associated to the equation. For Compressed Modes,

the term Tu ≡ 0, and F stands for the linear combination of the modes obtained at the

previous levels. Whereas for the Compressed Plane Waves, Tu denotes the linear combina-

tions of the shifts of the function, and F denotes the Compressed Plane Waves belonging to

the previous levels. Throughout the regularity analysis of the differential equation (4.2.1),

the main focus will be the regularity properties of the p(u) term. By the following lemma,

we show that the regularity analysis would be straightforward without the p(u) term in the

Euler-Lagrange equation.

Lemma 4.2.3. Suppose that u ∈ H1(Ω) solves the following differential equation

Lu = Tu+ F, (4.2.3)

where Tu is a finite linear combination of translations of u as given by (4.2.2) for rectangular

domains Ω, and Tu ≡ 0 otherwise. Suppose further that F possesses the same regularity

properties as u, in the sense that

u ∈ Hk
loc(Ω) =⇒ F ∈ Hk

loc(Ω).

37



Then, u ∈ C∞(Ω).

Proof. The proof is a standard application of Elliptic Regularity Theorem (Theorem 4.2.1)

to bootstrap the regularity of the solution u. Since the translation operator is a simple

change of coordinates, it has no effect on regularity,

u ∈ Hk
loc(Ω) =⇒ Tu ∈ Hk

loc(Ω),

so that the equation (4.2.3) can be rewritten as

Lu = g,

where

u ∈ Hk
loc(Ω) =⇒ g ∈ Hk

loc(Ω).

In particular, g ∈ H1(Ω), and hence by Theorem 4.2.1, u ∈ H3
loc(Ω). Proceeding similarly,

we obtain

u ∈ H2k+1
loc (Ω) ∀k ∈ N,

or equivalently

u ∈ H∞
loc(Ω).

Finally, by Sobolev Embedding Theorem (Theorem 4.2.2), we convert this last regularity

result into

u ∈ C∞(Ω),

as desired.

For Compressed Modes, when there is no L1 regularization term, the solutions are simply

the eigenvectors of the underlying operator, and hence the C∞(Ω) regularity property is

immediate. Similarly, if there is no L1 regularization term in the definition of the Compressed

Plane Waves, we obtain the Shift-Orthogonal Plane Waves (SOPW), which are represented

as the finite linear combinations of Fourier modes [6], hence belong to the class C∞(Ω).

Nevertheless, the proof of Lemma 4.2.3 is particularly important for the development of the

rest of this section. Now, if we rewrite the equation (4.2.1) as

Lu = Tu+ F − 1

µ
p(u), (4.2.4)
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we can utilize the elliptic regularity theorem (Theorem 4.2.1) similarly as in the proof of

Lemma 4.2.3 to bootstrap the regularity of u. The main difficulty is the irregularity of the

term p(u). Hence the zeros of u will have a particular importance. At this point, it is worth

to mention that as an element of H1(Ω), u does not necessarily assume well-defined pointwise

values. Nevertheless, for d ≤ 3, the solutions to the PDE (4.2.1) are continuous functions,

as verified by the following lemma.

Lemma 4.2.4. Let Ω ⊂ R
d for d ≤ 3, and suppose that u is a weak solution to the

PDE (4.2.1). Then, u ∈ C(Ω).

Proof. The term p(u) is bounded, hence is square integrable. As a weak solution u ∈ H1(Ω),

therefore the RHS of (4.2.4) is also square integrable. Hence, by Theorem 4.2.1, u ∈ H2
loc(Ω).

For d ≤ 3 by Theorem 4.2.2, the H2-regularity of u can be converted into the classical

regularity to obtain u ∈ C(Ω)

For the case d = 1, Lemma 4.2.4 can be improved to provide higher order regularity.

Lemma 4.2.5. Let Ω ⊂ R, and suppose u is a weak solution to the PDE (4.2.1). Then,

(i) u ∈ C1(Ω),

(ii) u ∈ C3(Ω \ {u = 0}).

Proof. By the proof of Lemma 4.2.4, u ∈ H2
loc(Ω). Therefore, Theorem 4.2.2 applied with

d = 1 yields (i). By continuity of u, p(u) ∈ C∞
loc(Ω \ {u = 0}), and hence the RHS of (4.2.4)

belongs to the class H2
loc(Ω \ {u = 0}). Now, by Theorem 4.2.1, u ∈ H4

loc(Ω \ {u = 0}).
Finally, applying Theorem 4.2.2 with k = 4, and d = 1, we obtain u ∈ C3(Ω \ {u = 0}),
proving (ii).

The rest of this section is devoted to the the special case where L = −∆, and d = 1. In

this case, the PDE (4.2.1) reads

−∂xxu+
1

µ
p(u) = Tu+ F. (4.2.5)

The following regularity result is the main result for the rest of this section.
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Theorem 4.2.6. Let u ∈ H1(Ω) be a solution to the PDE (4.2.1), where Ω is a subset of

R. Then, u ∈ C∞ off a finite set in Ω.

Note by Lemma 4.2.5 that u is continuously differentiable up to third order away from

the zeros of u, thus the equation (4.2.5) holds pointwise in the classical sense, i.e.

−∂xxu+
1

µ
p(u) = Tu+ F ∀x s.t. u(x) 6= 0. (4.2.6)

Due to the potential discontinuities introduced by the term p(u), the regularity analysis

entails the study of the zeros of the solution. We now introduce the following definition to

classify the zeros of u

Definition 4.2.7. Let u(x) = 0. Then, x is called a critical point for u, if u assumes both

positive and negative values at every ball centered at x.

We proceed as follows. First, we prove that a solution to equation (4.2.6) admits finitely

many critical zeros (Lemma 4.2.8). Then, we prove that non-critical zeros do not constitute

any irregularities to the solution (Lemma 4.2.9).

Lemma 4.2.8. Let a continuous function u satisfy (4.2.1). Then, u has finitely many critical

points.

Proof. Assume to the contrary that u has infinitely many critical points denoted by x1, x2, . . ..

Without loss of generality, we may assume that xn’s accumulate at some x ∈ Ω. At every

neighborhood of each xn, u assumes both negative and positive values. Therefore, x is an

accumulation point of both negative local minima, and positive local maxima. Let yn, and zn

be those local minima and maxima accumulating at x, respectively. Since u(yn) < 0 < u(zn),

(4.2.6) implies

−∂xxu(yn)−
1

µ
= Tu(yn) + F (yn)

−∂xxu(zn) +
1

µ
= Tu(zn) + F (zn).

(4.2.7)
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Furthermore, as yn, and zn are local minima and maxima for u, the second derivative of u

satisfy ∂xxu(zn) ≤ 0 ≤ ∂xxu(yn), which together with (4.2.7) implies

Tu(yn) + F (yn) ≤ − 1

µ

Tu(zn) + F (zn) ≥
1

µ
.

(4.2.8)

However, yn, and zn both accumulate at x. Therefore, the inequalities in (4.2.8) are incom-

patible with the continuity of u and f as yn → x and zn → x, hence yielding a contradic-

tion.

Now, we present the following lemma, which upgrades the differentiability of nonnegative

functions up to the set where the function is equal to zero.

Lemma 4.2.9. Let I ∈ R be an open interval. For u : I → R
+ ∪ {0}, let K denote the

collection of points where u is zero, i.e.

K = {x|u(x) = 0}.

Suppose that K has empty interior, and u ∈ C1(I), and u ∈ C2(I \K). Assume further that

the second derivative of u on I \K can be extended continuously to I. Then, u ∈ C2(I).

The proof of Lemma 4.2.9 is discussed in the Appendix D. Now, we are ready to present

the proof of Theorem 4.2.6.

Proof of Theorem 4.2.6. First, we verify that the assumptions of Lemma 4.2.9 are satisfied

on an interval I where u is nonnegative. Lemma 4.2.5 implies u ∈ C1(I). Furthermore,

since the RHS of (4.2.6) is continuous, u has a second derivative away from its zeros that

can be extended continuously throughout I. Finally, if u is identically equal to zero on any

subinterval J ⊂ I, then C∞ property of u is immediate on J . Therefore, we may assume

that the set {u = 0} has empty interior. Hence, Lemma 4.2.9 is applicable for u. Now,

the equation (4.2.6) is satisfied on I with p(u) = 1. We can repeat the same argument for

the nonpositive values of u. Thus, we can differentiate (4.2.6) as many times as we wish to

obtain the infinite differentiability of u away from the critical zeros and their shifts, which

is a finite set by Lemma 4.2.8.
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4.3 Support of Compressed Modes

In this section, we consider the asymptotic behavior of the support of the Compressed

Modes, as the regularization term µ approaches to zero and infinity. Parabolic and Elliptic

differential equations with compactly supported solutions have been considered in [7, 9, 8, 10].

In particular, in [8], the authors consider nonlinear elliptic equations involving maximum

monotone graphs (such as the subgradient of L1-norm as in our case). In [10], estimates

for the volume of the support in terms of the time variable is provided for the parabolic

equations. Our analysis differs from these studies in that the estimates are carried out in

terms of the coefficients in the differential equation. The support of Compressed Modes are

considered in [5], where the authors provide an asymptotic upper bound for the volume of

the support as µ→ 0. The results in this section are built upon the ideas in [5], and refines

those results by providing an exact order of magnitude for the support as µ → 0. We also

analyze the components of the energy associated to the Compressed Modes, and show the

equipartition of the energy in the sense that the L1-term and the gradient term of the energy

grow in the same order. We then consider the other extreme case for µ, namely µ→ ∞, and

provide upper and lower bounds for the size of the support and the contribution of the L1-

term to the energy. The results in this section are given only in terms of CM-I, however they

are also applicable to CM-II as the associated Euler-Lagrange equations are quite similar.

Notation. For two functions f , and g, we denote

f .c1,c2,...,cn g as µ→ µ0,

if there exists a constant C = C(c1, . . . , cn) such that

f(µ) ≤ C(c1, . . . , cn)g(µ)

for the values of µ that are sufficiently close to µ0. In case there is no ambiguity for the

implicit constants c1, c2, . . . , cn, we omit them and simply write

f . g as µ→ µ0.

The expression f & g is defined analogously. If g . f , and f . g, then we denote f ∼ g.
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In [5], the following theorem is proven by studying the Euler-Lagrange equation (4.1.1)

satisfied by Compressed Modes.

Theorem 4.3.1 (Theorem 4.1 in [5]). For the Compressed Modes {ψi}Ni=1 obtained from the

regularization parameter µ, we have

| suppψi| .N,d,‖V ‖∞ µ2d/(4+d) for j = 1, . . . N as µ→ 0. (4.3.1)

The proof mainly relies on the estimation of the Lagrange multipliers λi, λij by multiply-

ing the Euler-Lagrange equation (4.1.1) by ψi, and then integrating, to obtain the following

expressions

λi =
1

2µ

∫

Rd

|ψi| dx+
∫

Rd

V (x)ψ2
i dx+

1

2

∫

Rd

|∇ψi|2 dx, (4.3.2a)

λij =
1

µ

∫

Rd

p(ψi)ψj dx+ 2

∫

Rd

V (x)ψiψj dx+

∫

Rd

∇ψi · ∇ψj dx. (4.3.2b)

The total energy, E, of the first N Compressed Modes are defined by

E =
N
∑

i=1

∫

Rd

(
1

µ
|ψi|+

1

2
|∇ψi|2 + V (x)ψi

2) dx.

For the proof of Theorem 4.3.1, the authors obtain the following results as µ→ 0

E ∼ µ−4/(4+d), (4.3.3)

1

µ
| supp(ψi)| ≤ (2λi + 2||V ||∞)

∫

Rd

|ψi| dx+
∑

j 6=i
λij

∫

Rd

|ψj| dx, (4.3.4)

The following theorem is the main result of this section, which refines the result of The-

orem 4.3.1. Strictly speaking, it establishes the precise asymptotic behavior of the support

as the regularization parameter µ→ 0.

Theorem 4.3.2. Let {ψi}Ni=1 be the first N Compressed Modes. Then, as µ→ 0,

| suppψi| ∼ µ2d/(d+4). (4.3.5)
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As a straightforward consequence of Theorem 4.3.2, we obtain the following energy

equipartition result.

Theorem 4.3.3. Let {ψi}Ni=1 be the first N Compressed Modes. Suppose the energy E is

partitioned into E = E1 + E2, where

E1 =
N
∑

i=1

∫

Rd

1

µ
|ψi|dx,

E2 =
N
∑

i=1

∫

Rd

1

2
(|∇ψi|2 + V (x)ψi

2) dx.

Then,

E1 ∼ µ−4/(4+d), E2 ∼ µ−4/(4+d) as µ→ 0.

For the proof of Theorem 4.3.2, we use the classical Rayleigh-Faber-Krahn and the

Poincare’s inequalities. The Rayleigh-Faber-Krahn inequality provides a lower bound for

the first (Dirichlet) eigenvalue of the Laplace operator in terms of the volume of the domain.

Theorem 4.3.4 (Rayleigh-Faber-Krahn inequality, see e.g. Section 3.2 in [26] ). . Let λ1(Ω)

denote the first (Dirichlet) eigenvalue of Laplace operator on a bounded domain Ω ⊂ R
d.

Then,

λ1(Ω) & |Ω|−2/d, (4.3.6)

where the implicit constant depends only on the dimension d.

On the other hand, the Poincare’s inequality provides a bound for the L2 norm of any

function in H1
0 (Ω), in terms of the L2 norm of its gradient.

Theorem 4.3.5 (Poincare’s inequality, see e.g. Section 10.2 in [28]). For u ∈ H1
0 (Ω),

‖u‖22 ≤
‖∇u‖22
λ1(Ω)

. (4.3.7)

Notice that in general, the Compressed Modes are elements of H1(Ω). However, the

Poincare’s inequality holds true for functions in H1
0 (Ω), the space obtained by taking the

H1-norm closure of the C∞
0 (Ω) functions. Nevertheless, since the Compressed Modes are
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compactly supported as µ → 0, the Poincare’s inequality is applicable for any domain that

contains the support of the Compressed Modes.

The following lemma is obtained by a mere combination of the Rayleigh-Faber-Krahn

and the Poincare’s inequalities.

Lemma 4.3.6. Let Ω ⊂ R
d be a bounded domain, and suppose that u ∈ H1(Ω) has compact

support inside Ω. Then,

‖u‖2 . | supp u|1/d‖∇u‖2. (4.3.8)

Proof. Construct the domains {Vk}∞k=1 such that supp u ⊂ Vk and

lim
k→∞

|Vk| = | supp u|.

Then, u ∈ H1
0 (Vk), so that the Poincare’s inequality (4.3.7) yields

‖u‖2 ≤
‖∇u‖2
λ1(Vk)1/2

. (4.3.9)

On the other hand, the Rayleigh-Faber-Krahn inequality (4.3.6) provides a lower bound for

λ1(Vk) as

λ1(Vk) & |Vk|−2/d. (4.3.10)

Substituting (4.3.10) in (4.3.9), we obtain

‖u‖2 . |Vk|1/d‖∇u‖2.

Taking limit as k → ∞, we obtain (4.3.8), as desired.

Now, we are ready to prove Theorem 4.3.2.

Proof of Theorem 4.3.2. Lets first estimate λi, and λij. Note from the expression (4.3.2a)

for λi that

λi ≤
1

2µ

∫

Rd

|ψi| dx+ ||V ||∞ +
1

2

∫

Rd

|∇ψi|2 dx . E.
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Similarly from (4.3.2b),

|λij| ≤
∣

∣

∣

∣

1

µ

∫

Rd

p(ψi)ψj dx+ 2

∫

Rd

V (x)ψiψj dx+

∫

Rd

∇ψi · ∇ψj dx
∣

∣

∣

∣

≤ 1

µ

∫

Rd

|ψj| dx+ 2

∫

Rd

|V (x)ψiψj| dx+
∫

Rd

∇|ψi · ∇ψj| dx

≤ 1

µ

∫

Rd

|ψj| dx+
∫

Rd

|V (x)|(ψ2
i + ψ2

j ) dx+
1

2

∫

Rd

|∇ψi|2 + |∇ψj|2 dx

. E.

Plugging the above upper bounds for λi, and λij in inequality (4.3.4), we obtain the

following upper bound for the support

1

µ
| suppψi| . E

N
∑

i=1

∫

Rd

|ψi| dx = µEE1. (4.3.11)

Recall that the total energy of the system, E, grows at order µ4/(4+d), so that

E1 . E ∼ µ4/(4+d).

Combining this with the above inequality (4.3.11), we obtain

| suppψi| . µ2EE1 . µ2d/(d+4). (4.3.12)

Now, applying Lemma 4.3.6 to ψi, we get

‖ψi‖2 . | suppψi|1/d‖∇ψi‖2

. | suppψi|1/d
√
E,

(4.3.13)

where the last inequality holds true since the term ‖∇ψi‖22 is contained in the total energy

E. Since E ∼ µ−4/(4+d), the last inequality becomes

‖ψi‖2 . | suppψi|1/dµ−2/(4+d),

or equivalently,

| suppψi| & µ2d/(d+4),

proving the upper bound for the support. The lower bound is already verified in (4.3.12),

hence proving (4.3.5).
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Proof of Theorem 4.3.3. The proof is mainly a repetition of the inequalities in the proof

of Theorem 4.3.2 with the knowledge of the precise asymptotic behavior of the size of the

support of ψi| is given by

| suppψi| ∼ µ2d/(d+4).

First, we consider the inequality (4.3.11), which now becomes

µ(d−4)/(d+4) ∼ 1

µ
| suppψi| . µEE1 ∼ µd/(d+4)E1,

hence providing the following lower bound for E1

E1 & µ−4/(4+d).

We already have the upper bound E1 ≤ E ∼ µ−4/(4+d). Hence,

E1 ∼ µ−4/(4+d).

Next, the inequality (4.3.13) becomes

1 . | suppψi|1/d||∇ψi||2 ∼ µ2/(4+d)||∇ψi||2.

Hence, we get

||∇ψi||2 & µ−2/(d+4).

Now, we have

E2 =
N
∑

i=1

∫

Rd

1

2
(|∇ψi|2 + V (x)ψi

2) dx =
1

2

N
∑

i=1

||∇ψi||22 −N ||V ||∞ & µ−4/(d+4).

which proves E2 ∼ µ−4/(d+4), since the lower bound is immediate.

So far, the asymptotic analysis of support and the energy partition is considered for the

case µ→ 0. Next, we analyze the case µ→ ∞. In this case, since the L1 term converges to

zero, the energy of the Compressed Modes corresponding to a particular µ = µ0 yields an

upper bound for the energies corresponding to µ with µ ≥ µ0. Therefore, E stays bounded

as µ→ ∞, which can be written in the following notation

E . 1
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The following theorem gives bounds for the support of the Compressed Modes, and their

energy partition.

Theorem 4.3.7. Let {ψi}Ni=1 be the first N Compressed Modes. Then, as µ→ ∞,

1 . | suppψi| . µ2,

µ−2 . E1 . 1.

Proof. Similarly as in the proof of the previous theorem, we may estimate λi, and λij’s by

E, hence they are bounded, too. That is

λi . 1,

λij . 1.

Now, the inequality (4.3.4) becomes

1

µ
| supp(φi)| . µE1. (4.3.14)

On the other hand, the inequality (4.3.8) yields

1 = ||u||2 . | supp(ψi)|1/d||∇ψi||2.

Since ||∇ψi||2 .
√
E . 1, the above inequality implies | supp(ψi)| & 1. This, combined

with (4.3.14) yields the result.

4.4 Conclusions

In this chapter, the size of the support for CM-I, and the regularity properties for CM-I,

CM-II, and CPW have been studied by analyzing the associated Euler-Lagrange equations.

The precise asymptotic behavior for the size of the support has been shown to agree with the

upper bound given in [5]. A bootstrap argument based on the Elliptic Regularity Theorems

has enabled us to conclude that for dimension d = 1, CM-I, CM-II, and CPW are infinitely

differentiable on their domain of definition outside of finite set of points.

48



CHAPTER 5

Solutions to Variational Problems with Generalized L1

Terms

This chapter presents the applications of the sparsity promoting techniques to different type

of differential equations. There has been significant progress towards understanding the na-

ture of broader family of differential equations involving the L1 term, and developing numer-

ical schemes to compute the solutions. Formulation of some non-linear elliptic and parabolic

problems such as the Signum-Gordon and the divisible sandpile equations are considered

in [11], where the authors provide an Alternating Direction Implicit (Douglas-Rachford)

scheme to efficiently compute the solutions. A further reference on solving nonlinear multi-

valued evolution equations can be found in [30]. In [44], a general class of obstacle problems

are formulated in terms of a variational form involving the L1 norm, and a Split-Bregman

scheme is developed for numerical solutions. It is later shown in [49] that these type of opti-

mization problems can be efficiently solved via the primal-dual methods for convex problems

(see [15]). Applications of L1 type penalization to Hamilton-Jacobi equations are introduced

in [17], where the authors provide a framework to efficiently solve high dimensional problems

via the variational Hopf formula [27]. This chapter is taken with slight modification from

Section 4 of [40], which studies the compact support properties of elliptic and parabolic

problems with weighted L1 terms.

In this chapter, we consider parabolic problems, in particular, the heat equation on an

infinite domain that follows the gradient flow associated to an energy involving a weighted

L1 term and study the support of the solution. Our work is an extension of [10], where the

authors study the parabolic variational inequalities, and discuss the connections to the free-

boundary problems. The “free-boundary” essentially denotes the boundary of the “active”
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region where the system is still governed by the underlying differential equation, hence

evolves over time. Free-boundary problems have many application areas such as optimal

control, fluid dynamics, and financial mathematics [35, 38]. A summary of the variational

formulations of the free boundary problems can be found in [23].

Compressed Modes (CM) and Compressed Plane Waves (CPW) are designed to obtain

spatially localized functions for applications in solid state physics. Spatial localization en-

ables capturing the short-ranged interactions, and disregarding long-ranged interactions that

are often beyond physical intuition. One of the very attractive features of CMs and CPWs is

that the distinction between the short-ranged and long-ranged interactions are resolved by

the variational formulation, hence no explicit thresholding is needed for such distinction. On

the other hand, the scheme involves a parameter that controls the spatial localization at the

expense of the accuracy of the solution. While the errors are inevitable as the true solutions

are not fully spatially localized, errors in certain regions can be minimized by modifying the

L1 penalization term in a priori region. Namely, the extension of the original scheme for a

spatially weighted L1 penalization would enable such modification.

5.1 Problem Statement

The goal in this section is to analyze the following equation on R
n × [0, T ]

ut −∆u+ ρ(x)p(u) = f

u(x, 0) = u0(x)
(5.1.1)

and, in particular, classify the weight functions ρ : Rn → R
+ ∪ {0}, which would result in

compactly supported functions in time and space domains. In [10], the parabolic variational

inequality is formulated as

(ut −∆u)(v − u) ≥ f(v − u) a.e. for x ∈ R
n, 0 < t < T,

u ≥ 0 for x ∈ R
n, 0 < t < T,

u(x, 0) = u0(x).

(5.1.2)
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for any non-negative measurable function v. Note that the problem of interest in this sec-

tion, (5.1.1) can be seen as a special case of the problem (5.1.2) treated in [10]. Strictly

speaking, if we denote the positive and negative parts of the solution of (5.1.1), u, by u+,

and u−, respectively, then they satisfy the inequalities

(∂tu+ −∆u+)(v − u+) ≥ (f − ρ)(v − u+)

(∂tu− −∆u−)(v − u−) ≥ (f + ρ)(v − u−)

We generalize the compact support results in [10] to allow for a broader family of forcing

terms f , so that it is applicable to our motivating problem (5.1.1).

The existence and uniqueness for the problem (5.1.2) is given in the above mentioned

article. Furthermore, they prove theorems regarding the compact support of the solution

(Theorem 3.1. and Theorem 3.2. in [10]) under the uniform negativity constraint on f ,

namely that there exist a positive real number ν, such that

f ≤ −ν. (5.1.3)

For sufficient regularity assumptions, they also require

f ∈ L∞(Rn × (0, T )),

ft ∈ L∞(Rn × (0, T )).
(5.1.4)

We now quote the Theorems 3.1-3.2 from [10].

Theorem 5.1.1 (Theorem 3.1 in [10]). Suppose that u is a solution to the parabolic vari-

ational inequality (5.1.2) with the assumptions (5.1.3) and (5.1.4) on f . Then, there is a

positive number T0 such that u(x, t) ≡ 0 for t ≥ T0.

Theorem 5.1.2 (Theorem 3.2 in [10]). Suppose that u is a solution to the parabolic varia-

tional inequality (5.1.2) with the assumptions (5.1.3) and (5.1.4) on f . Suppose further that

u0 has compact support. Then, there is a positive number R0 such that u(x, t) = 0 when

|x| > R0.

We show that we can relax the condition (5.1.3) so that it only holds away from a ball

centered at the origin. Namely, we only require

f(x, t) ≤ −ν for |x| > K, (5.1.5)
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along with non-strict negativity condition on f

f(x, t) ≤ 0. (5.1.6)

Theorem 5.1.3. Suppose that u is a solution to the parabolic variational inequality (5.1.2)

with the assumptions (5.1.4), (5.1.5), and (5.1.6) on f . Then, there is a positive number T0

such that u(x, t) ≡ 0 for t ≥ T0.

Theorem 5.1.4. Suppose that u is a solution to the parabolic variational inequality (5.1.2)

with the assumptions (5.1.4), (5.1.5), and (5.1.6) on f . Suppose further that u0 has compact

support. Then, there is a positive number R0 such that u(x, t) = 0 if |x| > R0.

Corollary 5.1.5. Let u satisfy the following PDE with a compactly supported initial condi-

tion u0,

ut −∆u+ ρ(x)p(u) = f,

where p is the sub-differential of the absolute value function, and ρ : Rn → R
+ ∪ {0} is a

weight function. Suppose further that

lim
(x,t)→∞

f(x, t) = 0

lim inf
x→∞

ρ(x) > 0

Then, u is compactly supported on the (x, t)-space.

The proofs of Theorems 5.1.3 and 5.1.4 rely on the maximum principle applied to the

family of functions βǫ, uR,ǫ defined in [10]. We merely restate the definitions of these functions

here. βǫ is a C
∞(R) function satisfying

βǫ(x) = 0 for x > 0,

lim
ǫ→0

βǫ(x) = −∞ for x < 0,

β′
ǫ(x) > 0 for x < 0.
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Then, for a given initial data u0 and a source term f , the functions uR,ǫ are defined to be

the solution to the following problem

ut −∆u+ βǫ(u) = f, for |x| < R, 0 < t < T,

u(x, 0) = u0(x), for |x| < R,

u(x, t) = 0, for |x| = R, t > 0.

Proof of Theorem 5.1.3. We follow a similar construction as in [10]. From Theorem 2.1

in [10], there exists M > 0 such that uR,ǫ(x, 1) ≤M . Let

v(x, t) =











M − ν(t− 1) for |x| > K,

M − ν(t− 1) + ν(K2 − |x|2)/2d for |x| ≤ K

and let w = max(0, v). Then, w(x, t) = 0 for t > T0 := 1 +M/ν +K2/2d. Furthermore,

wt −∆w =



























0 if |x| < K

−ν if |x| > K, 1 ≤ t ≤ T0

0 if |x| > K, t > T0

In particular, w satisfies

wt −∆w + βǫ(w) ≥ f.

Therefore, by the maximum principle applied on w−uR,ǫ, we conclude that uR,ǫ(x, T0) ≤
0. Letting, R → ∞, and ǫ→ 0, we obtain u(x, T0) = 0. Hence, u ≡ 0 for t ≥ T0.

Proof of Theorem 5.1.4. Let ρ denote the radius of the support of u0, as in the original proof.

The only difference is that, we proceed with ρ̃ such that ρ̃ > max(ρ,K), and construct the

comparison function in maximum principle argument in a slightly different way.

From Theorem 2.1 in [10], we know the existence of N > 0 such that

|uR,ǫ(t, x)| ≤ N for x ∈ R
n, ρ̃ ≤ |x| ≤ R, 0 < t < T0.

53



For arbitrary positive constants µ, R0 and for r = |x|, let w solve the heat equation for

|x| < ρ̃ with source term f

wt −∆w = f for |x| < ρ̃

w(x, t) = µ(R0 − ρ̃)2 for |x| = ρ̃, t > 0

w(x, 0) = µ(R0 − r)2 for |x| < ρ̃.

We choose parameters µ,R0 such that 2µ ≤ ν, µ(R0 − ρ̃)2 ≥ N , so that the following

inequalities are satisfied

wt −∆w + βǫ(w) ≥ −ν if |x| > ρ̃

w ≥ N if |x| = ρ̃.

Now, applying the maximum principle to w − uR,ǫ, we conclude that w − uR,ǫ ≥ 0 if ρ̃ <

|x| < R, 0 < t < T0. Therefore,

uR,ǫ(x, t) = 0 if R0 ≤ |x| ≤ R, 0 < t < T0.

Letting R → ∞, we obtain the spatial compactness of u, as desired.

Proof of Corollary 5.1.5. Observe that u+ is a solution to the variational inequality (5.1.2)

when f is replaced by f − ρ(x)µ, so that the RHS of the variational inequality is strictly

negative for large values of x and t. Now, by Theorem 5.1.4, u+ is compactly supported in

the space variable x. Let

ǫ = lim inf
x→∞

ρ(x).

Suppose |f | < ǫ
2
for t > T . Then, Theorem 5.1.3 is applicable for u+ provided that we

replace the initial time with t = T instead of t = 0, so that u+ has compact support in t.

Repeating the above arguments for u−, we conclude that u is compactly supported in

time variable t, as desired.
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5.2 Numerical Results

5.2.1 Heat Equation with L1 minimization

For numerical results, we consider the initial value problem on R
n× [0, T ] without the forcing

term, i.e.

ut −∆u+ ρ(x)p(u) = 0

u(x, 0) = u0(x)
(5.2.1)

In order to numerically compute the solutions to the equation (5.2.1), we first discretize the

equation in time via the implicit Euler scheme, then discretize the arising equations in space

and carry out the computations via FFT solvers [16, 41]. In particular, the implicit Euler

scheme for the problem (5.2.1) is given by

un+1 − un

τ
= ∆un+1 − ρ(x)p(un+1). (5.2.2)

Here, we denote un = un(x, y) = u(nτ, x, y) for the values of u at discrete time instances.

Note that the spatial variable is not discretized in the equation (5.2.2). Furthermore, given

un, equation (5.2.2) is a non-linear equation for un+1. Nevertheless, we can convert this

equation into a variational form involving the (weighted) L1 norm. Namely, the solution

un+1 to the equation (5.2.2) is also a solution to the following variational problem

min
u

1

2
‖∇u‖22 +

1

2τ
‖u− un‖22 + ‖ρ(x)u‖1. (5.2.3)

Now, the above formulation is a convex minimization problem, which can be solved via

convex optimization methods such as the Split-Bregman (ADMM) method [25, 30]. In order

to implement convex optimization methods, we need to discretize the problem (5.2.3). First,

we truncate the infinite domain of space variable into a sufficiently large finite rectangular

domain, and enforce zero boundary conditions for the feasible set of solutions. Next, the

Split-Bregman scheme is framed as follows. The associated Lagrangian is given by

L(u, v, c) = 1

2
‖∇u‖22 +

1

2τ
‖u− un‖22 + ‖ρ(x)v‖1 +

λ

2
‖u− v‖22 + λ〈c, u− v〉.
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Here λ > 0 is the step-size parameter that controls the speed of convergence. The method

consists of solving the following subproblems starting from an initial guess for the auxiliary

variables v and c, until a desired level of convergence is obtained.

uk+1 = argmin
u

L(u, vk, ck) = argmin
u

1

2
‖∇u‖22 +

1

2τ
‖u− un‖22 +

λ

2
‖u− vk‖22 + λ〈c, u〉

(P.1.1)

vk+1 = argmin
v

L(uk+1, v, ck) = argmin
u

λ

2
‖v − uk+1‖22 + ‖ρ(x)v‖1 − λ〈c, v〉 (P.1.2)

ck+1 = ck + uk+1 − vk+1 (P.1.3)

Without discretization, by Euler-Lagrange equations, the solution to the problem (P.1.1)

also satisfies the following Poisson’s equation

−∆uk+1 +

(

1

τ
+ λ

)

uk+1 =
1

τ
un + λ(vk − ck).

Hence, we consider the discretized version of the above problem, which can be solved via

the discrete sine transform (DST). DST also ensures that the Dirichlet boundary conditions

are met as well. The solution to subproblem (P.1.2) is given simply by a (weighted) soft-

thresholding as

vk+1 = S
(

uk+1 + ck,
ρ

λ

)

,

where S is the soft-thresholding operator applied coordinate-wise on the arguments. The

soft-thresholding operator on scalars is given by

S(x, α) = sign(x)max(|x| − α, 0).

The algorithm is summarized in Algorithm 1.

We contrast the results for the cases where there is no sub-differential term (Figure 5.1),

with uniform sub-differential term (Figure 5.2), and with weighted sub-differential term

whose weight is given by the characteristic function of the complement of a finite rectangular

region (Figure 5.3).

We consider the problem with the two-dimensional space variable where the initial value

function is taken to be an instance of the two-dimensional heat kernel. Namely, for Figure 5.1,
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Algorithm 1 Split-Bregman Scheme (ADMM) for solving the heat equation with weighted

subdifferential term.

Input: U0, ρ, λ, timesteps, and convergence criteria

Output: Un for n = 1, 2, . . . , timesteps

for n = 0, 1, . . . , timesteps− 1 do

while “not converged” do

un+1
k+1 =

((

1
τ
+ λ
)

I−∆
)−1 ( 1

τ
Un + λ

(

vn+1
k − cn+1

k

))

vn+1
k+1 = S

(

un+1
k+1 + cn+1

k , ρ
λ

)

cn+1
k+1 = cn+1

k + un+1
k+1 − vn+1

k+1

end while

Un+1 = un+1
k+1

end for

we consider the standard heat equation

ut −∆u = 0

u(x, y, 0) = u0(x, y) =
1

4π
e−

x2+y2

4 ,
(5.2.4)

whose solution is given analytically by the heat kernel as

u(x, y, t) =
1

4π(t+ 1)
e−

x2+y2

4(t+1) .

Next, we modify the heat equation via the subdifferential term as

ut −∆u+ γp(u) = 0

u(x, y, 0) = u0(x, y) =
1

4π
e−

x2+y2

4 ,
(5.2.5)

with parameter

γ = 0.1. (5.2.6)

Finally, the setup for the equation with weighted subdifferential term is given by

ut −∆u+ γχRc(x)p(u) = 0

u(x, y, 0) = u0(x, y) =
1

4π
e−

x2+y2

4 ,
(5.2.7)
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Figure 5.1: Analytical solution to the equation (5.2.4) at various t values.
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with the following parameters.

γ = 0.1

R = [−2, 2]× [−2, 2] ⊂ R
2.

(5.2.8)

Notice that the weight term

ρ(x) = γχRc(x)

satisfies

lim inf
x→∞

ρ(x) = lim
x→∞

ρ(x) = γ,

hence Corollary 5.1.5 is applicable.
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Figure 5.2: Solution to the equation (5.2.5) with the setup given by (5.2.6) at various t

values.
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Without the subdifferential term p, the solution spreads to infinity as t → ∞ as shown

in Figure 5.1. Whereas with the (uniform) subdifferential term, the solutions have compact

support with sizes shrinking in time (see Figure 5.2). Hence, the solutions no longer spreads

to infinity. On the other hand, when the subdifferential term is activated only outside of a

finite rectangle, the solutions exhibit a similar behavior to the uniform subdifferential case

for small values of t. However, for the large values of t, the support of the solutions tend to

stay within the rectangle as there is no subdifferential term inside the rectangle as illustrated

in Figure 5.3.
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Figure 5.3: Solution to the equation (5.2.7) with the setup given by (5.2.8) at various t

values.
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5.2.2 Heat Equation with Obstacle

Next, we consider the heat equation inside the cylinder U × [0, T ] with an obstacle that is

activated outside of a particular region Q ⊂ R
n. More precisely, we consider the following
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problem

u(x, t) ≥ φ(x) if x /∈ Q

ut −∆u = f if u(x, t) > φ(x) or x ∈ Q

u(x, t) = 0 for x ∈ ∂U

u(x, 0) = u0(x)

(5.2.9)

We employ a similar discretization scheme as in Section 5.2.1, so that

un+1(x, t) ≥ φ(x) if x /∈ Q

un+1 − un

τ
= ∆un+1 + f if x ∈ Q

un+1 − un

τ
= ∆un+1 + f if un+1(x, t) > φ(x) and x /∈ Q

The above equation for un+1 is an elliptic obstacle problem with zero (Dirichlet) boundary

condition. A reformulation of elliptic obstacle problems as optimization problems are given

in [44]. We follow their formulation with the modification that the penalization term is

activated only outside of the region Q. Hence, the problem becomes

min
u

1

2
‖∇u‖22 +

1

2τ
‖u− un‖22 −

1

τ
〈u, f〉+ γ

∫

Qc

(φ− u)+dx, (5.2.10)

for some γ > 0 large enough. Following the standard iteration scheme described in Section 5

of [44] with the auxiliary variable v = φ−u, the solution is obtained by solving the following

problems until a desired level of convergence is obtained

uk+1 = argmin
u

1

2
‖∇u‖22 +

1

2τ
‖u− un‖22 −

1

τ
〈u, f〉+ λ

2
‖u− (φ− vk)‖22 + λ〈c, u〉 (P.2.1)

vk+1 = argmin
u

λ

2
‖v − φ+ uk+1‖22 + γ

∫

Qc

v+dx− λ〈c, v〉 (P.2.2)

ck+1 = ck + uk+1 + vk+1 − φ (P.2.3)

The solution to (P.2.1) can be computed by solving the elliptic equation

−∆uk+1 +

(

1

τ
+ λ

)

uk+1 =
1

τ
un +

1

τ
f + λ(φ− vk − ck),

whereas the solution to (P.2.2) is given by

vk+1(x) = S+
Qc

(

φ(x)− uk+1(x) + ck(x), x,
γ

λ

)
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where S+
Qc is the soft-thresholding operator applied outside of Q and only to the positive

values. Hence S+
Qc is given by

S+
Qc(y, x, α) =



























y − α if x /∈ Q, y ≥ α,

0 if x /∈ Q, 0 < y < α,

y otherwise.

The algorithm is summarized in Algoritm 2.

Algorithm 2 Split-Bregman Scheme (ADMM) for solving the heat equation with obstacle

that is activated outside of a given region

Input: U0, f, φ,Q, γ, λ, timesteps, and convergence criteria

Output: Un for n = 1, 2, . . . , timesteps

for n = 0, 1, . . . , timesteps− 1 do

while “not converged” do

un+1
k+1 =

((

1
τ
+ λ
)

I−∆
)−1 ( 1

τ
Un + 1

τ
f + λ

(

φ− vn+1
k − cn+1

k

))

vn+1
k+1 = S+

Qc

(

φ− un+1
k+1 + cn+1

k , γ
λ

)

cn+1
k+1 = cn+1

k + un+1
k+1 + vn+1

k+1 − φ

end while

Un+1 = un+1
k+1

end for

Figure 5.4 illustrates the numerical solution of (5.2.9) with one-dimensional spatial vari-

able along with the following setup

U = [−5, 5],

f(x, t) = −1,

φ(x) = 0,

Q = [−2, 2],

u0(x) = − cos
3π

10
x

(5.2.11)
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Figure 5.4: Solution to the equation (5.2.9) with the setup given by (5.2.11) at various t

values
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5.3 Conclusions

Using a weighted L1 penalization in the context of parabolic problems, we have demonstrated

that the deviation from the true solution can be reduced in pre-determined regions, yet still

having compactly supported solutions. The numerical scheme is chosen appropriately so

that the algorithm is applicable to a wide range of possibly discontinuous weights such as

the characteristic functions of a sets. Numerical results suggest that the notion of weighted

L1 penalization can be applied to the parabolic obstacle problems, where the obstacle is not

active at certain regions.
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APPENDIX A

Shift Orthogonality

A.1 Characterization of Shift Orthogonality

We provide an explicit characterization of the Hilbert spaces Hj in Theorem 2.4.3. The

eigenfunctions of the Laplace operator in a rectangular domain Ω = [0, n1w1]×· · ·× [0, ndwd]

is given by

φm1,...,md
(x) = e

2πi
(

m1x1

n1w1
+

m2x2

n2w2
+···+mdxd

ndwd

)

.

where (m1,m2, . . . ,md) ∈ Z
d. Hence, if we form the lattice

Πw =

{(

m1

n1w1

,
m2

n2w2

, . . . ,
md

ndwd

)∣

∣

∣

∣

(m1,m2, . . . ,md) ∈ Z
d

}

,

then each of the eigenfunctions of the Laplace operator in the domain Ω can be represented

as

φυ(x) = e2πiυ·x, υ ∈ Πw,

with the corresponding eigenvalue λυ = 4π2|υ|2. Now, we define

Λw =

{(

m1

n1w1

,
m2

n2w2

, . . . ,
md

ndwd

)∣

∣

∣

∣

0 ≤ m1 < n1, . . . , 0 ≤ md < nd

}

.

Each ρ ∈ Λw has a natural periodic extension in Πw with respect to Γw. For each ρ ∈ Λw,

we denote such extension by Σρ. Moreover, the family of Hilbert spaces Hj in Theorem 2.4.3

consists of the Hilbert spaces

Hρ = span{φυ|υ ∈ Σρ}.

Since each of Λw and Γw has cardinality n1n2 . . . nd; the cardinality of the family of Hilbert

spaces {Hj}Nj=1, satisfies N = n1n2 . . . nd = |Γw|, as asserted in Theorem 2.4.3.
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We have already observed that the eigenvalue corresponding to φυ is λυ = 4π2|υ|2. Weyl’s

law in the rectangular domain case can be viewed as the growth of the size of the distance

between lattice points and the origin. Therefore, with all these lattice characterization of

the eigenfunctions, it is not hard to see that the growth of the eigenvalues corresponding to

the eigenfunctions in each of the Hilbert spaces Hj are given precisely as in Theorem 2.4.5.

As an illustration, let’s consider Ω = [0, 2] × [0, 3] ⊂ R
2, and w = (1,1). Then, Γw

becomes

Γw = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

The eigenfunctions for the Laplace equation in Ω are given by

φm,n(x, y) = e2πi(
mx
2

+ny

3
),

so that

Πw =
{(m

2
,
n

3

)∣

∣

∣
m,n ∈ Z

}

.

Now, the finite lattice Λw becomes

Λw =

{

(0, 0),

(

0,
1

3

)

,

(

0,
2

3

)

,

(

1

2
, 0

)

,

(

1

2
,
1

3

)

,

(

1

2
,
2

3

)}

Finally, the decomposition given in Theorem 2.4.3 becomes

L2(Ω) = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H.5 ⊕H6,

where

H1 = span{φ2k,3l}k,l∈Z, H2 = span{φ2k,3l+1}k,l∈Z, H3 = span{φ2k,3l+2}k,l∈Z,

H4 = span{φ2k+1,3l}k,l∈Z, H5 = span{φ2k+1,3l+1}k,l∈Z, H6 = span{φ2k+1,3l+2}k,l∈Z.

A.2 An Elementary Proof of Shift Orthogonality Characterization

An elementary proof of Theorem 2.4.3 can be presented as follows. For simplicity, we consider

the one dimensional case, where N is a positive integer, and work with the space L2([0, N ]),
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where the shifts are simply the integer shifts. We denote the shift-orthogonal decomposition

of a function f ∈ L2([0, N ]) by

f(x) =
N
∑

k=1

fk(x)e
2πi k

N
x, (A.2.1)

where each fk is a periodic function with period 1. Existence and uniqueness of such a

decomposition follows from expanding f in the Fourier basis and grouping the terms with

the same frequencies modulo integers. Next, we consider the inner product of a function f

with its shifts. If f has a decomposition as given in (A.2.1), then

f(x+m) =
N
∑

k=1

fk(x)e
2πi k

N
(x+m) =

N
∑

k=1

fk(x)e
2πikm

N e2πi
k
N
x. (A.2.2)

Setting ξ = e
2πi
N i.e. as the N-th root of unity, we can rewrite (A.2.2) as

f(x+m) =
N
∑

k=1

ξkmfk(x)e
2πi k

N
x.

First, we note that the Fourier coefficients of a 1-periodic function is supported only on

integers divisible by N . That is, for a 1-periodic function g : [0, N ] → C, whenever n is not

divisible by N
∫ N

0

g(x)e2πi
n
N
xdx = 0. (A.2.3)

This last identity can be verified by the following direct computation using the 1-periodicity

of g
∫ N

0

g(x)e2πi
n
N
xdx =

N−1
∑

k=0

∫ k+1

k

g(x)e2πi
n
N
xdx =

∫ 1

0

g(x)e2πi
n
N
xdx

N−1
∑

k=0

ξnk.

As ξ is an N -th root of unity, and n is not divisible by N , we have

N−1
∑

k=0

ξnk

yielding (A.2.3).

Now, lets compute the inner product

〈f(x), f(x+m)〉 =
∫ N

0

f(x)f(x+m)dx,
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using the shift-orthogonal decomposition (A.2.1). By (A.2.2),

〈f(x), f(x+m)〉 =
∫ N

0

(

N
∑

k=1

fk(x)e
2πi k

N
x

)(

N
∑

k=1

ξkmfk(x)e
2πi k

N
x

)

dx

=

∫ N

0

(

N
∑

k=1

fk(x)e
2πi k

N
x

)(

N
∑

k=1

ξ−kmfk(x)e
−2πi k

N
x

)

dx

=

∫ N

0

(

N
∑

k=1

N
∑

ℓ=1

ξ−ℓmfk(x)fℓ(x)e
2πi k−ℓ

N
x

)

dx.

Since fk(x)fl(x) is 1-periodic, we can use (A.2.3) to conclude that the summands in the last

line above is non-zero only when k = ℓ, yielding the following simplified expression

〈f(x), f(x+m)〉 =
∫ N

0

N
∑

k=1

ξ−km|fk(x)|2dx. (A.2.4)

Denoting

wk =

∫ N

0

|fk(x)|2dx,

the identity (A.2.4) can be written in the following matrix form






















〈f(x), f(x+ 1)〉
〈f(x), f(x+ 2)〉

...

〈f(x), f(x+N − 1)〉
〈f(x), f(x+N)〉























=























ξ−1 ξ−2 · · · ξ−N

ξ−2 ξ−4 · · · ξ−2N

...
...

. . .
...

ξ−(N−1) ξ−2(N−1) · · · ξ−N(N−1)

1 1 · · · 1













































w1

w2

...

wn−1

wn























or more compactly as follows

b = Aw. (A.2.5)

This matrix equation can be solved directly since 1√
N
A is an orthogonal matrix, i.e. A−1 =

1
N
A∗. The shift-orthogonality constraints amounts to

b = [0,0, . . . ,0,1]t,

so that the solution to the equation (A.2.5) is given by

w =

[

1

L
,
1

L
, . . . ,

1

L
,
1

L

]t

.

Therefore, a shift orthogonal function f whose decomposition is given by (A.2.1) satisfies

‖fk‖22 =
∫ N

0

|fk(x)|2dx =
1

L
.
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APPENDIX B

Distribution of Eigenvalues for the Laplace Operator

We briefly discuss the properties of the distribution of the eigenvalues of the Laplace operator

on rectangular domains to provide a further refinement of the approximation result (2.3.3) in

Corollary 2.3.5. The idea is to obtain a uniform approximation results for dimensions d ≥ 3,

where there is no completeness result yet. The inequality (2.3.3) involves the difference

between eigenvalues, λm − λn in its RHS. First, we provide an estimate for the differences

between eigenvalues. Recall that the eigenfunctions of the Laplace operator in a rectangular

domain Ω = [0, w1]×, . . . ,×[0, wd] is given by

φm1,...,md
(x) = e

2πi
(

m1x1

w1
+

m2x2

w2
+···+mdxd

wd

)

.

where (m1,m2, ...,md) ∈ Z
d \ {0}. Or alternatively, if we form the lattice

Πw =

{

m1

w1

,
m2

w2

, . . . ,
md

wd

∣

∣

∣

∣

(m1,m2, . . . ,md) ∈ Z
d \ {0}

}

then each of the eigenfunctions of the Laplace operator in the domain Ω can be represented

as

φυ(x) = e2πiυ·x, v ∈ Πw,

with the corresponding eigenvalue λυ = 4π2|ν|2. Now, let’s define the eigenvalue counting

function N : R+ → N via

N (x) = # {λ|λ ≤ x, λ is an eigenvalue} .

From the observation above, we obtain

N (x) = #

{

υ ∈ Πw

∣

∣

∣

∣

|υ| ≤
√
x

2π

}

.
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In other words, N counts the lattice points which lie on a ball with
√
x

2π
. Notice that the

number of lattice points inside a domain can be used as an estimate of the volume of the

domain. In case of a ball, this relation can be converted into the following upper bound for

N

N (x) ≤
∣

∣B
(√

x
2π

)

∣

∣

w1w2 . . . wd
(B.0.1)

where B
(√

x
2π

)

denotes the ball centered at the origin with radius
√
x

2π
. On the other hand,

if we consider another ball centered at the origin, whose radius is shorter than the previous

one by the diagonal length ℓ of each cells of the lattice, we obtain a lower bound, namely

N (x) ≥
∣

∣B
(√

x
2π

− ℓ
)

∣

∣

w1w2 · · ·wd
(B.0.2)

Now, the relations (B.0.1)-(B.0.2) above become

ωd

(√
x

2π
− l
)d

w1w2 . . . wd
≤ N (x) ≤ ωd

(√
x

2π

)d

w1w2 . . . wd

where ωd is the volume of the unit ball in R
d. Inverting this last relation, we obtain

N
(

4π2

(

w1w2 · · ·wd
ωd

)2/d

n2/d

)

≤ n ≤ N



4π2

(

(

w1w2 · · ·wd
ωd

)1/d

n1/d + ℓ

)2




so that

4π2

(

w1w2 · · ·wd
ωd

)2/d

n2/d ≤ λn ≤ 4π2

(

(

w1w2 · · ·wd
ωd

)1/d

n1/d + ℓ

)2

. (B.0.3)

Let’s define the constant C and the aspect ratio ΥΩ of the domain Ω via

C = 4π2

(

w1w2 · · ·wd
ωd

)2/d

, ΥΩ =
ℓ

(

w1w2···wd

ωd

) 1
d

.

Then, the relation (B.0.3) becomes

Cn2/d ≤ λn ≤ C
(

n
1
d +ΥΩ

)2

(B.0.4)

For m ≥ n, by (B.0.4), we obtain the following separation result

λm − λn ≥ Cm2/d − C
(

n
1
d +ΥΩ

)2

.

69



We now have a lower bound for the quantity λm − λn. Recall that the inequality (2.3.3) is

given by
n
∑

k=1

d(φk, Vm)
2 ≤ m|Ω| 12

µ(λm+1 − λn)

Collecting the constants into the CΩ,µ term, the above inequality becomes

n
∑

k=1

d(φk, Vm)
2 ≤ CΩ,µ

m

m
2
d −

(

n
1
d +ΥΩ

)2 .
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APPENDIX C

An Asymptotic Formula for Derivative of Convex

Functions

We present the proof of the following lemma introduced in Chapter 3.

Lemma C.0.1. Let F : R+ → R be a convex function satisfying

F (t) = tα +O(tβ), as t→ ∞,

where the real numbers α, and β satisfies α > 1, and α > β > 0. Suppose further that F is

differentiable on R
+ \ E, where E is a discrete set. Then,

F ′(t) = αtα−1 +O(t
α+β

2
−1), as t ∈ R

+ \ E and t→ ∞.

Proof of Lemma 3.1.2. Proof of Lemma 2.1. Let C > 0 be such that

tα − Ctβ ≤ F (t) ≤ tα + Ctβ, ∀t > 0. (C.0.1)

For any real number a with a < 1, we have, by convexity

F (t)− F (t− ta)

ta
≤ F ′(t) ≤ F (t+ ta)− F (t)

ta
(C.0.2)

which combined with (C.0.1) yields

tα − (t− ta)α

ta
− C

tβ + (t− ta)β

ta
≤ F ′(t) ≤ (t+ ta)α − tα

ta
+ C

(t+ ta)β + tβ

ta
(C.0.3)
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Let’s define

f1(t) =
tα − (t− ta)α

ta
,

g1(t) =
tβ + (t− ta)β

ta
,

f2(t) =
(t+ ta)α − tα

ta
,

g2(t) =
(t+ ta)β + tβ

ta
.

Then, the inequality (C.0.3) becomes

f1(t)− Cg1(t) ≤ F ′(t) ≤ f2(t) + Cg2(t). (C.0.4)

We now analyze the growth of f1, f2, g1 and g2, as t→ ∞. Note that

f1(t) = tα−a
(

1− (1− ta−1)α
)

,

g1(t) = tβ−a
(

1 + (1− ta−1)β
)

,

f2(t) = tα−a
(

(1 + ta−1)α − 1
)

,

g2(t) = tβ−a
(

1 + (1 + ta−1)β
)

.

Taylor expanding the above expressions with the aid of

(1 + x)γ = 1 + γx+
γ(γ − 1)

2
x2 + o(x2) as x→ 0, (C.0.5)

we obtain

f1(t) = tα−a
(

αta−1 − α(α− 1)

2
t2a−2 + o(t2a−2)

)

,

= αtα−1 − α(α− 1)

2
tα+a−2 + o(tα+a−2)

g1(t) = tβ−a
(

2− βta−1 +
β(β − 1)

2
t2a−2 + o(t2a−2)

)

,

= 2tβ−a − βtβ−1 − β(β − 1)

2
tβ+a−2 + o(tβ+a−2)

and similarly

f2(t) = αtα−1 +
α(α− 1)

2
tα+a−2 + o(tα+a−2)

g2(t) = 2tβ−a + βtβ−1 − β(β − 1)

2
tβ+a−2 + o(tβ+a−2).
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Setting a = α−β
2

− 1, we obtain

f1(t)− Cg1(t) = αtα−1 +O(t
α+β

2
−1),

f2(t) + Cg2(t) = αtα−1 +O(t
α+β

2
−1),

which, together with (C.0.4) implies

F ′(t) = αtα−1 +O(t
α+β

2
−1), as t→ ∞, (C.0.6)

as desired.
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APPENDIX D

Improving Differentiability of Nonnegative Functions

up to Their Zeros

This section is devoted to the proof of Lemma 4.2.9, which is stated as follows.

Lemma D.0.1. Let I ∈ R be an open interval. For u : I → R
+ ∪ {0}, let K denote the

collection of points where u is zero, i.e.

K = {x|u(x) = 0}.

Suppose that K has empty interior, and u ∈ C1(I), and u ∈ C2(I \K). Assume further that

the second derivative of u on I \K can be extended continuously to I. Then, u ∈ C2(I).

The main difficulty in the proof of Lemma 4.2.9 is that the zero set of nonnegative C∞

functions can form arbitrary closed sets [47]. In particular, the set K can be a nowhere dense

positive measure sets such as Smith-Volterra-Cantor set. Therefore, a careful topological

analysis of zeros is required. Before proceeding with the proof of Lemma 4.2.9, we make the

following definition to classify the zeros of a continuous function.

Definition D.0.1. Let f be a continuous function and let x be a point with f(x) = 0. Then,

x is called an

(i) isolated zero if there exists a neighborhood N around x with f(y) 6= 0 for y ∈ N \ {x},

(ii) essential zero if x is an accumulation points of other zeros.

Note that the sets of isolated zeros and essential zeros are mutually exclusive sets. More-

over, any particular zero of a function falls into precisely one of these categories.

Now, we are ready to present the proof.
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Proof of Lemma 4.2.9. We denote I = (a, b), and without loss of generality, assume u(a) =

u(b) = 0. This is because the C2 property holds when the function is nonzero, hence we can

get rid of left and right segments of I where u is nonzero.

Let N denote the set of points of positivity of u. Now, we exploit the topological prop-

erties of R, namely that any open set inside R, hence N , can be represented as a union of

countable open intervals as

N = {x|u(x) > 0} =
⋃

k∈N
Ik =

⋃

k∈N
(ak, bk).

Moreover, since K has no interior, we have K = ∂N .

Next, we prove that ux is equal to zero on K except possibly at a, and b. Indeed, if x

is a point with u(x) = 0, and ux(x) > 0, then u attains negative values to the right of x,

hence contradicting the nonnegativity of u. Similarly, ux(x) < 0 is not feasible, implying

ux(x) = 0, as desired.

Let’s denote the isolated and essential zeros of u by K1 and K2, respectively. Let f

be the continuous extension of the second derivative of u. Since K2 contains points that

are accumulation points of zeros of u, where ux is also equal to zero, the points in K2 are

accumulation points of the zeros of ux. Hence, f vanishes on K2. On the other hand, the

isolated zeros, K1, can form at most a countable set, so that f = 0 a.e. on K.

Now, let v be the solution to the Poisson problem

vxx(x) = f(x) on I

v(a) = v(b) = 0.

Notice that
∫ bk

ak

f(x)dx =

∫ bk

ak

uxx(x)dx = ux(bk)− ux(ak) = 0 ∀k ∈ N.

Let y be point with u(y) 6= 0, i.e. y ∈ N . Then, y ∈ (an, bn) for some n ∈ N. Since f

vanishes a.e. on K, we have

∫ y

a

f(x)dx =

∫

(a,y)∩⋃k∈N
(ak,bk)

f(x)dx =

∫ y

an

f(x)dx.
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Hence,

vx(y)− vx(a) =

∫ y

a

vxx(x)dx =

∫ y

a

f(x)dx =

∫ y

an

f(x)dx = ux(y)− ux(an) = ux(y),

so that vx − ux = vx(a) on N . Since K is the boundary of N , by continuity of vx − ux, we

conclude that vx− ux is constant throughout I. Since vx is continuously differentiable, ux is

continuously differentiable, too. Hence, u ∈ C2(I), as desired.
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[34] Vidvuds Ozoliņš, Rongjie Lai, Russel Caflisch, and Stanley Osher. Compressed plane
waves yield a compactly supported multiresolution basis for the Laplace operator. Pro-
ceedings of the National Academy of Sciences, 111(5):1691–1696, 2014.

[35] Arshak Petrosyan and Henrik Shahgholian. Parabolic obstacle problems applied to
finance. Recent developments in nonlinear partial differential equations, 439:117–133,
2007.

[36] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010.

[37] Franz Rellich. Perturbation theory of eigenvalue problems. CRC Press, 1969.

[38] J-F Rodrigues. Obstacle problems in mathematical physics, volume 134. Elsevier, 1987.

[39] Hayden Schaeffer, Russel Caflisch, Cory D Hauck, and Stanley Osher. Sparse dynamics
for partial differential equations. Proceedings of the National Academy of Sciences,
110(17):6634–6639, 2013.

[40] Jonathan Siegel and Omer Tekin. Compact support of l1 penalized variational problems.
UCLA CAM Reports 15-56, 2015.

[41] Paul N Swarztrauber. The methods of cyclic reduction, fourier analysis and the facr
algorithm for the discrete solution of poisson’s equation on a rectangle. Siam Review,
19(3):490–501, 1977.
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